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Abstract: In this paper we present a beautifully consistent web of evidence for the ex-

istence of interacting 4d rank-1 N = 2 SCFTs obtained from gauging discrete subgroups

of global symmetries of other existing 4d rank-1 N = 2 SCFTs. The global symmetries

that can be gauged involve a non-trivial combination of discrete subgroups of the U(1)R,

low-energy EM duality group SL(2,Z), and the outer automorphism group of the flavor

symmetry algebra, Out(F ).

The theories that we construct are remarkable in many ways: (i) two of them have

exceptional F4 and G2 flavor groups; (ii) they substantially complete the picture of the

landscape of rank-1 N = 2 SCFTs as they realize all but one of the remaining consistent

rank-1 Seiberg-Witten geometries that we previously constructed but were not associated

to known SCFTs; and (iii) some of them have enlarged N = 3 SUSY, and have not been

previously constructed. They are also examples of SCFTs which violate the Shapere-

Tachikawa relation between the conformal central charges and the scaling dimension of the

Coulomb branch vev. We propose a modification of the formulas computing these central

charges from the topologically twisted Coulomb branch partition function which correctly

compute them for discretely gauged theories.
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1 Introduction

In this paper we investigate all possible discrete symmetries which can be gauged in 4d

rank-1 SCFTs while preserving N = 2 supersymmetry. The idea of gauging a discrete

symmetry was first introduced a long time ago in the context of field theories on a lattice [1]

and then later extended to the continuum case [2, 3]. Gauging of discrete symmetries in the

context of 4d superconformal field theories (SCFTs) was recently discussed in [4] and [5],

whose ideas have strongly influenced this paper.

We will show, on the one hand, that intricate consistency conditions need to be satisfied

for the existence of a discretely gauged version of a rank-1 N = 2 SCFT, and, on the other

hand, that these conditions have a rich set of solutions, enabling us to construct many new

theories. Some of these theories have exceptional flavor groups — in particular F4 and G2

— or extended N = 3 supersymmetry. Our results are summarized in table 1.
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Discrete gauge group action on the Coulomb Branch: CFT data:

parent Z2 Z̃2 Z3 Z̃3 Z4 Z̃4 Z5 Z6 Z̃6 kF 24a 12c h

[II∗,E8] 12 95 62 0
↓

[III∗,E7] 8 59 38 0
↓

[IV ∗,E6] [II∗,F4] 6 41 26 0
↓ ↓

[I∗0 ,D4χ0] [III∗,B3] [II∗,G2] 4 23 14 0
↓ ↓ p

[IV,A2χ 1
2

] [IV ∗,A2] p [II∗,B1] 3 14 8 0

↓ p ↓ p
[III,A1χ 2

3
] p [III∗,A1] p 8

3
11 6 0

↓ p p p
[II,χ 4

5
] p p p [II∗,∅] − 43

5
22
5

0

↓ ↓ ↓ ↓
[I0,∅] [I∗0 ,∅] [IV ∗1 ,∅] [III∗,∅] [II∗,∅] − 5 2 0

[II∗,C5] 7 82 49 5
↓

[III∗,C3C1] (5,8) 50 29 3
↓

[IV ∗,C2U1] [II∗,C2] (4,?) 34 19 2
↓ ↓

[I∗0 ,C1χ0] [III∗,C1] [III∗,U1oZ2] 3 18 9 1
↓ ↓ ↓

[I4,U1] [I∗2 ,∅] [I∗2 ,∅] 1 6 3 0

[II∗,A3oZ2] 14 75 42 4
↓

[III∗,A1U1oZ2] (10,?) 45 24 2
↓

[IV ∗,U1] [II∗,∅] 5 30 15 1
↓

[I∗1 ,∅] − 17 8 0

[II∗,A2oZ2] 14 71 38 3
↓

[III∗,U1oZ2] 7 42 21 1
↓

[IV ∗1 ,∅] − 55
2

25
2

0

[I∗0 ,C1χ0] [III∗,C1] [III∗,U1oZ2] [II∗,C1] [II∗,U1oZ2] 3 18 9 1
↓ ↓ ↓ p p

[I2,U1] [I∗1 ,∅] [I∗1 ,∅] p p 1 6 3 0
↓ ↓ ↓

[I0,∅] [IV ∗√
2
,∅] [IV ∗√

2
,∅] − 5 2 0

[I0,C1χ0] [I∗0 ,χ0]×H [I∗0 ,C1χ0] [IV ∗1 ,∅]×H [IV ∗,U1] [III∗,∅]×H [III∗,U1oZ2] [II∗,∅]×H [II∗,U1oZ2] 1 6 3 1
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

[I0,∅] [I∗0 ,∅] [I∗0 ,∅] [IV ∗1 ,∅] [IV ∗1 ,∅] [III∗,∅] [III∗,∅] [II∗,∅] [II∗,∅] − 5 2 0

Table 1. Rank-1 N=2 SCFTs. The notation is explained in the text; black entries have N=2

supersymmetry, green N=3, blue N=4, and the two red entries are somewhat more speculative

— i.e., there is little evidence from self-consistency checks for their existence. The vertical arrows

denote some characteristic N=2 RG flows. Darkly-shaded rows are lagrangian CFTs and lightly-

shaded rows are IR-free or free theories. The second-to-last row is a free N=4 vector multiplet

and its discretely gauged versions. The last four columns record the flavor (kF ) and conformal

(a, c) central charges, and the quaternionic dimension (h) of the enhanced Coulomb branch fiber

common to the theories in each row. N=4 parent theories admit additional N=3-preserving discrete

gaugings shown in the Z̃k columns.

Gauging a discrete symmetry does not introduce any extra interactions. Rather it

simply acts as a superselection rule on the operator spectrum of the theory projecting out

all operators which are not invariant under the gauged discrete symmetry. This means that

gauging a discrete symmetry does not change the local dynamics of a theory, though it does
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change the spectrum of local and non-local operators. For simplicity consider an operator

O which is odd under a Z2 symmetry: O(x)
Z2−→ −O(x). If this Z2 is gauged, the operator

O(x) is not a gauge-invariant local operator and so the state it creates from the vacuum,

|O(x)〉, is projected out of the Hilbert space. But O(x) is not removed from the theory in

the following sense. Since a product of two O operators is even under the Z2, |O(x)O(y)〉
will be part of the spectrum. We can prepare a state arbitrarily close to |O(x)〉 by taking

y distant and space-like separated from x, thus leaving the local dynamics unchanged. We

will see in section 4 how this is reflected in the structure of the Higgs branch of N = 2

SCFT moduli spaces. Also, because the local dynamics is unchanged, gauging a discrete

symmetry does not modify the value of the conformal (a, c) and flavor (kF ) central charges

from their values in the SCFT where the discrete symmetry is not gauged.

The discrete gauging operation turns out to organize the classification of 4d rank-1

N = 2 SCFTs [6–9] in a striking way. That classification found 26 possible consistent

deformations of scale-invariant rank-1 Seiberg-Witten geometries, of which 17 were found

to correspond to known (i.e., constructed or predicted to exist by other methods) rank-1

SCFTs. 8 of the remaining 9 deformation geometries are found here as certain Zn-gauged

versions of some of those 17 theories.

In more detail, each entry in table 1 describes a deformed rank-1 Seiberg-Witten

geometry as [K,F ] where K ∈ {In, I∗n, II, III, IV, II∗, III∗, IV ∗} is the Kodaira type of

the scale-invariant singularity being deformed, and F is the flavor symmetry which acts on

the deformation parameters.1 In addition to the flavor symmetry, we will also denoted by

χδ the existence of a chiral deformation parameter of scaling dimension δ; χ0 corresponds

to the existence of an exactly marginal deformation. If F = ∅ and there is no χδ, then the

corresponding SCFT has no relevant N = 2 supersymmetry-preserving deformation. The

17 known deformable theories referred to above are the entries in the “parent” column of

table 1 excluding the ones in the light yellow rows which are free or IR-free theories, and

excluding the non-deformable [IV ∗Q=1,∅] geometry. The 8 new geometries appear among

the ones in the Z2 through Z6 columns of table 1, again excluding the free theories in the

light yellow rows, and the two (more speculative) undeformable [II∗,∅] theories.

The 8 Coulomb branch geometries for which we find new SCFTs through discrete

gauging are all characterized by the fact that upon deformation they flow to IR singularities

— such as I∗n, IV ∗, and III∗ — which, by virtue of the scaling dimension of their Coulomb

branch operator, or because of the Dirac quantization condition, cannot be consistently

interpreted as corresponding to free theories.2 We will show that these IR singularities can,

in fact, all be identified as discretely gauged versions of IR-free U(1) N = 2 gauge theories.

We then argue that this identification can be extended consistently to interacting

N = 2 SCFTs. That is, we realize the geometries that flow into these new IR singularities

as the Coulomb branches of new SCFTs obtained by gauging discrete subgroups of other

interacting N = 2 SCFTs. There are tight internal consistency checks stemming from the

1More precisely, only the Weyl group of the flavor symmetry acts on the deformation parameters. The-

ories with flavor symmetries with the same Weyl group, such as [II∗, G2] and [II∗, A2 oZ2], have the same

deformed Seiberg-Witten geometries [8].
2For more on the analysis of such undeformable singularities see especially sections 1 and 4.2 of [6].
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way the discrete symmetry being gauged acts on the Coulomb branch and on the defor-

mation parameters, and from consistency under RG flows. This allows only very special

discrete symmetries to be gauged. In particular, we will see that only certain combina-

tions of U(1)R transformations, SL(2,Z) electric-magnetic (EM) duality transformations

which act as discrete symmetries, and outer automorphisms of the flavor symmetry can

be consistently gauged so as to preserve N = 2 supersymmetry. We indicate these in the

Zr columns in table 1.3 For N = 4 theories there is also a choice of gauging a discrete

group preserving N = 3 supersymmetry, indicated in table 1 by the Z̃r columns. This

generalizes the identification by Garćıa-Etxebarria and Regalado in [4] of combinations of

R-symmetry and SL(2,Z) transformations in N = 4 theories that can be gauged so as

to preserve N = 3 supersymmetry. Z̃r gauging gives different theories from the N = 2

preserving Zr, yet since they both act in the same way on the CB (more below) and thus

give the same daughter geometries, we do not distinguish them in our counting of the 26

consistent deformations.

In [6] (see in particular the discussion at the end of section 4.2) we gave evidence

that gauging discrete subgroups of the flavor symmetry does not preserve N = 2 super-

symmetry. In this paper we will be able to present evidence that, likewise, gauging outer

automorphisms of the flavor symmetry does not preserve N = 2 supersymmetry unless

combined as above with appropriate R-symmetry and SL(2,Z) transformations. In free

theories this can be seen explicitly, and arises from the way in which U(1) gauge charges

of local fields are correlated with their flavor charges. For interacting theories where we

have only a gauge-invariant description of the local fields this linkage forged by N = 2

supersymmetry between the flavor symmetry and EM duality transformations is much less

apparent. In particular, it does not follow from properties of the (gauge invariant) local

operator algebra of N = 2 SCFTs, but instead must involve non-local (e.g., line) operators

as well. Nevertheless, we can infer this linkage in such theories from the structure of the

effective action on the Coulomb branch (CB). A classic example of this is the observation

in [10] that the SL(2,Z) EM-duality group of the Nf = 4 SU(2) gauge theory acts on the

masses via outer automorphisms of the SO(8) flavor symmetry. In a sense we generalize this

observation to all rank-1 N = 2 SCFTs, even those with no direct lagrangian description.

One, perhaps initially confusing, property of our results is that the same Coulomb

branch geometry (i.e., the scale-invariant CB and its splitting under mass deforma-

tions [6, 7]) can occur for multiple distinct theories. Physically, this just reflects the fact

that two different microscopic theories can share the same low energy effective descrip-

tion. For instance, in table 1 the [II∗, G2] geometry appears as the Coulomb branch of a

Z3-gauged “daughter” of the [I∗0 , D4χ0] theory (a.k.a., the Nf = 4 SU(2) gauge theory), and

also as the Coulomb branch geometry of the [II∗, A2oZ2] SCFT. Both are related, through

RG flows, to the [IV ∗Q=1,∅] singularity which appears as the Coulomb branch of either a

Z3-gauged daughter of a free N = 2 vector multiplet (in the [II∗, G2] case), or as the CB

3Strictly speaking, in table 1 we label the columns by the non-trivial group action of the gauged discrete

symmetry on the CB, and not the gauged symmetry group itself. In particular, for a given Zr or Z̃r in the

table the actual gauged discrete symmetry is Zr∆ or Z̃r∆, where ∆ is the scaling dimension of the CB of

the parent theory; see the discussion in section 2.
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of an undeformable SCFT (as is in the case of [II∗, A2 oZ2]). Another (more speculative)

such example is the appearance of the [II∗,∅] singularity as two different undeformable

SCFTs (in red in table 1) and as a Z6-gauged daughter of a free vector multiplet. These

and other examples in the table will be derived and explained in later sections.

For simplicity we will use, as above, the not strictly accurate terminology of parent

and daughter theory, where the latter is a discretely gauged version of the former. The

inaccuracy arises for the reason briefly explained earlier: the parent and daughter theory

have the same local dynamics and should really be considered as two different versions

of the same theory and be treated on the same footing. In terms of generalized global

symmetries [11], gauging a discrete Zp global symmetry which acts on the local operators

of the parent theory introduces a 2-form Zp global symmetry under which surface operators

of the daughter theory transform. So, in principle, the existence of a discrete 2-form global

symmetry is a way to know if a theory can be interpreted as a daughter of a parent theory

without reference to the parent theory. But we do not currently have control over the

spectrum and symmetries of surface operators of the N = 2 theories in question, and so

will not pursue this approach here.4

The rest of the paper is organized as follows. In section 2 we set up in generality

the type of discrete symmetry group which can be gauged and in particular we derive the

appropriate combination of U(1)R and SL(2,Z) transformations which preserve N = 2

supersymmetry. Section 3 is the heart of the paper where we systematically apply the

results in section 2 to N = 2 theories. We start from a discussion of free U(1) gauge

theories and build our way up to discrete gauging of isolated non-lagrangian N = 2 SCFTs.

We also construct the N = 3 preserving Z̃r symmetries of N = 4 theories. In section 4

we analyze the structure of the Higgs branches (HBs) of the discretely gauged SCFTs we

constructed. In particular we find that the HB of daughter theories is not the centered

one-instanton moduli-space of the corresponding flavor group even if its parent theory’s

HB is. The results we find are beautifully consistent with the constraints derived by the

N = 2 conformal bootstrap community [13–17]. In section 5 we briefly discuss how the

relation between the conformal central charges a, c and ∆, the scaling dimension of the CB

vev, derived in [18] from the structure of the topologically twisted CB partition function

is modified in discretely gauged SCFTs. We finish by presenting our conclusions and a list

of open questions.

2 Discrete symmetries that preserve N = 2 supersymmetry

We start by reviewing the construction by Garćıa-Etxebarria and Regalado in [4] of an

N = 4 supersymmetric gauge theory with disconnected gauge group O(2) ' Z2 n U(1).

