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1 Introduction

The method of localization is a powerful technique to evaluate observables in supersymmet-

ric quantum field theories exactly. The method was first introduced in [1] and developed

in [2, 3]. It was revived by the work of [4] which has led to the exact computations in su-

persymmetric quantum field theories in various dimensions and manifolds. Many of these

exact computations have been used to provide highly non-trivial checks of the AdS/CFT

correspondence. See the review [5] for a comprehensive list of references.

Most of the activity has been focussed on supersymmetric quantum field theory defined

on curved but compact spaces. The main reason is because the localizing Lagrangian one

adds is exact under the Fermionic symmetry Q up to boundary terms. Therefore all such

terms can be neglected on compact spaces without a boundary. Rigid supersymmetric

quantum field theories can be defined on curved space which also includes non-compact

spaces [6–12]. Quantum field theories on spaces of the form AdSn × Sm are relevant in

evaluating black hole entropy as well as entanglement entropy across spherical entangling

surfaces in conformal field theories. In this context, localization of N = 2 supergravity
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was studied in a series of work on AdS2 × S2 to obtain black hole entropy of extremal

black holes [13–18]. Localization of supergravity on AdS4 was also studied in the context

of evaluating the quantum partition function in the bulk for the ABJM theory [19].

Let us examine the second instance where partition functions of quantum field theories

on Anti-de Sitter spaces are important. The Rényi entropy of order q of a spherical entan-

gling surface in a d dimensional conformal field theory can be mapped to the evaluation of

the partition function of the theory on a q-fold covering of the sphere Sd. This partition

function is in turn related to the thermal partition function of the conformal field theory

on AdSd−1 ×S1 where the radius of S1 is q times that of AdSd [20]. This relation between

the partition functions on these surfaces offers a situation in which any formulation of

localization on non-compact manifolds is more controlled and can be precisely checked. In

the context of localization such issues were previously explored in [21, 22].

To be more concrete we focus our attention to conformal field theories in d = 3.

Consider the following metric on the 3-sphere

ds2A = L2
(

cos2 φdτ̃2 + dφ2 + sin2 φdθ2
)

, (1.1)

where the coordinates take values from

0 ≤ τ̃ ≤ 2πq, 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π

2
. (1.2)

When q takes values in the set of positive integers, the metric in (1.1) is that of a q-fold

covering of S3 branched on the circle at φ = π/2. Lets denote this space with the metric

in (1.1) by Aq. Under the transformation

sinh r = tanφ, (1.3)

the metric in (1.1) is conformal related to

ds2B = L2(dτ̃2 + dr2 + sinh2 rdθ2), (1.4)

where the coordinates take values from

0 ≤ τ̃ ≤ 2πq, 0 ≤ θ ≤ 2π, 0 ≤ r < ∞. (1.5)

We denote this space by Bq. The relation between the metrics is given by

ds2A = cos2 φds2B. (1.6)

Partition functions of conformal field theories defined on Aq should equal to the partition

function of the same theory defined on Bq with suitably chosen boundary conditions. In [23]

it was shown that with fields satisfying normalizable boundary conditions in AdS2 and a

suitable regularization, the thermal partition function of of free conformal scalars and free

massless fermions on Bq agreed precisely with that on Aq.

In this paper we would like to test this relationship between the partition functions on

spaces Aq and Bq for interacting theories. We will restrict our attention to supersymmetric
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partition functions obtained by the technique of localization. The simplest example of a

non-trivial super conformal field theory in 3 dimensions is that of pure N = 2 supersym-

metric Chern-Simons gauge theory. This theory has the added simplification of the fact

that the fermions and the auxillary scalar do not have kinetic terms and therefore the su-

persymmetric partition function on S3 is related to the bosonic Chern-Simons on S3 upto

a normalization factor. The supersymmetric partition function of Chern-Simons theory

coupled to matter on Aq was evaluated in [24].

We first set up the supersymmetric transformations of the vector multiplet on AdS2×
S1, we then determine the localization Lagragian and the partition function on Bq by eval-

uating the one-loop determinants using the index approach. Then the indices are evaluated

by explicitly solving the differential equations and counting the solutions which contribute

to the index. We discuss in detail the boundary conditions on Bq which ensure that the

space of functions for which the indices are evaluated lie in the space of normalizable func-

tions in AdS2. We show that with these boundary conditions the supersymmetric partition

function on Bq is identical to the partition function on Aq. This in turn ensures that the

partition function of super Chern-Simons theory obtained by localization on Bq agrees

with the partition function of pure bosonic Chern-Simons theory. Given this agreement,

we further consider a family of non-singular 3-manifolds, labelled by a continuous parame-

ter s ∈ [0, 1], which are conformally equivalent to AdS2 × S1 and show that the index and

the partition function do not change. These 3-manifolds are defined using the conformal

transformation that does not change the asymptotic boundary conditions on the fields.

The organisation of this paper is as follows. In the next section as a warm up we

show that the partition function of the Abelian Chern-Simons theory on AdS2 × S1 is

independent of q and agrees precisely with that on the space Aq which was obtained in [23].

The analysis of this section will show what are the boundary conditions imposed on the

fields in AdS2 which results in the agreement. In section 3 we study N = 2 supersymmetry

for the gauge multiplet on AdS2 × S1. We solve for the Killing spinors on AdS2 × S1 and

obtain the supersymmetric transformation under which N = 2 Chern-Simons Lagrangian

is supersymmetric and then obtain the localizing term. In the section 4 we evaluate the

supersymmetric partition function on Bq by performing the one loop determinants using

the index method. We discuss the boundary conditions of the functions over which the

index is evaluated in detail. We show that the result of the partition function coincides

with the supersymmetric partition function on Aq. In section 5 we evaluate the expectation

value of a supersymmetric Wilson loop operator. In section 6 we consider a family of 3-

manifolds which are conformal to AdS2×S1 and show that the index does not change.

Finally in section 7 we conclude with the discussion of the implications of these results.

2 Abelian Chern-Simons theory on AdS2 × S1

As a warm up we begin testing the relationship between the partition functions on theories

defined on the space Aq and Bq by first considering the case of the abelian Chern-Simons

theory on the space Bq. The action of this theory is given by

SCS =
iκ

4π

∫

d3xεµνρAµ∂νAρ. (2.1)
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Here εµνρ is a tensor density with ετrθ = 1 and is related to Levi Civita tensor ǫµνρ by

ǫµνρ =
1√
g
εµνρ, (2.2)

where g is the determinant of the metric. The partition function Zq of this theory on Aq

was evaluated in appendix C of [23] and it was shown that the result is independent of q

and is given by

logZq = −1

2
log κ. (2.3)

It is indeed expected that the Chern-Simons partition function is a topological invariant

and therefore should be independent of q. However this result is more significant since the

space Aq is not smooth.

