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1 Introduction

The recent discovery of Weyl semimetals (WSM) [2] has increased the interest of both high

energy and condensed matter communities in their description. WSM are three dimensional

gapless semiconductors. Their low energy excitations are massless fermions, called Weyl

fermions. Due to the Nielsen-Ninomiya theorem [3] these fermions come in pairs with

opposite chirality (right- and left-handed). In some sense these materials can be viewed

as a 3d version of graphene. WSM are characterized by the presence of singular points in

the Brillouin zone where the conduction and valence band touch. If time reversal or parity

is broken, left- and right-handed quasiparticles can sit at different points in the Brillouin

zone. The fact that quasi-particles around the Weyl points obey a massless relativistic

equation implies astonishing properties for these materials, as chiral magnetic [4–6] and

vortical effects [7–10], odd (Hall) viscosity [11], negative magnetoresistivity [12–14]. All

these phenomena are intimately related with the quantum anomalies observed in massless

fermionic systems. Another characteristic property of WSM is the presence of edge states,

called Fermi arcs [2, 15].

As it happens in graphene, the Fermi velocity of the electrons in WSM is at least two

orders of magnitude smaller than the speed of light [16]. Therefore the analogue of the
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fine structure constant can be a hundred times bigger than its QED counterpart, opening

the possibility of the strong coupling regime. However, most of the attempts to describe

WSM have been from a weakly coupled perspective [17–20]. From a strong coupling point

of view some effort has also been done [16, 21–24].

At zero temperature Weyl materials are supposed to show quantum phase transi-

tions connecting quantum anomalous Hall insulators, insulators and the Weyl semimetal

phases [17].

Inspired by the recent experiment1 [1], we studied the optical response of a strongly

coupled Weyl semimetal using holography. From a holographic point of view, the problem

of the optical conductivity has been already addressed in the past [22], however the aspects

of having a splitting of Weyl cones was ignored, also the presence of the chiral anomaly was

not implemented. For these reasons, we choose the perspective of [23], in which separation

of the Weyl cones and the axial anomaly are effectively implemented.

The observations of [1] are partially consistent with the weak coupling predictions

of [17, 19]. For frequencies higher than the temperature of the material, the conductivity

is characterized by a straight line that changes its slope at some energy scale. The first

slope is consistent with the prediction [19]

σ ≈ n e2

12h

ω

vf
, (1.1)

in which n = 8 is the number of Weyl points around the Fermi energy. They used this

expression to fit the value of the Fermi velocity, obtaining a value consistent with previous

predictions for this material. The second slope is interpreted as a changing in number of

degrees of freedom due to the presumable influence of the rest of Weyl points at such ener-

gies. Nonetheless in this case the Fermi velocity obtained does not lie within a reasonable

value. Certainly there could be many effects influencing the intermediate behavior of the

conductivity, however the robust persistence of a power law at those energies suggests that

the physics of the Weyl cones is still determining the optical response. An alternative ex-

planation implied by our toy model could be given by the presence of the quantum critical

point and its corresponding quantum critical region.

The rest of the paper is organized as follows. In section 2 we review and generalize

the model of [23]. Then, in section 3, we classify the IR geometries, which are dual to

the ground states of the system. In section 4 we compute analytically the IR frequency

dependence of the conductivity for the different phases of the model, and numerically the

full frequency dependence of the conductivity matrix. We also reconstruct the quantum

phase diagram of the model using the power law properties of the conductivity. In section 5

we compare our results with [1] and we finish with our conclusions.

Note added. When finishing the paper we received the manuscript [25] which shows

some overlap with our work. They studied the anomalous Hall conductivity in the axial

current and considered a top down model.

1We acknowledge Maria A. H. Vozmediano for letting us know about the existence of this paper.
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2 Holographic effective theories for a Weyl semimetal

A holographic model for Weyl semimetals has been proposed in [23] and studied in more

detail in [24] and [11]. The main features of this model are the implementation of the chiral

anomaly and effective separation of Weyl cones. The model undergoes a quantum phase

transition from a topologically non-trivial semimetal to a trivial one. Previous holographic

models [21, 22, 26] have considered a semi-holographic point of view, coupling weakly

coupled Weyl fermions to a strongly coupled quantum critical system.

We shall follow the spirit of [23] to implement a time-reversal breaking parameter2

and a “mass operator”, as deformations of a strongly coupled conformal field theory. The

holographic action we propose is a generalization of the action used in [23]

S = S0 + SGH + SCT (2.1)

S0 =

∫
d5x
√
−g
[
R− V(|φ|)− 1

4
Z1(|φ|)H2 − 1

4
Z2(|φ|)F 2 − Z3(|φ|)|Dφ|2

+
α

3
εMNRPQAM

(
FNRFPQ + 3HNRHPQ

)]
, (2.2)

where εMNRPQ =
√
−gεMNRPQ and ε0123r = 1. SGH and SCT are the Gibbons-Hakwing

boundary action and the counterterm that renormalizes the on-shell action, respectively.

We show them in appendix A.

In Holography, currents associated to global symmetries of the QFT are dual to gauge

fields propagating in the five dimensional geometry, whereas quantum anomalies are im-

plemented by Chern Simons terms in the action [27]. Let us explain the ingredients of

the model:

• The field dual to the vector (electromagnetic) boundary current is VM and HMN =

∂MVN − ∂NVM its corresponding field strength. The asymptotic value of VM is

the source for the electromagnetic current, i.e. it corresponds to a non dynamical

background electromagnetic field switched on in the dual field theory.

• AM is the field dual to the (anomalous) axial current and its corresponding field

strength is FMN = ∂MAN − ∂NAM . The boundary value of AM is the source for the

anomalous axial current.