This is a free N = 4 U(1) gauge theory (i.e., a free N = 4 vector multiplet) with an

additional gauged Z2 generated by

C : (Aµ, λ
i
α, ϕ

[ij]) 7→ −(Aµ, λ
i
α, ϕ

[ij]), i, j ∈ 4 of SO(6)R, (2.1)

4In class S much more is known about the spectrum of surface operators; see in particular [12] for a

discussion of discrete groups associated to such operators.

– 5 –



J
H
E
P
0
3
(
2
0
1
7
)
1
4
5

where (Aµ, λ
i
α, ϕ

[ij]) are the propagating component fields of the vector multiplet. This

Z2 is just the charge conjugation symmetry of the U(1) gauge theory, and commutes with

the N = 4 supercharges. Since C reverses the sign of ϕ[ij], it quotients the moduli space

by a Z2 action. Thus the Z2-invariant moduli space parameters are the dimension-2 vevs

of (ϕ[ij])2. In [4] it was shown that the action of C is equivalent to that of the element

(−I,−I) ∈ SO(6)R×SL(2,Z), where SO(6)R is the R-symmetry group and SL(2,Z) is the

discrete EM-duality group of of the N = 4 theory.

From the N = 2 perspective, the U(1) N = 4 is a theory of a free vectormultiplet and a

massless neutral hypermultiplet. By giving a mass to the single neutral hypermultiplet and

intergrating it out we obtain a free U(1) N = 2 gauge theory. Following the construction

above we can obtain an O(2) N = 2 gauge theory, by gauging the Z2 generated by

C : (Aµ, λ
i
α, φ) 7→ −(Aµ, λ

i
α, φ), i ∈ 2 of SU(2)R. (2.2)

In this case C is a combination of −I ∈ SL(2,Z) and −1 ∈ U(1)R. The flat CB of the U(1)

gauge theory is parameterized by φ ∈ C and has a trivial SL(2,Z) monodromy. Quotienting

by the action of C gives a CB described by a flat C/Z2 cone (i.e., with opening angle π)

and an SL(2,Z) monodromy of −I.

We extend these constructions to general N = 2 theories as follows. The continuous

internal symmetries of an N = 2 theory are the R- and flavor symmetries U(1)R×SU(2)R×
F . As argued in [6] (section 4.2), discrete subgroups of F cannot be gauged in an N = 2

supersymmetry-preserving way without adding new degrees of freedom in the theory, while

gauging a discrete subgroup of SU(2)R manifestly projects out some of the supercharges.

Thus only discrete Zk ⊂ U(1)R subgroups can be gauged.

The theory may also have discrete global symmetries in SL(2,Z) × Out(F ), where

Out(F ) is the outer automorphism group of the flavor algebra. So, we can consider gauging

a discrete symmetry generated by a transformation

C = (ρ, σ, ϕ) ∈ U(1)R × SL(2,Z)×Out(F ). (2.3)

These three factors affect the daughter theory in distinct ways:

• The action of the ρ ∈ U(1)R factor on the CB vev, u, of the parent theory implies that

upon gauging, the CB parameter of the daughter theory, ũ will be given by ũ = ur

with r the smallest integer power necessary to build an operator invariant under the

U(1)R action. This thus increases the scaling dimension of the CB parameter of the

daughter theory by a factor of r relative to the parent theory.

• The σ ∈ SL(2,Z) factor does not act on u but fixes the value of the U(1) gauge cou-

pling, τ , of the daughter theory to particular values. Note that only those subgroups

of the SL(2,Z) EM duality group which fix τ are global symmetries of the theory and

can thus be gauged. For example, a Z4 ∈ SL(2,Z) can be gauged only for τ = i.

• ϕ ∈ Out(F ) acts instead on the space of mass deformations, and thus disallows mass

parameters which are not fixed by Out(F ). The daughter theory will then have a

flavor symmetry algebra F ′ := F/Out(F ).

– 6 –
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Possible scaling behaviors near singularities of a rank 1 CB

Name regular SW curve ord0(Dx) ∆(u) M0 deficit angle τ0

II∗ y2 = x3 + u5 10 6 ST π/3 eiπ/3

III∗ y2 = x3 + u3x 9 4 S π/2 i

IV ∗ y2 = x3 + u4 8 3 −(ST )−1 2π/3 e2iπ/3

I∗0 y2 =
∏3
i=1 (x− ei(τ)u) 6 2 −I π τ

IV y2 = x3 + u2 4 3/2 −ST 4π/3 e2iπ/3

III y2 = x3 + ux 3 4/3 S−1 3π/2 i

II y2 = x3 + u 2 6/5 (ST )−1 5π/3 eiπ/3

I0 y2 =
∏3
i=1 (x− ei(τ) ) 0 1 I 0 τ

I∗n (n>0) y2 = x3 + ux2 + Λ−2nun+3 n+ 6 2 −Tn 2π (cusp) i∞
In (n>0) y2 = (x− 1)(x2 + Λ−nun) n 1 Tn 2π (cusp) i∞

Table 2. Scaling forms of rank 1 special Kähler singularities, labeled by their Kodaira type (col-

umn 1), a representative family of elliptic curves with singularity at u = 0 (column 2), order of

vanishing of the discriminant of the curve at u = 0 (column 3), mass dimension of u (column 4),

a representative of the SL(2,Z) conjugacy class of the monodromy around u = 0 (column 5), the

deficit angle of the associated conical geometry (column 6), and the value of the low energy U(1)

coupling at the singularity (column 7). The first eight rows are scale invariant. The I0 “singularity”

in the eighth row is the regular (flat) geometry corresponding to a free vector multiplet. The last

two rows give infinite series of singularities which have a further dimensionful parameter Λ so are

not scale invariant; they are IR free since τ0 = i∞.

Here we are only interested in combinations of these factors which preserve (at least) N = 2

supersymmetry. First recall that under an SL(2,Z) transformation, σ :=
(
a b
c d

)
, the U(1)

coupling transforms as σ : τ → aτ+b
cτ+d , and the chiral supercharges transform by a phase [19]

σ : Qiα →
(
|cτ + d|
cτ + d

)1/2

Qiα. (2.4)

Now, a Zk ⊂ SL(2,Z) is only a symmetry of the theory for values of τ fixed by the Zk
action. The possible scale invariant CB geometries have fixed values of τ , and therefore

fix the subgroup of SL(2,Z) which acts as a symmetry. Table 2 lists the possible scaling

behaviors of singularities on a rank-1 CB and their properties. (Their naming follows

Kodaira’s for degenerate fibers of elliptic surfaces [20–22].) It follows that the subgroup of

SL(2,Z) which is a symmetry for a given CB geometry is

singularity subgroup of SL(2,Z) generators

II, II∗, I∗0 , or I0 at τ = eiπ/3 Z6 σ6 = ST

III, III∗, I∗0 , or I0 at τ = i Z4 σ4 = S

IV , IV ∗, I∗0 , or I0 at τ = e2iπ/3 Z2 × Z3 σ2 = −I, σ3 = −ST
I∗0 or I0 at any other τ Z2 σ2 = −I

(2.5)

where the S and T generators of SL(2,Z) are T = ( 1 1
0 1 ), S =

(
0 −1
1 0

)
. The σ generators

listed in (2.5) are just representatives of their SL(2,Z) conjugacy class, and also could

– 7 –
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equally well be replaced by their inverses. Furthermore, since Z6 ' Z2 × Z3, the first and

third lines in (2.5) have the same discrete symmetry. Indeed, since S2 = (ST )3 = −I, the

Z2 subgroup in each case is the center of SL(2,Z), generated by σ2 = −I. It is then easily

checked that for any σ generating a Zk subgroup of SL(2,Z) with the associated value of

τ shown in (2.5), (2.4) reduces to

SL(2,Z) ⊃ Zk 3 σ : Qiα → e−iπ/kQiα. (2.6)

The chiral supercharges, in the normalization of [6], have U(1)R charge R(Qiα) =

∆(Qiα) = 1/2. It then follows that by choosing ρ to be the generator of a Zk ⊂ U(1)R,

the (ρ, σ) ∈ U(1)R × SL(2,Z) transformation generates a Zk group which leaves both

supercharges invariant, and thus preserves N = 2 supersymmetry.

In general the Zk ⊂ U(1)R generated by ρ acts non-trivially as a Zr on the CB of the

parent theory, where

r :=
k

`
, with ` := ∆(u), (2.7)

and where ∆(u) is the scaling dimension of the CB parameter of the parent theory. This is

readily seen by noticing that the CB parameter u is identified as the vev of the conformal

primary of the E` (0,0) superconformal multiplet, which is a scalar SU(2)R singlet with U(1)R
charge ` = ∆(u) [6]. Thus under the Zk ⊂ U(1)R the CB parameter transforms as

ρ : u→ ei2π`/ku. (2.8)

It then follows that upon gauging this symmetry, the CB of the daughter is parametrized

by ũ = uk/` so that ∆(ũ) = k. Since r is integer, it follows that ` = ∆(u) should divide k.5

We will see in the next section how the choice of ϕ ∈ Out(F ) is tied to ρ and σ.

3 Discrete gauging of N = 2 theories

Having established the general structure of the possible discrete symmetries which preserve

N = 2 SUSY we can now systematically build our way up to discrete gauging of non-

lagrangian N = 2 SCFTs. We will first present a discussion of O(2) theories, that is Z2

gauging of U(1) gauge theories with matter, and of Zk gaugings for k 6= 2 of free U(1) the-

ories.6 This generalization is the starting point for the following analysis of non-lagrangian

theories and then of N = 3 theories. In particular, the CB analysis of O(2) theories with

matter is one of the crucial tools which we will use to show the consistency under mass

deformation of the discretely gauged non-lagrangian theories which we will construct.

5The k and ` defined here are the same those in [5].
6We do not consider Zk gaugings with k 6= 2 of U(1) theories with matter, and, in fact, will show below

that such Zk gaugings are inconsistent with N = 2 supersymmetry.
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3.1 O(2) theories with matter

In this section we want to extend the gauging of (2.3) to IR-free U(1) gauge theories with

general matter content. We start with the case where C = (ρ, σ, ϕ) generates a Z2 with

action on the vector multiplet as in (2.2).

First of all notice that a Z2 gauging cannot always be implemented since, for a non-

scale invariant theory, the U(1)R symmetry (in which the ρ factor of the Z2 generator

is embedded) is anomalous. In particular, it is broken down to Zn, where n =
∑

I q
2
I is

the coefficient of the one-loop beta function and qI is the U(1) gauge charge of the I-th

hypermultiplet. If n is odd Z2 6⊂ Zn, implying that ρ in (2.3) is anomalous.

This obstruction can also be seen from the CB geometry: for odd n no consistent CB

geometry for the discretely gauged theory can be constructed. Carefully analyzing how this

obstruction arises from the CB geometry is a good warm-up for the studies which follow

where the CB data will be the only information available.

To discuss the CB geometry after the Z2 gauging, it is helpful to recall that the CB ge-

ometry of an N = 2 U(1) gauge theory with massless matter only depends on the value, n,

of its beta function coefficient. It is the In geometry in table 2 which has a single7 cusp-like

singularity located at u = 0, with a Tn monodromy. The Z2 transformation (2.2) acts as a

π rotation on the CB: u 7→ −u. The fact that the Z2 in (2.2) is a symmetry, translates into

the fact that the values of the special coordinates at u and −u are equal up to an SL(2,Z)

transformation M . Performing (2.2) twice corresponds to going around the u = 0 singular-

ity by a full 2π and thus [M2] = [Tn]. (Square brackets indicate SL(2,Z) conjugacy classes.)

This constraint cannot always be satisfied. It is easy to show that such M only exists for

even values of n, and only two solutions, [M ] = [±Tn/2], are allowed up to conjugation.

By construction M will be the “effective” monodromy of the CB geometry of the daughter

O(2) theory. The resultant CB geometry is parametrized by ũ := u2. From table 2 we

can see that only [M ] = [−Tn/2] is compatible with a scaling dimension 2 CB parameter.

Thus, after gauging a Z2, a parent I2n CB becomes a daughter I∗n CB. This can also be

seen explicitly working with the I2n curve. Carefully performing the discrete gauging we

obtain the curve describing the I∗n singularity, see appendix A.1 for the explicit calculation.

This picture is not the whole story, as discrete gauging also relates the deformations

of the parent and daughter theories. Recall that mass deformations of both the parent

and daughter theory appear as vevs of vector multiplets upon weakly gauging their flavor

symmetries, F and F ′ respectively. So their mass parameters can be thought of as linear

coordinates on the complexified Cartan subalgebras of F and F ′. Thus to discuss the

allowed mass deformations of the daughter theory we need to understand how (2.2) acts

on the flavor symmetry algebra of the parent theory.

Let us start by studying the simplest non-free N = 2 theory: a U(1) gauge theory with

a single charge 1 hypermultiplet. We can express the hypermultiplet as a doublet (Q+, Q−)

of N = 1 chiral superfields with charges ±1. The theory has a U(1)F flavor symmetry and

a single mass deformation. N = 2 SUSY implies the existence of a term in the lagrangian

7Here we are only discussing the region around the origin of the moduli space, neglecting the |u| & Λ

region, where Λ is the Landau pole scale.
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(written in N = 1 superfield language)

∼
∫

d2θ Q+Φ Q− (3.1)

where Φ is the N = 1 chiral superfield in the N = 2 vector supermultiplet. Consider now

gauging a Z2 symmetry which acts on the vector multiplet as in (2.2), and so as Φ 7→ −Φ.

To preserve N = 2 SUSY, (3.1) needs to be invariant which implies that Q+Q− must pick

up a sign under the Z2. This in turns dictates the transformation of the N = 2 mass term:

C :

∫
d2θ m Q+Q− 7→ −

∫
d2θ m Q+Q−. (3.2)

(3.2) can be reinterpreted as an action of Out(U(1)F ) on the mass parameter. Indeed,

Out(U(1)F ) = Z2 is generated by the complex conjugation automorphism of U(1)F which

acts on the Cartan subalgebra by a reflection through the origin, m 7→ −m.

This calculation shows that gauging a discrete subgroup of U(1)R and SL(2,Z) in an

N = 2 supersymmetry-preserving way requires the discrete group to also have an Out(F )

action as in (2.3). In the general case where F is not just U(1)F , but may have many U(1)

and simple factors, a more subtle argument is needed to identify which ϕ ∈ Out(F ) needs

to be discretely gauged. The key point of the flavor U(1)F example in the last paragraph

was that the flavor and gauge charges of the (gauge-variant) local fields Q± appearing in the

lagrangian are correlated. The charge conjugation symmetry of (2.2) implies that it must

interchange Q+ with Q−. When combined with N = 2 supersymmetry, which we showed

in the last paragraph implies Q+Q− 7→ −Q+Q−, this implies that we must choose C to

act on the hypermultiplets as C : Q± 7→ ±e±iαQ∓. The e±iα factors are just an arbitrary

U(1)F flavor phase rotation, which can be removed by flavor rotating Q± → e∓iα/2Q∓,

so that we can put C into a canonical form C : Q± 7→ ±Q∓. (Note that C2 = −1, so

that C actually generates a Z4 action on the gauge-variant local fields, though it only acts

non-trivially as a Z2 on gauge-invariant combinations of local fields.)