Our goal is now to reproduce this dependence on κ by evaluating the partition function

of the theory on Bq. For convenience we rescale the co-ordinate

Lτ̃ = τ. (2.4)

Without losing any generality we also choose

q =
1

L
. (2.5)

Then we obtain the metric

ds2 = dτ2 + L2(dr2 + sinh2 rdθ2). (2.6)

Now the range of τ is given by

0 ≤ τ ≤ 2π . (2.7)

We use the covariant gauge

∇µAµ = 0. (2.8)

The action including the ghosts then become

Sghost =

∫

d3x
√
g (−c̄�c+ ib∇µAµ) . (2.9)

Here c is the fermionic ghost, while b is the bosonic ghost. The � refers to the Laplacian of

a massless scalar with the metric in (2.6). The total action including the ghosts is given by

Stotal =
iκ

4π

∫

d3xεµνρAµ∂νAρ +

∫

d3x
√
g (−c̄�c+ ib∇µAµ) . (2.10)

Substituting the total action into the path integral and performing the integral over both

the bosonic and the fermionic ghosts we are left with the following partition function.

Z = (det�)

∫

D[Aµ]δ [∇µAµ] exp

(

iκ

4

∫

d3xεµνρ(Aµ∂νAρ)

)

. (2.11)

Note that now we need to perform the path integral over configurations of gauge fields

such that the covariant gauge condition is satisfied. We will find a suitable set of variables
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where this can be carried out. Before we proceed, it is useful to write down the explicit

expression for the determinant of the Laplacian on AdS2 × S1. The eigen functions of the

Laplacian are given by

�Φ(λ,l;n) = −
(

λ̃2 + n2
)

Φ(λ,l;n), λ̃2 =
1

L2

(

λ2 +
1

4

)

. (2.12)

Here λ, l labels the quantum numbers onf AdS2 and n labels the Kaluza-Klein modes on

S1. The wave function Φ(λ,l;n) are constructed using the the eigen functions of the scalar

Laplacian on AdS2 together with the Fourier mode on S1. They are defined as

Φ(λ,l;n)(r, θ, τ) =
1

L
gλ,l(r, θ)e

inτ , (2.13)

and gλ,l(r, θ) are normalizable eigen functions on AdS2 which are given for example in [25,

26].1 The eigen value λ takes values from 0 to ∞ while {l, n} ∈ Z. Using the orthonormal

properties of fλ,l we have

∫

d3x
√
g(Φ(λ,l;n))

∗Φ(λ′,l′;n′) = 2πδ(λ− λ′)δl,−l′δn,−n′ . (2.14)

These eigen functions satisfy the following properties near the origin and the at boundary

of AdS2.

lim
r→0

Φ(λ,l;n)(r θ, τ) ∼ r|l|ei(lθ+nτ), (2.15)

lim
r→∞

Φ(λ,l;n)(r θ, τ) ∼ e−
r
2
±iλrei(lθ+nτ).

Therefore the c ghosts are expanded in terms of normalizable functions in AdS2. Using

these eigen functions we can write down the following expression for the determinant of

the Laplacian.

log(det �) =
n=∞
∑

n=−∞

∫ ∞

0
dλµ(λ) log

(

λ̃2 + n2
)

. (2.16)

Here µ(λ) is the density of states which is given by

µ(λ) =
1

2πL2
λ tanh(πλ). (2.17)

This expression has to be regularized. We can adopt the regularization procedure given

in [23], but we will not need it explicitly.

To impose the delta function in the path integral of (2.11) it is useful to expand the

gauge field Aµ in terms of a complete basis. On AdS2, the vector can be expanded as

a gradient of a scalar as well as a transvese component. Furthermore there are discrete

modes for the vector on AdS2 [26].

Am = ci∂mΦi(r, θ, τ) + diǫmn∂
nΦi(r, θ, τ) + fj∂mΨj(r, θ, τ). (2.18)

1See equation (2.10) of [25].
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Here m ∈ {r, θ} the coordinates of AdS2. The repeated index over i refers to integration

over the AdS2 eigen value λ and the sum over the angular momentum mode l in AdS2

together with the sum over the Kaluza-Klein mode n. For example

ciΦi(r, θ, τ) =
∑

l,n

∫ ∞

0
dλc{λ,l;n}Φ(λ,l;n). (2.19)

Note that though there is a sum over the infinite number of angular momentum modes l for

each value of λ, it will turn out that the integrand (2.11) is independent of l and therefore

we can just sum over the density of states using the measure in (2.17). for each value of λ

in evaluating the logarithm of the partition function. From now on we keep track of only

the integral over λ and the sum over the Kaluza-Klein modes. The discrete modes in (2.18)

will play and important role in our analysis. Let us recall the discrete modes of a vector on

AdS2. There are defined in terms of non-normalizable zero modes of the scalar Laplacian

on AdS2 which are given by

Ψ{l,n}(r, θ, τ) =
1

√

2π|l|

(

sinh r

1 + cosh r

)|l|
eilθeinτ , l = ±1,±2, . . . (2.20)

These modes satisfy

�AdS2Ψ{l,n}(r, θ, τ) = 0. (2.21)

Note that though these functions are non-normalizable, the gradient of these scalars satisfy

the condition ∫

drdθ
√
gAdS2 ∇mΨ{l,n}∇m(Ψ{l′,n})

∗ = δl,l′ . (2.22)

Thus the summation over j which occurs with the discrete modes in (2.18) refers to the

double sum over the angular momentum modes l and the Kaluza-Klein modes n. Since the

gauge field Am is real we have the property

c∗{λ;n} = c{λ;−n}, d∗{λ;n} = d{λ;−n}, f∗
{l;n} = f{−l;−n}. (2.23)

Finally since the Aτ is a scalar on AdS2 we can expand it as

Aτ = eiΦi(r, θ, τ). (2.24)

From (2.18) and (2.24) we see that the gauge fields satisfy the following boundary conditions

in AdS2.

lim
r→0

A(λ,l;n)
r ∼ r|l|−1ei(lθ+nτ), lim

r→0
A

(λ,l;n)
θ ∼ r|l|ei(lθ+nτ), (2.25)

lim
r→0

A(λ,l;n)
τ ∼ r|l|ei(lθ+nτ),

lim
r→∞

A(λ,l;n)
r ∼ e−

r
2
±iλrei(lθ+nτ), lim

r→∞
A

(λ,l;n)
θ ∼ e

r
2
±iλrei(lθ+nτ),

lim
r→∞

A(λ,l;n)
τ ∼ e−

r
2
±iλrei(lθ+nτ).