• The Chern Simons coupling has been properly tuned in order to reproduce the Ward’s

identities of the consistent (conserved) vector and (anomalous) axial currents of the

boundary QFT [23]

∂µJ
µ = 0 , (2.3)

∂µJ
µ
5 = −α

3
εµνρλ (FµνFρλ + 3HµνHρλ) . . . (2.4)

where dots refer to the contribution coming from the explicit breaking of U(1)axial

given by the presence of the mass deformation. Comparing the Ward identity for N

2Effective separation of Weyl cones.
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Dirac fermions with eq. (2.4) we can fix the Chern-Simons coupling to be

α =
N

16π2
, (2.5)

N is the flavor number.

• In order to have a conformal UV fixed point, i.e. an asymptotically AdS space the

scalar potential has to satisfy

VUV ≡ V(|φUV|) = − 12

L2
. (2.6)

• The holographic dictionary establishes that the scalar field φ is dual to a certain

scalar operator O with scaling dimension [O] = ∆φ given by

∆φ = 2 +
√

4 + (mL)2 , (2.7)

where m2 = 1/2V ′′UV. If we choose (mL)2 = −3,3 the operator O will have scaling

dimension ∆φ = 3 and necessarily will couple to a source M of dimension [M ] = 1.

So we are allowed to interpret the scalar field as a mass deformation of the CFT.

• The scalar field is charged only under the axial field, and the covariant derivative

reads DM = ∂M − iqAM . Notice that if the scalar field were charged under the vector

field VM the electromagnetic current would not be conserved.

Writing the scalar field as φ = ψeiθ, the gauge invariance of the system allows us to

set θ = 0. In this way the action can be written as follows

S0 =

∫
d5x
√
−g
[
R− V(χ)− 1

4
Z1(χ)H2 − 1

4
Z2(χ)F 2 − (∂χ)2 +W (χ)A2

+
α

3
εMNRPQAM

(
FNRFPQ + 3HNRHPQ

)]
, (2.8)

where the new scalar field is defined by ∂χψ(χ) = (Z3(χ))−1/2 and W (χ) = q2ψ2Z3.

Considering that we already proved that (2.1) is contained in (2.8), we will use (2.8) as

the fundamental action without assuming any specific form for the functions V, Z1, Z2,W .

The holographic dictionary establishes that the on-shell gravity action corresponds to the

generating functional of the QFT. Therefore, taking variations of the action with respect

to the sources we obtain the one-point functions of the corresponding associated operators

Jµ =
δS

δvµ
, Jµ5 =

δS

δbµ
, O =

δS

δM
, (2.9)

where vµ = Vµ(Λ), bµ = Λ−∆bAµ(Λ),4 and M = Λ4−∆φχ(Λ) are the field theory sources.

Λ is the UV radial cutoff where we put the field theory to live before renormalising and

sending it to infinity.

3Notice that AdS BF bound (mL)2 > −4 is not violated for this mass.
4The scaling dimension of J5 is [J5] = 3 + ∆b, with ∆b = −1 +

√
1 + 2WUVL

2

Z2(UV )
. Notice that in the case

of the abelian Higgs action (2.1) ∆b = 0. For simplicity, and assuring that the explicit U(1)axial breaking

is only due to the presence of the scalar mass operator we will assume W (χUV) = 0. We will also assume

Z1(χUV) = Z2(χUV) = 1.
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Taking variations of the renormalized action (2.8), we obtain the consistent currents

and scalar operator

Jµ = lim
Λ→∞

[√
−gZ1H

µr + 4αεµνρλAνHρλ

]
Λ

+
δSCT
δvµ

, (2.10)

Jµ5 = lim
Λ→∞

[√
−gZ2F

µr +
4

3
αεµνρλAνFρλ

]
Λ

+
δSCT
δbµ

, (2.11)

O = −2 lim
Λ→∞

Λ∆φ−4√−γ∂rχ
∣∣∣∣
Λ

+
δSCT
δM

. (2.12)

3 IR fixed points

As it is well known, this type of theories may have an RG flow from the UV AdS fixed

point to other scaling fixed points in the IR, where the flow is tuned by the running of the

scalar field [28–32]. In our analysis we will consider the case where the scalar runs to a

constant. On top of that, the authors of [24] proved that the IR behavior of the solution

determines whether the system is in a Weyl semimetal or in a trivial semimetal phase,

depending on whether the spatial component of the axial gauge field runs to a constant or

to zero. Restricting to the case of neutral zero temperature IR geometries we propose the

following ansatz

ds2 = u(r)(−dt2 + dx2
1 + dx2

2) + h(r)dx2
3 +

dr2

u(r)
, (3.1)

A = A3(r)dx3 , (3.2)

χ = χ(r) , (3.3)

The equations of motion of the system are shown in the appendix B. As previously pointed

out, we look for scaling IR geometries with constant scalar field at the leading order,

χ(r) = χIR + δχ(r). Therefore we assume the following form for the IR metric components5

u(r) = u0r
2 (1 + δu(r)) , h(r) = h0r

2β (1 + δh(r)) , (3.4)

together with the consistency conditions6

u0 > 0 , h0 > 0 , ZIR
2 > 0 . (3.5)

With these assumptions, the leading order IR Einstein’s equations take the form

WIR

2h0u0

(
A3

rβ

)2

− ZIR
2

4h0

(
A′3
rβ−1

)2

+
VIR

2u0
+ 3(β + 1) = 0 , (3.6)

ZIR
2

2h0

(
A′3
rβ−1

)2

− (1− β)β = 0 , (3.7)

ZIR
2

2h0

(
A′3
rβ−1

)2

− WIR

h0u0

(
A3

rβ

)2

− (1− β)(β + 3) = 0 . (3.8)

These equations can be consistently solved for two possible cases:

5Using this radial coordinate the IR region is located at r → 0.
6Notice that we have included subleading corrections to the IR fields; knowing the form of the corrections

is necessary to understand the reliability of the IR solution.
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• Critical or Marginal solution: if A3(r) = rβ (1 + δA3(r)) the equations become an

algebraic system that can be solved exactly for u0 and h0

u0 = − VIR

9 + β(β + 2)
, h0 =

β

2(1− β)
ZIR

2 . (3.9)

The Maxwell and scalar equations reduce to

WIR =
3

2
βZIR

2 u0 , ∂χ log
(
VW 3pZβp

)
|χ=χIR = 0 , (3.10)

with p = β−1
β2+2β+9

, which can be used to solve for β and χIR. The consistency

conditions imply

VIR < 0 , 0 < β < 1 . (3.11)

See appendix C for an analysis of perturbations around the IR geometries.

