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1 Introduction

A useful way to break supersymmetry in flux backgrounds is to insert branes that preserve

different supercharges than the background fluxes and branes. Supersymmetry breaking by

combining branes and antibranes is perturbatively unstable since the branes are mobile and

can move towards each other and annihilate. The virtue of combining branes with fluxes that

have opposite orientation is that there is no direct analog of brane/antibrane annihilation.

Instead there can be brane-flux annihilation [1] which proceeds via first nucleating branes out
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of the fluxes which then annihilate with the antibranes. The question then is whether this

type of supersymmetry breaking can be metastable. If so, then it would be of great practical

use in constructing string models for dS vacua [2], inflation [3], near-extremal black hole

micro-states [4, 5] and holographic duals to dynamical supersymmetry-breaking [1, 6–11]

(and see [12] for related work).

In [1] it was indeed argued that metastable states do exist for p D3 branes in the

Klebanov-Strassler throat [13] with three-form fluxes carrying M ×K D3 charges, where K

and M are respectively the H3 and F3 flux quanta. Brane-flux annihilation proceeds via the

Myers effect [14]: the p D3 branes polarise into an NS5 brane wrapping a two-cycle inside

the 3-cycle (i.e. A-cycle) at the tip of the throat. The NS5 brane carries D3-charge that is a

function of its position on the A-cycle. When the NS5 brane pinches off at the opposite side

of the 3-cycle it induces M − p D3 charges instead of p D3 charges. Effectively, the motion

over the 3-cycle corresponds to brane-flux annihilation: out of the background fluxes M D3

branes have materialised and at the same time K dropped by one unit. The M D3 branes

then annihilate with p D3 branes to give a supersymmetric vacuum with M − p D3-branes.

Kachru, Pearson and Verlinde (KPV) argued [1] that this supersymmetry breaking is

metastable in the limit of small p/M . This limit is the same limit in which the characteristic

size of 3-sphere at the tip R2
S3
∼ gSM`2s is much bigger then the characteristic size of the D3

horizon R4
D3
∼ gsp`4s. Hence one might expect the D3 to only modify the geometry locally.

KPV argued the metastability by computing the potential energy for the NS5 brane and

finding it has a local minimum at a radius r ∼ (p/M)
√
gsM`s. In the past years concerns

have been raised in the literature about the validity of this result. The first concern is

that the NS5 potential was computed by using an action obtained from S-dualising the D5

action. The D5 action is valid at weak coupling and hence the obtained NS5 action can only

be argued to be valid at strong coupling. An alternative analysis using the non-Abelian D3

action also suffers from the same problem since an S-dual version of the standard D3 action

is required. A second concern is that the KPV computation works at the probe level and

backreaction effects should therefore be subleading and tunably small. However many recent

works have shown that the backreaction leads to a singularity which is difficult to interpret.

In this paper we study whether backreaction destroys the metastable state of D6 branes.

For that we must first establish the metastability of D6-branes at the probe level which

has not appeared in the literature before (see however [15]). We then indeed find that

backreaction destabilises the D6 branes. We are unable to address the D3-brane stability

conclusively but we comment on it.

In section 2 we recall the existing results on the backreaction of antibranes. Section 3

contains a description of the background flux solution in which we place the D6-branes. We

then show, in section 4, that D6-branes give rise to metastable states at the probe level

when p/M is small (M is the Romans mass, p is the antibrane charge). This meta-stable

state is however washed away when backreaction corrections are added (assuming gsp is

large enough to allow for a supergravity description) as shown in section 5. In section 6

we comment on the case of branes of lower dimensionality, and discuss a possible loophole

that could allow the interesting case of D3 branes to escape this instability. We conclude in

section 7. All explicit computations can be found in the appendices.
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2 Backreaction effects and instabilities

An explicit study of antibrane supersymmetry breaking is hard due to the lack of explicit

solutions in the cases of interest. The best understood solutions at the moment are based on

antibranes smeared over the A-cycle which has been most studied for D3 branes in the KS

throat [16] (see also [17]). The only case for which a quantitative analysis is possible that

does not rely on smearing are D6-branes since those solutions are described by ODE’s [18].1

The qualitative feature that these studies have shown is the presence of a singularity in

the H3 flux density. This property can be shown to be unavoidable even for localised

branes [21, 22]. Two prominent interpretations of this singularity have appeared in the

literature in the past years.

• Singularities are actually to be expected [23] since near the D3-brane we have an

AdS5×S5 perturbed by three-form fluxes. Analogous, albeit supersymmetric, examples

of this type are known to give rise to singularities that are resolved by letting the 3-

branes polarise to (p, q)-5 branes [24]. For smeared D3-branes there is a growing body

of work that indicates that certain expected polarisation channels seem absent [25–27]

and others lead to tachyonic modes [28–31]. Analogous results for fully localized

branes are not as strong and a recent paper found that polarised D3-branes can be

made regular by fixing boundary values of some fields [32]. It still remains to show

that a full solution with these boundary values exists.

• The 3-form singularity of Dk solutions has a simple interpretation [33] which can be

found in the sign of the divergent (but integrable) charge density F6−k ∧H3. This

sign is opposite to the sign of the antibrane charge. The reason is that the flux

is attracted gravitationally and electromagnetically towards the antibranes. If the

antibranes are replaced instead with branes, the electromagnetic repulsion will exactly

counterbalance the gravitational pull [34]. This entails an obvious instability since a

clumping of fluxes carrying Dk charges will enhance the brane-flux annihilation. This

can be seen at the level of the probe actions describing the Myers effect [27, 35, 36]

or from the point of view of bubble nucleation [36]. If the flux clumps in an unbound

way one necessarily crosses a critical value that causes immediate brane-flux decay. If

this picture is correct there should exist a smooth time-dependent solution describing

the clumping of flux, which reaches a critical value at which the antibranes decay and

then the flux clumping should stop and the BPS state should be reached after the

closed string radiation decouples. This picture is not inconsistent with the expectation

that backreaction is small when p/M is small, but the essential property that makes

this possible is that the local backreaction, which can be big, determines stability.