Note that for the gauge fields in the AdS2 direction the angular momentum runs from

l ∈ {±1,±, 2, · · · }.
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Let us now find the Jacobian involved in changing the integration over Aµ in (2.11)

to the Fourier coefficients {c{λ;n}, d{λ;n}, e{λ;n}, f{l;n}}. We start with the measure over Aµ

which is defined with the normalization
∫

[DAµ] exp

(

−
∫

d3x
√
gAµA

µ

)

= 1. (2.26)

On substituting the expansion given in (2.18) and (2.24) into the exponent we obtain

∫

d3x
√
gAµA

µ = 4π
∞
∑

n=1

[

λ̃2(c{λ;n}c{λ;−n} + d{λ;n}d{λ;−n}) + e{λ;n}e{λ;−n}
]

+ 2π
[

λ̃2(c{λ;0}c{λ;0} + d{λ;0}d{λ;0}) + e{λ;0}e{λ;0}
]

+
∑

l,n

fl,nf−l−n.

(2.27)

Here we have written down the expression for a given value of λ. Now using this expansion

in (2.26) and changing variables we obtain

∫

∏

n

[dc{λ;n}d(d{λ;n})de{λ;n}]
∏

n,l

[dfl,n]J (2.28)

× exp







− 4π
∞
∑

n=1

[

λ̃2(c{λ;n}c{λ;−n} + d{λ;n}d{λ;−n}) + e{λ;n}e{λ;−n}
]

−2π
[

λ̃2(c{λ;0}c{λ;0} + d{λ;0}d{λ;0}) + e{λ;0}e{λ;0}
]

−
∑

l,n

fl,nf−l−n







= 1,

where J is the Jacobian involved in the change of integration variables. Again we have

written this only for a given value of λ. Peforming the integrations and taking into account

of the density of states (2.17) we obtain

logJ =

∫

dλµ(λ)

(

log(λ̃2) + 2
∞
∑

n=1

log(λ̃2)

)

. (2.29)

We have also used the relation (2.23) and the fact that for n = 0, the Fourier coefficients

are real. Of course one needs to regularize the above expression, in fact the sum over n

can be done by using the ζ function regularization. At present we will assume a definite

regularization has been chosen and proceed. We now rewrite the delta function in terms

of the Fourier coefficients. The divergence on Aµ can be written as

∇µAµ = ci�Φi(r, θ, τ) + ei∂τΦi(r, θ, τ). (2.30)

Therefore the delta function which imposes the transversality condition can be written as

δ(∇µAµ) =
∏

λ;n 6=0

[

δ(ineλ;n − λ̃2cλ,n)
]

∏

λ

[

δ(−λ̃2c{λ,0})
]

. (2.31)
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To arrive at this for the n = 0 case we have used the fact that there are no normaliz-

able scalars on AdS2 with zero eigen value for the Laplacian. Now it is easy to see that

performing the integration over cλ,n results in the Jacobian2

log Ĵ = −
∫

dλµ(λ)

(

log(λ̃2) + 2
∞
∑

n=1

log(λ̃2)

)

. (2.32)

Note the factor of 2 for the modes n 6= 0 results from the positive and negative Kaluz-

Klein modes. Comparing (2.29) and (2.32) we see that the Jacobian resulting from the

change of variables precisely cancels on peforming the integral over cλ,n using the delta

function (2.31) which imposes the transversality condition.

To summarize the set of integration variables left over are
{

e{λ,n}, d{λ,n}, f{l,n}
}

. The

transverse gauge field Aµ is expanded as

Am(x, τ) =
in

λ̃2
e{λ,n 6=0}∂mΦ{λ,n} + d{λ,n}ǫmn∂

nΦ{λ,n} + f{l,n}∂mΨi,

Aτ (x, τ) = e{λ,0}Φ{λ,0} + e{λ,n 6=0}Φ{λ,n 6=0}. (2.33)

Substituting these modes in the action of the partition function (2.11), we obtain

κ

4π

∫

d3xεµνρAµ∂νAρ = κ







λ̃2d{λ,0}e{λ,0} +
∞
∑

n>0

(

λ̃2 + n2
)

(e{λ,n}d{λ,−n} − e{λ,−n}d{λ,n})

+
∑

n,l>0

n(f{l,−n}f{−l,n} − f{l,n}f{−l,−n})







. (2.34)

In the above equation we have consider the modes with fixed λ. In fact there is an integral

over λ. Each mode in λ occurs with a density of states given in (2.17). Integrating out
{

e{λ,n}, d{λ,n}, f{l,n}
}

we obtain the partition function. As before note that all modes with

n 6= 0 are complex and we use the relation in (2.23) and the modes e{λ,0}, d{λ,0} are real.

Performing the gaussian integrations we obtain

log Ẑ = −
∫ ∞

0
dλµ(λ)

[

log(κλ̃2) +
∞
∑

n=1

log
(

κ2(n2 + λ̃2)2
)

]

−
∞
∑

n,l=1

log(κ2n2). (2.35)

Here Ẑ is defined by Z = (det �) Ẑ. After some rearrangements we obtain

log Ẑ = −
∫

dλµ(λ)

(

log κ+
∞
∑

n=1

log(κ2)

)

−
∞
∑

l,n=1

log(κ2) (2.36)

−
∫

dλµ(λ)

(

log λ̃2 + 2
∞
∑

n=1

(n2 + λ̃2)

)

−
∞
∑

n,l=1

log(n2).

2One can also perform the integration over the variables eλ,n and arrive at the same final result.
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We use the ζ function regularization to perform the sums involving

∞
∑

n=1

1 = −1

2
. (2.37)

This results in

log Ẑ = = −1

2
log κ−

∫

dλµ(λ)

( ∞
∑

n=−∞
log(λ̃2 + n2)

)

, (2.38)

where we have ignored the κ and L independent constant. We can now substitute the

partition function Ẑ in (2.11) and use the expression (2.16) for the determinant of the

massless scalar in AdS2 to obtain

logZ = −1

2
log κ. (2.39)

Thus we obtain the result the the partition function of the Abelian Chern-Simons theory

on AdS2 × S1 independent of L and depends on the coupling constant κ precisely the

same way as that of the Abelian Chern-Simons theory on the space Aq. It is interesting

to note that the discrete modes of the vector on AdS2 played the crucial role in obtaining

the dependence on κ. This resulted in the expected relation between the parition function

on the two conformally related spaces. It is also important to observe that the space

of functions over which we performed the path integral were all normalizable functions

on AdS2 × S1.