We will now generalize this to the case where there are n massless hypermultiplets

all with U(1) gauge charge ±1. This theory has F = U(n) ' U(1) × SU(n) ' U1An−1

flavor symmetry8 under which Qi+ and Q−i, i = 1, . . . , n, transform in the n+ and n−
flavor representations, respectively. Then (3.1) reads

∫
d2θ Qi+ΦQ−i, so invariance under

the Z2 requires only that C : Qi+Q−i 7→ −Qi+Q−i, while the charge conjugation action of

C requires that Qi+ and Q−i be interchanged. The general solution for the linear action of

C on the local fields is

Cf :

{
Qi+ 7→ +f ij Q−j

Q−i 7→ −Qj+ (f−1)ji
, f ∈ U(n). (3.3)

Here we have labelled the C action by the choice of element f of the flavor group. Since

the N = 2 mass term is
∫
dθQi+mi

jQ−j , the action of Cf on the flavor adjoint masses is

Cf : m 7→ −f−1mT f, (3.4)

8We will often use Dynkin notation for simple Lie algebras together with “U1” to stand for U(1) factors.

Thus U(3) ' U(1)×SU(3) ' U1A2. Also, it will be useful to keep in mind the low-rank degeneracies of the

Dynkin notation: A1 = B1 = C1, D1 = U1, B2 = C2, D2 = A1A1, and D3 = A3.
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in the obvious matrix notation. Since m is an element of the Lie algebra of F , this gives

action on f := Lie(F ) which is easily checked to be an automorphism of f. It generates a

subgroup Γ̃f ⊂ Aut(f) which lifts to a subgroup Γf ⊂ Out(f) ' Aut(f)/ Inn(f) where Inn(f)

is the group of inner automorphisms which are automorphisms whose actions on f are all of

the form m 7→ f−1mf with f ∈ F . Thus the flavor symmetry algebra, f′, of the daughter

theory is f′ = f/Γf , generated by those elements of f left invariant by (3.4).

In (3.4) f is undetermined. Note, however, that the daughter flavor symmetry, f′,

can depend on the specific choice of f defining Cf in (3.4). Even though, as an abstract

group, Γf ⊂ Out(f) generated by Cf is independent of f , its action on f is not.9 A set

of rules governing what are the inequivalent f′ that can result from different choices of

f are summarized in section 3.3 of [23]. (See [24, 25] for more detailed discussions of

automorphisms of Lie algebras.)

We do not know what determines the choice of f in (3.4). Nevertheless, we do know

that not all such choices are consistent with N = 2 supersymmetry. This follows from

demanding a consistent action of the Z2 discrete symmetry on the CB geometry of the

theory, which we will discuss shortly. For instance, the choice of f =id∈ F might seem

“natural”, however, with this choice f′ = Dn/2 for n even, while the CB analysis implies

that Weyl(f′) is of BCn/2 type (see appendix A). Furthermore there is always a choice of

f ≡ f̃ for which the f′ is obtained as folding of the Dynkin diagram of the flavor symmetry

algebra of the parent theory. From our analysis this choice seems always compatible. When

we will talk about the Out(F ) action in what follows below, unless otherwise stated, we

will implicitly assume f = f̃ . Perhaps our inability of determining the right element f is

related to the puzzle of discretely gauging subgroups of Inn(F ) in a way consistent with

N = 2 supersymmetry, pointed out at the end of section 4.2 of [6].

For general hypermultiplet content {Q±I} consisting of nI hypermultiplets with U(1)

gauge charge ±I for some set of charges {I}, the flavor symmetry is F =
∏
I U(nI). Its

outer automorphism group is Out(F ) =
∏
I(Z2 × Z2), since each U(nI) ' U(1) × SU(nI)

factor contributes a Z2 from the U(1) complex conjugation and another Z2 from the SU(nI)

complex conjugation automorphisms. Now, for a given charge I, the nI Q+I and Q−I fields

transform in the (nI)+1 and (nI)−1, respectively, of the U(nI) flavor factor. Thus, charge

conjugation, which reverses the U(1) gauge charges of all fields, will necessarily also complex

conjugate all their flavor charges. Thus it is the overall “diagonal” Zdiag
2 ⊂

∏
I(Z2×Z2) '

Out(F ) which is generated by ϕ ∈ Out(F ) appearing in (2.3).

Only the mass deformations which are invariant under this Zdiag
2 survive as mass de-

formations of the daughter O(2) gauge theory. Thus the flavor symmetry algebra of the

daughter theory will be f′ = ⊕IAnI−1/(Z2)I where (Z2)I ⊂ Out(AnI−1) acts as in (3.4) for

some choice of fI ∈ SU(nI). The evidence from demanding a consistent action on the CB

geometry is that these fI must be chosen so that f′ = ⊕IBC[nI/2] where the square brackets

mean geratest integer part and the BCn notation just reflects our inability to distinguish

between the Bn and Cn possibilities on this basis.

We now describe how this Z2 gauging is reflected in the CB geometry of the parent

and daughter theories. Since all the objects appearing in the low energy effective action

9We thank Y. Tachikawa for explaining this to us.
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on the CB are gauge invariant, the way the above correlation of gauge and flavor charges

in the microscopic gauge theory description appears in the CB geometry is indirect.

For simplicity and concreteness, we will illustrate this with a U(1) gauge theory with

3 hypermultiplets of charge ±
√

2.10 This theory has a U(3) ∼= U1A2 flavor symmetry and

an I6 CB geometry, which under discrete gauging is transformed, following the discussion

above, into an I∗3 CB geometry. The flavor outer automorphism group is Out(U(3)) =

Out(U1)×Out(A2) = Z(1)
2 × Z(2)

2 , where we denote Z(1)
2 = Out(U1) and Z(2)

2 = Out(A2).

Now introduce the gauge-invariant “meson” (or moment map) operators M j
i :=Qj+Qi−,

i, j = 1, 2, 3. N = 2 supersymmetry implies the superpotential term in the action of the

form
∫
d2θ Φ

∑3
j=1M

j
j as in (3.1), so invariance under (2.2) implies only that the meson

operator satisfies

C :

3∑
j=1

M j
j 7→ −

3∑
j=1

M j
j , (3.5)

which does not determine a unique action of C on the local gauge-invariant operators M i
j .

Since a general mass deformation can be written (up to a flavor transformation) as

3∑
j=1

mjM
j
j , (3.6)

it also follows that (3.5) does not dictate a unique action of Out(U1A2) on the masses:

both Zdiag
2 ⊂ Z(1)

2 × Z(2)
2 as well as the Z(1)

2 ⊂ Z(1)
2 × Z(2)

2 are compatible with (3.5). It

would thus appear that we could construct two different I∗3 CB geometries, one with flavor

group11 (U1A2)/Zdiag
2
∼= BC1 and one with (U1A2)/Z(1)

2
∼= A2. But we have seen above

from the lagrangian description that only the former is allowed, and we will now explain

why it is the only one which gives a consistent CB geometry under deformation.

For a generic mass deformation with masses (m1,m2,m3) as in (3.6) the I6 singularity

splits into three separate I2 singularities [6] at u = mj , j = 1, 2, 3, each one associated

with a single hypermultiplet of charge
√

2 becoming massless. It is easy to see that the

generic mass deformations invariant under the two choices, Zdiag
2 and Z(1)

2 , of the outer

automorphism group action are (up to the action of the Weyl group of U1A2)

(a) Zdiag
2 ←→


m1 → µ

m2 → 0

m3 → −µ
, (b) Z(1)

2 ←→


m1 → µ

m2 → ν

m3 → −µ− ν
. (3.7)

10This somewhat unusual choice of charge assignment is due to the facts that (i) the ambiguity on what

subgroup of the outer autormorphism group needs to be gauged only arises with three or more hypers, and

(ii) the U(1) gauge theory with 3 hypers of charge 1 has odd beta function for which no Z2 discrete gauging

is allowed.
11As explained above, although the subgroup of the outer automorphism subgroup which participates in

Z2 action is uniquely determined, the identification of the daughter flavor group is not. The BCn notation

reflects this ambiguity: from the CB geometry the Weyl group of the daughter flavor symmetry is of BC

type, so the (maximal) daughter flavor algebra is either Bn or Cn. (Of course, for n = 1, 2, these two

algebras happen to be isomorphic.)
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u=0

u=µ

u=− µ

(a)

u=ν u=µ

u=− µ− ν

(b)

Figure 1. Singularities on a deformed I6 CB for two different mass deformations. The red circles

mark the positions of the I2 singularities, and the black dot marks the origin.

The arrangement on the CB of the of the three I2 singularities under the deformations (a)

and (b) is depicted in figure 1. (We give the explicit SW curve describing the maximally

deformed In CB geometry in appendix A.1.) It is evident that only mass deformation (a)

gives a CB geometry which can be consistently quotiented by the Z2 action in (2.2) which,

as we described earlier, acts by ρ : u 7→ −u on the CB. We thus conclude that the only Z2

symmetry whose gauging is allowed by N = 2 supersymmetry gives rise to an I∗3 with a

BC1
∼= A1 flavor symmetry algebra, which we denote as the [I∗3 , BC1] theory.

Let’s now explicitly perform the quotient of the deformed (a) geometry and see that

it is in fact consistent. Under the Z2 action on the CB the two I2 singularities located at

u = ±µ are identified while for the I2 singularity at the origin we can apply the reasoning

from the beginning of this section to conclude that it becomes an I∗1 singularity. Thus the

initial I∗3 singularity of the daughter theory splits under the mass deformation allowed by

the discrete gauging into an I2 singularity at ũ = u2 = µ2 and an I∗1 singularity at ũ = 0.

This is summarized by the commutative diagram

I6
(U1A2)/Zdiag

2 deformation
−−−−−−−−−−−−−−−−→ {I2

3}yZ2

yZ2

I∗3
B1 deformation−−−−−−−−−−−−−−→ {I∗1 , I2}

. (3.8)

This quotient of the CB geometry is demonstrated explicitly as an operation of the SW

curve in appendix A.

As a further check, one of the conditions for a deformation of a CB singularity to be

consistent is that the sum of the orders of vanishing of the Seiberg-Witten curve discrimi-

nants at the singularities after the splitting is an invariant of the deformation [6]. We can

read off the orders of the singularities involved in the splitting in (3.8) from table 2, to find,

consistently, that both I∗3 and {I∗1 , I2} have order 9. In fact, this condition is enough to

select (3.8) as the only possible consistent deformation pattern: because of the nature of its

parent theory and the Z2 gauging, a generic deformation pattern for a discretely gauged I∗3
can only be of the form {I2

k, I∗n}, where the I∗n arises from the action of the Z2 on the origin

of the CB. It is straightforward to see that only (k = 0, n = 3) and (k = 1, n = 1) give
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CB geometries of some N = 2 supersymmetric O(2) gauge theories

CB geometry field theory content flavor CB geometry flavor

I0 free vector multiplet ∅

After Z2 gauging

I∗0 ∅

I2
w/ 2 Q=1 hypers U(2)

I∗1
BC1

w/ 1 Q=
√

2 hyper U(1) ∅

I4

w/ 4 Q=1 hypers U(4)

I∗2

BC2

w/ 2 Q=
√

2 hypers U(2) BC1

w/ 1 Q=2 hyper U(1) ∅

I6

w/ 6 Q=1 hypers U(6)

I∗3

BC3

w/ 3 Q=
√

2 hypers U(3) BC1

w/ 2 Q=
√

3 hypers U(2) BC1

w/ 1 Q=2 and 2 Q=1 hypers U(1)×U(2) BC1

w/ 1 Q=
√

6 hyper U(1) ∅

Table 3. All consistent Z2 discrete gaugings of the I0,2,4,6 singularities. The three leftmost columns

show the CB geometries, field content, and flavor symmetries of the “parent” U(1) gauge theories.

The two rightmost columns show the CB geometries and flavor symmetries of the resulting “daugh-

ter” O(2) gauge theories after discretely gauging the appropriate Z2 symmetry.

a consistent deformation pattern. The latter is what we just described while the former

would be equivalent to a frozen I∗3 . But Out(U(3)) is not large enough to entirely freeze

all mass parameters of the parent theory, so we are thus led to discard the second option,

as well as concluding that upon gauging the Z2, [I6, U1A2] 7→ [I∗3 , BC1].

This same reasoning can easily be extended to gauging Z2 global symmetries in other

U(1) gauge theories in an N = 2 supersymmetry-preserving way. Indeed, it is both in-

structive and useful for further reference to explicitly carry out all possible Z2 gaugings of

I2n singularities for small values of n. The results are reported in table 3.

Summarizing:

• A Z2 gauging of an N = 2 theory with Im CB and flavor symmetry algebra F can

only be done if m = 2n is even. If m is odd the Z2 is anomalous.

• The daughter theory has an I∗n CB geometry described by a CB parameter ũ with

scaling dimension ∆(ũ) = 2.

• The daughter theory has flavor symmetry algebra F ′=F/Zdiag
2 where Zdiag

2 ⊂ Out(F )

is the “diagonal” flavor outer automorphism subgroup which acts on both the U(1)

and non-Abelian factors of the flavor symmetry algebra F .

I∗n singularities also arise as the CB geometries of N = 2 IR-free SU(2) gauge theories

with beta function equal to n [6, 7]. The ones constructed through discrete gauging can be

distinguished from the ones arising in SU(2) gauge theories by their different flavor groups

and spectrum of mass operators. In particular, discrete gauging allows the construction

of “frozen” versions of I∗n singularities for any n; see, e.g., table 3. These “frozen” I∗n will

play an important role in later sections since they will arise as IR fixed points of RG flows

from non-lagrangian discretely gauged theories.
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Even though the spectrum of the local gauge invariant operators in the microscopic

theory (i.e., at the scale-invariant vacuum sector) does not provide enough information

to infer the action of discrete gauging on the flavor symmetry, the low energy effective

theory as encoded in the geometry of the CB does provide the needed information. In

the lagrangian theories so far discussed we had access to the local gauge-variant fields

which carry both gauge charges and flavor charges. We could thus determine the required

subgroup of flavor outer automorphisms which must accompany the charge conjugation

Z2. In strongly-coupled non-lagrangian theories where we do not have a description in

terms of gauge-variant local fields, and in cases where we will not be gauging a charge

conjugation Z2 (but instead some other discrete symmetry which acts non-trivially on the

gauge sector via its embedding in the SL(2,Z) EM duality group), the geometry of the CB

will be the only tool we have to determine the appropriate subgroup of the flavor outer

automorphism group. In fact we will see that consistency of the geometric deformation

will always uniquely determine the action on the flavor symmetry algebra. We now turn

to the simplest such examples.

3.2 Zk gauging of free U(1) theories

The generalization of (2.2) to C ∈ Zk with k 6= 2 follows by combining the action of a

σ ∈ Zk ⊂ SL(2,Z) with a similar ρ ∈ U(1)R and ϕ ∈ Out(F ) as explained in (2.3). We

pointed out already that σ acts non-trivially on τ and is only a symmetry for values of

the holomorphic gauge coupling invariant under the Zk transformation. This constraint

did not apply to the Z2 case as −I is in the center of SL(2,Z) which acts trivially on τ .

For k 6= 2 instead, τ is fixed to a specific Zk-invariant value given in (2.5) and thus the

daughter theory will always be an isolated SCFT.