In this paper we demonstrate that the second viewpoint is correct for D6 branes at large

gsp but still arbitrarily small p/M .

1One exception seems to be M2 branes in singular geometries [19, 20].
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3 D6 brane solutions

In order to analyse brane-flux annihilation, we first require a background with fluxes that

carry D6 charges without the presence of localized D6 branes. This is possible in massive

IIA supergravity as can be seen from the Bianchi identity for F2:

dF2 = F0H3 +Nδ6 . (3.1)

Here F2 is the RR 2-form field strength, F0 is Romans mass and H3 is the NSNS 3-form

field strength. Notice that the term F0H3 appears on the same footing as the D6 source

term Nδ6. Clearly when F0 6= 0 this term acts as a smooth source for 6-brane charge.

A general study of backgrounds with these ingredients was carried out in [18]. It includes

the “massive D6” brane with flat worldvolume and non-compact transverse space [37] and

D6 branes with AdS7 worldvolume and compact transverse space [18, 38]. We start with

brane-flux decay in the first example but before doing so we emphasize why the D6-brane

is special.

3.1 Why the D6 is special

D6 branes stand out against antibranes of other dimensionality for their simplicity. This is

most obvious in the description of the backreaction of D6 branes, which is described by

ODE’s [18, 33, 38] without having to smear the branes. A second feature-crucial for this

paper-is that the annihilation of the H3-flux does not proceed via a polarisation into a

higher-dimensional object. All Dk branes with k < 6 polarise into an NS5 branes [15]. D6

branes instead polarise into KK5 branes, which are smaller in dimension. However the KK5

assumes a circular isometry transverse to its worldvolume, one can therefore think of KK5s

as 5-branes that are smeared over a circle. This circular isometry direction will live inside

the D6 worldvolume such that the KK5 brane looks like a 6-brane and its backreaction is

identical to that of the D6 brane since it carries D6 charge and tension. This is related

to the fact that D6 solution is the only antibrane solution for which the singularity in H3

is consistent with the singularity of the metric. In other words: the backreaction of the

diverging H3 flux does not destroy the local D6-metric, whereas it would for k < 6. For

instance for k = 3 one finds that the H2
3 scalar blows up near the horizon, but the horizon

of a 3-brane should be smooth AdS5 × S5. Hence the 3-form fluxes necessarily destroy the

local AdS5 throat, which is well known from the Polchinski-Strassler (PS) model [24]. In the

PS model the singularity at the would-be horizon can be turned into a physical singularity

corresponding to (p, q) 5-branes. Something similar can be expected for the D3 solution

and indeed reference [32] has shown that a local 5-brane background with good singularities

it is at least not inconsistent with having ISD fluxes at the UV and a non-zero (generalised)

ADM mass.

– 4 –
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3.2 D6 branes in flat space

We start with a flux background geometry with a flat D6 worldvolume. The metric and

dilaton2 is that of a D6 brane

ds2 = S−1/2(ds27) + S1/2[dr2 + r2dΩ2
2] ,

F2 = −g−1s ?̃3dS ,

eφ = gsS
−3/4. (3.2)

To have D6 charge dissolved in fluxes we include a non-trivial H3 flux and Romans mass

given by

H3 = (Mgs/`s)vol3 ,

F0 = M/`s . (3.3)

Here ?̃3 is the unwarped Hodge operator on the transverse space such that ?̃31 = r2dr∧Ω2 =

vol3 and Ω2 is the volume form on the unit 2-sphere. We denote the line element of 7D

Minkowski space by ds27. Further on, once we discuss the KK5 brane it will turn out to

be useful to pick out a specific direction ψ that plays the role of the isometry direction

of the KK5. We then write ds27 = ds26 + dψ2 with ψ a circle direction. The fluxes obey a

Hodge-duality relation:

H3 = eφ ?3 F0 , (3.4)

where the Hodge-star ? includes warp factors. This condition is identical to the famous

Imaginary Self-Dual (ISD) condition for fractional D3 brane backgrounds after performing

three T-dualities along the Minkowski directions. One can furthermore verify that (3.4)

ensures a no-force condition for probe D6 branes. D6 branes on the other hand do feel a

force.

The Bianchi identity for F2 (with N D6-brane sources located at the origin r = 0)

implies

4̃3S +

(
Mgs
`s

)2
= 0 ,

to which a spherically symmetric solution is

S = v2 +
gs`sN

4πr
− (Mgsr)

2

6`2s
, (3.5)

where N is the number of D6-branes sitting at r = 0 and v is an integration constant. We

will put N to zero for now and consider a background without any explicit D6 sources. This

solution is then regular around r = 0.

The solution has a peculiar singularity for

r →
√

6v`s
Mgs

. (3.6)

2We use string frame throughout.
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In order to examine the local behaviour of the singularity we expand around it:

r =

√
6v`s
Mgs

− δr with (δr)5 =

√
6`s

2vMgs

(
5

4
x

)4
, (3.7)

and find

ds2 ≈
(

2
√

6`s
5vgsMx

)2/5
ds27 + dx2 +

(√
6v`s
gsM

)2(5vgsMx

2
√

6`s

)2/5
dΩ2

2 . (3.8)

This is precisely the local singularity structure of an O6-plane (see appendix A). A discussion

of this singularity can be found in [39] where it was argued that strings are well behaved

in the singular background. Our interpretation of the singularity as an O6-plane confirms

that analysis. We will not go into more details on the global analysis of the solution since

the computation we perform is local to r = 0.