3 Supersymmetry on AdS2 × S1

We would like to consider a non-abelian Chern-Simon theory based on a gauge group

G on AdS2 × S1 and evaluate its partition function. To do this we use the fact that

the field content of N = 2 supersymmetric Chern-Simons theory, apart from the gauge

field of interest consists of only auxillary fields without kinetic energy terms. Thus the

N = 2 supersymmetric Chern-Simons theory is equivalent to the bosonic Chern-Simons

theory with the same gauge group G. Therefore we can determine the partition function

of the bosonic Chern-Simons theory on AdS2 × S1 by evaluating the partition function

of the N = 2 supersymmetric Chern-Simons theory on AdS2 × S1 using the technique of

localization. In this section we first solve for the Killing spinors on AdS2×S1. We use these

Killing spinors to construct the supersymmetric variation of the N = 2 gauge multiplet

and demonstrate the invariance of the Chern-Simons action. Finally we determine the

locallizing term which is exact under the supersymmetric variation.

3.1 Killing spinors on AdS2 × S1

The background metric of AdS2 × S1 is given by

ds2 = dτ2 + L2(dr2 + sinh2 r dθ2) . (3.1)

The vielbein are e1 = dτ, e2 = Ldr, e3 = L sinh r dθ.

– 9 –
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The non vanishing components of Christoffel symbols and spin connections are given by

Γr
θθ = − cosh r sinh r, Γθ

rθ = coth r, ω3
2 = cosh r dθ . (3.2)

The Killing spinors are solutions of the following equations

(∇µ − iAµ) ǫ = −1

2
Hγµǫ− iVµǫ−

1

2
ǫµνρV

νγρǫ,

(∇µ + iAµ) ǫ̃ = −1

2
Hγµǫ̃+ iVµǫ̃+

1

2
ǫµνρV

νγρǫ̃. (3.3)

Here Aµ, H and Vµ are fields in the supergravity multiplet. At the linearised level Aµ

couples to R-symmetry current, H couples to string current and Vµ is the dual of gravipho-

ton field strength which couples to central charge current. ǫ and ǫ̃ are complex spinors

parameterizing the supergravity transformations with R-charge +1 and −1, respectively.

In Lorentzian signature, ǫ and ǫ̃ are complex conjugate to each other but in Euclidean

theory they are independent complex spinors.

It is clear from killing spinor equations (3.3) that the vector field Kµ = ǫ̃γµǫ is a Killing

vector i.e. it satisfies the Killing vector equation

∇µKν +∇νKµ = 0 . (3.4)

For our metric background the compact isometries are generated by killing vectors of the

form K± = ∂
∂τ ± ∂

∂θ . We make the following choice of killing vector

K =
∂

∂τ
+

1

L

∂

∂θ
. (3.5)

This choice of Killing vector simplifies the Killing spinor and supergravity background fields

which are given by

ǫ = e
iθ
2

(

i cosh
(

r
2

)

sinh
(

r
2

)

)

, ǫ̃ = e−
iθ
2

(

sinh
(

r
2

)

i cosh
(

r
2

)

)

,

Aτ = Vτ =
1

L
, Ar,θ = H = 0 . (3.6)

For more details on the solutions of Killing spinor equations see the appendix B.

3.2 Supersymmetry of the vector multiplet

Vector multiplet in N = 2 theory in Lorentzian signature contains a real scalar σ, gauge

field Aµ, an auxiliary real field G and 2 component Weyl fermions λ and λ̃. In order

to compute partition function we need to analytically continue to Euclidean space. We

choose the analytic continuation where the scalar field σ and the auxiliary field G are

purely imaginary, the gauge field Aµ is real and the spinors λ and λ̃ are two independent

complex spinor. As we will see this choice of analytic continuation makes the bosonic part

of the Q-deformation in the action positive definite.
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The Euclidean supersymmetry transformation of the fields in a vector multiplet is

given by

Qλ = − i

4
ǫG− i

2
ǫµνργρFµνǫ− iγµǫ (iDµσ − Vµσ) ,

Qλ̃ =
i

4
ǫ̃ G− i

2
ǫµνργρFµν ǫ̃+ iγµǫ̃ (iDµσ + Vµσ) ,

QAµ =
1

2

(

ǫγµλ̃+ ǫ̃γµλ
)

,

Qσ =
1

2

(

−ǫλ̃+ ǫ̃λ
)

,

QG = −2i
[

Dµ

(

ǫγµλ̃− ǫ̃γµλ
)

− i
[

σ, ǫλ̃+ ǫ̃λ
]

− iVµ

(

ǫγµλ̃+ ǫ̃γµλ
)]

. (3.7)

The square of the susy transformations on vector multiplet fields are given by

Q2λ = LKλ+ i[Λ, λ]− 1

2L
λ ,

Q2λ̃ = LK λ̃+ i[Λ, λ̃] +
1

2L
λ̃ ,

Q2Aµ = LKAµ +DµΛ ,

Q2σ = LKσ − iKµ[Aµ, σ] ,

Q2G = LKG+ i[Λ, G] . (3.8)

Here Λ = ǫ̃ǫ σ −KρAρ.

Using the above supersymmetry transformations we also note that QΛ = 0.

