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1 Introduction and summary of results

The ability of computing scattering amplitudes in gauge theories is crucial for the discovery

of new physics beyond the standard model of particle physics. Recent years have witnessed

tremendous progress in calculating amplitudes of various processes both at tree and loop

level. Furthermore, remarkable hidden structures of gauge-theory amplitudes have been

discovered which point us towards a deeper understanding of the fundamental aspects of

QFT. A great deal of the progress have been triggered by Witten’s twistor-string theory of

N = 4 super-Yang-Mills (SYM) [1]. The connected prescription further refined in [2] gives

a closed formula for any n-point tree amplitude in N = 4 SYM as a localized integral over

the moduli space of n-punctured Riemann spheres; similar connected formulas have been

proposed for supergravity [3–5] and then derived from new twistor string theories [6].

In view of these advances, it is very tempting to ask if one can derive such twistor-

string/connected formulas for more realistic standard model processes, especially those in

QCD. Obviously this has been achieved for gluon amplitudes, which are identical in QCD

and in N = 4 SYM. However, to our best knowledge no such formulas are available for

other important QCD amplitudes, such as those with quarks or the Higgs boson. At tree

level of course these amplitudes have been computed using other techniques, and connected

formulas do not seem to be more efficient for actual computations. Nevertheless, the goal we

are after is to find a closed formulas for these QCD amplitudes with arbitrary multiplicity.

Among other things, such formulas would open up a new direction of studying standard-

model amplitudes from twistor-string point of view.

The other motivation comes from the efforts in extending the scope of theories nat-

urally described by the so-called Cachazo-He-Yuan (CHY) formulation, which is a new

representation for S-matrix of massless particles [7–9]. It can be seen as a generalization of

connected formulas to any spacetime dimensions and to a large variety of theories [10, 11].

The formula is an integral over moduli space of Riemann spheres localized by the uni-

versal, theory-independent scattering equations, which were originally proposed in [12].
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When written in terms of spinor-helicity variables in four dimensions, one can reproduce

old and new connected formulas in these theories [13–16]. It has been shown that CHY

and connected formulas can be derived from ambitwistor string theories in ten and four

dimensions, respectively [17, 18]. Despite its success, it remains an important open ques-

tion how to obtain CHY representations of all-multiplicity amplitudes for a given QFT’s,

i.e. field contents and Lagrangian. For example, to our best knowledge, no closed-formula

CHY representation is known for QCD amplitudes with quarks and with the Higgs boson.

CHY representation for fermions have been studied in [19, 20], where tree amplitudes

have been used as input; explicit CHY formulas have been obtained using gluon-gluino

correlators in superstring theory [17, 21], and in particular a closed formula is known for

one pair of gluinos and arbitrary number of gluons [22]. However, such formulas become

very complicated for more pairs of gluinos, and more importantly, it is still far from QCD

amplitudes where (anti-) quarks are in (anti-) fundamental representation. On the other

hand, CHY formulas have been obtained for amplitudes with massive scalars and gauge

bosons from dimension reduction [23, 24], but these are very different from the standard

model amplitudes with Higgs or W, Z bosons. For example, one cannot get amplitudes with

a single Higgs boson, since the mass of the latter does not come from an extra-dimension

components of the momentum. Such amplitudes are equivalent to form factors where the

Higgs momentum becomes that of an off-shell operator, and finding a formula for these

amplitudes amounts to finding the first CHY representation for form factors.

Thus for both formal and practical purposes, it would be very intriguing to reproduce

the correct coupling with quarks and to incorporate the massive Higgs boson (or off-shell

form factor), in the CHY/twistor-string formulation. In this paper, we initiate this line

of research, by writing down connected formulas for tree amplitudes with quarks and

Higgs boson in the standard model. We find that the obstacles mentioned above can

be circumvented, as long as we use four-dimensional scattering equations such that CHY

takes the form of connected formulas as from various four-dimensional (ambi-)twistor string

theories. Such a representation also fully exploits the simplicity of spinor-helicity variables

and provides a new way of computing these standard model amplitudes.

What is special in 4d is that the scattering equations naturally split into n − 3 sec-

tors [12], labeled by k = 2, 3, . . . , n − 2, and for our consideration they coincide with the

helicity sectors of amplitudes. More specifically, in this paper we use the four-dimensional

scattering equations originally derived in [18] from four-dimensional ambitwistor strings,

which are completely equivalent to scattering equations in Witten’s twistor string the-

ory [15]. For sector k, it is convenient to split the n particles into a set of k particles we

call −, and the complimentary set + with n−k particles, then the equations read

λ̃α̇I −
∑
i∈+

λ̃α̇i
(I i)

= 0 , I ∈ − ; λαi −
∑
I ∈−

λαI
(i I)

= 0 , i ∈ + . (1.1)

Here λαa , λ̃
α̇
a for a = 1, 2, . . . , n are spinors of n external particles, and throughout the paper

we use index I, i for labels in the two sets −,+. The scale for the locations of punctures

does matter in 4d, with the two components parameterized as σαa = 1
ta

(1, σa), and the
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two-brackets are defined as (a b) := (σa − σb)/(tatb). The SL(2,C) redundancy of CHY

scattering equations has been extended to GL(2,C), which can be used to fix four out of

the 2n variables {σ, t}, and four of the 2n equations are also redundant since they simply

impose momentum conservation. We refer to [15, 25] for the derivation of (1.1) from CHY

scattering equations and the equivalence to the original equations in [1, 2].

A connected formula expresses tree amplitude in helicity-sector k as an integral over

the 2n − 4 variables localized on the solutions of the equations (1.1). The integrands

differ for different theories, and results are known in (super–) Yang-Mills and gravity [18]

(equivalent to the original connected formulas in [2, 4]), effective field theories including

supersymmetric DBI [15], and (super–) Einstein-Yang-Mills theory [13].