• Irrelevant solutions: the second possibility corresponds to the gauge field decaying in

the IR fast enough such that r−βA3 is subleading in the IR. They can be split in two

disconnected cases, depending on whether the gauge field vanishes or not in the IR.

– Trivial semimetal: if the gauge field vanishes, the solution for eqs. (3.6)–(3.8) is

AdS, with the IR length scale given by

u0 = − 1

12
VIR = L−2

IR , β = 1 . (3.12)

Then, using the scalar equation, the value for χIR is fixed by minimizing V and

the Maxwell equation trivializes

V ′(χIR) = 0 , VIR < 0. (3.13)

If we consider the leading corrections to AdS that preserve T = 0 and are

irrelevant in the IR, we obtain

δA3 = cbr
∆bIR , δχ = cχr

−4+∆χIR , (3.14)

with the IR scaling dimension of the associated operators

∆bIR = −1 +

√
1 +

2WIRL2
IR

ZIR
2

, ∆χIR = 2 +
√

4 +m2
IRL

2
IR . (3.15)

Stability of the IR background requires

WIR > 0 , m2
IRL

2
IR > 0 . (3.16)

– Weyl semimetal phase: there is a last inequivalent irrelevant case. If the gauge

field runs to a constant, necessarily eqs. (3.6)–(3.8) imply that the gauge field

must be massless in the IR

WIR = 0 . (3.17)

– 6 –



J
H
E
P
0
3
(
2
0
1
7
)
1
2
5

If the last is satisfied, the solution is AdS

u0 = − 1

12
VIR , β = 1 , VIR < 0 , (3.18)

the peculiarity of this solution is that the scalar field must be simultaneously an

extremum of the scalar potential and the mass function

V ′(χIR) = 0 , W ′(χIR) = 0 , (3.19)

Perturbations show an irrelevant deformation,

δχ = cχr
−3/2e−

s
r , (3.20)

with s =
√

1/2W ′′IRh
−1
0 LIR and W ′′IR > 0. If the last inequality was not satisfied,

the Weyl semimetal phase would not be reliable considering that all perturba-

tions would be relevant.

The previous analysis allowed us to have a geometrical picture of the Weyl semimetal

phase. Let us remind the reader that gauge symmetries in the bulk correspond to global

symmetries in the boundary theory, therefore the condition WIR = 0 means that axial

gauge symmetry is restored in the IR. On the other hand, the trivial phase is characterized

by a massive axial gauge field in the IR, such that gauge symmetry is explicitly broken,

giving an IR anomalous dimension to the operator J5 determined by (3.15). That explains

why the minimal coupling of the abelian Higgs model used by [24] contains the Weyl

semimetal phase.

4 Conductivities

Before computing the full frequency dependence of the conductivity, for which it will be

necessary to use numerical techniques, we will analyze the behavior at small frequencies.

To do so, we introduce the following consistent set of linear fluctuations

δVi = vi(r) e
−iωt (4.1)

where i takes values x, y, z. The fluctuations are decomposed into two sectors, longitudinal

and transverse to the background AM = (0, 0, 0, A3, 0). The transverse equations read(
u
√
hZ1v

′
c

)′
+

(
ω2Z1

√
h

u
δcd + 8iωαA′3εcd

)
vd = 0 , (4.2)

with c, d = x, y. These equations can be diagonalized using the helicity fields v± = vx± ivy(
u
√
hZ1v

′
±

)′
+

(
ω2Z1

√
h

u
± 8ωαA′z

)
v± = 0 . (4.3)

The equation for the longitudinal field can be written as(
u2

√
h
Z1v

′
z

)′
+
ω2Z1√
h
vz = 0 . (4.4)

These equations were studied in [24] to compute the DC conductivities in the case

Z1 = Z2 = 1 and W = q2χ. In this section we shall generalize their computation and we

will also obtain the leading ω behavior of the conductivities.

– 7 –
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4.1 DC conductivities

We start first by computing the DC conductivities solving eqs. (4.3), (4.4) up to linear

order in ω. To do so, we construct a perturbative solution as follows

v(r) ≈ v(0)(r) + ω v(1)(r) +O(ω)2 . (4.5)

The solution for v(0)(r) and v(1)(r) can be found in an integral form even though the explicit

functions of the background fields are not know analytically. After imposing regularity of

fields in the IR, we obtain the linear order solutions

vz(r) ≈ 1 +O(ω)2 (4.6)

v±(r) ≈ 1∓ 8αω

∫ ∞
r

dr′
A3(r′)−A3(0)

u(r′)
√
h(r′)Z1(χ(r′))

+O(ω)2 . (4.7)

Using the definition (2.10) we can write the consistent current as follows

Ji = lim
Λ→∞

(
−Λ3 i

ω

v′i(Λ)

vk(Λ)
+ 8αεijkbj − iωδik log Λ

)
(iωvk(Λ)) , (4.8)

from which we read the conductivity. After plugging the solutions (4.6), (4.7) into (4.8)

and using u = h = r2, χ = 0, the only non vanishing conductivity is the anomalous Hall

σAH = 8αA3(0) = 8αbIR . (4.9)

It is important to emphasize that, as it generally happens with anomaly induced transport

coefficients, the form of (4.9) is not modified by considering general V, Z1, Z2,W , showing

the universality of the anomalous Hall conductivity. It is only necessary a non vanishing

value of the axial field in the IR to have a non vanishing anomalous Hall conductivity,

as expected. The other conductivities vanish, nonetheless we are interested in estimating

their small ω dependence. In order to do so, it is necessary to change strategy and use the

matching asymptotic technique.