For both the U(1) N = 4 and the free N = 2 U(1) gauge theories, the holomorphic

gauge coupling is exactly marginal and the above gauging is allowed. Quotienting the

(planar) parent I0 CB geometry by a Zk will result in a daughter CB described by a flat

C/Zk cone parametrized by ũ ∈ C/Zk with ∆(ũ) = k. From (2.5) and table 2, these are

the IV ∗, III∗ and II∗ geometries for k = 3, 4, 6 respectively. But as field theories they

can be distinguished from other SCFTs with CBs described by the same singularities by

their unconventional flavor symmetry groups. In particular through Zk gauging we can

“engineer” frozen versions of IV ∗, III∗ and II∗; see table 4.

Gauging a Zk for k > 2 is not allowed for U(1) gauge theories with charged matter.

The reason is that such a Zk ⊂ SL(2,Z) is only a symmetry for special values (2.5) of

the gauge coupling, while U(1) gauge theories with matter are IR free. This means that

their couplings vary over the CB, tending to the free value, τ = i∞, at the origin. Thus

IR free theories do not have Zk global symmetries in SL(2,Z) for k > 2. But recall that

in section 2 we showed that consistency with N = 2 supersymmetry required the global

symmetry to have a non-trivial factor σ ∈ SL(2,Z).

The inconsistency of such gaugings can also be inferred directly from the CB geometry.

To see this, let’s go through the same arguments as in the last subsection to attempt to

construct a CB geometry for a Zk gauging of an In singularity. The SL(2,Z) monodromy

M of this geometry should satisfy [Mk] = Tn and its CB parameter should have scaling
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Frozen CB geometries of Zk o U(1) gauge theories

CB geometry field theory content flavor CB geometry flavor

I0 free vector multiplet ∅

after Z3 gauging
IV ∗ ∅

after Z4 gauging
III∗ ∅

after Z6 gauging
II∗ ∅

Table 4. The possible Zk discrete gaugings of the I0 singularity. These provide new frozen singu-

larities which could appear in the deformation pattern of generic deformations. The three leftmost

columns show the CB geometries, field content, and flavor symmetries of the “parent” free U(1)

gauge theories. The two rightmost columns show the CB geometries and flavor symmetries of the

resulting “daughter” ZkoU(1) gauge theories after discretely gauging the appropriate Zk symmetry.

dimension k. While there are values of k and n for which such M can be found (e.g., trivially

for any k = n), all consistent geometries with ∆(ũ) = k, for k > 2, have idempotent

monodromy matrices (see table 2) and thus they cannot satisfy [Mk] = Tn. We thus

conclude again that the CB geometry of theories obtained by discrete gauging of a Zk for

k > 2 of an IR free theory is not consistent.

3.3 Non-lagrangian theories

We now generalize the construction presented in earlier sections to non-lagrangian the-

ories. We will show that the extistence of a consistent CB geometry for the daughter

theory implies an intricate set of consistency conditions which determines which genera-

tors C = (ρ, σ, ϕ) as in (2.3) may be consistently gauged.

The C = (ρ, σ, ϕ) generator of the discrete gauge group is inferred from the geometry in

the following way. The possible scale invariant CB geometries fix the subgroup of SL(2,Z)

which acts as a symmetry as shown in (2.5). So for each of these geometries we must select

σ to be a non-trivial element of one of these groups. Say σ generates Zk.
Next, the corresponding ρ ∈ U(1)R must then also generate a Zk ⊂ U(1)R, by the

argument given in section 2. As explained there, this Zk acts on the parent theory CB as a

Zr with r = k/` where ` := ∆(u) is the mass dimension of the parent CB parameter (2.7).

This then fixes the CB geometry of the daughter theory in the scale invariant limit (that

is, when all mass parameters are set to zero). In particular, gauging C gives a daughter CB

singularity with parameter ũ of scaling dimension ∆(ũ) = r∆(u). As is seen from table 2,

this uniquely identifies the resulting CB geometry.

For instance a discrete gauging of the [IV ∗, E6] SCFT can only involve a ρ which

generates a Z2 action on its CB, giving a daughter theory CB with a parameter of scaling

dimension 6, which is identified as a II∗ theory. Note that this puts a constraint on what

σ can be: since k = `r, in this case k = 6, so σ must generate a Z6 ' Z2 × Z3 which,

by (2.5), is the whole symmetry subgroup of SL(2,Z) for this theory.

Next, turn on the most general mass deformation of the parent theory which preserves

a Zr symmetry of the CB. This is typically only a subset of the most general allowed mass

deformations of the parent theory, and so identifies ϕ ∈ Out(F ) as the outer automorphism
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of the parent flavor symmetry, F , which leaves invariant only those Zr-preserving masses.

Using the techniques extensively explained in [6, 7], the deformation pattern of a scale

invariant CB singularity under mass deformation allows us to construct a unique consistent

Seiberg-Witten geometry. The SW curve fixes a discrete subgroup (typically the Weyl

group) of the flavor symmetry of the resulting theory. This does not uniquely fix the flavor

symmetry algebra, yet it strongly constrains it to a few possibilities as described in [8]. We

can uniquely fix it with the additional requirement that the flavor symmetry algebra of the

daughter theory, F ′, has to be obtained by modding out the known flavor symmetry of the

parent theory, F , by an action Γf of its outer automorphism group determined by a choice

of f as described below (3.4). It is a non-trivial result that a solution of the form F ′ =

F/Γf , with Γf ⊂ Out(F ), always exists for the flavor symmetry of all daughter theories.

This consistency check should be seen as corroborating evidence for the existence of these

theories and it also picks up a particular Γf and thus a consistent choice for f in (3.4).

Under the action of the Zr symmetry on the CB of the parent theory with only the F ′

mass deformations turned on, singularities which are located at non-zero values of u which

are related by Zr phases will be identified upon discrete gauging. Also, gauging this Zr will

act on any In singularity at the origin of the CB, u = 0, according to the rules described

in sections 3.1 and 3.2, and summarized in tables 3 and 4. (Note that the absence of a

singularity at u = 0 corresponds to an I0 “singularity” in the classification of table 2.)

For example, we argued above that there is a single possible Z6 discrete symmetry

of the [IV ∗, E6] SCFT which may be gauged consistently with N = 2 supersymmetry.

Furthermore, we saw that this symmetry acts as the Z2 generated by ρ : u 7→ −u on the

CB of the parent theory, thus leading to a II∗ CB geometry upon discrete gauging. Now,

the outer automorphism group of E6 is Out(E6) = Z2,12 so we might expect that the mass

deformations of the E6 parent theory which are invariant under Out(E6) will preserve a

Z2 symmetry on the CB. It is not too hard to see that this is, in fact, the case, by using

the explicit form [26] of the E6 SW curve: such deformations split the IV ∗ singularity

as IV ∗ → {I1
8} with four pairs of I1 singularities each located at opposite values of u,

i.e., at u = ±ui, i = 1, 2, 3, 4. Upon gauging this discrete symmetry, each pair of I1’s is

identified with a single I1 in the daughter theory, and the I0 at origin becomes a frozen

I∗0 , as in the first line of table 3. Thus the deformation pattern of the daughter theory is

II∗ → {I4
1 , I
∗
0}. The SW geometry corresponding to precisely such a deformation pattern

was constructed in [7], and, furthermore, was found to be invariant under the Weyl group

of the F4 exceptional group acting on its mass deformation parameters. Since a possible

action of Out(E6) ' Z2 on E6 gives E6/Out(E6) = F4 [23, 25], this is consistent, in a highly

non-trivial way, with the above determination of the C = (ρ, σ, ϕ) generator of the (unique)

Z6 symmetry of the [IV ∗, E6] SCFT which commutes with N = 2 supersymmetry. Notice

that the geometry of the daughter theorys could also be interpreted as a [II∗, D4 o S3] or

[II∗,U(1)4 o ΓF4 ] [8], yet there are no choices of the action of Out(E6) which could give

either flavor algebras. This shows, as mentioned in passing above, that the analysis of

12Recall that outer automorphisms of simple Lie algebras are just the symmetries of their Dynkin dia-

grams, so the only non-trivial ones are Out(An>1) = Out(Dn>4) = Out(E6) = Z2 and Out(D4) = S3.
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the CB geometry under discrete symmetry not only provides a consistency check for the

existence of the daughter theory, but also uniquely identifies the choice of the element of

Out(F ) in Aut(F ).

In the rest of this subsection we carry out this kind of argument for every known

rank-1 N = 2 SCFT to determine all their possible N = 2 discretely-gauged daughter

theories. The results are summarized in table 1. Below we organize the discussion into

six categories: the I∗0 , I∗2 , IV ∗, III∗, and II∗ series, and N = 3 theories. The series are

named for the highest-order frozen singularity in their deformation patterns [6–9]. The

N = 3 theories are mostly13 special cases of the other series, but because of their enhanced

supersymmetry require a separate discussion. Theories in the same series are connected

by RG flows, shown as vertical arrows in table 1. They also have to satisfy extra checks

arising from the requirement of consistency of flavor symmetry-breaking under RG flows:

the breaking of the flavor symmetry algebra along RG flow directions should match the

flavor symmetry algebra assignment which can be read off from the singularity structure

along that RG direction. Following the terminology introduced in [8], RG flows can be

matching, compatible or unphysical. The results of this RG flow analysis for the I∗0 and

I∗2 series are reported in figure 2; those for the IV ∗ and III∗ series were already reported

in [8]; and those for the remaining series are trivial. For more details and a systematic

explanation of the RG flow consistency condition we refer the reader to [7, 8].

I ∗
0 series. These are the daughter theories which flow to a frozen I∗0 CB singularity upon

generic relevant deformation. Aside from the discrete gauging construction outlined in the

beginning of this section, there is no lagrangian interpretation of a frozen I∗0 singularity,

suggesting that the only consistent interpretation of theories in this series is via discrete

gauging.14 The frozen I∗0 can then be interpreted as a Z2 gauging of a free vector multiplet

with I0 CB geometry, so for all the theories in this series, the action of the discretely gauged

group on the CB is a Z2. These are therefore those theories in the Z2 column of table 1 with

arrows leading to the free [I∗0 ,∅] N = 2 O(2) gauge theory — i.e., the [II∗, F4], [III∗, B3],

and [IV ∗, A2] theories.

(Also, the bottom two rows of the Z2 and Z̃2 columns of table 1 show free theories which

flow to [I∗0 ,∅]. They are theN = 4 O(2) gauge theory [I∗0 , C1χ0], discussed previously in [4],

and the theory of an N = 2 O(2) gauge theory with a decoupled hypermultiplet, denoted

by [I∗0 , χ0]×H. We will discuss these theories in section 3.4.)

The gauged subgroup of SL(2,Z), as explained above, is a Z2∆(u), where ∆(u) is the

scaling dimension of the CB parameter of the parent theory. From table 1 we can then

read off the SL(2,Z) actions as Z6, Z4 and Z3 for the [II∗, F4], [III∗, B3] and [IV ∗, A2]

cases, respectively. The discrete gauging of the [IV ∗, E6] and [I∗0 , D4] parent theories,

enforces also the gauging of a Z2 outer automorphism of the flavor symmetry algebra,

giving daughter theories with F4
∼= E6/Z2 and B3

∼= D4/Z2 flavor symmetries. Perhaps

13Except for one which could be thought of as being the sole member of an “I∗1 I2 series”.
14The existence of a rank-0 interacting SCFT with appropriate central charge values and a flavor sym-

metry containing an A1 subalgebra with an empty commutant, would invalidate that statement since we

could gauge such an A1 factor to build a non-lagrangian version of a frozen I∗0 theory. A more detailed

discussion of this possibility can be found in [7]; we will not consider this possibility any further here.
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I∗0 Series

II∗ : F4 D4 o S3 U4
1 o ΓF4

III∗ : B3 A3 o Z2 A3
1 o S3 U3

1 o ΓB3

IV ∗ : A2 U2
1 o Z2

I∗0 : ∅

I∗2 Series

II∗ : C2 C2
1 o Z2 U2

1 o ΓC2

III∗ : C1 U1 o Z2

I∗2 ∅

Figure 2. Green, blue and red arrow label matching, compatible and unphysical RG flows while

green and blue backgrounds indicate good and ugly theories respectively. While there is always

a matching RG flow pattern for all good theories in the figure, there are other flows which are

necessarily only compatible for the ugly ones.

unexpectedly, the discrete gauging of the [IV,A2χ1/2] does not act on the flavor symmetry

algebra, but only on the χ1/2 chiral deformation of the IV singularity, freezing it. It is

in fact remarkable that the generic deformation of the IV singularity with χ1/2 = 0 fully

splits IV → {I1
4}, but nevertheless preserves a Z2 CB symmetry locating the four I1’s at

pairwise opposite points, u = ±uj , j = 1, 2.

In figure 2 we report the RG-flow analysis for the I∗0 series. The only matching in-

terpretation of the series, in the language introduced in [8], is the one consistent with the

outer automorphism action explained above.

I ∗
2 series. This series only contains three theories, also appearing in the Z2 and Z̃2

columns of table 1. In the Z2 column, one is a [II∗, C2] theory, daughter of the [IV ∗, C2U1]

theory, and the other is a [III∗, C1] theory, daughter of the [I∗0 , C1χ0] theory. The frozen

I∗2 in the generic deformation of the daughter theories comes from a Z2 gauging of an I4

located at the origin of the parent theory, while pairs of the remaining I1’s in the parent

theory are identified. The [IV ∗, C2U1] → [II∗, C2] is a Z6 discrete gauging which acts as

a Z2 on the parent CB, and the [I∗0 , C1χ0] → [III∗, C1] is a Z4 discrete gauging which

acts as a Z2 on the parent CB. In the first case the discretely-gauge group includes an

action of the outer automorphism group on the flavor symmetry: C2U1/Out(C2U1) =

C2 × (U1/Out(U1)) = C2. In the second case the SL(2,Z) action freezes the marginal χ0

deformation (i.e., fixes the gauge coupling to τ = i) and does not act on the flavor group;

indeed, Out(C1) is trivial, so C1/Out(C1) = C1. Finally, the RG-flow analysis for the I∗2
series shown in figure 2 shows that these theories correspond to matching flows.
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However, there is an ambiguity in determining the Z4 symmetry of the [I∗0 , C1χ0] which

can be gauged. The reason is that the [I∗0 , C1χ0] theory is the (lagrangian) SU(2) N = 4

SYM theory, which has an enhanced supersymmetry, and so has more than one discrete

symmetry group that preserves an N = 2 supersymmetry. In fact, we will argue in the

next subsection (on N = 3 theories) that there is a consistent gauging of a second Z4 which

gives a [III∗, U1 o Z2] daughter theory with N = 3 supersymmetry. Note that, according

to figure 2 a flow from the [II∗, C2] theory to a [III∗, U1 oZ2] theory is unphysical, so the

latter theory must belong to a separate RG flow. This is the I∗2 -series theory shown in the

Z̃2 column in table 1.