This solution is not supersymmetric. Supersymmetric solutions for D6 branes in massive

IIA do not preserve the Poincaré symmetries of the D6 worldvolume as shown in [37, 40].

The flux background is however extremal in the following sense

• The expression of the metric and form fields is the one typical for extremal p-branes.

• There is a no-force condition for inserting D6 branes into the background whereas D6

branes are pulled towards the tip of the throat.

• It is T-dual to supersymmetry breaking using (3, 0)-fluxes in fractional D3 backgrounds

which is rather well understood and does not influence any of the details of brane-flux

decay in that context [1].3

Inserting D6 branes. To describe the same throat geometry but with a stack of D6’s

at the tip, we use the following general Ansatz preserving the worldvolume symmetries

(possibly broken at finite temperature) and the transverse rotational symmetries [33] (in

string frame):

ds2 = e2A(−e−2fdt2 + ds26) + e2B[e−2fdr2 + r2dΩ2
2] ,

F0 = M/`s ,

H3 = λeφ ?3 F0 ,

F2 = e−7A ?3 dα . (3.9)

From combining the form field equations of motion one can deduce that

α = λe7A−φ+f . (3.10)

Solutions of the above form will break the ISD condition (3.4) whenever λ 6= 1 and such

backgrounds exert non-zero forces on probe D6 branes. The extremal flux background

discussed earlier is recovered for the choices λ = 1, e−4A = e4B = S and eφ = gsS
−3/4.

3However after 3 T-dualities there are some technical differences to [1]: the S3-cycle is replaced with a

T3 cycle over which the D3 branes are smeared in the supergravity desciption.
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Figure 1. The clumping of positively charged fluxes near a negatively charged antibrane. The blue

region corresponds to the flux density and the darker the blue the higher the density. The red dot

represents the antibrane. The left picture illustrates the probe approximation and the right includes

backreaction effects.

It was shown in [18, 33, 41] that insisting that the metric has an D6 singularity at

r = 0 and asymptotes to the ISD solution, we find that α goes to a non-zero constant near

the D6-horizon4 which we denote α0. This implies:

λ = α0e
−7A+φ−f →∞ , (3.11)

since the combination e−7A+φ−f blows up at zero or non-zero temperature. At non-zero

temperature this is solely due to ef going to zero near the horizon whereas the other

fields remain finite. Whereas at zero temperature ef = 1 but e−7A+φ is combination that

necessarily diverges near a 6-brane.

This singularity is not a coordinate artefact since it appears in scalar quantities like

the H3-flux density:

e−2φ|H3|2 →∞ . (3.12)

One readily verifies that the singularity in the associated charge density MH is still

integrable, since H3 ∼ r−1Vol3 = rdrdΩ2 near the source at r = 0. Another peculiar feature

is the fact that the backreaction of the fluxes does not modify the local 6-brane singularity

of the metric to some unphysical naked singularity. This is different for the Dk solutions

with k < 6 as explained in the Introduction.

The sign of the singularity in λ is such that it corresponds to a diverging D6 charge

density dissolved in the fluxes as illustrated in figure 1.

Given the interpretation of this singularity as a diverging charge density one should be

worried about the stability of this background against brane-flux annihilation. Heuristically

one expects a large charge density dissolved in fluxes to increase the probability of localised

and mobile D6 branes materialising out of the flux cloud that subsequently annihilate

against the D6 branes. This is the topic of section 4.

4which has zero size at zero temperature.

– 7 –



J
H
E
P
0
3
(
2
0
1
7
)
1
4
1

D8

×
D6

Figure 2. D6 charges can be distributed over the S3 either by point-like D6 branes or by spherical

D8 branes with fluxes wrapping contractible S2’s.

3.3 Warped AdS7 with D6 branes

If one allows the D6 worldvolume to be AdS7 instead of Mink7 the space transversal to the

brane can be made compact and conformal to S3 [34]. The resulting solution was described

qualitatively in [18, 33]. A much deeper understanding of the solution as well as a better

numerical control was reached in [38], where it was understood that the solution can even

be supersymmetric, rectifying some statements in [33].5 These backgrounds are relevant as

holographic descriptions of a large class of strongly coupled (1,0) CFT’s in D = 6. The

details of these holographic descriptions were uncovered in [44] (see also [45]).

What counts for this paper, all details aside, is that there are various AdS7 solutions.

They can be classified according to the way the six-brane charges are divided over the

compact manifold. The D6 charges are either due to explicit D6 branes sitting at the

poles of the S3 or due to spherical D8 branes wrapping contractible S2’s inside the S3

as in figure 2. Those D8 branes can induce D6 charges when they have the right kind of

worldvolume fluxes on them.

The presence of D8 branes carrying the D6 charges is a crucial difference with the

Minkowski solutions treated above. In the latter case it can be shown that the D8 branes

would never sit at a stable position and pinch off to become pure D6 branes [25]. Only

in AdS7 can they reach a stable position [42]. Crucially, when the charges are carried by

spherical D8 branes they do not cause flux-clumping singularities [25].

The role of the D8 brane can be confusing so we spend a few more words on this.

Fluxes can decay against the p D6-charges in two ways [15]: 1) either by having a D8 brane

polarising and move all the way over the S3 which decreases the Romans mass or 2) by

having a KK5 brane moving inside the D6 worldvolume which decreases the H3-flux. In

this paper we focus on the second channel. Concerning the first channel the results have

been computed recently: for AdS7 the D8 will be stuck at a stable position [42] but for

Minkowski worldvolume polarisation into D8 branes is impossible [25].