Here we summarize the main results of the paper: we add two new connected formulas

for two classes of amplitudes in the standard model. First, we present a formula for color-

ordered n-point gluon-quark tree amplitudes in massless QCD:

Ag;qq̄n =

∫ ∏n
a=1 d

2σa
vol GL(2)

Jferm({σq,q̄})
(12)(23) · · · (n1)

∏
I ∈−

δ2

(
λ̃I −

∑
i∈+

λ̃i
(I i)

) ∏
i∈+

δ2

(
λi −

∑
I ∈−

λI
(i I)

)
,

(1.2)

where d2σa := dσadta/t
3
a,

1 and the integral over 2n−4 variables are localized by the 2n−4

delta functions of scattering equations (1.1); − (+) denotes the set of gluons and quarks

with negative- (positive-) helicities. As we will review shortly, (1.2) is almost identical to

the connected formula for pure-gluon amplitudes, except for the presence of a Jacobian

factor Jferm. It is remarkable that this is a rational function of σ’s of the quarks and

anti-quarks. We will work out the precise form of Jferm, which depends on the flavors and

helicities of the quark pairs, but independent of any information of the glouns.

For example, for the pure-gluon case J = 1 by definition, and for one pair of quark-

antiquark say, {I, i}, it is simply JI,i = 1/(I i) with the convention I ∈ −, i ∈ +. As we

will discuss in section 2, (1.2) can be derived from the fact that all gluon-quark amplitudes

follow from linear combinations of gluon-gluino ones in N = 4 SYM [26, 27]. In general it

is clear how to construct J for any number of quark pairs, but it becomes more and more

involved as the number increase. In this paper we explicitly write down compact form of

J for up to four quark pairs, and verify that the result agrees with that in [26].

In section 3 we study connected formulas for amplitudes with a Higgs plus multi-

partons, where the coupling to Higgs is treated as an effective interaction vertex. The

dominant contribution is from the top-quark loop which are integrated out in the large mt

limit and result in a effective vertex, e.g. with gluons, of the form ∝ H Tr Gµν Gµν . A

observation in [28, 29] is that the vertex can be written in terms of self-dual and anti-self-

dual parts of the gluon fields (φ Tr Gµνsd Gsd, µν + φ† Tr Gµνasd Gasd, µν), where the Higgs

field decompose into H = φ + φ†. It is advantageous to study helicity amplitudes for φ

plus n partons and those for φ+ plus n partons (related to each other by parity), and and

the amplitudes for H is the sum of the two A
ng ;H
n+1 = A

ng ;φ
n+1 +A

ng ;φ†

n+1 .

1Details for modding out GL(2) redundancies and converting 4 redundant delta functions to give mo-

mentum conservation will be explained later. Throughout the paper An = δ4(P )Mn denotes the amplitudes

with momentum-conserving delta functions.
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It turns out that the key for writing down connected formula here is to assign two on-

shell legs x, y for the Higgs, with kH = λxλ̃x +λyλ̃y and they correspond to two additional

punctures σx and σy. For amplitudes with φ (φ†), we simply assign x, y together with the

+ (− resp.) set for the scattering equations. A particularly nice form follows form fixing

the four variables in σαx , σαy using the GL(2) redundancy:

A
ng ;φ
n+1 = 〈x y〉2

∫ ∏n
a=1 d

2σa
(12)(23) · · · (n1)

∏
I ∈−

δ2

λ̃I− ∑
i∈+,x,y

λ̃i
(I i)

 ∏
i∈+,x,y

δ2

(
λi−

∑
I ∈−

λI
(i I)

)
,

A
ng ;φ†

n+1 = [x y]2
∫ ∏n

a=1 d
2σa

(12)(23) · · · (n1)

∏
I ∈−,x,y

δ2

(̃
λI−

∑
i∈+

λ̃i
(I i)

) ∏
i∈+

δ2

λi− ∑
I ∈−,x,y

λI
(i I)

 .

(1.3)

Note that in the formula, the “Parke-Taylor factor” does not concern x, y which makes

sense as they “bond” as a colorless scalar. The remarkable property of (1.3) is that it

does not depend on individual momenta of x, y but only on their sum. In section 3, we

will discuss in details the motivation and consistency checks for (1.3), including various

checks against known amplitudes and correct factorizations. Finally, by combining (1.2)

and (1.3) one obtains formulas for Higgs plus multi-parton amplitudes, with gluons and

massless quarks.

2 Connected formula for massless QCD amplitudes

In this section we derive connected formula for massless QCD amplitudes, (1.2) with explicit

form for the Jacobian J for up to four quark pairs. Following the idea of [26, 27], we

write gluon-quark amplitudes as linear combinations of gluon-gluino amplitudes in N = 4

SYM. Before presenting results for J , we first review the connected formula for SYM

amplitudes. We emphasize that for pure-gluon amplitudes, these formulas are nothing but

CHY formulas reduced to 4d [12, 15], but now it becomes natural to work in helicity sectors

and to include supersymmetries.

Recall that with N = 4 supersymmetry, it is convenient to introduce the Grassmann-

odd variable ηA with A = 1, · · · , 4 the SU(4) R-symmetry index, and the supermultiplet is

combined to a on-shell superfield

ΦSYM(η) = g+ + ηAψA +
1

2!
ηAηBφAB +

1

3!
ηAηBηCεABCDψ̄

D + η1η2η3η4g− , (2.1)

where g±, ψ, ψ̄ and φ denote gluons, gluinos and scalars. The superamplitude is then a

function of the on-shell superspace {λαa , λ̃α̇a , ηAa } for a = 1, 2, . . . , n. As originally proposed

by Witten [1], dependence on η can be simply accounted by including fermionic delta

functions analogous to those with λ̃’s, which gives the super-amplitudes in N = 4 SYM.