IV ∗ series. Theories in this series are those daughter theories that flow to frozen IV ∗

singularities under generic deformation. Since a [IV ∗,∅] singularity only appears as the

the result of a Z3 gauging of an I0 (free vector multiplet) theory, the theories in this series

appear in the Z3 and Z̃3 columns of table 1: a Z3 action on the deformed CB of their

parent theories transforms the I0 at the origin into the frozen IV ∗ at the end of the RG

flow. (The Q = 1 and Q =
√

2 subscripts on the frozen IV ∗ theories are to distinguish the

unit of normalization of electric and magnetic charges in the low energy theory on the CB;

see [6] for a discussion.)

The [II∗, G2] theory is obtained from the [I∗0 , D4χ0] theory (i.e., Nf = 4 SU(2) sQCD)

by picking a Z3 ⊂ S3
∼= Out(D4) flavor symmetry action. The [III∗, A1] is obtained from

the [III, A1χ2/3] by freezing the χ2/3 chiral deformation; no flavor symmetry action is

required. This is compatible with the remarkable fact that a generic deformation of the

III with χ2/3 = 0 splits it into three I1 singularities which are always at the vertices of an

equilateral triangle, thus preserving the Z3 symmetry of the CB geometry. Furthermore,

these flavor assignments give matching RG flow flows, according to the RG-flow analysis

for this series presented in [8].

Note that the frozen IV ∗ series was already considered and analyzed in [8] but with

different conclusions for the correct flavor assignments for the II∗ and III∗ theories, namely

[II∗, A2 o Z2] and [III∗, U1 o Z2], and these in fact appear in the “parent” column of

table 1. This is not a contradiction: the theories analyzed in [8] did not come from

discrete gauging and they are thus different from the [II∗, G2] and [III∗, A1]. The fact

that a single CB geometry, associated with a given deformation pattern, can correspond to

multiple theories is due to the fact that the frozen IV ∗ allows for both a discretely gauged

and a non-discretely gauged interpretation. This is not surprising since we know already of

the example of the frozen I∗1 geometry which exists both as Z2 discretely gauged version of

a U(1) theory with a single hypermultiplet with charge
√

2 and as an SU(2) gauge theory

with a single half-hypermultiplet in the spin 3/2 representation [6].

III ∗ series. Theories in this series are those daughter theories that flow to frozen III∗

singularities under generic deformation. Since a [III∗,∅] singularity only appears as the

the result of a Z4 gauging of an I0 (free vector multiplet) theory, the theories in this series

appear in the Z4 and Z̃4 columns of table 1: a Z4 action on the deformed CB of their parent

theories transforms the I0 at the origin into the frozen III∗ at the end of the RG flow.
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The [II∗, B1] theory is obtained from the [IV,A2χ1/2] theory by freezing the χ1/2

chiral deformation, and by dividing by the parent flavor symmetry by Z2
∼= Out(A2).

Furthermore, this flavor assignment gives a matching RG flow, according to the RG-flow

analysis for this series presented in [8], although in this case this is a trivial check.

II ∗ series. The remaining theories are either green, blue or red in table 1. The green and

blue theories correspond to theories with enhanced supersymmetry and will be discussed

in the next subsection. The theories in red are instead somewhat more speculative than

the others because they are frozen and so cannot be connected to any other N = 2 theory

through an N = 2 RG flow. Thus there are very few checks available to give convincing

evidence that they actually exist as physical theories. The CBs of these theories are both

[II∗,∅] singularities, one obtained by a Z5 CB action on the [II, χ4/5] theory, and the other

by a Z2 CB action of the N = 3 supersymmetric [IV ∗, U1] theory. In the former case the Z5

U(1)R action freezes the χ4/5 chiral deformation of the II while its empty flavor symmetry

“carries over” to form a frozen II∗. In the latter case the U(1) flavor symmetry is frozen

by the discrete gauging procedure. In fact, as there is no non-trivial mass deformation of

the [IV ∗, U1] invariant under the Out(U1) ∼= Z2, this is compatible with the fact that any

non-zero value of the mass associated to the U(1) flavor of the IV ∗ splits IV ∗ → {I1, I
∗
1}

so the only Z2 symmetric mass deformation is the trivial one.

3.4 N = 3 theories

Discretely gauging N = 4 supersymmetric parent theories — the blue theories in the

“parent” column of table 1 — deserves a separate discussion. In this case the R-symmetry

action of the discrete group can be embedded in the N = 4 SO(6)R R-symmetry group, as

was briefly reviewed at the beginning of section 2. When combined with the appropriate

SL(2,Z) action, there can be more than one Zk symmetry group for a given k preserving

N = 2 supersymmetry, and therefore more than one daughter theory with the same CB

geometry. In particular, we will find examples of this for k = 3, 4 and 6, and in each case

there will be one Zk which preserves precisely N = 2 supersymmetry, and another which

preservesN = 3 supersymmetry. TheN = 2 actions are shown in the Zk columns of table 1,

while the N = 3 actions are indicated in the Z̃k columns and will be introduced below.

There are two rank-1 N = 4 CB geometries, the I0 one corresponding to a free N = 4

vector multiplet, and the I∗0 one corresponding to an N = 4 SU(2) SYM theory. The free

N = 4 vector multiplet is, from an N = 2 perspective, a free N = 2 vector multiplet plus

a massless neutral hypermultiplet. As said, its CB is described by an I0 “singularity” with

an arbitrary value of τ , and an SU(2) ' C1 flavor symmetry acting on the hypermultiplet.

It thus appears as the [I0, C1χ0] theory in the first column of table 1. Its N = 4 [I∗0 , C1χ0]

daughter from a Z2 gauging is the O(2) N = 4 theory constructed in (2.1) and discussed at

length in [4], while the three N = 3 theories obtained as discrete gaugings of the [I0, C1χ0]

theory were previously constructed in [4, 5].

Similarly, the N = 4 SU(2) SYM theory has, from an N = 2 perspective, a CB

described by an I∗0 singularity with a marginal χ0 coupling, and a C1 flavor symmetry,

so appears as the [I∗0 , C1χ0] theory in the first column of table 1. In fact, it appears
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twice, once in the series ending in an [I4,∅] and once in the series ending in an [I2,∅].

These refer to two different CB geometries under deformation. The I4 series theory has

deformation pattern [I∗0 , C1χ0] → {I4, I1, I1} while the I2 series theory has deformation

pattern [I∗0 , C1χ0] → {I2, I2, I2}. These two CB geometries are related by a 2-isogeny of

their elliptic fibers and so seem to differ from one another only by a choice of normalization

of the quantization unit of their electric and magnetic charges under the low energy U(1)

gauge group [7]. However, surprisingly, we will see that they have different behaviors under

discrete gauging.

3.4.1 N = 2 and N = 3 preserving discrete gauging (Zr vs. Z̃r)

In order to introduce the already mentioned N = 3 preserving Z̃r action, it is instructive

to start with an example and re-examine the Z4 gauging of the I4-series [I∗0 , C1χ0] theory.

(This is the [III∗, C1] daughter theory we described in the last subsection in the I∗2 -series

paragraph.) We will argue that this is only one of two consistent Z4 gaugings of this theory,

in fact a N = 3 preserving gauging is also allowed. Let’s first run through the discrete

gauging argument in order to clearly identify where the ambiguity arises.

The Z2 action on the CB of the parent [I∗0 , C1χ0] theory should be accompanied by

the action of a Z4 ⊂ SL(2,Z) symmetry in order to preserve N = 2 supersymmetry, since

4 = 2 · ∆(u). This fixes the gauge coupling, which is the marginal chiral χ0 deformation

of the parent theory, to τ = i. Then the explicit form of the [I∗0 , C1χ0] theory’s SW curve

at τ = i (given in [7]) shows that its CB is invariant under a Z2 action for arbitrary

C1 mass deformations; see appendix A.2. Thus the daughter theory should have a III∗

CB geometry with a rank-1 flavor symmetry with a Z2 Weyl group (i.e., a dimension-2

mass invariant). Indeed, such a deformed CB branch geometry was found in [6, 7], and,

as explained in [8], it can consistently have either a [III∗, C1] or a [III∗, U1 o Z2] flavor

symmetry. But since there is no action of the Z2 on the parent theory’s mass parameter, its

C1 flavor group should not be divded by any outer automorphism, so the daughter theory

should be the [III∗, C1] theory.

This analysis, however, made the assumption that the parent theory has only N = 2

supersymmetry, while, in fact, it has N = 4 supersymmetry. This permits more latitude

in constructing discrete symmetry groups which preserve (at least) N = 2 supersymmetry.

The amount of supersymmetry preserved by various discrete symmetries of this theory can

be analyzed following [4]. If σ generates the Z4 ⊂ SL(2,Z) symmetry subgroup of the

S-duality group15 of the N = 4 theory at τ = i, the chiral N = 4 supercharges transform

as σ : Qiα 7→ e−iπ/4Qiα, where i ∈ 4 of SO(6)R, as in (2.6). So, in order to preserve at least

N = 2 supersymmetry, we need to pick a generator ρ ∈ SO(6)R so that under the combined

action of (ρ, σ) at least two of the supercharges are left invariant. Up to conjugation by

elements of SO(6)R, ρ can be chosen to be in the maximal torus of SO(6)R, so can be

represented by a simultaneous rotation,

ρ ' (eiψ1 , eiψ2 , eiψ3), (3.9)

15More properly, the S-duality group of the N = 4 SU(2) SYM is an index 3 subgroup Γ0(2) ⊂ PSL(2,Z)

of which σ generates a Z2 subgroup; the correct discussion will be given below.
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in three orthogonal planes in R6'C3. The four chiral supercharges transform under this ro-

tation by the phases {ei(ψ1+ψ2+ψ3)/2, ei(ψ1−ψ2−ψ3)/2, ei(−ψ1+ψ2−ψ3)/2, ei(−ψ1−ψ2+ψ3)/2}. For

ρ to generate a Z4, the ψa must all be multiples of π/4. Then, up to the action of the Weyl

group of SO(6)R (which permutes the ψa and shifts any pair of them by π), there are just

two inequivalent solutions for a ρ as in (3.9) which preserve at least two supersymmetries:

Z4 : (a) ρa := (i, 1, 1) and (b) ρb := (i, i,−i) . (3.10)

Combined with the σ action on the supercharges, it follows that solution (a) preserves

N = 2 supersymmetry (by leaving Qiα for i = 1, 2 invariant), while solution (b) preserves

N = 3 supersymmetry (by leaving Qiα for i = 1, 2, 3 invariant).

From their action on the supercharges it follows that a ρ ' (eiψ, 1, 1) rotation is in

the U(1)R factor of the R symmetry of the N = 2 algebra preserved by solution (a),

while a ρ ' (1, eiψ, eiψ) is in the maximal torus of the SU(2)R factor of its R symmetry.

So ρa ∈ U(1)R and the commutant of U(1)R × SU(2)R in SO(6)R is an SU(2)F . Thus

gauging (ρa, σ) preserves a C1 ' SU(2)F ⊂ SO(6)R flavor symmetry, as expected from our

earlier arguments.

However, the same analysis applied to the ρb solution shows that ρb 6∈ U(1)R for any

choice of N = 2 subalgebra of the N = 3 supersymmetry which it preserves. With respect

to any N = 2 subalgebra, the parent N = 4 R symmetry decomposes as SO(6)R ⊃ U(1)R×
SU(2)R × SU(2)F , as in the previous paragraph. But (3.10) implies ρb ∈ U(1)R × SU(2)F
in such a way that the commutant of ρb and U(1)R × SU(2)R in SO(6)R is just a U(1)F ⊂
SU(2)F . Thus, by gauging (ρb, σ), the N = 2 flavor algebra is reduced to U(1), contrary to

our earlier arguments. There is no contradiction with those arguments, however, since in

this case ρb does not generate a subgroup of the N = 2 U(1)R symmetry.16 The gauging

of (ρb, σ) is what we call Z̃4 above.

The actions of ρa and ρb on the N = 4 moduli space can also be easily worked out.

Denote the six real adjoint scalars in the N = 4 vector multiplet by ϕIA where I ∈ 6 of

SO(6)R and A ∈ 3 of the SU(2) gauge group. These can be combined into three complex

adjoint scalars φaA := ϕ2a−1
A + iϕ2a

A for a = 1, 2, 3. Then ρ in (3.9) acts as ρ : φaA 7→ eiψaφaA
on the adjoint scalars. This implies that with respect to the N = 2 algebra fixed by ρa, φ

1
A

is the complex adjoint scalar in the N = 2 SU(2) vector multiplet while (φ2
A, φ

3
A) are the

scalars in the adjoint hypermultiplet. The same therefore is also true for solution (b) with

respect to the choice of N = 2 subalgebra generated by Q1
α and Q2

α. The moduli space of

the parent SU(2) N = 4 SYM theory is parameterized by the vevs of the holomorphic gauge

invariant “meson” fields M (ab) :=
∑

A φ
a
Aφ

b
A, subject to the relations MabM cd = MacM bd

following from the usual F- and D-term equations. This is equivalent to a C3/Z2 orbifold;

the Z2 is the residual identification by the Weyl group of the SU(2) gauge group. The M11

vev then parametrizes the CB with respect to the Q1
α, Q2

α N = 2 subalgebra, M12 and

M13 parameterize the mixed branch directions, and the rest are coordinates on the Higgs

branch. ρa and ρb both act by M11 7→ −M11 on the CB, giving the same III∗ singularity,

but have different actions on the Higgs and mixed branches.

16Note that ρb does generate a subgroup of the N = 3 U(1)R symmetry, since elements of the form

ρ ' (eiψ, eiψ, e−iψ) rotate Qiα with i = 1, 2, 3 by a common phase.
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The above computation of the Zk subgroups of the N = 4 SO(6)R R-symmetry which

preserve N = 2 supersymmetry (when combined with a Zk ⊂ SL(2,Z) action) generalizes

immediately to all k. The same argument as in the paragraph containing (3.9) and (3.10)

leads to two solutions for all k:

Zk :

{
ρa :=

(
e2πi/k, 1, 1

)
ρb :=

(
e2πi/k, e2πi/k, e−2πi/k

) , k ∈ {2, 3, 4, 6}. (3.11)

Combined with the σ ∈ Zk ⊂ SL(2,Z) action on the supercharges (2.6), it follows that ρa
preserves only an N = 2 supersymmetry and ρb preserves an N = 3 supersymmetry except

for k = 2, where it preserves the whole original N = 4 supersymmetry.

The ρb solution is, in fact, the R-symmetry action described by Garćıa-Etxebarria and

Regalado in [4] and is what we call Z̃k in table 1. When applied to the [I0, C1χ0] parent

theory in the “parent” column of table 1 (i.e., a free N = 4 vector multiplet), the resulting

blue and green daughter theories in the table are the O(2) N = 4 theory and some of the

N = 3 theories constructed in [4] (they are the k = 2, 3, 4, 6 with ` = 1 theories in the

notation of [5]).

If we discretely gauge in this same parent theory the Zk with ρa generator, instead,

we find a series of N = 2 daughter theories, denoted in table 1 as [K] × H for K ∈
{I∗0 , IV ∗, III∗, II∗}. This is easy to understand: the parent [I0, C1χ0] theory is, as an

N = 2 theory, just a free vector multiplet (giving an [I0] singularity) plus a free neutral

massless hypermultiplet (denoted by H). The ρa-gauging acts on the vector multiplet in

the way described earlier in section 3.2 to give the frozen [K]-type CB geometries, and

does nothing to the hypermultiplet, leaving its Higgs fiber, H, unaffected.