The presence of the 3-form singularity strongly affects the KK5 channel since the density

of 3-form fluxes drives the KK5 polarisation. Hence, we expect that KK5 polarisation does

5Although non-supersymmetric solutions are possible as well in this setup [42, 43].
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not occur at all for an AdS worldvolume since the D8 polarisation regularises the 3-form

singularity. This is stricktly speaking an assumption for our setup but has been verified

explicitly in the T-dual picture [27]. In contrast with AdS, we argue in this paper that the

KK5 branes will polarise without finding a meta-stable state for flat worldvolumes. This

drastic qualitative difference is caused by having the D8 brane polarised in one case and

not in the other [27]. Because if the D8 polarises it removes the 3-form singularity, which

lies at the heart of the immediate brane-flux decay.

4 Brane-flux annihilation at probe level

4.1 Brane-flux decay and T-duality

To analyse the stability of D6-branes in the background in question we first study the

probe approximation where the branes do not backreact on the geometry. We must identify

branes that can carry the D6-charge away, similar to the spherical NS5-brane in KPV [1].

These turn out to be KK5-branes that source D6-charge on their worldvolume [15]. This

may seem strange as the KK5 is a 5-brane whereas the D6 is a 6-brane, but the KK5 has

one special transverse direction, the NUT direction, which assumes circular isometry. For

all intents and purposes we can think of the KK5 as a brane that is smeared along this

NUT direction and hence can carry D6 direction. In our setup the NUT direction of the

KK5-branes is a circle in the D6 worldvolume parametrized by ψ. The relevant coupling in

the KK5 action is

(p− ψF0)

∫
KK5

ιkC7 , (4.1)

where n is the ‘worldvolume flux’ and k is the Taub-NUT vector. The induced 6-brane

charge depends on the position ψ and equals −(p−ψF0). In order to not introduce monopole

KK5 charges, we consider a pair of KK5 and KK5 that share a NUT direction ψ but are

otherwise separated on that circle. We illustrate the D6 decay process in figure 3. The

spacetime domain wall that mediates the decay of H-flux and D6-charge is a NS5-brane

wrapping the S1 but traveling radially in Mink6.

4.2 The probe potential

To compute the probe potential for KK5 branes in massive IIA we could use the actions

derived in [46]. It is however technically easier to work in the T-dual frame, and use that

the probe potentials are invariant under T-duality [15]. The T-dual setup involves a pair of

probe NS5-branes, with opposite charge in the geometry Mink6 × S1 ×M3 where M3 is the

space transversal to the original 6-brane and is conformal to R3. The branes are localised on

the circle and on M3. The pair of NS5-branes induce D5 charge between them as explained

below. This calculation was already sketched out in [15] but we will go through the details

here for completeness.

– 9 –
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p D6

KK5KK5

K KK-1

p D6 M-p D6

Figure 3. The decay of p D6-branes to M − p D6-branes. The picture represents the worldvolume

directions of the six-branes where the horizontal line is a circle. Inside the 7D worldvolume a

KK5/KK5 pair nucleates and moves outward on the circle to meet at the other side. Inside the pair

the H3-flux K drops one unit and the p D6-branes are replaced by M − p D6-branes.

We start by writing down the background T-dual to (3.2) along the ψ-direction,

ds2 = S−1/2ds26 + S1/2(dψ2 + dr2 + r2dΩ2
2) ,

F1 = (M/`s)dψ ,

F3 = g−1s ?̃4dS ,

H3 = (Mgs/`s)?̃4dψ ,

eφ = gsS
−1/2. (4.2)

The function S takes takes the same form as above

S = v2 − (gsMr)2

6`2s
. (4.3)

After T-duality the coordinate ψ remains periodic with ψ ∼ ψ + `s. Before continuing on

to the probe computation we review how a NS5-NS5 pair can induce a D5-brane charge.

Let the NS5-brane be located at ψ = ψ0 and the NS5-brane be located at ψ = −ψ0. The

probe action relevant for these branes is

S = −µ5
∫

e−2φ
√
−g
√

1 + e2φG2± ±
∫

(B6 − G±C6) . (4.4)

The upper sign is used for the NS5-brane and the lower is for the antibrane. The field G±
is a worldvolume field

G± = ±p
2
− C0 , (4.5)

where p is a constant and C0 is the local gauge potential for F1. The D5 charge induced by

the brane pair can be inferred from the sum of the above WZ couplings,

− µ5
∫ [(

p

2
−C0

)
C6|ψ=ψ0 −

(
− p

2
−C0

)
C6|ψ=−ψ0

]
= −µ5

(
p− 2Mψ0

`s

)∫
C6 , (4.6)

– 10 –
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p/M = 0.2

p/M = 0.4

p/M = 0.6

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Δψ

V

Figure 4. Probe potential with A = 1 and M = 10, gs = 10−3. The values for p/M are indicated

in the figure and are displayed with different colors.

where we have used C0 = (M/`s)ψ and that C6 is independent of ψ. The induced D5-charge

is therefore controlled by the combination p− 2Mψ0. Since ∆ψ ≡ 2ψ0 is the separation of

the brane pair we see that when pulled together to the point ψ = 0 they induce the charge

of p D5 whereas on the other pole ψ0 = `s/2 the charge is p−M . The D5-brane charge

carried by the NS5-NS5 pair depends on the relative seperation of the branes.

The computation of the probe potential is spelled out in appendices B and C. Including

the interaction term in the full probe potential we find:

V = µ5g
−1
s Mv−2

(∣∣∣∣ pM − ∆ψ

`s

∣∣∣∣− ∆ψ

`s
+

p

M
+

2

Mgs

sin2(π∆ψ/`s)

4π4 + sin2(π∆ψ/`s)

)
. (4.7)

The potential is displayed in figure 4 and shows that the hight of the barrier is controlled

by Mgs. One can verify that there is a metastable state for Mgs large whenever

p

M
< 0.5 . (4.8)

Concerning the validity of our probe potential we suffer from the same pathologies as

the original work of [1], i.e. the NS5 action is obtained by S-duality of the D5 action, which

implies we can stricktly speaking only use it at strong coupling. The size of the S1 is a

modulus and has no effect in our computation so we choose it large enough for supergravity

to hold.