This is completely parallel in the connected formula for N = 4 SYM from 4d ambitwistor
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strings [18], where η’s are included exactly as in the λ̃-half of (1.1):

AN=4
n,k =

∫ ∏n
a=1 d

2σa
vol GL(2)

∏
I∈−

δ2

(
λ̃I −

∑
i∈+

λ̃i
(I i)

) ∏
i∈+

δ2

(
λi −

∑
I∈−

λI
(i I)

)

×
∏
I∈−

δ0|4

(
ηI −

∑
i∈+

ηi
(I i)

)
1

(12)(23) · · · (n1)
. (2.2)

Note that there is GL(2,C) redundancy to be fixed in the measure: the most convenient

way to do so is to delete d2σa d
2σb and compensate it with a factor tatb(σa−σb)2. Similarly

4 (8) of the bosonic (fermonic) delta functions are redundant and can be pulled out for

(super)-momentum conservation, i.e. δ4|8(∑n
a=1 λ

α
a (λ̃α̇a |ηAa )

)
; e.g. if we choose to those delta

functions corresponding to I, J ∈ −, we compensate with a factor 〈I J〉2−N = 〈I J〉−2.

As mentioned above, the main advantage of the scattering equations (1.1) (as opposed

to the original ones in [1, 2]), is that the corresponding formula (2.2) is particularly nice for

extracting helicity (or component) amplitudes. We will always choose the set ± to contain

positive- (negative-) helicity particles; for gluon amplitudes we have (2.2) with fermionic

delta functions replaced by identity, which comes from the fermionic integral
∏
I∈− d

4ηI .

Similarly it is straightforward to extract gluon-gluino amplitudes. For example, with

one pair of gluinos {ψ̄I,A, ψAi } with I ∈ −, i ∈ +, after integrating out η’s for glu-

ons, we are left with the fermionic integrals (d3ηI)A dη
A
i and the delta function δ4(ηI −

ηi/(I i)) which gives the Jacobian J = 1/(I i). For amplitudes with m pairs of gluinos

(I1, i1), (I2, i2), . . . , (Im, im), the Jacobian after integrating η’s is exactly a determinant:

Ag;ψψ̄n,k =

∫ ∏n
a=1 d

2σa
vol GL(2)

detM

(12)(23) · · · (n1)

∏
I∈−

δ2

(
λ̃I −

∑
i∈+

λ̃i
(I i)

)∏
i∈+

δ2

(
λi −

∑
I∈−

λI
(i I)

)
,

(2.3)

where M is a m×m matrix with element Mr s = δAIr
Ais

(Ir is) for r, s = 1, 2, . . . ,m. In defining

the component amplitude, the ordering of fermionic integrals have been arranged such that

the rows and columns correspond to I1, . . . , Im and i1, . . . , im.

Now we are ready to work out Jacobians of (1.2) for gluon-quark amplitudes in massless

QCD. The simplest case is when all quark lines are of the same flavor, where QCD

amplitudes are identical to amplitudes in N = 1 SYM. This is because the color-ordered

gqq̄ vertex in QCD is identical to the gψψ̄ vertex in N = 1 SYM. (2.3) directly holds for

this case except all δAI Ai = 1 since the gluinos only have one flavor. Thus the formula for

single-flavor QCD amplitudes is given by (1.2) with J = detM with Mr s = 1
(Ir Is) .

In general we consider m quark lines all with distinct flavors, from which the case with

some quark lines having same flavor can be constructed. As discussed in [26], the key here

is to choose linear combinations of N = 4 SYM amplitudes with various flavor-assignment

of the gluinos, to avoid unwanted diagrams in N = 4 SYM (such as scalar-exchange or

some gluon-exchange ones). It has been shown that such combinations can always be found

for arbitrary m [27], and we expect it to be the case for our construction as well. Here we

will present the explicit form of J in (1.2) for all cases up to four quarks lines and confirm

– 5 –
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Figure 1. Two cases for amplitudes with 2 fermion pairs: QCD vs. SYM.

that the result agrees with that of [26]. For all cases with m > 4 that we have tested, our

construction also works but the form of J becomes more and more complicated.

We start with two pairs of quarks, and there are two orderings (a−1 , b
−
1 , b

+
2 , a

+
2 ) and

(a−1 , a
+
2 , b
−
1 , b

+
2 ). Here we use {a1, a2} and {b1, b2} to denote the two quark lines with dis-

tinct flavors, and the two cases are referred to as splitting and alternating for the quark

helicities; the remaining particles are gluons which can be put in arbitrary positions and

do not affect J . In the splitting case, we can identify them with the SYM amplitude where

the flavors of the two gluino pairs are identical, i.e. (ψ̄A, ψ̄A, ψ
A, ψA). The reason is that

since a scalar-gluoino vertex e.g. φABψ
AψB always change the flavor of the gluinos, this

arrangement prevents the unwanted scalar exchanges between the two lines, and the helic-

ities prevent unwanted gluon exchange to keep the quark flavors distinct (see figure 1 A).

Thus the Jacobian is the same as in the single-flavor case,

J(a−1 ,b
−
1 ,b

+
2 ,a

+
2 ) =

∣∣∣∣∣ 1
(a1a2)

1
(a1b2)

1
(b1a2)

1
(b1b2)

∣∣∣∣∣ . (2.4)

For the alternating case, no scalar exchange is allowed by the helicities, and to avoid

unwanted gluon exchanges which would give QCD amplitudes with identical flavors, one

has to use gluinos with two distinct flavors, i.e. (ψ̄A, ψ
A, ψ̄B, ψ

B) for B 6= A (see figure 1 B).