3.4.2 New N = 3 theories

Let’s now apply the Zk, with CB action given by ρa, and Z̃k, with a CB action given by ρb,

discrete gaugings, or, to the [I∗0 , C1χ0] parent theory in the “parent” column of table 1 (i.e.,

an N = 4 SU(2) super YM theory). In this case we find some surprises. Since ∆(u) = 2 for

the I∗0 CB parameter, the Zk discrete symmetry acts only as Zr with r = k/2 on the CB.

Thus there are only two possibilities: k = 4 or k = 6. In the k = 4 case the χ0 marginal

deformation is frozen at τ = i, while for the k = 6 case it is frozen at τ = eiπ/3. Our

analysis then predicts that in the ρa case the daughter theories will be N = 2 SCFTs with

CB geometries [III∗, C1] (for k = 4) and [II∗, C1] (for k = 6). Likewise, in the ρb case the

daughter theories will be N = 3 SCFTs with CB geometries [III∗, U1 o Z2] (for k = 4)

and [II∗, U1 o Z2] (for k = 6). (See [8] for an explanation of the Z2 factors in their flavor

symmetries.)

The first surprise is that these N = 3 theories do not appear on the list of N = 3

theories found in [4, 5] by a string S-folding construction. In fact, they are the unshaded

k = 4, 6 with ` = 2 entries in table (2.13) of [5]. Since the parent theory is a lagrangian

theory, our explicit identification of Z4 and Z6 global symmetries which commute with

three supercharges would seem to guarantee the existence of these N = 3 theories upon

gauging these symmetries. However, the global symmetries in question include the action
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of symmetry subgroups of the group of S-duality transformations, and these only occur at

strong coupling. So one might worry that there is some subtlety having to do with the

existence of these symmetries that cannot be seen at weak coupling. Indeed, just such a

subtlety is the second surprise, which we turn to now.

As we already mentioned, there are two distinct CB geometries describing consistent

deformations of the I∗0 singularity with one mass parameter. One is the [I∗0 , C1χ0] entry

in the I4 series RG flow (i.e., the twelfth entry from the top in the “parent” column of

table 1), and the other is the [I∗0 , C1χ0] entry in the I2 series RG flow (i.e., the fifth

entry from the bottom in the “parent” column of table 1). The I4-series version splits as

[I∗0 , C1χ0]→ {I4, I1, I1} upon turning on the mass deformation, while the I2-series version

splits as [I∗0 , C1χ0]→ {I2, I2, I2}.
Let’s first discuss the [I∗0 , C1χ0]→ {I4, I1, I1} case. As we noted in [6] — see especially

the last paragraph of section 5.3 — the I4-series curve describes the SU(2) N = 4 theory

with S-duality group Γ0(2) ⊂ PSL(2,Z), i.e., the index-3 subgroup generated by T 2 and

STS.17 The fundamental domain of Γ0(2) has two weak-coupling cusps and a Z2 orbifold

point. We can pick the fundamental domain so that one cusp is at τ = 0 (with 2π theta

angle identification), the other is at τ = i∞ (with 4π theta angle identification), and the

Z2 orbifold point is at τ = i ± 1 (which are identified by T 2). The τ = 0 limit is the

SU(2) theory and the τ = i∞ limit is the GNO-dual SO(3) theory. The τ = i+ 1 orbifold

point is fixed by σ := T 2STS =
(

1 −2
1 −1

)
which satisfies σ2 = I (in PSL(2,Z), though not

in SL(2,Z)) and which is an element of the S-duality group. It thus generates a Z2 global

symmetry of the theory, which acts, according to (2.4), as Qiα 7→ e−iπ/4Qiα. Note the

difference from the action (2.6) which applied to the case where the EM-duality group was

SL(2,Z). In general, when the S-duality group is (a subgroup of) PSL(2,Z), the action on

the supercharges becomes

PSL(2,Z) ⊃ Zr 3 σ : Qiα → e−iπ/(2r)Qiα. (3.12)

Then our previous arguments for the discrete symmetry which preserves at least two su-

persymmetries go through with ρa and ρb as in (3.11) with k = 2r.

Thus, we have identified two Z4 global symmetries of the I4-series [I∗0 , C1χ0] theory at

the value τ = 1 + i of its marginal coupling,

Ca := (ρa, σ) and Cb := (ρb, σ) ∈ SO(6)R × PSL(2,Z), (3.13)

with Ca, Cb preserving only an N = 2, 3 supersymmetry, respectively. Gauging these

two symmetries then gives the [III∗, C1] and [III∗, U1 o Z2] theories, respectively, as

described above.

Note that neither of ±ST (or any of their conjugates) are elements of Γ0(2)⊂PSL(2,Z),

so they do not generate a symmetry of the theory at τ = e2πi/3 (which they fix), and so

there is not an identification of the theory at τ = e2πi/3 + ε with the theory at τ = e2πi/3 +

17The S-duality group of the SU(2) SYM theory is a subgroup of PSL(2,Z), not SL(2,Z), since the center

of SL(2,Z) is part of the gauge group, e.g., on the moduli space its action on dyon charges is just that of

the Weyl group.
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e2πi/3ε+O(ε2). Indeed there is no Z3 orbifold point of the Γ0(2) fundamental domain. Since

it has no Z3 S-duality symmetry, there is no Z6 global symmetry of the I4-series [I∗0 , C1χ0]

theory, and so no possible daughter II∗ theories with N = 2 and N = 3 supersymmetry.

Now let’s turn to a discussion of the I2-series curve which describes a subtly different

version of this theory. In the weak-coupling limit it appears to be identical to an N = 4

SU(2) SYM theory: their SW geometries are related by a 2-isogeny of their elliptic fibers,

constructed explicitly in [7], which does not affect the low-energy observables or the BPS

spectrum. This 2-isogeny identification is reflected in a change in the charge quantization

unit by a factor of
√

2 together with a rescaling of the marginal coupling τ by a factor

of 2. Although this factor of two is just a change of variables in the weak coupling limit,

it cannot be removed by a change of variables for all values of τ without changing the

global properties of the S-duality identifications of the low energy theory qualitatively. In

particular, the I2 series SW curve (first in found in [10] and reviewed in [7]) is invariant

under the full PSL(2,Z) S-duality group, and not just a subgroup as in the I4-series case.

This difference has concrete consequences for the allowed discrete gaugings which pre-

serve an N = 2 supersymmetry. In particular, the S-duality group, PSL(2,Z), of the I2-

series theory contains both a Z2 subgroup (generated by S) and a Z3 subgroup (generated

by ST ), it has both Z4 and Z6 symmetries which commute with enough supersymmetries.

(Equivalently, the fundamental domain of PSL(2,Z), unlike that of Γ0(2), has both a Z2 and

a Z3 orbifold point.) This means then that these can be combined with Z4 and Z6 subgroups

of SO(6)R generated by ρa or ρb given in (3.11) to construct both N = 2 daughter [III∗, C1]

and [II∗, C1] theories, as well as N = 3 daughter [III∗, U1oZ2] and [II∗, U1oZ2] theories.

From the prespective of their deformed CB geometries, the existence or abscence of

these Z2 and Z3 symmetries for the I4-series and I2-series theories becomes almost ob-

vious. The I4-series singularity splits into three as I∗0 → {I4, I1, I1} whose positions are

governed by the zeros of the discriminant of its SW curve (constructed in [7] and stated

in appendix A.2 below). For general values of its marginal coupling and mass deformation

parameters, τ and M , these three singularities are at unsymmetrical positions on the CB.

But for τ = i + 1 they exhibit a Z2 symmetry for arbitrary M , as shown in figure 3(a).

Upon gauging this Z2, the undeformable I4 singularity at the origin becomes a frozen I∗2
according to table 3, while the two symmetrically placed I1’s are identified. Thus the

daughter theory must have the CB geometry with deformation pattern III∗ → {I∗2 , I1},
shown in figure 3(b). This is derived algebraically from the form of the SW curve in ap-

pendix A.2. It is also clear that there is no value of τ in the parent I∗0 theory where there is

a Z3-symmetric CB, simply because two of the singularities are I1’s while the third is an I4.

On the other hand, the I2-series singularity splits as I∗0 → {I2, I2, I2} according to its

SW curve [7, 10], reviewed in appendix A.2. For τ = i the geometry is Z2-symmetric,

figure 3(c). Upon gauging the Z2 the undeformable I2 at the origin becomes a frozen

I∗0 according to table 3, while the two symmetrically placed I2’s are identified. Thus the

daughter theory has CB a geometry with deformation pattern III∗ → {I∗0 , I2}, shown in

figure 3(d). But now, since all the singularities are I2’s there can exist a Z3-symmetric

configuration, which occurs at τ = e2πi/3, figure 3(e). Gauging this Z3 makes the free I0

theory at the origin into a frozen IV ∗ singularity according to table 4, while the three
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I4-series

τ = i+ 1

u

I4

I1

I1

(a)

÷ Z2

ũ = u2

I∗2 I1

(b)

I2-series

τ = i

u

I2

I2

I2

(c)

÷ Z2

ũ = u2

I∗1 I2

(d)

I2-series

τ = e2πi/3

u

I2
I2

I2

(e)

÷ Z3

ũ = u3

IV ∗ I2

(f)

Figure 3. The figures on the left are CB geometries of the I4-series and I2-series deformed I∗0
geometry for special values of τ , and their daughter geometries are on the right. The red circles

mark the positions of the singularities, and the black dot marks the origin.

symmetrically placed I2’s are identified. Thus the daughter theory has CB a geometry

with deformation pattern III∗ → {IV ∗, I2}, shown in figure 3(e). Again see appendix A.2

for the explicit derivation of these facts from the SW curve.

The existence of a Z3 discrete gauging of the I∗0 → {I3
2} has striking implications, as

there is no Z3 invariant orbifold point in the fundamental domain of the (standard) N = 4

SU(2) SYM theory, as argued in [27]. Yet the Z3 discrete gauging of the I∗0 → {I3
2} passes

all our non-trivial consistency checks, which suggests that this second geometry should

be associated to a different SU(2) N = 4 theory, likely with a different spectrum of line

operators than those presented in [27]. The I∗0 → {I2
1 , I4} geometry has instead all the

properties of the standard N = 4 SU(2) theory described in [27]. We will elaborate further

on this in an upcoming paper [28].
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4 Higgs branches

In this section we present a detailed analysis on how gauging a discrete symmetry acts

on the Higgs branch chiral ring. Working out in detail one particular example will be

illuminating to understand the action of the discrete gauging procedure on local operators.

Also the results we find are entirely consistent with the Higgs branch constraints which

can be extracted from the (c, kF ) central charge data, as explained in [13, 15]. As we will

explain shortly, the way things work out is highly non-trivial and to our knowledge such

intricate Higgs branch construction was not seen before.

For a detailed geometrical and algebraic description of Higgs branches of N = 2 SCFTs,

as well as as a careful description of the notation used in this section, we refer to [9, 29, 30].

4.1 An example in detail

The most convenient example to study is

[I∗0 , D4]
Z2 gauging−−−−−−−→ [III∗, B3],

which has the advantage that we are able to carry out calculations explicitly. We start

by reminding the reader about the structure of the Higgs branch of the [I∗0 , D4] theory.

Recall that D4 and B3 are the Dynkin notation for the SO(8) and SO(7) Lie algebras,

respectively. In this section we will use the (D4, B3) and the more familiar (SO(8), SO(7))

notations interchangeably.

[I ∗
0,D4] Higgs branch. This theory has a well known Lagrangian description as the

N = 2 SU(2) theory with 4 hypermultiplets in the fundamental representation 2. Because

the 2 is a pseudo-real representation the chiral multiplets can be re-organized counting

the 8 half-hypers instead which transform under the SO(8) flavor symmetry. We can then

denote the field content by Qai where i = 1, . . . , 8 is a flavor index and labels the half-

hypers, while a = 1, 2 is an SU(2) index. Qai transforms in the 8v of the flavor SO(8). The

Higgs branch chiral ring is generated by a single dimension two operator transforming in

the adjoint of SO(8):

M[ij] := QaiQ
a
j (4.1)

where the SU(2) index is lowered with the invariant εab tensor and the square brackets

indicate that M is antisymmetric in i and j. (4.1) is the usual meson operator which is

identified with the scalar primary of the B̂1 of the D4 theory which, following [31] will be

labeled by q1, the 1 labeling the SU(2)R “spin” of the operator:

M[ij] = q281 ∈ B̂1 with R = 1, r = 0, (4.2)

the superscript of the q1 operator indicates its SO(8) representation.

As extensively explained in the literature (see for example [9, 30]) the Higgs branch

chiral ring is generically not freely generated and the q1’s satisfy non-trivial relations. After

imposing the F and D term condition, these relations for the D4 theory can be written

as follows:

q281 q281 ∼ q3002 . (4.3)
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It is helpful to recall the representation theory of the symmetrized tensor product (⊗S) of

adjoint representations of SO(8):

28⊗S 28 = 300⊕ [35v ⊕ 35c ⊕ 35s ⊕ 1] (4.4)

Relations in (4.3) imply then that the q2’s, scalar primaries of the B̂2 operators, transform-

ing in the representation in the square bracket above, should not appear in the OPE of

the B̂1. As discussed in detail in [13, 15], these OPE coefficients can be set to zero if and

only if the flavor central charge kF and the c anomaly coefficient saturate certain flavor

algebra dependent bounds which for D4 give kF = 4 and 12c = 14. These are precisely the

values of the (c, kF ) central charges of the D4 theory and thus (4.3) follows. The [·] = 0

relations generate the D4 Joseph ideal and the q1’s satisfying such relations describe the

minimal nilpotent orbit of D4 which in the physics literature is also known as the cen-

tered one instanton moduli space ; see for example [13, 32]. As pointed out in the beautiful

work [13, 15], only SCFTs with a very restricted set of flavor algebras, namely A1, A2, D4,

G2, F4, E6, E7, E8 can have a one instanton moduli space Higgs branch.

The relation in (4.3) completely characterizes the Higgs branch of the theory.

[III∗, B3] Higgs branch. To start recall that this theory is obtained from the [I∗0 , D4]

by modding out by a chosen, yet arbitrary, Z2 subgroup of the outer automorphism group

of D4, Out(D4) ' S3. Because the generators of the [I∗0 , D4] Higgs branch chiral ring

transform non-trivially under the flavor group, and thus under the gauged Z2, we expect

the Higgs branch chiral ring of [III∗, B3] to differ from that of the [I∗0 , D4] Higgs branch.

The relations satisfied by the qB3
1 can be explicitly computed from the chiral ring relations

of the [I∗0 , D4] theory (4.3).

Modding out by the outer Z2 picks an SO(7) Lie algebra within the original SO(8).

Under the SO(7) the q1 decompose as

q281
SO(7)−−−→ q̃211 ⊕ q̃71 (4.5)

where we label the scalar primaries of the B̂1 operator for the B3 theory as q̃1.

The transformation of the q̃1 under the Z2 can be obtained by choosing an explicit

form for the Z2 action on the half-hypers of the [I∗0 , D4] theory:

QaI
Qa8

Z2−−→ QaI
−Qa8

with I = 1, . . . , 7. (4.6)

From (4.1), it is straightforward to identify q̃211 := M[IJ ], I, J = 1, . . . , 7 and q71 := M[I8].