Therefore the algebra of supersymmetry transformation is given by

Q2 = LK + δgauge transf
Λ + δR-symm

1
2L

. (3.9)

It is equivalent to work with fermion bilinear (Ψ,Ψµ) instead of (λ, λ̃) which are defined as

Ψ =
i

2
(ǫ̃λ+ ǫλ̃) , Ψµ = QAµ =

1

2
(ǫγµλ̃+ ǫ̃γµλ) . (3.10)

The fermion bi-linears are convenient for the evaluation of the index. The inverse of the

above relations expresses (λ, λ̃) in terms of Ψ,Ψµ as

λ =
1

ǫ̃ǫ
[γµǫΨµ − iǫΨ] , λ̃ =

1

ǫǫ̃
[γµǫ̃Ψµ − iǫ̃Ψ] . (3.11)

The supersymmetry transformation of the bi-linears are

QΨ =
1

4
(ǫ̃ǫ)G− i

2
(ǫ̃γµνǫ)Fµν −

1

L
σ ,

QΨµ = LKAµ +DµΛ . (3.12)
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3.3 The localizing action

Next we deform the action by a Q-exact term, tQVloc. According to the principle of

supersymmetric localization, the partition function does not depend on the parameter t

and the choice of Vloc. Thus one can take t to infinity. In this limit the path integral receives

contribution from the field configurations which are minima ofQVloc. One convenient choice

of Vloc is given by

Vloc =

∫

d3x
√
g

1

(ǫ̃ǫ)2
Tr

[

Ψµ(QΨµ)
† +Ψ(QΨ)†

]

. (3.13)

The bosonic part of the QVloc action is given by

QVloc{bosonic} =

∫

d3x
√
g

1

2(ǫ̃ǫ)2
Tr

[

(QΨµ)(QΨµ)
†+(QΨ)(QΨ)†

]

=

∫

d3x
√
gTr

[

1

4
FµνF

µν− 1

2 cosh2 r
Dµ(cosh r σ)D

µ(cosh r σ)− 1

32

(

G− 4σ

L cosh r

)2
]

.

(3.14)

The minima of QVloc{bosonic} are the solutions of the following equations

Fµν = 0 , Dµ(cosh r σ) = 0 , G =
4σ

L cosh r
. (3.15)

In order to solve Fµν = 0 for the background gauge field Aµ, we choose a gauge Ar = 0.

In this gauge we get the following equations for Aµ ,

Fτr = 0 ⇒ ∂rAτ = 0 , (3.16)

Frθ = 0 ⇒ ∂rAθ = 0 , (3.17)

Fτθ = 0 ⇒ ∂τAθ − ∂θAτ − i [Aτ , Aθ] . (3.18)

The first two equations imply that both At and Aθ are independent of r. Requiring that

the solutions should be normalizable imply that At = 0. The third equation imply that

Aθ is independent of t and thus can only be function of θ. Now requiring further that the

solution of localization equation should be smooth near the origin of AdS2 implies that Aθ

should approach to zero. Thus the only solution for the localization equation Fµν = 0 is

trivial and there are no non trivial smooth and normalizable solutions for Aµ. Thus the

solution of localization equation upto gauge transformations is given by

Aµ = 0 , σ =
iα

cosh r
, G =

4iα

L cosh2 r
. (3.19)

Here α is a real constant matrix valued in Lie algebra. Furthermore on this localization

background the gauge transformation parameter in supersymmetry algebra reduces to a

constant, Λ(0) = iα.

The supersymmetric completion of a bosonic Chern-Simons action is given by

SCS =

∫

d3x
√
gTr

[

iεµνρ
(

Aµ∂νAρ −
2i

3
AµAνAρ

)

− λ̃λ+
i

2
Gσ

]

. (3.20)

Here εµνρ = 1√
g ǫ

µνρ, ǫτηθ = 1.

– 12 –



J
H
E
P
0
3
(
2
0
1
7
)
0
5
0

We note here that the fermions and scalars in the vector multiplet are purely auxiliary

fields as they do not have kinetic terms and therefore, one can integrate them out. Thus

the supersymmetric Chern-Simons theory is equivalent to a bosonic Chern-Simons theory.

The action in (3.20) is invariant under supersymmetry transformation upto terms

which are total derivative

QSCS =

∫

d3x
√
g∇ρTr

[

i

2
ερµνAµ(ǫγν λ̃+ ǫ̃γνλ) + (ǫγρλ̃− ǫ̃γρλ)σ

]

. (3.21)

In terms of cohomological variable the above boundary terms can be written as

QSCS =

∫

d3x
√
g∇ρTr

[

i

2
ερµνAµΨν +

2i

ǫ̃ǫ
(KρΨ+ ερµνKµΨν)σ

]

. (3.22)

We will comment more about the boundary terms later when we discuss about the boundary

conditions on fields and show that there are no contributions from boundary terms.

4 The one loop determinant

We will now proceed to compute the determinant coming from the quadratic fluctuation

of QVloc action. This is done by obtaining the indices of the operators involved in the

one loop determinant by explicitly solving for the solutions and counting the ones which

contribute to the index. To begin, we simplify our path integral using the gauge invariance

which allow us to diagonalize the Lie algebra valued matrix α of the gauge group G. This

introduces the Vandermonde determinant in the path integral. Thus our path integral

becomes

Z =

∫

dα
∏

ρ>0

(ρ · α)2 exp
( κ

4π
SCS

)

Z1-loop(α) . (4.1)

We will now compute Z1-loop(α).

4.1 Localization in U(1) Chern-Simons theory

Let us again begin with the warm up example of the one loop determinant about the

localizing solution for the case of the Abelian theory for which the evalution of the one

loop determinant simplifies considerably. In this case it is very easy to see that the one loop

determinant is trivial i.e. independent of the parameter α. The bosonic part of the action

given in equation (3.14) at the quadratic order in fluctuations do not have any dependence

on α. Therefore, the one loop determinant coming from bosonic fluctuations will not have

α dependence. The fermionic part of the QVloc-Lagrangian in the Abelian case also does

not depend on α. The fermionic part of the Lagrangian is given by

QVloc{fermionic} = Tr

[

− i

2L(ǫ̃ǫ)
(λλ̃)− i

2
V a(λ̃γaλ)−

1

2
λ̃ /Dλ− 1

2
λ /Dλ̃

+
i

4

V a(ǫγaǫ)

ǫ̃ǫ
(λ̃λ̃) +

i

4

V a(ǫ̃γaǫ̃)

ǫ̃ǫ
(λλ)

]

. (4.2)
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Therefore, the one loop determinant coming from fermionic fluctuations will also not have

α dependence. Thus upto a normalization constant, the partition function is completely

determined by the classical action.

The classical action evaluated at the localizing solution is given by

exp
( κ

4π
SCS

)

= exp(−πiα2Lκ). (4.3)

Thus the partition function of the Abelian Chern-Simons theory is given by

Z ∼
∫

dα exp(−πiα2Lκ) ∼ 1√
κL

. (4.4)

As we will show later, a more careful analysis of the determinant shows that the normal-

ization constant do depends on L and in particular it exactly cancel the
√
L coming from

the integral.