4.2 IR scaling of longitudinal and transverse conductivities

If we plug the ansatz (3.4) into the eq. (4.4), change coordinates and redefine fields as follow

r =
ω

u0x
, vz = x

3−β
2 p (4.10)

the e.o.m. acquires the form of a Bessel equation

x2p′′(x) + xp′(x) +
(
x2 − ν2

1

)
p(x) = 0 , (4.11)

with ν1 = 3−β
2 . The solution satisfying the infalling condition is the Hankel function

p(x) = Hν1(x) . (4.12)

With this solution and following [28, 33, 34] the small frequency behavior can be obtained

Re σzz ∝ ω2|ν1|−1 = ω2−β . (4.13)

– 8 –
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To solve eq. (4.3) we notice that for the irrelevant solutions the Chern-Simons contri-

bution in the equation is subleading whereas in the critical case it is not. Again changing

variables

v± = x
1+β
2 q± , (4.14)

the equations read

x2q′′±(x) + xq′±(x) +
(
x2 − 1

)
q±(x) = 0 , β = 1 (4.15)

x2q′′±(x) + xq′±(x) +

(
x2 ± 8αβbIR

ZIR
1

x− ν2
2

)
q±(x) = 0 , β 6= 1 (4.16)

with ν2 = 1+β
2 . The first equation is again the Bessel equation, and the associated conduc-

tivity will be of the form (4.13). The second equation can be also solved analytically, and

its infalling solution is

q± = eixxν2U

(
ν2 + 1/2∓ i4αbIR

ZIR
1

β, 2ν2 + 1,−2ix

)
, (4.17)

where U is the hypergeometric confluent function. Using again the method of match-

ing asymptotes we find the scaling for the conductivity for the critical case, which turns

out to be

Re σxx = Re σyy ∝ ωβ . (4.18)

Even when considering a general action of the type (2.8), the general picture does not

change much with respect to the observations of [24]. The anomalous Hall conductivity

preserves its form, and it is not vanishing if and only if the time reversal breaking parameter

b flows in the IR to a non zero value. In the aforementioned paper the system shows a

quantum phase transition when the parameter M/b is suitably tuned, and the anomalous

Hall conductivity plays the role of an order parameter.

4.3 Full frequency dependence of conductivities

Now we will turn to the computation of the full frequency dependence of the conductivities.

To do so it is necessary to obtain the full r−dependence of the background fields, forcing

us to select specific functions for Z1, Z2,W . We fix them to be Z1 = Z2 = 1 and W = q2χ2,

considering that the qualitative behavior of the system is expected to be independent of

their form.7 We will also choose the same scalar potential as in [24]

V (χ) = −12− 3χ2 +
λ

2
χ4 , (4.19)

with q =
√

3, λ = 15/8.8 We also fix the flavor number N = 4 (eq. (2.4)).9

Once all the free functions and the parameters in the action are fixed, the near IR

fields reduce to:
7Defining the functions in this way makes the action (2.8) equivalent to the one used in [24].
8We take those values for q and λ to simplify the numerical problem. For such q and λ the IR scaling

dimensions for the scalar and axial operators ∆IR’s are integers, simplifying the near IR expansions.
9We choose this N because TaAs [1] has precisely eight Weyl points close to the Fermi level, therefore

the number of Dirac fermions needed is four.

– 9 –
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• Critical point

u(r) = u0r
2 (1 + u1r

α + . . .) , h(r) = h0r
2β (1 + h1r

α + . . .) , (4.20)

Az(r) = rβ (1 + a1r
α + . . .) , χ(r) = χIR (1 + χ1r

α + . . .) (4.21)

where

u0 ∼ 1.193 , h0 ∼ 1.376 , χIR ∼ 0.661 , β ∼ 0.733 (4.22)

u1 ∼ 0.177χ1 , h1 ∼ −1.310χ1 , a1 ∼ 0.546χ1 , α = 1.174 .

After integrating out to the boundary, the solution has the following ratio for the

couplings

M̄c =
Mc

bc
∼ 0.868 . (4.23)

From now on we will use the notation f̄ to denote the quantity f in units of b.

• Trivial phase

u(r) = u0r
2 + . . . , h(r) = h0r

2 + . . . , (4.24)

Az(r) = r∆bIR + . . . , χ(r) = χIR(1 + χ1r
−4+∆χIR + . . .) (4.25)

where

u0 =
6

5
, χIR = 2

√
2

5
, ∆bIR = 2 , ∆χIR = 5 . (4.26)

The two shooting parameters to build the full solution are (h0, χ1), however the

underlying conformal invariance of the system implies that the background will be a

mono-parametric solution depending on M̄ > M̄c.

• Topological phase

u(r) = u0r
2 + . . . , h(r) = h0r

2 + . . . , (4.27)

Az(r) = 1 + . . . , χ(r) = χ1r
−3/2e−s/r + . . . (4.28)

where

u0 = 1 , s =

√
3

h0
. (4.29)

This phase is characterized by having M̄ < M̄c. The shooting parameters are h0, χ1.