In the 2 by 2 matrix M above, the off-diagonal entries vanish and the determinant reduces

to the product of two diagonals,

J(a−1 ,a
+
2 ,b
−
1 ,b

+
2 ) =

1

(a1a2)

1

(b1b2)
. (2.5)

Now we move to the case of three quark lines, where we have 5 distinct cases of quark

orderings (other cases can be related to them by cyclicity or parity). For the splitting

case, again the helicities prevent unwanted gluon exchanges and the result is the same as

single-flavor case which prevents scalar exchanges (see figure 2 A):

J(a−1 ,b
−
1 ,c
−
1 ,c

+
2 ,b

+
2 ,a

+
2 ) =

∣∣∣∣∣∣∣
1

(a1a2)
1

(a1b2)
1

(a1c2)
1

(b1a2)
1

(b1b2)
1

(b1c2)
1

(c1a2)
1

(c1b2)
1

(c1c2)

∣∣∣∣∣∣∣ . (2.6)

On the other hand, there are two inequivalent alternating cases, (a−1 , a
+
2 , b
−
1 , b

+
2 , c
−
1 , c

+
2 )

and (a−1 , b
+
1 , b
−
2 , a

+
2 , c
−
1 , c

+
2 ). It is obvious that in both case, we can use gluinos with three

– 6 –
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Figure 2. Five cases for amplitudes with 3 fermion pairs: QCD vs. SYM.

distinct flavors to avoid unwanted gluon exchanges (see figure 2 B,C); the 3 by 3 matrix M

becomes diagonal just like before, and we have

J(a−1 ,a
+
2 ,b
−
1 ,b

+
2 ,c
−
1 ,c

+
2 ) = J(a−1 ,b

+
1 ,b
−
2 ,a

+
2 ,c
−
1 ,c

+
2 ) =

1

(a1a2)

1

(b1b2)

1

(c1c2)
. (2.7)

Note that although the two Jacobians take the same form the two cases are different

because they have different orderings. In other words, here the labesl a1, a2, b1, b2, c1, c2

are different for the two cases, as is clear from figure 2 B,C.

There are two more independent cases. For (a−1 , b
−
1 , b

+
2 , a

+
2 , c
−
1 , c

+
2 ), it is clear that we

can assign same-flavor gluinos for lines a and b (a “sub-splitting” case) and we have to

choose a different flavor for line c since the helicities flipped between a2, c1, and between

c2, a1 (see figure 2 D). Thus all entries in the third column and row (corresponding to line

c) vanish except for the diagonal, 1/(c1 c2), and the Jacobian factorized as

J(a−1 ,b
−
1 ,b

+
2 ,a

+
2 ,c
−
1 ,c

+
2 ) =

∣∣∣∣∣ 1
(a1b2)

1
(a1a2)

1
(b1b2)

1
(b1a2)

∣∣∣∣∣ 1

(c1c2)
. (2.8)

The last case is (a−1 , a
+
2 , b

+
1 , b
−
2 , c
−
1 , c

+
2 ), which is slightly more complicated than cases

above. Again one can assign same flavor gluinos for the three quark lines to prohibit

scalar exchanges. However, this single-flavor result contains the unwanted process where

we have (b1, b2), (a2, c1) are two gluino pairs with same flavor and (a1, c2) another pair

with a different flavor (see figure 2 E). This unwanted process is given by the Jacobian of

the case 2 D, and we can subtract its contribution from the single-flavor result:

J(a−1 ,a
+
2 ,b

+
1 ,b
−
2 ,c
−
1 ,c

+
2 ) =

∣∣∣∣∣∣∣
1

(a1a2)
1

(a1b1)
1

(a1c2)
1

(b2a2)
1

(b2b1)
1

(b2c2)
1

(c1a2)
1

(c1b1)
1

(c1c2)

∣∣∣∣∣∣∣−
1

(a1c2)

∣∣∣∣∣ 1
(b2a2)

1
(b2b1)

1
(c1a2)

1
(c1b1)

∣∣∣∣∣ . (2.9)

– 7 –
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This can be easily recognize as detM with the entry for (a1 c2) vanishes, Ma1,c2 = 0,

J(a−1 ,a
+
2 ,b

+
1 ,b
−
2 ,c
−
1 ,c

+
2 ) =

∣∣∣∣∣∣∣
1

(a1a2)
1

(a1b1) 0
1

(b2a2)
1

(b2b1)
1

(b2c2)
1

(c1a2)
1

(c1b1)
1

(c1c2)

∣∣∣∣∣∣∣ . (2.10)

From these results we can infer the general rule for constructing J for any number of

quark pairs: we observe that J is always given by a subset of terms from the determinant

of the single-flavor matrix, MI i = 1
(I i) where the rows and columns are given by quark

labels in set − and those in +, respectively. The subset is determined as follows: in the

quark cyclic ordering, one inspects all adjacent labels that belong to two different quark

lines; whenever they are of different helicities, one needs to remove terms in the expansion

of detM that corresponding to this wrong contribution. In all but one cases explicitly

presented in this paper, this can be done by simply setting some entries to zero. However,

in certain cases first appeared for four quark-line case (see the end of the appendix A), we

need to remove the contributions more carefully.

The validity of the rule have been checked thoroughly. For example, for alternating

cases, (2.5) and (2.7), all quarks have flipped helicities compared to adjacent ones in the

ordering, thus all off-diagonal entires are set to zero; similarly in (2.8), the helicities of

c1, c2 are flipped from those of a2, a1, while in (2.10) only that of c2 is flipped from a1,

which explain the vanishing entries. In appendix A, we list all independent cases for four

quark lines, where the form of J is always determined from the general rule.