5 Including backreaction

5.1 Effective field theory approaches

A probe result should be thought off as a leading-order contribution in a perturbative series.

If the series would be an expansion in p/M one can trust the leading order result in the limit

– 11 –
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p D6
n probe D6

Figure 5. Out of a stack of p backreacting branes n branes are pealed off and considered as probes

in that background when n� p.

of vanishing p/M . For the special case p = 1 some initial steps towards a direct effective

field theory approach were taken in [47] based on field theory renormalisation [48]. In what

follows we will use an alternative description (see for instance [24]). This description is

valid when p/M is small but gsp is nevertheless big.

An effective field theory description of any kind will have to deal with the singularities

typical to brane solutions, such as the singular warpfactors and diverging gauge fields

sourced by the brane. Just as in standard electrodynamics one does not expect diverging

field strengths to cause any harm as they correspond to an infinite self-energy that is

effectively subtracted off in the probe action. For diverging warpfactor, the same story

applies.

The diverging H3 field on the other hand is not as clear since it is not sourced by the

6-brane directly. It is tempting to think of it as the diverging field strength corresponding

to the NS5 (KK5)/D6 boundstate since NS5-branes do source singular H3 flux.6 However it

has been found in [32, 49] that this cannot be, at least not within the Ansatz presented

in this paper, since then the divergence in H3 is not of the right kind to correspond to a

NS5 (KK5) source. As mentioned earlier the singularity really corresponds to a divergence

in the flux clumping, which makes the D6 charge density dissolved in flux diverge near the

D6 brane. Our approach to deal with this singularity is to peal off a small amount n� p

of D6 branes and consider them to be a probes in the backround of p D6 backreacting

branes. Clearly this is only possible in the regime p � 1, which we anyway require in

our supergravity approximation. In that way the singularities in the warpfactor and the

gauge fields, generated by the backreacting stack (see picture 5), cancel each other. This

cancellation occurs because the leading contribution to the WZ term is the same as the

leading contribution in the DBI term with a different sign. So we rely on that fact that

branes, even when non-supersymmetric, locally behave like supersymmetric branes for which

tension equals charge. Although this effectively eliminates the diverging contributions of the

geometry and the gauge field that couples to the brane, it does not remove the singularity

in H3 (λ). The singularity in λ occurs at a place where the space-time metric is not to be

6Similarly for KK5-branes in massive IIA.
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trusted due to high curvature. This implies one has to be careful when concluding that the

infinite flux-clumping destabilizes the system due to direct brane-flux decay. We therefore

cut off the solution a string-length away from the singularities and investigate how large

the flux-clumping is.

In this section we find that the flux-clumping λ is proportional to gsp at the cut-off

distance `s away from the backreacting branes. This then implies that for large gsp, where

we can trust supergravity at that scale, the system is destabilised independent of the ratio

p/M being very small. The argument for using the string scale to cut-off can be found

in [47, 48]. Supergravity should not receive large corrections beyond that scale since for D6

branes in flat space the curvature scales are small enough already at that length scale.

Another systematic way to approach the effective field theory would be to consider

high-order corrections in the blackfold approach [50, 51], which we hope to adress in the

future.

5.2 Flux-clumping at the cut-off

To evaluate the flux-clumping at a finite distance r = `s from the antibranes, we need to

evaluate λ there. Here we work directly with the D6 solution but later when we consider the

T-dual background where the expression for λ remains the same. Near a stack of extremal

antibranes we have

e−4A = e4B = h6 , eφ = gsh
− 3

4
6 , (5.1)

with

h6(r) =
gsp `s

2r
. (5.2)

Since λ = αeφ−7A, we can calculate λ once we know the value of α near the cut-of. The

latter we obtain from the Smarr-like relations found in [21, 32, 49] (see also [52]), that relate

the energy E (above the supersymmetric vacuum), to the values of the gauge fields at the

sources:

E = pµ6

∫
7
C7 , C7 = αdx0 ∧ . . . ∧ dx6 , (5.3)

such that E = µ6pα(r = 0). To find α(0) we therefore need to know E. Following the

reasoning of [6] we have (the background has eA = 1 at the tip)

E = 2µ6pg
−1
s , (5.4)

From the Smarr relation (5.3) we then find

α(0) = 2g3/4s . (5.5)

Concerning λ we have λ(ls) = g
1/4
s

π
2 pα(ls). We take α(ls) = α(0) and find λ ∼ gsp,

consistent with the estimates in [47]. One can only consistently take α(ls) = α(0) if α′(0) is

sufficiently small but this is easy to see. At the brane source we must have F2 = Q Ω2 and

this provides an expression for α′(0). Near the source we have:

F2 = g
− 3

2
s (gsp)

2α′(0)Ω2 . (5.6)

such that

α′(0) =
g
1/2
s

gsp
� 1 . (5.7)
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5.3 The corrected probe result at large p

We now compute the probe potential for n D6-branes near the tip geometry with the

backreacting of p D6-branes included. By cutting of the divergent flux-clumping by the

value found above: λ ∼ gsp we find a finite and well-defined probe potential. To carry

out this computation we need the solution T-dual to the D6 solution. A straightforward

computation gives the following metric for the smeared D5-branes at r = 0:

ds2 = e2Ads26 + e−2Adψ2 + e2B(dr2 + r2dΩ2
2) , (5.8)

F1 = (M/`s)dψ , (5.9)

F3 = e6A ?4 dα , (5.10)

H3 = λeφ+A ?4 F1 , (5.11)

eφ5 = eφ−A. (5.12)

Where as before, the equations of motion demand α = λe7A−φ and the fields have the

standard D-brane singularities describing smeared 5-branes at r → 0. We now follow the

exact same procedure of appendix B to compute the probe potential by placing a single

NS5/NS5-pair in the above background. This calculation can be found in appendix D. The

result is a run-away potential:

V ∝ gsp
(
n

M
− ∆ψ

`s

)
. (5.13)

We note that the interaction term has a different dependence on the dilaton and warpfactor

such that the warpfactor and dilaton do not simply factor to the front. The factor e3A−φ

in front of the interaction term reduces to g−1s close to the brane, consistent with the

uncorrected probe potential.