From (4.6) follows

q̃211

q̃71

Z2−−→ q̃211

−q̃71
(4.7)

Thus at the level of the B̂1 operator, gauging the Z2 eliminates all but the scalar primary

which transforms under the adjoint of the SO(7) flavor group, as expected. Nevertheless,
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the q̃71 are eliminated from the theory altogether: they “make it back” in the theory at the

level of the B̂2 as we will explain now.

From (4.7) it trivially follows that we can form a Z2-invariant tensor by pairing up two

q̃71 operators. So any operator obtained from q̃71 q̃
7
1 should be kept in the theory along with

the operators obtained from q̃211 q̃211 . Operators obtained from q̃71 q̃
21
1 are instead odd under

the Z2 and should be eliminated after gauging. As explained above, there are also non-

trivial relations inherited by the relations satisfied by the q1’s in (4.3). Let’s first summarize

the relevant B3 group theory for the case at hand (we write in red the representations which

needs to be crossed out by gauging the Z2):

21⊗S 21 = 168⊕ [27⊕ 35⊕ 1] , (4.8)

7⊗S 7 = 27⊕ 1, (4.9)

21⊗ 7 = 105⊕ 35⊕ 7. (4.10)

Again the relations [·] = 0 describe the B3 Joseph ideal. The next step is write the relations

satisfied by the q1 operators in the D4 case in terms of SO(7) representations:

[·]D4 → 2(35)⊕ 27⊕ 7⊕ 1 = 0 (4.11)

300D4 → 168⊕ 105⊕ 27 6= 0 (4.12)

Here “ 6= 0” means “lack of any relation”. (4.12) implies the following (lack of) relations

on the OPE of the q̃1:

q̃211 q̃211 |168 6= 0, q̃71 q̃
7
1 |27 6= 0 and q̃71 q̃

21
1 |105 6= 0. (4.13)

The first two operators are invariant under the Z2 and thus we expect the [III∗, B3]

theory to have both a q̃1682 and a q̃272 in the spectrum. The third operator is projected

out by the Z2.

Let us now analyze the relations inherited from (4.11). At first sight one might think

that the D4 Joseph ideal relation implies that the q̃211 describe a B3 minimal nilpotent

orbit. Yet from the conformal bootstrap analysis, as previously mentioned, no B3 theory

can have a minimal nilpotent orbit Higgs branch component. To resolve this conundrum

we need to analyze more carefully the structure of the decomposition of the D4 Joseph ideal

into SO(7) representations. We will find that in fact one of the D4 Joseph ideal relations

implies that q̃211 q̃211 |27 = q̃71 q̃
7
1 |27 and the corresponding term in the OPE does not vanish,

thus providing a perfectly consistent Higgs branch chiral ring. In this way the B̂272 “makes

it back” into the B̂211 B̂211 OPE after imposing the D4 Joseph ideal relations.

To show that this is the case, let’s first explicitly write down q̃211 q̃211 |27 and q̃71 q̃
7
1 |27 in

terms of the meson operator (4.1):

q̃211 q̃211 |27 ≡M
j

(I MjK) (4.14)

q̃71 q̃
7
1 |27 ≡M8(iMj)8 (4.15)

Indices are raised using the δik SO(8) invariant tensor, the antisymmetrization of the M

indices is implicit while we explicitly write the symmetrization of I and K. Capital indices
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only go up to 7. Let’s now work out the SO(8) → SO(7) decomposition of the relevant

representation that in this case is the 35c. The 35, in terms of the meson operator can be

written as

35c ≡M j
(iMjk) −M ijMij , i, j, k, l = 1, . . . , 8. (4.16)

The representation above corresponds to the Young tableau . Using [·]D4 |1=M ijMij =0

we can write (4.16) in terms of the chosen SO(7) embedding as follows:

35c
SO(7)−−−→


M j
I MjK

M j
I Mj8

M j
8 Mj8

transforming as

27

7

1

(4.17)

Splitting the sum over j, and setting the 27 to zero we obtain:

M J
(IMJK) = −M 8

I M8K or q̃211 q̃211 |27 ∝ q̃71 q̃71 |27 (4.18)

from which we can obtain the following [III∗, B3] Higgs branch chiral ring relations:

q̃211 q̃211 ∼ q̃1682 + q̃272 (4.19)

which, if compared with (4.8), imply that q̃211 q̃211 |35 = q̃211 q̃211 |1 = 0.

These constraints are exactly what we expect from the values of the (kF , c) central

charges of the [III∗, B3] theory, as we now explain. The values of the (kF , c) charges dictate

the vanishing of certain OPE coefficients corresponding to B̂2 operators transforming in

specific representaitons in the adj⊗S adj [13, 15, 30]. Since the [III∗, B3] theory is obtained

from gauging a discrete flavor group of the [I∗0 , D4], the central charges of the former are

equal to the ones of the latter which are known to be (kF = 4, 12c = 14). kF = 4 for a

B3 theory saturates a bound corresponding to setting to zero precisely the OPE coefficient

for the 35 (see table 3 of [13]). Furthermore the OPE coefficient corresponding to the

singlet representation, is zero only when the following, Lie algebra dependent, bound is

satisfied [14]:
1

k
=

12c+ dimG

24c h∨
(4.20)

where dimG and h∨ are the dimension and the dual Coxeter number of the flavor Lie

algebra. From table 5 we can extract these values for the B3 case and check that (4.20)

is satisfied precisely for (kF = 4, 12c = 14). This observation concludes the presentation

of a beautifully consistent picture for the Higgs branch chiral rings of discretely gauged

theories. As we are going to describe next, a very similar story applies to all the other

theories with gauged discrete groups.

4.2 Higgs branches for theories with disconnected gauge groups

In this subsection we report the Higgs branch chiral rings of the remaining theories in

table 1. For most of these theories no lagrangian description is available and it is not

possible to perform a detailed analysis like the one described above. The results reported

below are obtained using representation theory and asking for consistency with respect to
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G h∨ dimG G h∨ dimG

SU(N) (AN−1) N N2 − 1 F4 9 52

SO(N) (B(N−1)/2 & DN/2) N − 2 N(N−1)
2 E6 12 78

Sp(2N) (CN ) N + 1 N(2N + 1) E7 18 133

G2 4 14 E8 30 248

Table 5. Dual Coxeter number and dimension of the adjoint representation for the simple

Lie groups.

the central charges values. The Higgs branch of the [IV ∗, A2] and [III∗, A1] are equivalent

to the Higgs branch of the [IV,A2] and [III, A1], that is they span the minimal nilpotent

orbit of A2 and A1 respectively. In fact in these cases the discrete gauging does not carry

any action on the flavor symmetry algebra.

[II∗, F4] Higgs branch. This theory is obtained from the [IV ∗, E6]. Gauging the

Out(E6) = Z2 we obtain a F4 theory. Under the Z2 the B̂1 operator of the [IV ∗, E6]

decomposes into an even part B̂ 52
1 which has the proper flavor transformation to be iden-

tified with the B̂1 for the F4 theory, and a B̂ 26
1 which is odd and is eliminated from the

theory. At the level of the B̂2 operator, we need to study the reduction of the E6 Joseph

ideal relations which work as follows:

78⊗S 78 = 2430 ⊕ [650⊕ 1]y yF4

y
52⊗S 52 = 1053′ ⊕ 324⊕ 1

26⊗S 26 = 324 ⊕ 26⊕ 1

26⊗ 52 = 1053 ⊕ 273⊕ 26

(4.21)

No operator associated to the representations in red should appear in the theory as those

correspond to operators obtained from a q521 q261 product which are all Z2 odd. An argument

similar to the one described above can be used to guess the following Higgs chiral ring

relations for the [II∗, F4] theory

q521 q521 ∼ q1053
′

2 + q3242 (4.22)

which then only implies the constrain q2|1 = 0. This is compatible with the fact that

plugging the values of (c, kF )E6 and the (dimG, h∨)F4 in the (4.20), the central charges

of the obtained [II∗, F4] saturate the appropriate bound for the vanishing of the OPE

coefficient associated to the singlet channel.

[II∗, G2] Higgs branch. This theory is instead obtained from the [I∗0 , D4] and the G2

flavor symmetry is obtained by gauging by a Z3 subgroup of the S3 outer automorphism

group of D4. This case is slightly more involved than the previous one because the B̂1

operator of the D4 theory decomposes in three components: B̂141 which is invariant under

the Z3 and needs to be identified with the B̂1 of the [II∗, G2], and two B̂71 ’s, with Z3 charges
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±1 (mod 3) which we will denote by B̂7±1 . From those B̂1 operators we can form, at the

quadratic level, combinations with Z3 charge 0, +1, and −1. The representations of those

operators will be indicated in the table below in black, green and blue respectively:

28⊗S 28 = 300 ⊕ [35⊕ 35v ⊕ 35s ⊕ 35c ⊕ 1]y yG2

y
14⊗S 14 = 77 ⊕ 27⊕ 1

7+ ⊗ 7− = 27 ⊕ 1

7+ ⊗ 14 = 64 ⊕ 27⊕ 7

7− ⊗S 7− = 27 ⊕ 1

7+ ⊗S 7+ = 27 ⊕ 1

7− ⊗ 14 = 64 ⊕ 27⊕ 7

(4.23)

In this case the Z3 modding gets rid of all the operators associated to the representations

in green and blue. Following the same argument as above, we can guess the following Higgs

chiral ring relations for the [II∗, G2] theory

q141 q141 ∼ q772 + q272 (4.24)

which again implies the constraint q2|1 = 0. This is result is remarkable as (4.20), with

(c, kF )D4 , can be saturate not just with (dimG, h∨)D4/B3
, as already shown above, but also

by (dimG, h∨)G2 from table 5 giving again a beautifully consistent picture.

The structure of the Higgs branch of the [IV,A2]
Z6 gauging−−−−−−−→ [II∗, A1] follows a similar

derivation. The Higgs branch of [IV,A2] is also the centered one-instanton moduli space

of A2 and the one of [II∗, A1] is obtained by carefully going through the representation

theory analysis. The case of the [II∗, C2] is complicated by the fact that the Higgs branch

of the parent [IV ∗, C2U1] theory is not the minimal nilpotent orbit of C2 and it is in fact a

8 complex dimensional variety. In [9] we observed that C2 has a unique, special, nilpotent

orbit of complex dimension 8 and it thus tempting to identify the Higgs branch of [IV ∗, C2]

with it. Yet we don’t know of a nice parametrization of this orbit like in the minimal case

and thus the arguments above do not apply straightforwardly to this case.

5 Central charges

In [9], generalizing the beautiful work of [18], we were able to derive a series of formulae to

compute the a and c central charges from the deformation pattern of a given SCFT. As ex-

plained above and in more detail in [6, 7, 9], turning on relevant parameters deforms the CB

singularity associated to the SCFT into lesser ones. When all available relevant deforma-

tions are switched on the SCFT singularity is maximally split into frozen or undeformable

singularities. These singularities form the deformation pattern of the initial singularity

and they are identified with particular IR free lagrangian theories whose a and c central

charges are known. Calling ai and ci the known central charges of the i-th singularity, the
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central charges of the initial SCFT are [9]:

24a = 5 + h+ 6(∆− 1) + ∆

Z∑
i=1

12ci − 2− hi
∆i

, (5.1)

12c = 2 + h+ ∆
Z∑
i=1

12ci − 2− hi
∆i

. (5.2)

where h is the quaternionic dimension of the mixed branch of the SCFT while the sum

and the values for ci, ∆i, and hi, refer to the singularities in the deformation pattern.

Adding (5.1) and (5.2) we can obtain a relation between the (a, c) central charges and ∆,

the scaling dimension of the CB vev, derived first by Shapere and Tachikawa in [18]

2a− c =
2∆− 1

4
. (5.3)

As was noted first in [5], this relation is clearly violated by SCFTs obtained by gauging

discrete symmetries, since this operation does not change the central charges, but does

change the dimension of the CB parameter. However, a simple modification of (5.2) gives

the correct results:

24aZr = 5 + h+ 6

(
∆

r
− 1

)
+ ∆

Z∑
i=1

12ci − 2− hi
∆i

. (5.4)

Here r refers to Zr action of the discretely-gauged group on the parent CB, while

all the other parameters describe the corresponding quantities in the daughter the-

ory. Equation (5.2) remains unchanged, but again with the parameters referring to the

daughter theory.

While (5.4) works empirically, it seems challenging to derive if from the twisted CB

partition function argument that gave (5.1) and (5.2). The reason is that it involves the

quantity “r” which refers to a property of the parent theory, and not obviously intrinsic to

the low energy effective action of the daughter theory. Note that, following the arguments

of [11], Zr is expected to be related to the 2-form global symmetry of the daughter theory.

But it is less than clear how the associated surface operators can contribute to the CB

twisted partition function to give (5.4).

6 Conclusion and open questions

We have presented a systematic study of N = 2 SUSY preserving gaugings of discrete global

symmetry in the context of four dimensional rank-1 N = 2 field theories. We recast the

discussion of gauging a discrete symmetry in a free N = 4 field theory in [4, 5] in an N = 2

language. This laid the groundwork for a systematic study of allowed Zk discrete gaugings

of general U(1) N = 2 gauge theories. In doing that and generalizing this construction to

interacting non-lagrangian theories, we found that discrete gauging can be understood in

a simple and beautiful way in terms of the CB geometry.
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We found:

• Only very special Zk subgroups of U(1)R×SL(2,Z)×Out(F ) preserve N = 2 super-

symmetry, generalizing the construction of [4].

• A Zk ⊂ U(1)R acts as a Zr=k/∆ on a parent theory with CB parameter of scaling

dimension ∆. The resulting daughter theory has a CB parametrized by ũ = ur.

• By gauging a Z2 symmetry of a U(1) N = 2 gauge theory with beta function 2n,

its I2n CB geometry is mapped to an I∗n geometry with unusual flavor symmetry,

including frozen I∗n geometries for any n. Similarly, gauging Z3, Z4 and Z6 symmetries

of free N = 2 U(1) theories gives frozen IV ∗, III∗ and II∗ CB geometries.

• Zk ⊂ SL(2,Z) subgroups of the EM duality group are global symmetries for Zk-
invariant values of the holomorphic gauge coupling τ . This restricts the possible

discrete groups which preserve N = 2 supersymmetry of isolated SCFTs with a fixed

τ . Conversely, gauging such discrete symmetries of non-isolated SCFTs lifts their

conformal manifold, fixing τ to a particular value.

• Only a subset of the mass deformations of a parent theory with flavor symmetry

F preserves a Zr symmetry of the CB. Discretely gauging the Zr allows only mass

deformations which are fixed by a discrete subgroup Γ ⊂ Out(F ), so the daughter

theory’s flavor symmetry is F ′ = F/Γ for some action of Γ on F . This determines

the splitting of the daughter theory CB singularity under generic mass deformation,

which is enough information [7] to construct the CB geometry associated to the

daughter theory. Only a small set of symmetry algebras F ′ are compatible with a

given SW curve. The existence of a solution of the form F ′ = F/Γ compatible with

the constructed curve is a non-trivial consistency check.