4.2 Localization in non-abelian Chern-Simons theory

We will now compute the one loop determinant about the localizing solution for non abelian

Chern-Simons gauge theories. For this, first we need to introduce the gauge fixing La-

grangian. This could be achieved by choosing any convenient gauge condition. In our case

it turns out that the analysis becomes simpler for the gauge fixing Lagrangian3

Lg.f. = TrQB

[

ic̃∇µ

(

1

cosh2 r
aµ

)

+
1

2
ξc̃B

]

. (4.5)

As we will show below the complete action including the gauge fixing Lagrangian is invariant

under BRST transformations on the fields which are given by

QBaµ = Dµc, QB c̃ = B, QBc =
i

2
{c, c}, QBλ̃ = i{c, λ̃}

QBλ = i{c, λ}, QBσ̂ = i[c, σ̂], QBĜ = i[c, Ĝ], QBB = 0 . (4.6)

Here aµ, σ̂ and Ĝ are fluctuations away from localizing .

We also define the susy transformations for extra fields

Qc = −Λ + Λ(0), QB = LK c̃+ i[Λ(0), c̃], Qc̃ = 0 (4.7)

such that the combined transformations generated by Q̂ = Q+QB satisfy the algebra

Q̂2 = LK + δgauge transf.

Λ(0) . (4.8)

To summarize, the complete transformations of fields under Q̂ are given by

Q̂aµ = Ψµ +Dµc, Q̂σ̂ = Qσ̂ + i[c, σ̂] ,

Q̂Ψµ = LKaµ +DµΛ + i{c,Ψµ}, Q̂Ψ =
1

4
(ǫ̃ǫ)Ĝ− i

2
(ǫ̃γµνǫ)Fµν(a)−

1

L
σ̂ + i{c,Ψ} ,

Q̂c = −Λ + Λ(0) +
i

2
{c, c}, Q̂c̃ = B . (4.9)

3As we will show in the subsection 4.3, this gauge choice fixes the gauge completely. It is also possible

to show that this gauge choice intersects every gauge orbit.
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The gauge fixing Lagrangian (4.5) is not Q closed and therefore we can not use it for the

localization problem. But a simple modification of it allows us to use

L̂g.f. = Tr Q̂

[

ic̃∇µ

(

1

cosh2 r
aµ

)

+
1

2
ξc̃B

]

,

= Lg.f. − iTr c̃∇µ

(

1

cosh2 r
Ψµ

)

− 1

2
Tr ξc̃

(

Lk c̃+ i[Λ(0), c̃]
)

. (4.10)

Clearly L̂g.f. is equivalent to Lg.f. as the rest of the terms do not contribute to the partition

function. With L̂g.f. our path integral is invariant under Q̂ and we will use Q̂ for the

localization of the path integral.

Boundary conditions. When evaluating partition functions on non compact spaces it

is important to specify the choice of boundary conditions obeyed by the fields in the theory.

The partition function depends on the boundary conditions chosen. Furthermore to apply

the method of supersymmetric localization the boundary conditions must also be invariant

under the supersymmetry transformations. In order to achieve this, we begin by imposing

the boundary conditions on the fields (Aµ,Ψ, c, c̃) and then impose the boundary conditions

on the rest of the fields following supersymmetry transformations. For example we require

that the field Q̂Aµ has the same boundary condition as that of Aµ.

Looking at the Q̂V Lagrangian we find that in order for the vector field to be square

integrable, the components must satisfy the following asymptotic conditions as r → ∞

er/2Aτ → 0, er/2Ar → 0, e−r/2Aθ → 0. (4.11)

The boundary condition on the ghost field c is determined by using the fact that it is a

gauge transformation parameter. It is required that the gauge transformations should not

change the asymptotic boundary condition of the gauge field given in (4.11). This forces

the ghost field c to have the following asymptotic behaviour as r → ∞

c ∼ f(θ) + f̃(θ, τ) e−r/2 + . . . (4.12)

Once we fix the asymptotic behaviour of the allowed gauge transformations, the Faddeev-

Popov determinant needs to be computed in this restricted subspace of the gauge trans-

formations. This naturally fixes the c̃ to have the same boundary condition as that of c.4

The boundary condition on the field Ψ is determined by the asymptotic behaviour of

its Q̂ variation (4.9). Given the asymptotic behaviour of the gauge field Aµ and G,5 we see

that Q̂Ψ satisfies the condition e−r/2Q̂Ψ → 0 as r → ∞. We, therefore, require that the

field Ψ satisfies the boundary condition e−r/2Ψ → 0.

Next we will discuss the smoothness conditions for the fields near r → 0 which play

an important role in analysing the space of kernel and cokernel in the next sections. In

4The ghost Lagrangian density in our case is given by c̃∇µ

(

gµν

cosh2 r
∇νc

)

. Defining c = cosh r ω1 and

c̃ = cosh r ω2, where ω1,2 are scalar fields, we see that the corresponding operator for ω1,2 is a self adjoint

and maps a mode with given asymptotic behaviour to a mode with the same asymptotic behaviour.
5From the bosonic part of Q̂V Lagrangian, we see that the field G is square integrable if er/2G → 0

as r → ∞.
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order to find the regularity conditions near r → 0, we expand the field in terms of Fourier

mode, X(τ, r, θ) = X(n,p)(r)e(inτ+ipθ). Near r → 0, the θ-circle shrinks to zero size and

therefore, the regular behaviour of the field is determined by integer p. For any scalar field,

collectively denoted by Φ, its Fourier mode Φ(n,p) needs to have ∼ rp behaviour as r → 0.

On the other hand the component of a vector field should satisfy the following regularity

conditions

A(n,p 6=0)
τ ∼ rp, A(n,p 6=0)

r ∼ rp−1, A
(n,p 6=0)
θ ∼ rp,

A(n,p=0)
τ ∼ O(1), A(n,p=0)

r ∼ r, A
(n,p=0)
θ ∼ r2. (4.13)

Now let us look at the variation of Chern-Simons action under Q̂. Compared to (3.22) we

obtain extra terms proportional to the ghost field,

Q̂SCS =

∫

d3x
√
g∇ρTr

[

i

2
ερµνAµΨ̂ν +

2i

(ǫ̃ǫ)2
ερµνKµ(Ψ̂ν −Dµc)(Λ +KµAµ)

]

, (4.14)

where Ψ̂µ = Q̂Aµ = Ψµ +Dµc. With the above boundary conditions, both at r → 0 and

r → ∞, we see that the Q̂ variation of the supersymmetric Chern-Simons action vanishes

and thus we can use the techniques of localization to compute the partition function.