Naively one may conclude QCD amplitudes with more than four quark lines cannot

be obtained in this way, since there are only four gluino flavors in N = 4 SYM. However,

as shown in [27, 30], this is not a problem as we can always reduce the number of gluinos

by using a different (usually more complicated) combination.

We can already see how this works in some simple example, such as the second al-

ternating case (a−1 , b
+
1 , b
−
2 , a

+
2 , c
−
1 , c

+
2 ). In (2.7) we used three gluino flavors but in fact we

only need two since there can not be any gluon exchange between the two separated quark

lines b and c. Thus we can safely assign same gluino flavor for b1, b2, c1, c2, and obtain

J(a−1 ,b
+
1 ,b
−
2 ,a

+
2 ,c
−
1 ,c

+
2 ) =

1

(a1a2)

∣∣∣∣∣ 1
(b2b1)

1
(b2c2)

1
(c1b1)

1
(c1c2)

∣∣∣∣∣ . (2.11)

This is equivalent to (2.7) (see figure 3), but we see that the number of flavors has

been reduced by one. Since the two Jacobians give identical results, this also implies an

interesting “vanishing identity”. The difference gives a vanishing amplitude which has, in

addition to (a1, a2), (b1, c1) with one flavor and (b2, c2) another flavor:∫ ∏n
a=1 d

2σa
vol GL(2)

1/((a1a2) (b1c1) (b2c2))

(12)(23) · · · (n1)

∏
I∈−

δ2

(
λ̃I−

∑
i∈+

λ̃i
(I i)

)∏
i∈+

δ2

(
λi−

∑
I∈−

λI
(i I)

)
= 0 .

(2.12)

This is the connected-formula form of the fermion-crossing identity, see figure 3. In the

simplest case of six-fermion (NMHV) amplitude, it can be shown using a residue theorem.
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Figure 3. Equivalent forms with gluon flavors reduced, which implies a vanishing identity.

After change of variables and Cauchy’s theorem, the l.h.s. of (2.12) is equivalent to the

tree contour of Grassmannian formula for n = 6, k = 3 [31], with an additional Jacobian

from Jferm = 1/((14) (25) (36)). The Jacobian exactly cancels the three poles that defines

the tree contour, which is why the contour integral vanishes.

Let’s end with some remarks. CHY representation for QCD amplitudes has also been

studied in [20]. The major difference is that here we have an explicit formula for all

multiplicities in four dimensions without assuming knowledge of any tree amplitudes. This

again shows the remarkable simplicity of spinor-helicity and on-shell superspace in four

dimensions, but it would also be very interesting to generalize to general dimensions and

compare with [20, 22]. On the other hand, our derivation of QCD amplitudes from SYM

ones is identical to that in [26], but instead of using BCFW form of the amplitudes we have

a compact, connected formula (1.2). In particular, we have seen that instead of combining

different SYM amplitudes, all we need is to combine different SYM Jacobians to get a

simple Jacobian Jferm. In some sense, we have traded the complexities of the BCFW form

for QCD helicity amplitudes [26] with the sum over solutions of (1.1).

3 Higgs plus multi-parton amplitudes

In this section we turn to (1.3) for Higgs plus multi-parton amplitudes, and we will first

motivate it and then provide very strong consistency checks. Our connected formula is

partly inspired by the relation between connected vs. disconnected prescription of twistor-

string theory. The latter is known as CSW rules or MHV vertex expansion [32], which

computes amplitudes with k negative-helicity gluons as the sum of scalar Feynman diagrams

with each vertex given by an off-shell continuation of MHV amplitudes:

V (a, . . . , J−, . . . ,K−, . . . , b, qa,b) =
〈J K〉4

〈q a〉 〈a a+1〉 · · · 〈b q〉
, λαq := qα α̇a,b µ̃α̇ , (3.1)

where we have with two negative-helicity gluons, denoted by J,K, and the rest positive

ones; q is the off-shell leg for which we define qr,s := kr + kr+1 + · · · + ks, and the CSW

prescription involves a reference spinor µ̃ to define the (holomorphic) spinor λq. It is

interesting to see that the connected formula, can be viewed as an “uplift” of the MHV

vertex: the helicity information is taken care of by scattering equations (1.1), and the
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integrand is given by the “Parke-Taylor factor”. Now for Higgs plus multi-gluon amplitudes,

the CSW or disconnected formula is given in [28]: A
ng ;φ
n+1 is computed by scalar Feynman

diagrams with MHV vertices of two types, the first without the Higgs field φ which is the

same as (3.1), and the second type with φ: qr,s := kr + kr+1 + · · ·+ ks:

V (φ; a, . . . , J−, . . . ,K−, . . . , b,−qb+1,a−1) =
〈J K〉4

〈q′ a〉 〈a a+1〉 · · · 〈b q′〉
, (3.2)

where we have defined λαq′ := −qα α̇b+1,a−1 µ̃α̇ with −qb+1,a−1 = qa,b + kφ, and this vertex

comes from the well-known MHV amplitudes with a Higgs field φ:

A
ng ;φ
n+1 (φ; 1, . . . , J−, . . . ,K−, . . . , n) = δ4(P )

〈J K〉4

〈1 2〉 〈2 3〉 · · · 〈n 1〉
. (3.3)

The massive momentum of the Higgs field φ can be written as the sum of two on-

shell, massless momenta, kφ = λxλ̃x + λyλ̃y. More importantly, the structure of the CSW

expansion for A
ng ;φ
n+1 resembles that of a (n+2)-gluon amplitudes where instead of φ we have

two additional positive-helicity gluons x, y. Thus for the kinematics (scattering equations)

it is natural to assign x, y together with the set + (− for A
ng ;φ†

n+1 ).This can also be seen

from the fact that the “maximally googly”all-minus amplitude is non-vanishing: we need

x, y to be in the + set for the scattering equations to have any solution.