After having constructed the background geometries we can proceed to solve the equa-

tions for fluctuations (B.5)–(B.9). To do so, we find a near IR expansion for the gauge

field fluctuations and use them to integrate from the IR to the UV. Then, we plug them

into (4.8) and extract the conductivities.

The first case to consider is the conductivity in the longitudinal sector, which is shown

in figure 1. We computed the conductivity for critical solution (green) and we observe the

expected behavior ω2−β . In the topological and trivial semimetal phases we observe, as

– 10 –
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Figure 1. Real part of the longitudinal conductivity as a function of frequency for different values

of M̄ in the topological and trivial semimetal phases, also the conductivity for the critical point

is shown.

expected, a linear frequency dependence at small frequencies.10 However when M̄ is close

to the critical value in both phases we observe the emergence of an intermediate scaling

given by the critical exponent β.

In figure 2 we show the frequency dependence of the transverse electrical conductivity

(left) and the anomalous Hall conductivity (right). We have computed the conductivities

for M̄ ∼ M̄c in the topological and trivial phases besides the critical M̄c case. As also

observed in figure 1, both phases show a linear conductivity in the IR and UV, and they

agree for some intermediate regime with the critical conductivity. The conductivity in

the critical phase shows a scaling exponent that agrees very well with the predicted value

ωβ . In the right plot, we observe how the anomalous Hall conductivity approaches zero

in the critical and trivial phases, unlike the topological phase in which the DC conduc-

tivity is non zero. At high frequencies the anomalous Hall conductivity always takes the

value σ
(UV)
AH = 8αb, this result is not unexpected considering that when the energies are

high enough the system should behave as massless, and axial symmetry must be restored

(modulo the anomaly breaking term).

Considering the observation of emergence of the critical scaling in the conductivity for

M̄ ∼ M̄c, we computed the conductivity as a function of (ω̄, M̄), in order to sketch the

quantum phase diagram of the system using the AC conductivity of the material.11 In

figure 3 we show in a contour plot the quantity

m = ω
d

dω
log σL , (4.30)

which gives the exponent of the conductivity within the regions where it shows a power-law,

otherwise is a meaningless ω-dependent function.12 Notice that in the regions where m is

10Notice that the conductivity is divided by ω̄ to make clear the two different scalings, the linear and the

critical ones.
11In [35] the optical conductivity was also used to reconstruct the quantum phase diagram on a disordered

Weyl Semimetal.
12We only analyse the longitudinal conductivity, the transverse conductivity should reproduce qualita-

tively similar results.
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Figure 2. Left: transverse conductivity as a function of frequency for the two different phases of

the model and the critical point. Right: anomalous Hall conductivity as a function of the frequency

in the topological phase, the quantum critical point and in the trivial phase.

not a constant we observe in the figure a gradient in the colors. In the plot we observe the

presence of the quantum critical point and a well defined quantum critical region (red area),

extending up to some orders of magnitude above ω = 0. We could expect to reproduce the

phase diagram of the system with this computation, due to the underlying scale invariance

of the system. At zero temperature the conductivity has to be a function of the form

σ(ω, b,M) = f(ω̄, M̄). On the other hand, at zero frequency but finite temperature, the

energy scale is given by T̄ . Therefore for the finite T and ω = 0 case, the power law in

frequency observed at T = 0 has to be preserved interchanging ω ↔ T .

The phase diagram shows four well defined regions that can be understood in terms of

the physical scales of the problem.

First we have the UV region (upper green) when the energies are large, ω � b. The

second region corresponding to the Weyl semimetal phase (left green) is manifest at energies

smaller than the physical separation of the Weyl cones ω � bIR. In the figure we also

included a dashed black line representing the separation of the cones as a function of

the mass parameter, and we observe how it determines the transition region between the

Weyl semimetal and the quantum critical phases. The trivial semimetal phase (right green

region) is characterized by energies much smaller than the UV cut-off. In summary, in

order for the quantum critical region to be manifest in the conductivity, the separation of

the Weyl nodes has to be much smaller than the UV cut-off scale.

5 Phenomenological implications

A recent experiment [1] measured the optical conductivity of a recently discovered Weyl

semimetal (TaAs), in particular when the temperature is T = 5K three differentiated

regimes were observed (see right plot of figure 4):

• A Drude peak up to frequencies ω ∼ 10 meV

• Between ω ∼ 10− 30 meV a linear dependence with a slope of 56.7 (Ω cm)−1/meV

• Between ω ∼ 30− 120 meV a linear dependence with a slope of 4.1 (Ω cm)−1/meV.

– 12 –
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Figure 3. Reconstruction of the quantum phase transition by computing the regions in which

the conductivity shows a powerlaw. In the vertical axes we plot the energy scale, given by the

frequency, and in the horizontal axes the mass parameter M̄ . The green regions correspond with

a linear conductivity and the red zone to the quantum critical region where the power law is

determined by exponent of the quantum critical point β.

Actually, the aspects that concern to us are the two last items. A Drude peak would

have been appeared in the holographic model after switching on temperature, introducing

chemical potential and breaking translational invariance. Nonetheless our goal is to under-

stand the power-laws of the conductivity and the mechanism that leads to the change in

the slope at ω ' 30 meV. This last aspect is possibly the most interesting one, since the

small frequency behavior (ω . 30 meV) is already well described by the predictions of the

weak coupling computations [17, 19], while a satisfactory description of the high energy

regime is still missing. Considering that ω � T is the region of interest, we can expect

to describe the physics with a zero temperature computation. Moreover, the persistence

of a linear behavior in the conductivity up to 120 meV suggests that in this regime the

physics of the system is dominated by the low energy linear dispersion relation around

the Weyl points. Actually this condition is necessary in order for the IR physics of our

holographic description to be applicable to the measurement; we shall further comment on

this point below.