To proceed further we change the field variables to X0 = (aµ), X1 = (Ψ, c, c̃) and

X ′
0 = Q̂X0 and X ′

1 = Q̂X1. In this notation our set of bosonic fields (aµ,Λ, Ĝ, B) are

represented by (X0, X
′
1) and fermionic fields (Ψ,Ψµ, c, c̃) are represented by (X1, X

′
0). We

then rewrite our localization Lagrangian, if necessary integrating by parts. It is important

to note that because of the presence of 1
cosh2 r

and the asymptotic boundary conditions on

all the fields, there are no boundary terms while integrating by parts. We thus obtain the

localization Lagrangian

Vloc = Tr(Q̂X0 X1)

(

D00 D01

D10 D11

)(

X0

Q̂X1

)

. (4.15)

Here Dij are various differential operators and we are only keeping the quadratic terms in

the fluctuations. By taking Q̂ of Vloc and assembling bosonic and fermionic terms one can

show that the one-loop result is:

Z1-loop(α) =

√

DetCokerD10(Q̂
2)

DetKerD10(Q̂
2)

. (4.16)

Thus for a given eigen value of H ≡ Q̂2, we just need to know the difference in dimensions

of kernel and cokernel of D10 operator. This difference is encoded in the equivariant index

of D10 defined as

indequivD10 = TrkerD10 e
iHt − TrcokerD10 e

iHt =
∑

n∈Z
(m(0)

n −m(1)
n )qn . (4.17)

Here m
(0,1)
n are the dimension of kernel and cokernel for a given eigen value of H labelled

by n.
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To identify the D10 operator, it is convenient to note the following:

(Q̂Ψµ)
† = LKaµ + (DµΛ)

† + · · · = LKaµ −DµΛ− 2Dµ(K · a) + . . . , (4.18)

(Q̂Ψ)† = −Q̂Ψ− i(ǫ̃γµνǫ)Fµν + . . . (4.19)

where dots include terms quadratic in fermionic fields. Since we are only interested in D10

the relevant terms are

−
√
g

(ǫ̃ǫ)2
Tr

[

gµνDµc (LKaν+[α, aν ]−2Dν(K·a))+iΨ(ǫ̃γµνǫ)Fµν−ic̃(ǫ̃ǫ)2Dµ

(

1

(ǫ̃ǫ)2
aµ

)]

.

(4.20)

Before proceeding for the detailed computations of kernel and cokernel, we notice that the

pure constant mode of c and c̃ are zero modes of the Q̂V action. We, therefore, consider

the path integral measure such that we don’t integrate over the constant zero modes.

Since Q̂2 commutes with ∂t and ∂θ, we can study the kernel and cokernel for each

Fourier mode in t and θ separately. We, therefore, write X0 fields as X0(r)e
−i(nt+pθ) and

X1 fields as X1(r)e
i(nt+pθ). Note that the eigenvalues of Q̂2 on X0,1 in this subspace are

−i
(

n+ p
L ± iρ · α

)

where ρ is a root vector.

4.3 Analysis for kernel and co-kernel

It is convenient to make the following change of variables in each root space ρ:

at = a(K)− aθ/L, (4.21)

c̃ = ˆ̃c+
Ln+ p− Lρ · α

L
c, (4.22)

where a(K) = K · a. Note that the boundary condition of ˆ̃c is the same as c̃ and that of

a(K) is the same as aθ.

By varying (4.20) with respect to c, ˆ̃c and Ψ we get the following equations for the

kernel:

∆(n,p)a(K)(r) = 0 ,

i∂r

(

sinh r

cosh2 r
ar(r)

)

+

(

p

sinh2 r
− Ln

)

sinh r

cosh2 r
aθ(r) +

sinh r

cosh2 r
L2na(K) = 0 ,

∂raθ(r) + i

(

p

sinh2 r
− Ln

)

sinh2 r

cosh2 r
ar(r)− L tanh2 r∂ra(K)(r) = 0 (4.23)

and by varying a(K), ar and aθ the following equations for the co-kernel:

∆(n,p)c(r) +
1

2L sinh r
∂r

(

tanh2 rΨ
)

+
n

4 cosh2 r
ˆ̃c = 0 ,

−2∂rΨ(r) +

(

p

sinh2 r
− Ln

)

sinh r

cosh2 r
ĉ(r) = 0 ,

sinh r

cosh2 r
∂r ĉ(r)− 2

(

p

sinh2 r
− Ln

)

tanh2 rΨ(r) = 0 (4.24)
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where ∆(n,p) = ∇µ 1
|ǫ|2∇µ is a second order differential operator restricted to Fourier mode

labelled by (n, p). Note that these equations do not have any α-dependence and therefore

they are the same in all the root spaces. We make a few remarks on the above equations:

1) The first kernel equation is a decoupled equation for a(K) involving the operator

∆(n,p). We will show below that it has no smooth solution satisfying the asymptotic

boundary condition, except for a constant solution for (n, p) = (0, 0). This means

that a(K) decouples from the last two kernel equations and they become coupled

homogeneous first order differential equations for ar and aθ. It is worth noting that

the gauge transformation by some function f(r)ei(nt+pθ) changes the gauge-fixing

condition ∇µ
(

1
cosh2 r

Aµ

)

by ∆(n,p)f(r). The fact that ∆(n,p)f(r) = 0 has no non-

trivial solutions in the allowed space of gauge transformations f(r),6 shows that our

gauge fixing condition indeed fixes the gauge completely.

2) The homogeneous part of the first co-kernel equation for c therefore has also no

solution. It may however have particular solution due to the inhomogeneous terms.

3) The last two co-kernel equations are first order differential equations in ˆ̃c and Ψ and

do not involve c. These equations are identical to the last two kernel equations (after

setting a(K) = 0) with the identification aθ → ˆ̃c and ar → 2i cosh
2 r

sinh r Ψ.

Kernel equations. First we show that ∆(n,p)a(K)(r) = 0 has no allowed solution for

(n, p) 6= (0, 0). The following argument will also show that for (n, p) = (0, 0) there is one

solution a(K)(r) = constant. The explicit form of this equation is given by

− sinh2 r ∂2
ra(K)(r)− tanh r(1− sinh2 r) ∂ra(K)(r) + (p2 + n2L2 sinh2 r)a(K)(r) = 0 .