On the other hand, we see that x, y do not appear in the MHV vertex, so it is natural

to have Parke-Taylor factor without x, y. This is expected as we use x, y to represent the

colorless scalar φ, and the answer only depends on their total momentum kφ. To summarize,

the first line of (1.3) is the only possible “uplift” of MHV vertices to a connected formula,

which we record here for readers’ convenience:

A
ng ;φ
n+1 = 〈x y〉2

∫ ∏n
a=1 d

2σa
(12)(23) · · · (n1)

∏
I ∈−

δ2

λ̃I− ∑
i∈+,x,y

λ̃i
(I i)

 ∏
i∈+,x,y

δ2

(
λi−

∑
I ∈−

λI
(i I)

)
.

(3.4)

Note that we have already used GL(2) redundancy to fix σx, σy to arbitrary values, and if we

recover the redundancy in the measure we need to insert the prefactor 1/(txty(σx − σy)2).

Together with 〈x y〉2, these factors are needed for the formula to have the correct mass

dimension, little group and GL(2) weight in x, y.

Now we provide strong consistency checks for the validity of (3.4). Obviously it van-

ishes for k = 0, 1 since there is no solution to (1.1). Let’s see how it reproduces the

two simplest non-vanishing cases, namely MHV and all-minus amplitudes. To obtain the

MHV amplitude (3.3), it is convenient to pull out the four delta functions corresponding

to − = {J,K}, to give momentum-conserving ones δ4(P ), which introduces a Jacobian

〈J K〉2. Then it is easy to see that the remaining 2n equations have a unique solution,

MHV solution : (a b) =
〈a b〉
〈J K〉

, integral → 〈J K〉2

〈x y〉4〈1 2〉 · · · 〈n 1〉
, (3.5)

and combining with the prefactor it is obvious that we obtain (3.3).
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The other extreme is the all-minus amplitude, which takes a particularly simple

form [28]

A(φ; 1−, . . . , n−) = δ4(P )
m4
H

[1 2] [2 3] · · · [n 1]
, (3.6)

where recall P :=
∑n

a=x,y,1 λaλ̃a = 0 and m2
H = 〈x y〉 [x y]. (3.4) is non-vanishing for

+ = ∅ exactly because x, y serve as two positive-helicity ones which makes it similar to

the anti-MHV case. Let’s derive an equivalent form of (3.4) which manifestly has no

dependence on λx, λy. We choose to pull out the delta functions for λx, λy to impose

momentum conservation. The Jacobian factor for doing this is [x y]2 which combines with

the prefactor 〈x y〉2 gives m4
H , and we have

A
ng ;φ
n+1 = δ4(P )m4

H

∫ ∏n
a=1 d

2σa
(12)(23) · · · (n1)

∏
I ∈−

δ2

λ̃I− ∑
i∈+,x,y

λ̃i
(I i)

 ∏
i∈+

δ2

(
λi−

∑
I ∈−

λI
(i I)

)
.

(3.7)

For + = ∅, we use the 2n delta functions for i = 1, . . . , n to get a unique solution again:

anti-MHV solution : (a b) =
[a b]

[x y]
, integral → 1

[1 2] [2 3] · · · [n 1]
, (3.8)

and we see that the result is exactly (3.6). Note that this result is not trivial from the dis-

connected (CSW) representation since it requires the sum over many MHV diagrams [28].

We also perform numerical checks for (3.7) (equivalent to (3.4)) to confirm that it gives

correct results beyond the two extreme cases. We have evaluated (3.7) for all NMHV cases

with n = 4, 5, 6 and the n = 8 NNMHV case. These are very non-trivial checks, since they

correspond to NMHV amplitudes with 6,7,8 gluons and NNMHV with 8 gluons, where one

sums over 4, 11, 26 and 66 solutions respectively in the connected formula. It is satisfying

to see that in all these cases (3.7) gives the same results as those from CSW rules [28].

More importantly, we have shown that (1.3) has correct residues on all factorization

poles, and here we only sketch the argument. It has been well established the connected

formulas for N = 4 SYM (and pure-gluon) amplitudes have correct factorization limits,

cf. [5]. What we need here is the proof for the formula with n + 2 gluons 1, 2, . . . , n, x, y

with {x, y} in all possible positions in the color ordering. Given the ordering, it is sufficient

to consider (k1 + k2 + · · ·+ km)2 → 0, and one can show that in the Yang-Mills connected

formula, both the measure (including delta functions) and the Parke-Taylor factor factorize

nicely, and we have the correct factorization:

MYM
n+2 →

∑
h

MYM
m+1(1, 2, . . . ,m, Ih)

1

(k1 + · · ·+ km)2
MYM
n−m+3(−I−h,m+1, . . . , n; {x, y}) ,

where M is has momentum-conserving delta functions stripped, A = δ4(P ) M , and the

intermediate gluon I has momentum kI = −(k1 + k2 + · · · + km). Now we can use the

same argument for M
ng ;φ
n+1 with two slight modifications: one has to GL(2)-fix σx, σy in the

measure, and remove them in the Parke-Taylor factor. We have confirmed that both the

measure and the Parke-Taylor factor still factorize as expected, except for the special case
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when m = n. This is the collinear limit of x, y forMYM
n+2, and luckily it is not a possible

factorization limit of M
ng ;φ
n+1 as long as mH 6= 0. Therefore, we have seen that (3.4) indeed

has the correct behavior under general factorization limit

M
ng ;φ
n+1 →

∑
h

MYM
m+1(1, 2, . . . ,m, Ih)

1

(k1 + · · ·+ km)2
M

(n−m+1)g ;φ
n−m+2 (−I−h,m+1, . . . , n;φ) ,

(3.9)

with m = 2, . . . , n−1 (note that there is nothing special about the other collinear limit

case m = 2). Given (3.9) the next step is to show that it has the desired large-z behavior

under a BCFW/CSW shift [33, 34], which would give a complete proof of (3.4).