Note that this potential receives large corrections as ψ grows. The reason is that the

decay of the branes causes at the same time a materialization of M − n D6-branes which

quickly dominate over the p D6-branes such that the original background geometry cannot

be trusted. Essentially, corrections are subleading until the value of ψ is such that the drop

in energy is twice the tension of the n D6-branes. It is satisfactory that at the value for ψ

where the induced 6-brane charge in the KK5/KK5 pair becomes zero, the drop in energy

is two times the tension of the n D6-branes.

For a stable configuration we would expect that by dialling down n/M and p/M a

metastable state would appear for the n mobile antibranes. This is however not the case

which indicates that the whole stack of branes may be unstable. Of course when p keeps

decreasing and eventually reaches small values for which our analysis is not valid. This is

the limit of our approach and a different analysis must be carried out to determine the

stability of small number of antibranes.

6 Dk-branes with k < 6

In this section we discuss how simple dimensional analysis can be employed to study flux

clumping around antibranes of different dimensions.
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The flux-clumping for unpolarised Dk-branes can be inferred either via the supergravity

techniques of [21, 22] or the brane effective field theory techniques of [47]. Both give the

same result, namely

λ ∼ gsp
`7−ks

r7−k
, (6.1)

with r a local radial variable. Hence the flux clumping at the cut-off scale r = `s always

equals

λc ∼ gsp . (6.2)

In the supergravity regime this is too large to ensure stability of the probe. Now the question

arises how λc changes when the branes polarise via the Myers effect as predicted by KPV [1].

The essential observation of this paper is that λc does not change for D6-branes polarising

into a KK5/KK5 pair, because the pair has the same dimensionality as the original branes.

We expect similar conclusion for D5-branes and hence they should be unstable as well in

the supergravity regime. However when k < 5 the Dk charge spreads out on a spherical

NS5-brane of radius R such that one expects, from dimensional analysis,

λ ∼ gsp
`7−ks

R5−kr2
⇒ λc ∼ gsp

`5−ks

R5−k . (6.3)

The largest possible value for R is the size of the full A-cycle, which we take proportional

to R2
max ∼ gsM`2s like in the KS throat. For D4-branes we then have that this minimal

value of λc is still too large. However for D3-branes the situation improves. The radius at

which the clumping is only of order 1 is found to be:

R ∼ √gsp `s . (6.4)

This is far off the radius one finds from the probe computation, which is linear in p [1]:

Rprobe ∼
p

M

√
gsM `s . (6.5)

In fact at the probe radius the clumping can be estimated to be too high and should

destabilise the brane. This already shows that the probe computation at best only gives

qualitative information but certainly not quantitative results, very much in contrast with

supersymmetric vacua [53]. Interestingly in reference [32] a
√
p dependence of the polarisa-

tion radius was inferred on very different grounds: namely by using the aforementioned

boundary condition for polarised branes that can regularise λ without the need to cut-off.

This potential match seems interesting and we leave it for future research.

7 Conclusions

We now summarise our results and then give an outlook on the metastability of general

antibranes.
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7.1 Summary

We have shown that at probe level D6-branes experience a classical barrier against annihila-

tion with fluxes of the opposite charge on the condition that the Romans mass quantum M

is much bigger than the antibrane charge p, thereby extending the results of [15]. This con-

dition is (qualitatively) T-dual to the condition for the metastability of D3-branes [1], where

Romans mass gets replaced with RR 3-form flux. We have then shown that backreaction

washes away the classical barrier, confirming the arguments of [35] and [36].

The reason this could be firmly shown rests on 2 facts:

1. D6-branes are special in the sense that they brane-flux decay via mutating into a

KK5/KK5 pair carrying D6-charge. The pair has effectively the same dimensionality

and backreaction as localised D6-branes.

2. The backreaction of localised D6-branes is described by ODE’s. Near the source the

backreacted geometries are T-dual to Dk-branes with k < 6 smeared over the k − 6

directions inside the A-cycle that is filled with RR-flux. For such branes there was

already strong evidence that they are unstable [27].

The vanishing of the classical barrier upon backreaction is due to the attraction of

the fluxes towards the D6-branes, something that is not taken into account in the probe

approximation. This increase in flux diverges close to the antibranes at the classical level.

Hence we followed the procedure of [47, 48], which amounts to cutting off the singularity at

string scale. The main observation is that the cut-off value for the flux density is still too

high and causes immediate brane-flux decay. Effectively the increased flux density causes

an increase in the probability that actual D6-branes materialise out of the flux cloud which

subsequently annihilate with the D6-branes. Our result explains the lack of smooth D6

solutions with finite temperature [41].

The reason for this apparent failure of the probe approximation could be due to the

fact that the probe calculation is outside of the regime of validity of the NS5 (or KK5)

brane action.

We have also investigated whether the same picture could still be valid for Dk-branes

with k < 6. Using dimensional analysis, similar to [47] we argue that the same physics

should hold for D4 and D5 branes but that D3-branes cannot be shown to be unstable

using the method described in this paper. We do however find that, if a metastable state

exists for D3-branes, the radius of the spherical NS5-brane must scale different with the

charge p from what is predicted by the probe calculation [1].