Theoretical models in agreement with experiments showed the presence of twelve pairs

of Weyl points close to the Fermi energy in the band structure of TaAs [36, 37]. Four pairs,

denoted as W1, lie 2 meV above the Fermi energy. The remaining eight pairs (W2) are

21 meV below the Fermi energy. For small enough frequencies only the physics close to the

W1 points is relevant since the interband transitions near the W2 points require energies

of at least 42 meV. A possible explanation of the change in the slope in the linear behavior

of the conductivity for ω & 30 meV could then be related to the fact that at such energies

also the physics near the W2 points starts to contribute. However this interpretation leads

– 13 –
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Figure 4. Left plot: transverse conductivity as a function of the conductivity (σ1 = 10.7 Re σT ).

Right plot: experimental data (image taken from [1]), σ1 is the real part of the conductivity along

the (107) surface of the BZ. In the left plot blue and black lines correspond with the fitting used in

the right plot. Brown line is the fitting using the dynamical exponent β = 0.14.

to a tension between the fitting of the Fermi velocity from the data using eq. (1.1) and the

reasonable range of values expected for the Fermi velocity derived both theoretically and

experimentally.

Motivated by the results of our model, we were tempted to propose a different expla-

nation for the higher frequencies regime of the optical conductivity. We will consider the

possibility that it is determined by the quantum critical region of the phase diagram of the

material. As observed in figure 3 the scaling in conductivity is different from the linear

behavior for energies sitting inside the quantum critical region, i.e. energies higher than

the cones separation, but smaller than the UV cut-off. In particular, within our framework

the conductivity scaling in the quantum critical region is given by

σL ∼ ω2−β , σT ∼ ωβ , (5.1)

and β will take always values between (0, 1). If we choose q = 49/100 and λ = 1/30, the

critical exponent and mass are

β ≈ 0.14 =⇒ σT ∼ ω0.14 , σL ∼ ω1.86 , (5.2)

M̄c ≈ 0.664. (5.3)

With this critical exponent it is difficult to distinguish, in the transverse conductivity,

between an (almost horizontal) straight line and ω0.14 as we show in figure 4. In the left plot

of the aforementioned figure we observe the transverse conductivity for M̄ = 0.647, noticing

a great similarity with the experimental conductivity along the (107) surface of the Brillouin

zone (BZ) of the material (right plot). On the other side, the longitudinal conductivity has

a complete different behavior as can be seen in figure 5, where the conductivity is almost

parabolic. Another important feature is that the longitudinal conductivity is two orders of

magnitude smaller than the transverse one, because ω1.86 at small frequencies decays much

faster than ω0.14. However, due to the higher amount of Weyl points in the real material

– 14 –
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Figure 5. Real part of the longitudinal conductivity (red line) as a function of frequency. Blue line

corresponds with a linear fitting and brown line with the critical exponent ω1.86. (σ1 = 10.7 Re σL).

and their distribution in momentum space, the same notion of transverse and longitudinal

conductivity is absent. In a more realistic holographic setup (more than two unaligned

Weyl nodes) the conductivity will not split into transverse and longitudinal, but the effects

of the quantum critical point will remain. A more realistic model needs to be studied in

detail, in order to check whether the new critical exponent would be compatible with the

experimental data.

Although our model has to be simply understood as a toy model for real Weyl semimet-

als, the results it provides suggest a novel explanation for the high-frequency behavior of

the optical conductivity. According to the latter the change in the slope for TaAs at en-

ergies ∼ 30 meV would not be determined by the physics near the W2 points, but rather

by the occurrence of the transition from the Weyl semimetal phase to the critical region.

Nevertheless it is worth noticing that in order to trust this interpretation we need to un-

derstand the hierarchy of scales in the system. As seen in figure 3 the scale at which

the system enters in the critical region is set by the separation of the Weyl points in the

momentum space. If this scale happens to be much larger than the energy at which the

interband transitions near the W2 nodes turn on (42 meV) we obviously cannot rely on

this explanation. However, the theoretically predicted values for the separation of Weyl

nodes W1 and W2 respectively are [37]

b1 ∼ 0.03 Å−1 , b2 ∼ 0.07 Å−1, (5.4)

which via the dispersion relation ω = vfk, and after using v
(1)
f ∼ 0.3 − 1.7 eVÅ, v

(2)
f ∼

0.2− 2.4 eVÅ [38, 39] give the energy scales

Eb1 ∼ 8− 40 meV , Eb2 ∼ 14− 160 meV , (5.5)
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energies which roughly sit within the frequencies studied in the experiment, and comparable

also to the energy scale of the interband transitions near the W2. This fact does not rule

out the possibility of having a contribution from the quantum critical region of the system

on the second slope. Of course this conclusion has to be taken with great care. The

holographic model we have used takes only into account the presence of two Weyl cones,

whereas the physical system has the set of W1 and W2 nodes with different separations.

This fact will imply that conductivities will not be decomposed in term of longitudinal and

transverse respect to the cone’s separation, and the critical exponents may be modified in

a more realistic model. However, the presence of a quantum phase transition will remain,

and the effects of the quantum critical region on the optical conductivity shall be present.

Besides the separation of the Weyl points with opposite chirality within W1 or W2,

which, as we argued, defines the energy scale associated to the transition to quantum

critical region, another relevant scale in the system is given by the separation between

pairs of W1 with the ones of W2 (see figure 3 in [37]). This distance roughly determines

the UV cut-off of the system where the low energy description (relativistic Weyl fermions)

ceases to be valid, since it sets the scale where the deviations from the linearity in the

dispersion relation appear.13 From [38] it turns out that this separation is one order of

magnitude bigger than b2, supporting the explanation for the second slope suggested by

the model.