Last but not least, since fermions do not enter the effective vertex but only interact

through gluons, we can combine (1.3) with (1.2) to obtain Higgs plus multi-patron am-

plitudes. We have explicitly checked in various cases that our formula agrees with results

in [29], including MHV and non-MHV cases for up to six partons and two quark lines.

4 Discussions

One of the most remarkable advances triggered by Witten’s twistor string theory is a new

formulation for S-matrix in massless QFT as a single object. This representation, known

as CHY formulas in general and connected formulas in 4d, can be derived from localized

worldsheet integrals or string correlators, in various (ambi-)twistor string theories. In

this paper, we extend the construction to more realistic processes of the standard model,

including QCD amplitudes with quarks and the Higgs boson. The new connected formulas

are based on essentially the gluon scattering equations (1.1), with a Jacobian factor for the

quarks in (1.2), and the Higgs momentum shared by two special on-shell legs (1.3). The

results are surprisingly compact and it is intriguing to see the coupling with quarks and

the Higgs is naturally incorporated in this new representation.

It is highly desirable to generalize our results to CHY formulation in general dimen-

sions, which can shed new lights into how QFT interactions, in particular the Higgs mech-

anism, emerge from CHY/twistor string formulas. It would be interesting to extend our

construction to other standard model process, such as trees entering in subleading-color

loop amplitudes and those involving a electroweak vector boson (photon, W or Z). These

amplitudes have very similar structures [35, 36], and we expect to have nice connected for-

mulas for them as well. Furthermore, CHY formulation usually makes manifest nice prop-

erties of the amplitudes, such as color/kinematics duality and Bern-Carrasco-Johansson

(BCJ) relations [38]. Note that (1.2) is for color-ordered QCD amplitudes, and by QCD

color-decomposition of [37] one immediately gets the full, color-dressed amplitude. The au-

thors of [37] have shown that color-kinematics duality imply BCJ relations for QCD partial

amplitudes (see also [40]), which we now see directly from (1.2). In [39], it has been shown

that on the support of scattering equations, Parke-Taylor factors satisfy fundamental BCJ

relations; the same argument works with (1.2) for fundamental BCJ with gluons, but not

for those with quarks, due to the presence of Jferm which depends on quark orderings.

Another interesting question is to study the result from double-copy of amplitudes with

fermions such as in QCD (see [41] for a recent exploration).
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Our result for Higgs plus gluon amplitudes, (1.3), is also a connected formula for the

form factor with operator TrF 2 (see [42]). This opens up a new direction of CHY/connected

formulas for form factors and even more off-shell quantities such as correlation functions.

It is straightforward to extend (1.3) is to the form factor with chiral stress-tensor multiplet

operators in N = 4 SYM, including Tr φ2 up to the chiral Lagrangian L [43]. A more

non-trivial and interesting question is how to obtain connected formulas for form factors

with general operators in N = 4 SYM. In the limit that the momentum of the operator

becomes soft, it gives tree amplitudes with one insertion of higher-dimensional operator,

such as Tr Fm, which are of great interests for studying effective theory beyond QCD

(cf. [28]). For example, for all effective vertices from the α′-expansion of superstring theory

such as F 4 operator, it is straightforward to obtain their CHY and connected formulas

since they are linear combination of YM amplitudes [44]. However, it remains an open

question for operators that have no superstring origin, such as F 3 [45, 46].

Another important direction is CHY/twistor-string formulas at loop level, which has

been studied for (super)-Yang-Mills and gravity amplitudes at one loop [47–51]. It is plau-

sible that four-dimensional connected formulas can be generalized to loop level for QCD

amplitudes/form factors and especially in N = 4 SYM. It is also highly desirable to study

connections with BCFW/CSW representation, Grassmannian and on-shell diagrams [52].

In general we can use residue theorems to rewrite our connected formulas into “discon-

nected” representations, i.e. sum of rational building blocks, which are more efficient for

actual computations. One way of doing this [53–55] leads to Grassmannian contour in-

tegrals, whose residues are BCFW terms or on-shell diagrams. Thus our formulas imply

Grassmannian formulas for QCD amplitudes and form factors (see [56] for a similar pro-

posal), as well as other “disconnected” representations to be further explored. We hope to

systematically address these interesting questions in the future.
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A Jferm for four quark lines

Here we present Jferm of (1.2) for all independent cases with four quark lines.

J(a−1 ,a
+
2 ,b
−
1 ,b

+
2 ,c
−
1 ,c

+
2 ,d
−
1 ,d

+
2 ) = J(a−1 ,a

+
2 ,b
−
1 ,c

+
1 ,c
−
2 ,d

+
1 ,d
−
2 ,b

+
2 ) = J(a−1 ,a

+
2 ,b
−
1 ,c

+
1 ,d
−
1 ,d

+
2 ,c
−
2 ,b

+
2 )

=
1

(a1a2)

1

(b1b2)

1

(c1c2)

1

(d1d2)
. (A.1)

J(a−1 ,b
−
1 ,b

+
2 ,a

+
2 ,c
−
1 ,c

+
2 ,d
−
1 ,d

+
2 ) = J(a−1 ,b

−
1 ,b

+
2 ,a

+
2 ,c
−
1 ,d

+
1 ,d
−
2 ,c

+
2 ) = J(a−1 ,b

−
1 ,c

+
1 ,c
−
2 ,b

+
2 ,a

+
2 ,d
−
1 ,d

+
2 )