7.2 Outlook

It has been argued that the instability we find can be circumvented by considering small

brane charges (e.g. p = 1) [47, 54]. For small brane charges the cut-off value of the flux

clumping is small and furthermore there is no polarisation potential that can be computed

within the supergravity regime. Given that flux clumping is not severe for small p, an

instability cannot be argued solely based on a singular flux density. Instead brane effective

field theory should be employed to argue for stability [47]. Stability would most likely
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imply a finite temperature solution with small p in supergravity. However for D6-branes

the absence of a smooth finite temperature solution was demonstrated in [41]. It could of

course be that the metastable state at p = 1 has a very small gap such that the minimal

temperature needed for a classical horizon already destabilises the vacuum [54]. This

potential loophole might become visible by computing finite temperature corrections to

probe actions, something that can be done in the blackfold approach [50, 51].

Despite the possible room for the existence of metastable D3-branes, we want to be

open-minded and contemplate about the possibility that also D3-branes are unstable against

the flux-clumping effect [35, 36]. As long as numerical evidence showing that the boundary

conditions for regular solutions described in [32] and [49] can be taken, does not exist, the

option of an instability has to be taken seriously. There exists a heuristic interpretation of

the “Smarr relation” for flux throats that supports this interpretation.

The generalised ADM mass MADM of a flux throat with sources, measures the energy

above the supersymmetric vacuum. It was shown that MADM obeys a Smarr-like relation [32,

49, 55]7

MADM = QMΦM +QDΦD , (7.1)

where QM (QD) stands for monopole (dipole) charge and ΦM (ΦD) denotes the gauge

field sources by the monopole (dipole) charge evaluated at the horizon in a specific gauge.

The exact expression, on the nose, corresponds to the on-shell Wess-Zumino action for the

would-be polarised brane (see [21] for a similar derivation using on-shell brane actions).

This almost fits the standard expectation that the energy of the flux throat equals twice

the antibrane tension since

MADM = DBI + WZ , (7.2)

where the DBI-term and WZ-term exactly equal each other in the probe approximation. In

the backreacted case it seems all energy is therefore carried by the WZ term alone. This

comes about since the warpfactor redshifts the on-shell DBI to zero, and alternatively this

can be seen as a flux clumping effect, which makes the WZ dominate over the DBI. If this

interpretation is correct then a metastable state can never exist since metastability truly

requires a competition between the DBI and WZ term. We do want to point out that this

is not a proof since our interpretation of the Smarr relation as on-shell probe potential is

heuristic.

Finally, we have not touched upon the 3-form singularities in those (supersymmetric)

AdS7 solutions of [38] with pure D6-branes (ie not all 6-brane charges come from spher-

ical D8-branes). The logic of this paper suggests that those AdS7 backgrounds, despite

supersymmetry, are unstable and not suitable candidates for holographic descriptions of

certain 6D CFT’s. The typical 6D CFT’s classified by these massive IIA solutions are

however described mainly in terms of spherical 8-branes [44], but it would be interesting to

understand this better.

7We have mentioned several times that a boundary condition for the gauge fields exists that allows a

solution without infinite flux clumping. This boundary condition is simply ΦM = 0 and cannot exist for

D6-branes as shown in [33].
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A O6 planes in flat space

The O6-plane metric is given by

ds2 =
1√
hO6

ds27 +
√
hO6(dr

2 + r2dΩ2
2) , (A.1)

where

hO6 = 1− gs`s
4πr

. (A.2)

We expand this metric around the critical radius

r = rc + δr =
gs`s
4π

+ δr . (A.3)

The result is

ds2 ≈
√
gs`s
4πδr

ds27 +

√
4πδr

gs`s

(
dδr2 +

(
gs`s
4π

)2
dΩ2

2

)
. (A.4)

By changing coordinates

x ≡ 4

5

(
4π

gs`s

)1/4
δr5/4, (A.5)

we obtain the final expression

ds2 ≈
(
gs`s
5πx

)2/5
ds27 + dx2 +

(
gs`s
4π

)2(5πx

gs`s

)2/5
dΩ2

2 . (A.6)

B Computing the probe potential

We now turn to calculating the probe potential. In order to obtain the expression for B6

we make use of the Bianchi identity d(H7 − F1C6) = 0, from which we infer

H7 = dB6 + F1C6 . (B.1)

The RR gauge potential C6 can be calculated from the expression for F7 = dC6 as

C6 = g−1s (S−1 + c)vol6 , (B.2)
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where the constant c explicitly shows the gauge freedom in the definition of C6. Using this

we find

B6 = g−1s
cM

`s
ψ vol6 . (B.3)

The WZ terms in (4.4) can be evaluated to

µ5g
−1
s MS−1

(
ψ0

`s
− p

2M
− p

2M
cS

)
. (B.4)

We could worry about the last term in the above expression which seems to break the gauge

invariance of the potential. It is due to the fact that δB6 = −C0δC6 and

δ(B6 − G0C6) =
p

2
δC6 . (B.5)

The WZ Lagrangian is therefore not gauge invariant as we have written it down. One can

introduce an extra worldvolume field to cure this problem. We will not pursue this direction

since the term in question represents an overall shift in the potential and can be used to set

our zero-point of the potential.

Turning to the DBI action, we find

− µ5g−2s S−1/2

√
1 + g2sM

2S−1
(

p

2M
− ψ0

`s

)2
. (B.6)

Using the expression (4.3) for S and evaluating at the tip r = 0 we obtain the full probe

action

SNS5 = −µ5g−1s Mv−2
(∣∣∣∣ p2M

− ψ0

`s

∣∣∣∣− ψ0

`s
+

p

2M
+

p

2M
cv2
)
, (B.7)

where we used that v � gsM and disregarded terms of order (v/Mgs)
2. Later we will add

an interaction term which is of order v/Mgs and is therefore leading order with respect to

the terms we ignored. So far we have calculated the probe action of the NS5-brane located

at ψ0. We also have to add the action of the NS5-brane located at −ψ0. This brane has

opposite charge and sign of p as explained above. The combined potential is then the same

as above, but with an overall factor of 2:

V (∆ψ) = µ5g
−1
s Mv−2

(∣∣∣∣ pM − ∆ψ

`s

∣∣∣∣− ∆ψ

`s
+

p

M

)
, (B.8)

where ∆ψ = 2ψ0 is the separation of the two branes. Here we have also fixed the zero-point

energy by taking c = 0 such that at ψ = 1/2 the potential vanishes.