A clear way of testing our proposal would be to tune the analog of M̄ in the material

and to measure the conductivity. In such an experiment, if the second slope is associated

to the quantum critical region, the farther the system is from the quantum critical point

the higher the transition scale will be. Unfortunately in TaAs it is not clear how to control

experimentally the phase transition [40]. Recently, another material showing a tunable

type II Weyl semimetal phase (MoxW1−xTe2) has been predicted [40] and experimentally

discovered [41]. It would be highly interesting to see what is the behavior of the conductivity

in such a type of material.

6 Conclusions

We have generalized the study of [24] analysing the possibility of having Weyl semimetal

phases in holography by using the general action

S0 =

∫
d5x
√
−g
[
R− V(χ)− 1

4
Z1(χ)H2 − 1

4
Z2(χ)F 2 − (∂χ)2 +W (χ)A2

+
α

3
εMNRPQAM

(
FNRFPQ + 3HNRHPQ

)]
, (6.1)

within this framework we have proved that Weyl semimetal phases are allowed if the gauge

field is massless in the IR, the scalar field runs to a constant value and simultaneously

extremizes the scalar potential and gauge field mass function. Another general result is the

13The reader may wonder why we use this separation and not b1 and b2 as an estimate for the cut-off.

The reason is that within the model the separation of points with opposite chirality sets the transition in

the power-law, even though at this scale there is already a deviation from linearity.
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existence of a quantum critical point with a Lifshitz-like scaling symmery and dynamical

exponent β, which always takes values between zero and one. We also observed that if the

scalar runs to a constant value, the quantum phase transition will be always between the

Weyl semimetal phase and a topologically trivial semimetal.

After the classification of the IR fixed points we computed the optical conductivity

of the system in all the phases obtaining a linear conductivity in the IR as expected by

dimensional analysis, however the presence of the quantum critical point in the phase

diagram introduces a quantum critical region in which the conductivity has a scaling given

by the dynamical exponent β. The time-reversal breaking parameter breaks the isotropy

of the space-time leading in the IR to an anisotropic conductivity given by

σL ∼ ω2−β , (6.2)

σT ∼ ωβ . (6.3)

We also verified that the anomalous Hall conductivity obeys an universal form

σAH = 8αbIR , (6.4)

with bIR being the renormalized time-reversal parameter, which we interpreted as the

effective separation of Weyl cones. The universality of the result does not come as a

surprise considering that it is intimately related with the anomaly, and it is well known

that this type of transport coefficients are protected.

We reconstructed the phase diagram of the theory by computing the power-laws ex-

ponents as a function of M̄ . Remarkably enough the phase diagram showed the standard

features of a quantum phase diagram, with a quantum critical region that extends several

orders of magnitude above the zero energy case.

Finally we compared our results with the experiment [1]. The experimental data has

been qualitatively reproduced within our model after setting the parameters in such a way

of having a quantum critical region, characterized by a small critical exponent β = 0.14.

Whether the physics determining the second slope in the right plot of figure 4 is given

by the quantum critical region or not can be verified by properly measuring the matrix

of conductivities and varying the coupling M̄ , this tuning would shift the transition scale

depending on how far from the critical point the system is.

In the future it would be worth studying a more realistic phase diagram. To do so

it would be necessary to consider IR geometries with a logarithmic running for the scalar

field, allowing the system to have different IR fixed points, like Lifshitz and hyperscaling

violating Lifshitz geometries, which may be insulating. It would be also interesting the

inclusion of extra gauge fields in order to model the presence of more than two Weyl nodes.

Acknowledgments

We would like to thank Elias Kiritsis, Karl Landsteiner and Yan Liu, for enlightening

discussions. F. PB. would like also to acknowledge the IFT-UAM/CSIC for the warm

hospitality during his visit while the development of this paper. The authors are grateful

– 17 –



J
H
E
P
0
3
(
2
0
1
7
)
1
2
5

to the Galileo Galilei Institute for theoretical physics, for the hospitality when finishing

the present work.

A Gibbons-Hawking action and counterterm

In this appendix we show the explicit form of the Gibbons-Hawking boundary action,

SGH =

∫
r=Λ

d4x
√
−γ 2K , (A.1)

and the counterterm needed to renormalize the theory in the case of having Z1 = Z2 =

Z3 = 1 and the scalar potential eq. (4.19)

SCT =

∫
r=Λ

d4x
√
−γ
(

1

2
VUV − |φ|2 + log r

[
1

4
F 2 +

1

4
H2 + |Dµφ|2 +

(
1

3
+
λ

2

)
|φ|4

])
,

(A.2)

where γµν is the induced boudary metric and K the trace of the extrisic curvature.

B Equations of motion

The equations of motion for the action (2.8) can be written as follow

RMN +
Z2

2
FMRF

R
N +

Z1

2
HMRH

R
N − ∂Mχ∂Nχ+WAMAN+

gMN

2

[
(∂Mχ)2 + V −R+

Z2

4
F 2 +

Z1

4
H2 −WA2

]
= 0 , (B.1)

1√
−g

∂M
(√
−g Z1H

NM
)
− 2α εNMRPQFMRHPQ = 0 , (B.2)

1√
−g

∂M
(√
−gZ2F

NM
)
− αεNMRPQ

[
FMRFPQ +HMRHPQ

]
− 2WAN = 0 , (B.3)

1√
−g

∂M
(√
−g ∂Mχ

)
=

1

8
∂χZ1H

2 +
1

8
∂χZ2F

2 +
1

2
∂χWA2 +

1

2
∂χV . (B.4)

After plugging the ansatz (3.1) into the previous equations we obtain for the gravity

sector

Z2A
′2
3

2h(r)
+
h′′

2h
− h

′2

4h2
+
u′′

u
− u

′2

2u2
+ χ

′2 = 0 , (B.5)