• We had previously constructed Seiberg-Witten geometries associated to deformation

patterns containing frozen I∗0 and I∗2 singularities, but which had no known real-

ization in terms of N = 2 field theories. They now have a beautifully consistent

physical interpretation as discretely gauged versions of known theories. Among these

new theories are ones with F4 and G2 flavor symmetry algebra, as well as two new

N = 3 SCFTs.

• The general formula to compute the a central charge for a given SCFT knowing its

deformation pattern [9] fails when applied to discretely gauged theories [5]. This

can be seen as a reflection of the fact that discretely gauged theories have the same

central charges as their parent theories but different CB scaling dimension, ∆, and so

violate the relation between a, c and ∆ derived by Shapere and Tachikawa [18]. We

guessed a modified formula, (5.4), which works for computing the a central charge

for discretely gauged theories.
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While the picture presented in this paper is fairly complete and very consistent there

are quite a few questions which remain open. Apart from the obvious questions of whether

string, S-class, or bootstrap methods can realize the rank-1 theories described here, and of

the generalization of this story to higher-rank N = 2 theories, here are some puzzles raised

just within our rank-1 field theory analysis.

• As pointed out in section 5, we lack an intrinsic way to compute the central charges

of the daughter theories, and instead have to refer back to their relation to “the”

parent theory to do so. Following [11], perhaps the missing intrinsic data is in the

spectrum of surface operators of the daughter theories.

• Two of the daughter theories in table 1 appear twice: the [III∗, C1] and [III∗, U1oZ2]

theories appear as Z2 and Z̃2 daughters of both the I4-series and I2-series [I∗0 , C1χ0]

theories (they are in fact associated to two different deformation patterns, III∗ →
{I∗2 , I1} and III∗ → {I∗1 , I2}). We have conjectured that these two parent theories

are subtly different. Is that also true of their daughters?

• We have only discussed gauging Zn symmetries, that is, discrete groups with a single

generator. We can also imagine gauging non-cyclic abelian discrete groups, e.g.,

Z2 × Z2. One way of exploring this question with our method is to ask whether any

of the daughter theories we found in table 1 have further cyclic symmetries that could

be consistently gauged. The only possible non-free example of this is the [IV ∗, A2]

daughter of the [IV,A2χ1/2] parent, which has a further discrete symmetry which

acts as a Z2 on its CB. But gauging this symmetry seems to give the [II∗, B1] theory,

the other daughter of the same [IV,A2χ1/2] parent, and so we find no obviously

new theories in this way. As in the previous question, it is possible that these two

routes to constructing the [II∗, B1] daughter theory might be subtly different, e.g.,

their local operator algebras might be the same but their spectra of line and surface

operators might differ as in [27]. This possibility might also apply to the free theories

in table 1 which can be reached by successive discrete Zk gaugings. Could these

multiple versions of the free N = 3 Zk gaugings correspond to the multiple versions

of these thoeries constructed via S-foldings [4, 5]?

• Gauging non-abelian discrete groups is also interesting. One might have expected the

[I∗0 , D4χ0] theory to have a gaugable non-abelian discrete symmetry, since Out(D4) '
S3. However, its Z2 and Z3 subgroups combine with S-duality actions which fix

different values of the marginal coupling, τ , and so cannot be realized simultaneously.

In general, the subgroups of SL(2,Z) which can be global symmetries are only cyclic

groups. At higher rank, there may be finite non-abelian subgroups of the Sp(2r,Z)

EM-duality group which fix a given r × r matrix τij of low energy couplings.

• Possibly the most puzzling part of our study is the role played by Inn(F ), the group

of inner automorphisms of the flavor symmetry algebra. We have emphasized that

discrete symmetries which act on the CB and commute with N = 2 supersymmetry

must involve the action of a subgroup Zk ⊂ Out(F ) of the outer automorphism
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group of the flavor symmetry. But this action is arbitrary up to the choice of an

element g ∈ Inn(F ), i.e., the Zk generated by ϕ ∈ Aut(F ) and the Z̃k generated by

ϕ̃ := gϕg−1 may act differently on F and so give different daughter flavor symmetries:

F/Zk 6= F/Z̃k. However, as explained in examples in sections 3.1 and 3.3, not all

choices of g ∈ Inn(F ) are consistent with the CB geometry. Why is there a restriction

on the choice of g ∈ Inn(F ) that can be gauged as part of our discrete symmetry?

Relatedly, why does discrete gauging by subgroups Γ ⊂ Inn(F ), which commute with

N = 2 supersymmetry and leave the CB invaraint, seem not to be consistent with

N = 2 supersymmetry, as argued in section 4.2 of [6]?
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A Quotients of CB geometries

We demonstrate how to perform the quotient of the CB geometry by the action of a discrete

subgroup the U(1)R symmetry using the SW curve and one-form. This quotient is closely

related to the discussion in the math literature of the effect of a base change on the fiber

of an elliptic surface at a ramification point of the base change; see, e.g., table 3 of [33].

We illustrate with two sets of examples; all other cases follow similarly.

A.1 Z2 quotient of the I2n geometry

The SW curve and one form for a scale-invariant I2n geometry are given by

y2 = (x+ 1)(x2 + Λ−2nu2n), λ = u
dx

y
. (A.1)

Since the periods of the one form compute masses, it follows that x and y have mass

dimension 0, and u and Λ have mass dimension 1. Λ is the strong coupling (or Landau

pole) scale of the corresponding IR-free theory, and u is the complex coordinate on the CB.

Since the power of u is even, the curve is invariant under a Z2 generated by u 7→ −u
leaving x, y, and Λ invariant. If we orbifold the CB by this Z2 action, the complex

coordinate of the resulting daughter CB is ũ = u2. The resulting curve is of Weierstrass

(y2 = x3 + · · · ) form, but has a non-canonical SW one-form, λ =
√
ũ dx/y. Changing

variables as y = α−3ỹ, x = α−2x̃ for arbitrary α preserves the Weierstrass form of the

curve, and by choosing α appropriately, we can bring λ to canonical form. The unique α

which does this is α =
√
ũ, giving the daughter curve and one form

ỹ2 = (x̃+ ũ)(x̃2 + Λ−2nũ2n+2), λ = ũ
dx̃

ỹ
, (A.2)
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which describe an I∗n singularity. Note that now the mass dimensions of the new coordinates

are ∆(ũ) = ∆(x̃) = 2 and ∆(ỹ) = 3.

The maximal mass deformation of (A.1) is [7]

y2 = (x+ 1)
(
x2 + Λ−2n

[
u2n +M1u

2n−1 +M2u
2n−2 + · · ·+M2n

])
, (A.3)

where the subscripts of the Ma deformation parameters record their mass dimensions:

∆(Ma) = a. The mass deformation parameters are homogeneous polynomials in the linear

mass parameters invariant under the Weyl group of the flavor symmetry. This Weyl group

is uniquely determined by the spectrum of dimensions of the mass parameters. In this case,

the spectrum is {1, 2, 3, . . . , 2n} which identifies the flavor Weyl group as Weyl(U1A2n−1) =

Weyl(U(2n)). Thus the (maximal) flavor symmetry of the theory corresponding to the

deformation (A.3) of the I2n singularity is U(2n). See [6, 7] and especially [8] for more

details on how the flavor symmetry is inferred from the SW curve.

Now, in order for the deformed curve (A.3) to be invariant under the Z2 action u 7→
−u, all the odd-dimension mass deformation parameters must be set to zero, since they

multiply odd powers of u. Thus the resulting daughter CB geometry only has deformation

parameters with a spectrum of dimensions {2, 4, . . . , 2n} corresponding to Weyl group

Weyl(Bn) = Weyl(Cn), implying that the flavor symmetry algebra of the daughter theory

is f′ = BCn, i.e., either Bn or Cn.

Note that we have only discussed the maximal mass deformation of the I2n singularity,

i.e., the one with flavor symmetry U(2n). This is the generic mass deformation of the cor-

responding U(1) gauge theory with 2n charge ±1 hypermultiplets. There are many other

U(1) gauge theories with hypermultiplets with different charges giving the same I2n singu-

larity in the zero-mass limit. Examples of such theories appear in table 3. They correspond

to geometries given by “sub-maximal” deformations of the I2n singularity, with fewer mass

parameters and with a different spectrum of dimensions. A similiar Z2 orbifolding of the

CB geometry can be done for these submaximal deformations, giving the results described

in section 3.1. See [6, 7] for a fuller discussion of sub-maximal mass deformations.

A.2 Z2 and Z3 quotients of N = 4 I∗
0 geometries

There are two different forms for the SW curve for the N = 4 SU(2) SYM theory with

N = 2-preserving mass deformations. As explained in [6, 7], they correspond to the

I∗0 → {I2
3} and the I∗0 → {I1

2, I4} deformation patterns. In this paper we refer to them

as the I2-series and I4-series curves, respectively. We will discuss them in turn.

A.2.1 Quotients of the I2-series I∗
0 geometry

The SW curve of the I2-series I∗0 geometry is given by [10]

y2 =
3∏
j=1

(x− eju− e2
jM2) (A.4)

with canonical one-form λ = udx/y for M2 = 0. Here ej(τ) are modular forms of the

marginal coupling which satisfy
∑

j ej = 0.
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Z2 quotient. The discriminant of the right side of (A.4) with respect to x is proportional

to
∏
j(u−ejM2). So only for the values of the coupling where one of the ej = 0 is there a Z2

symmetry on the CB. Choose, say, e1 = −e3 = 1 and e2 = 0 to find the Z2-symmetric curve

y2 = x3 − 2x2M2 − x(u2 −M2
2 ) (A.5)

with discriminant Discx = 4u2(u2−M2
2 )2, indicative of the expected symmetrically placed

I2 singularities at u = 0 and u = ±M2; see figure 3(c).

Now mod out by the Z2 on the CB by replacing u with ũ := u2, and rescaling x and y

so that the Weierstrass form of the curve and canonical form of the 1-form are preserved.

The unique rescaling which does this is x̃ := ũx and ỹ := ũ3/2y, giving a new curve

ỹ2 = x̃3 − 2ũM2x̃
2 − ũ2(ũ−M2

2 )x̃. (A.6)

When M2 = 0 limit this describes a III∗ Kodaira singularity. For M2 6= 0, its discriminant

is Discx = 4ũ7(ũ−M2
2 )2. As ũ→ 0, the right side of (A.6) becomes x̃3−2ũM2x̃

2 + ũ2M2
2 x̃

which is a singularity of I∗n type. Since the discriminant has a factor of ũ7, it must in fact be

of I∗1 type. At the other singular fiber, ũ = M2
2 , the right side of (A.6) becomes x̃2(x̃−2M3

2 )

which has a double zero, so is of In type. Since the discriminant has a factor of (ũ−M2
2 )2,

it must in fact be of I2 type. Thus we have shown that the Z2 orbifold of the I∗0 → {I2
3}

geometry gives a curve (A.6) which describes a III∗ → {I∗1 , I2} deformation pattern.

Z3 quotient. Since the discriminant of (A.4) is ∝
∏
j(u− ejM2), only for the values of

the coupling where the ej are the three cube roots of unity is there a Z3 symmetry on the

CB. For that coupling the curve becomes

y2 = x3 − 3uM2x− (u3 +M3
2 ) (A.7)

with discriminant Discx = −27(u3 −M3
2 )2, indicative of the expected Z3-symmetrically

placed I2 singularities; see figure 3(e).

Now mod out by the Z3 on the CB by replacing u with ũ := u3, and rescaling x and y

so that the Weierstrass form of the curve and canonical form of the 1-form are preserved.

The unique rescaling which does this is x̃ := ũ4/3x and ỹ := ũ2y, giving a new curve

ỹ2 = x̃3 − 3ũ3M2x̃− ũ4(ũ+M3
2 ). (A.8)

When M2 = 0 this describes a II∗ Kodaira singularity. For M2 6= 0, its discriminant is

Discx = −27ũ8(ũ−M3
2 )2. As ũ→ 0, the right side of (A.8) becomes x̃3− 3ũ3M2x̃− ũ4M3

2

which is a singularity of IV ∗ type. At the other singular fiber, ũ = M3
2 , the right side

of (A.8) becomes (x̃ + M5
2 )2(x̃ − 2M5

2 ) which has a double zero, so is of In type. Since

the discriminant has a factor of (ũ −M3
2 )2, it must in fact be of I2 type. Thus we have

shown that the Z3 orbifold of the I∗0 → {I2
3} geometry gives a curve (A.8) which describes

a II∗ → {IV ∗, I2} deformation pattern.
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A.2.2 Quotient of the I4-series I∗
0 geometry

The SW curve of the I4-series I∗0 geometry was found in [7] to be given by

Y 2 = X3 − 1

3
X[U2(1 + 3α2) + 8UM2α

2 + 4M2
2α

4] (A.9)

− 2

27

[
U3(9α2 − 1) + 3U2M2α

2(5 + 3α2) + 24UM2
2α

4 + 8M3
2α

6
]
,

with one-form λ = U dX/Y at M2 = 0. Here U is the CB parameter and α is the marginal

coupling. The curve’s discriminant is 4α2(α2−1)2U4(U2 +2UM2 +α2M2
2 ), which indicates

weak coupling singularities at α = 0,±1, an I4 singular fiber at U = 0 and a pair of I1

fibers at the roots of U2 + 2UM2 + α2M2
2 .

The Z2-symmetric configuration, shown in figure 3(a), is therefore only realized at

α = ∞. This limit of the curve is accessed by defining rescaled coordinates u := α−1U ,

x := α−2X, and y := α−3Y . (This rescaling leaves the Weierstrass form of the curve and

the canonical one-form unchanged.) In terms of these new coordinates, the α → ∞ limit

of the curve becomes

y2 = x3 − 1

3
(3u2 + 4M2

2 )x− 2

27
(9u2 + 8M2

2 )M2, (A.10)

with discriminant 4u4(u2 +M2
2 ), showing the expected Z2 symmetry.

Now mod out by the Z2 on the CB by replacing u with ũ := u2, and rescaling x and y

so that the Weierstrass form of the curve and canonical form of the 1-form are preserved.

The unique rescaling which does this is x̃ := ũx and ỹ := ũ3/2y, giving a new curve

ỹ2 = x̃3 − 1

3
ũ2(3ũ+ 4M2

2 )x̃− 2

27
ũ3(9ũ+ 8M2

2 )M2. (A.11)

When M2 = 0 this describes a III∗ Kodaira singularity. For M2 6= 0, its discriminant is

Discx = 4ũ8(ũ + M2
2 ). As ũ → 0, the right side of (A.11) becomes x̃3 − (4/3)ũ2M2

2 x̃ −
(16/27)ũ3M3

2 which is a singularity of I∗n type. Since the discriminant has a factor of ũ8, it

must in fact be of I∗2 type. At the other singular fiber, ũ = −M2
2 , the right side of (A.11)

becomes ∝ (3x̃ + M3
2 )2(3x̃ − 2M3

2 ) which has a double zero, so is of In type. Since the

discriminant has a zero of multiplicity one at ũ = −M2
2 , it must in fact be of I1 type. Thus

we have shown that the Z2 orbifold of the I∗0 → {I2
2, I4} geometry gives a curve (A.11)

which describes a III∗ → {I∗2 , I1} deformation pattern.
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