Notice that for ∆ψ ≥ `sp/M the potential vanishes, this is because we have not taken

into account the electromagnetic and gravitational interaction between the two branes. For

a brane-antibrane pair this is a subleading effect but is obviously important to obtain the

full potential. We can compute the interaction potential between the two probe NS5-branes

by placing one NS5-brane in the geometry and let it backreact. This computation is spelled

out in the next appendix C.
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C The force between an NS5/KK5 pair

We can compute the interaction potential between the two probe NS5-branes by placing one

NS5-brane in the geometry, let it backreact, and evaluate that backreaction in the probe

brane action of the other NS5-brane. Hence, to find the force between an NS5/NS5 pair

amounts to solving a differential equation equation for the harmonic function, denoted K,

describing a NS5-brane in our throat geometry.

We are only interested in the probe potential and thereby the interaction term close to

r = 0, which simplifies our task immensely. The background metric at r = 0 simplifies to a

cylinder:

ds2 → v−1ds26 + v(dψ2 + dr2 + r2dΩ2
2) . (C.1)

A single NS5-brane in this background deforms the metric and fields in the standard way:

ds2 = v−1ds26 + vK(dψ2 + dr2 + r2dΩ2
2) , (C.2)

H3 = ?̃4dK , (C.3)

H7 = g−2s v−2vol6 ∧ dK−1, (C.4)

eφ = gsv
−1K1/2, (C.5)

The form equations of motion reduce to

d?̃4dK = 0 , (C.6)

with the solution

K = 1 +
4π3`s
r

sinh(2πr/`s)

cosh(2πr/`s)− cos(2π∆ψ/`s)
, (C.7)

where we have put the NS5-brane at the location r = 0 and ∆ψ measures the distance from

the brane along the isometry direction. Furthermore we have put the number of NS5-branes

to one and used that in our conventions µ5 = 2π. In the region around r = 0 we have

B6 =
1

v2g2s

sin2(π∆ψ/`s)

4π4 + sin2(π∆ψ/`s)
. (C.8)

We obtain the interaction term by inserting this into the action of the other NS5-brane so

that we get

− µ5
∫ (

e−2φ
√
−g +B6

)
= −2

µ5
v2g2s

sin2(π∆ψ/`s)

4π4 + sin2(π∆ψ/`s)

∫
vol6 . (C.9)

The potential describing the force starts rising until it reaches a maximum and then goes

back in an identical matter. In reference [15] this potential was approximated to be piecewise

linear, which is qualitatively similar. The reason the potential grows roughly linear with ψ

is due to the throat geometry; the brane/antibrane forces are effectively confined to the

circle dimension such that it mimics electrodynamics in 1 + 1 dimensions.
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D Computing the corrected probe potential

To evaluate the probe potential of a single NS5/NS5-pair in the background described in

section 5.3 we require the gauge field expressions:

C0 = (M/`s)ψ , (D.1)

C6 = (α+ g−1s c)vol6 , (D.2)

B6 =
cM

`sgs
ψ vol6 . (D.3)

Keeping in mind that NS5-brane pair carries n units of antibrane charge, the WZ terms are

µ5g
−1
s M

(
− ∆ψ

`s
αgs +

n

M
αgs −

n

M
c

)
. (D.4)

In the same spirit the DBI action takes the form

SDBI = −µ5Me6A−φ5
∣∣∣∣ nM − ∆ψ

`s

∣∣∣∣ = −µ5Me7A−φ
∣∣∣∣ nM − ∆ψ

`s

∣∣∣∣ , (D.5)

and combined

V = µ5Me7A−φ
(∣∣∣∣ nM − ∆ψ

`s

∣∣∣∣− ∆ψ

`s
λ+

n

M
λ+

n

M
cg−1s e−7A+φ

)
. (D.6)

To calculate the interaction term we again follow the same procedure as in appendix C.

The metric is approximated by the cylinder metric evaluated at a given radius r = `s

ds2 = e2Ads26 + e2B(e−2B−2Adψ2 + dr2 + r2dΩ2
2) , (D.7)

We rescale r to absorb the factors of eB−A as r̃ = eB−Ar. Using the method described in

appendix C we find the interaction potential

Vinteraction = µ5Me7A−φ
[

2e3A−φ

M

(
1 +

4π3`s
r̃

sinh(2πr̃/`s)

cosh(2πr̃/`s)− cos(2π∆ψ/`s)

)−1]
. (D.8)

In total we find the following correction of the probe result (4.7):

V = µ5Me7A−φ
(∣∣∣∣ nM − ∆ψ

`s

∣∣∣∣− ∆ψ

`s
λ+

n

M
λ

)
+ Vinteraction . (D.9)

where we threw away an additive constant. If we were to take r̃ to zero we would find that

λ blows up in exactly the right way, see (3.11), to compensate for the vanishing prefactor,

and hence we obtain finite result for the terms that include λ. All other terms, including

the interaction term, vanish in this limit, which physically can be understood as an effect

due to redshift. Since we cannot trust these expressions below the string scale, we need

to evaluate them at r̃ = `s to investagate whether the redshift is large enough within the

regime under our control. In paricular, we find that λ at its cut-off value is λ = gsp, which,

indeed, is large.
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