−Z2A
′2
3

4h
+
A2

3W

2hu
+

3u′

4u

(
h′

h
+
u′

u

)
+
V
2u
− 1

2
χ
′2 = 0 , (B.6)

Z2A
′2
3

2h
+
WA2

3

hu
+
u′

2u

(
3h′

2h
− u′

u

)
− h

′2

4h2
+
h′′

2h
− u′′

2u
= 0 , (B.7)

only two of them are linearly independent. The gauge sector reads

√
h

(
u2Z2A

′
3√

h

)′
− 2uWAz = 0 , (B.8)

and the scalar

1√
hu

(√
hu2χ′

)′
− ∂χZ2

uA
′2
3

4h
− ∂χW

A2
3

2h
− 1

2
∂χV = 0 . (B.9)
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C IR perturbations

Assuming the following ansatz for the fields

ds2 = u(r)(−dt2 + dx2
1 + dx2

2) + h(r)dx2
3 +

dr2

u(r)
, (C.1)

A = A3(r)dx3 , (C.2)

χ = χ(r) , (C.3)

the solutions can be split into a leading and subleading contribution in the IR

u(r) = u0r
2 (1 + δu(r) + . . .) , h(r) = h0r

2β (1 + δh(r) + . . .) , (C.4)

A3(r) = rc(bIR + δAr(r) + . . .) , χ(r) = χIR + δχ(r) + . . . . (C.5)

The solutions for the subleading IR corrections can be obtained for each phase of the model.

• Weyl Semimetal Phase (bIR = 1, c = 0): corrections to the Weyl semimetal phase

are of the following type

δu =
c1

r
+
c2

r4
, δh =

c1

r
− 2c2

r4
+ c3 , δA3 = c4 +

c5

r2
, (C.6)

c3, c4 are marginal deformations that just redefine the value of h0 and bIR respectively

and can be scaled out. The rest of the modes are relevant and will destroy the AdS

IR geometry.

The only perturbation with an irrelevant deformation is the scalar field

δχ = c6r
−3/2e−

s
r + c7r

−3/2e
s
r , (C.7)

where s =
√

1/2W ′′IRh
−1
0 LIR. If W ′′IR < 0 any perturbation would destroy the IR.

On the other hand if W ′′IR > 0 the perturbation associated to c6 would be irrelevant

in the IR.

• Trivial Semimetal Phase (bIR = 0, c = 0): corrections to the trivial semimetal phase

are of the following type

δu =
c1

r
+
c2

r4
, δh =

c1

r
− 2c2

r4
+ c3 . (C.8)

These perturbations have the same form as in the previous case, and have to be all

set to zero. However the scalar and gauge field have irrelevant modes

δA3 = c4r
−2−∆bIR + c5r

∆bIR , (C.9)

where ∆bIR = −1 +

√
1 +

2WIRL
2
IR

ZIR
2

. c4 corresponds to a relevant deformation, but c5

is irrelevant. With the scalar field something similar happens; one mode is relevant

and the other one irrelevant

δχ = c6r
−∆χIR + c7r

−4+∆χIR , (C.10)

where ∆χIR = 2 +
√

4 +m2
IRL

2
IR. Stability implies m2

IRL
2
IR > 0. We are using here

the definition V ′′IR = 2m2
IR.
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• Critical Point (bIR = 1, c = β): in the critical case, the zero temperature deformation

to the Lifshitz IR takes the following form

δu = u1r
α , δh = h1r

α , δA3 = a1r
α , δχ = χIRχ1r

α , (C.11)

where χ1 is the only free constant. The rest is

u1 =
2(β − 1)χIR

(
3β2u0Z

′
IR − 2(α+ 2β − 1)W ′IR

)
3(α+ 1)βu0 (α2 + α(β + 3)− 2(β − 3)(β − 1))ZIR

χ1 (C.12)

h1 =
8χIR(β − 1)

(
α2 + 3αβ + α+ β(β + 2)

)
W ′IR

3α(α+ 1)βu0 (α2 + α(β + 3)− 2(β − 3)(β − 1))ZIR
χ1 +

−
6χIRβ

2u0(β − 1)(α(α− β + 7) + 6)Z ′IR
3α(α+ 1)βu0 (α2 + α(β + 3)− 2(β − 3)(β − 1))ZIR

χ1 (C.13)

a1 =
2χIR

(
3α2 + α(6β − 3) + 2

(
β2 + β − 2

))
W ′IR

3α(α+ 1)u0 (α2 + α(β + 3)− 2(β − 3)(β − 1))Z(χIR)
χ1 +

−
βχIR(α(α(α+ 4)− (β − 7)β − 3) + 6(β − 1))Z ′IR
α(α+ 1) (α2 + α(β + 3)− 2(β − 3)(β − 1))ZIR

χ1 . (C.14)

The exponent α can be obtained inverting the following equation

V ′′IR = 2αu0(α+ β + 3) +
(β − 1)βu0Z

′′
IR

ZIR
+

2(β − 1)W ′′IR
βZ(χIR)

+

4(β − 1)(β + 2)W
′2
IR

3β2u0 (α2 + α(β + 3)− 2(β − 3)(β − 1))Z2
IR

+

4(β − 1)(3β − 5)W ′IRZ
′
IR

(α2 + α(β + 3)− 2(β − 3)(β − 1))Z2
IR

+

−
2(β − 1)βu0

(
α2 + α(β + 3) + β(11− 2β)− 6

)
Z
′2
IR

(α2 + α(β + 3)− 2(β − 3)(β − 1))Z2
IR

. (C.15)

The previous polynomial has four possible solutions for α and only two of them may

be real numbers, depending on the values of the other parameters.
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