=

∣∣∣∣∣ 1
(a1a2)

1
(a1b2)

1
(b1a2)

1
(b1b2)

∣∣∣∣∣ 1

(c1c2)

1

(d1d2)
. (A.2)
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J(a−1 ,a
+
2 ,b

+
1 ,b
−
2 ,c
−
1 ,c

+
2 ,d
−
1 ,d

+
2 ) = J(a−1 ,a

+
2 ,b

+
1 ,d
−
1 ,d

+
2 ,b
−
2 ,c
−
1 ,c

+
2 ) = J(a−1 ,a

+
2 ,b

+
1 ,b
−
2 ,c
−
1 ,d

+
1 ,d
−
2 ,c

+
2 )

=

∣∣∣∣∣∣∣
1

(a1a2)
1

(a1b1) 0
1

(b2a2)
1

(b2b1)
1

(b2c2)
1

(c1a2)
1

(c1b1)
1

(c1c2)

∣∣∣∣∣∣∣
1

(d1d2)
. (A.3)

J(a−1 ,b
−
1 ,c
−
1 ,d
−
1 ,d

+
2 ,c

+
2 ,b

+
2 ,a

+
2 ) =

∣∣∣∣∣∣∣∣∣∣

1
(a1a2)

1
(a1b2)

1
(a1c2)

1
(a1d2)

1
(b1a2)

1
(b1b2)

1
(b1c2)

1
(b1d2)

1
(c1a2)

1
(c1b2)

1
(c1c2)

1
(c1d2)

1
(d1a2)

1
(d1b2)

1
(d1c2)

1
(d1d2)

∣∣∣∣∣∣∣∣∣∣
. (A.4)

J(a−1 ,b
−
1 ,c
−
1 ,c

+
2 ,b

+
2 ,a

+
2 ,d
−
1 ,d

+
2 ) =

∣∣∣∣∣∣∣
1

(a1a2)
1

(a1b2)
1

(a1c2)
1

(b1a2)
1

(b1b2)
1

(b1c2)
1

(c1a2)
1

(c1b2)
1

(c1c2)

∣∣∣∣∣∣∣
1

(d1d2)
. (A.5)

J(a−1 ,b
−
1 ,b

+
2 ,a

+
2 ,c
−
1 ,d
−
1 ,d

+
2 ,c

+
2 ) =

∣∣∣∣∣ 1
(a1a2)

1
(a1b2)

1
(b1a2)

1
(b1b2)

∣∣∣∣∣
∣∣∣∣∣ 1

(c1c2)
1

(c1d2)
1

(d1c2)
1

(d1d2)

∣∣∣∣∣ . (A.6)

J(a−1 ,a
+
2 ,b

+
1 ,c

+
1 ,c
−
2 ,b
−
2 ,d
−
1 ,d

+
2 ) =

∣∣∣∣∣∣∣∣∣∣

1
(a1a2)

1
(a1b1)

1
(a1c1) 0

1
(c2a2)

1
(c2b1)

1
(c2c1)

1
(c2d2)

1
(b2a2)

1
(b2b1)

1
(b2c1)

1
(b2d2)

1
(d1a2)

1
(d1b1)

1
(d1c1)

1
(d1d2)

∣∣∣∣∣∣∣∣∣∣
. (A.7)

J(a−1 ,a
+
2 ,b
−
1 ,b

+
2 ,c

+
1 ,c
−
2 ,d

+
1 ,d
−
2 ) =

∣∣∣∣∣∣∣∣∣∣

1
(a1a2)

1
(a1b2)

1
(a1c1)

1
(a1d1)

0 1
(b1b2)

1
(b1c1)

1
(b1d1)

1
(c2a2)

1
(c2b2)

1
(c2c1) 0

1
(d2a2)

1
(d2b2)

1
(d2c1)

1
(d2d1)

∣∣∣∣∣∣∣∣∣∣
. (A.8)

J(a−1 ,a
+
2 ,b

+
1 ,b
−
2 ,c
−
1 ,c

+
2 ,d

+
1 ,d
−
2 ) =

∣∣∣∣∣∣∣∣∣∣

1
(a1a2)

1
(a1b1)

1
(a1c2)

1
(a1d1)

1
(b2a2)

1
(b2b1)

1
(b2c2)

1
(b2d1)

1
(c1a2)

1
(c1b1)

1
(c1c2)

1
(c1d1)

1
(d2a2)

1
(d2b1)

1
(d2c2)

1
(d2d1)

∣∣∣∣∣∣∣∣∣∣
−

∣∣∣∣∣ 1
(a1a2)

1
(a1b1)

1
(d2a2)

1
(d2b1)

∣∣∣∣∣
∣∣∣∣∣ 1

(b2d1)
1

(b2c2)
1

(c1d1)
1

(c1c2)

∣∣∣∣∣
−

∣∣∣∣∣ 1
(a1c2)

1
(a1d1)

1
(d2c2)

1
(d2d1)

∣∣∣∣∣
∣∣∣∣∣ 1

(b2b1)
1

(b2a2)
1

(c1b1)
1

(c1a2)

∣∣∣∣∣ . (A.9)

The last case requires more than setting entries to zero. The single-flavor result contains

two unwanted processes where we have either (b1, b2), (a2, c1) with same flavor, (a1, c2) and

(d1, d2) with another same flavor, or (a1, a2), (b1, d2) with same flavor and (b2, d1),(c1, c2)

with another same flavor. The two unwanted processes are given by Jacobians of the

case (A.6), and we need to subtract their contributions from the full determinant.
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