(4.25)

This equation has real coefficients, therefore without losing generality, we can assume that

the solution a(K)(r) is real in r ∈ [0,∞]. Multiplying this equation by a(K)(r)/(cosh2 r

· sinh r) we obtain:

Lk ≡ sinh r

cosh2 r

(

(∂ra(K)(r))2 + (p2 + L2n2 sinh2 r)a(K)(r)2
)

−∂r

(

sinh r

cosh2 r
a(K)(r)∂ra(K)(r)

)

. (4.26)

If a(K) satisfies the equation, then Lk must be zero. Now integrating Lk we obtain the

condition

0 =

∫ ∞

0
drLk =

∫ ∞

0
dr

sinh r

cosh2 r

(

(∂ra(K)(r))2 + (p2 + L2n2 sinh2 r)a(K)(r)2
)

−
(

sinh r

cosh2 r
a(K)(r)∂ra(K)(r)

)
∣

∣

∣

∣

∞

0

. (4.27)

6(n, p) = (0, 0) and constant f defines gauge transformation by constant which doesn’t change the gauge

fields.
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The boundary term vanishes at r = 0 for smooth a(K) and vanishes at r = ∞ for a(K)

satisfying the asymptotic behaviour a(K)e−r/2 → 0. The integrand on the right hand side

is non-negative for all r, therefore for (n, p) 6= (0, 0), a(K) must vanish. On the other

hand for (n, p) = (0, 0), the above condition implies that ∂ra(K)(r) = 0 which allows for a

constant solution a(K)(r) = C1.

In either case a(K) disappears from the remaining two kernel equations: in the third

kernel equation only ∂ra(K) appears, while in the second kernel equations a(K) together

with a factor of n. It is clear from the structure of the equations that the solutions can be

assumed to be such that aθ is real and ar is pure imaginary (or vice versa). Multiplying

the second kernel equation by (−i sech r tanh r ar(r)) and the third kernel equation by

(sech2 r aθ(r)) and adding them together one obtains:

Sk ≡ tanh r

cosh2 r
aθ(r)

2 + ∂r

(

1

2 cosh2 r
(aθ(r)

2 + tanh2 r ar(r)
2)

)

. (4.28)

As Sk is a linear combination of the two equations, Sk will be zero on the kernel. The first

term in Sk is non-negative for all values of r and the second term is a total derivative in r.

This means that if we integrate Sk over r from 0 to ∞

0 =

∫ ∞

0
drSk =

∫ ∞

0
dr

tanh r

cosh2 r
aθ(r)

2 +

(

1

2 cosh2 r
(aθ(r)

2 + tanh2 rar(r)
2)

)∣

∣

∣

∣

∞

0

. (4.29)

From the smoothness condition at r = 0, namely, for p 6= 0, (ar, aθ) → (r|p|−1, r|p|) and
for p = 0, (ar, aθ) → (r, r2), we see that the boundary term in Sk, at r = 0, vanishes for any

smooth configuration. The boundary term at r = ∞ vanishes for square integrable gauge

fields. This shows that aθ = 0 and from the second kernel equation, it follows, that there

is no solution for ar which is square integrable. Thus, ar and aθ vanish for all n and p.

Now at = a(K)− aθ/L = a(K). For (n, p) 6= (0, 0), we have already shown that a(K) = 0.

For (n, p) = (0, 0), there was one solution a(K) = C1. This implies that for (n, p) = (0, 0),

at = C1. However this is not square integrable and therefore C1 = 0. Thus we have shown

that in the space of smooth and square-integrable gauge fields, kernel vanishes for all n

and p.

Co-kernel equations. As discussed above, the homogeneous part of the first co-kernel

equation for c(r) is the same as the kernel equation for a(K) for which we already showed

that there is no solution. However there may be a solution for the inhomogeneous equation.

In order to find the form of the inhomogeneous terms we need to find the solutions for ˆ̃c

and Ψ using the last two co-kernel equations. Both the equations involve real coefficients

and therefore the solutions for ˆ̃c and Ψ can be chosen to be real. Multiplying the third

equation by 2Ψ and the second equation by
ˆ̃c

sinh r and adding them, one gets:

S ≡ sinh r

cosh2 r
ˆ̃c2 + ∂r

(

1

2 cosh2 r
ˆ̃c2 − 2Ψ2

)

. (4.30)

The second term in S is a total derivative while the first term is non-negative. If the

equations are satisfied then S must be zero. Integrating over r one gets:

0 =

∫ ∞

0
drS =

∫ ∞

0
dr

sinh r

cosh2 r
ˆ̃c2 +

(

1

2 cosh2 r
ˆ̃c2 − 2Ψ2

)∣

∣

∣

∣

∞

0

. (4.31)
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The boundary term at r = 0 vanishes for p 6= 0 as both Ψ and ˆ̃c must go as r|p|. For p = 0,

however, the boundary term at r = 0 may not be zero. Indeed one can study the series

solutions of the two co-kernel equations for Ψ and ˆ̃c and show that the solutions for p = 0

go as r0.

To analyse the boundary term at r = ∞, we look for the asymptotic solutions in a

series expansion in e−r. For n 6= 0, the asymptotic behaviours are (ˆ̃c,Ψ) → (erγ+ , er(γ+−1))

and (ˆ̃c,Ψ) → (erγ− , er(γ−−1)) respectively, where

γ± =
1

2
(1±

√

1 + 4L2n2). (4.32)

Clearly only the second solution satisfies our boundary conditions, and for this the bound-

ary term in S vanishes at r = ∞. This proves that there are no acceptable solutions to

(ˆ̃c,Ψ) for n and p both non-zero. This also implies that c must be zero as there are no

inhomogeneous terms in the first co-kernel equation.

We already saw for p = 0 with n 6= 0, that the boundary term in S at r = 0 does

not vanish for smooth solution. The same happens for n = 0 and p 6= 0 at r = ∞. The

asymptotic behaviour of the two solutions, for n = 0 and p 6= 0, that can be verified by

making a series expansion in e−r, are

(ˆ̃c,Ψ) → (O(1), e−3r) (4.33)

(ˆ̃c,Ψ) → (e−r, O(1)). (4.34)

Both are acceptable solutions. While for the first, the boundary term at r = ∞ vanishes,

for the second the boundary term does not vanish. Thus for n = 0 or p = 0 (4.31) does

not give any useful information. For the co-kernel therefore, we need to study the three

special cases: i) p = 0, n 6= 0, ii) p 6= 0 and n = 0, iii) (p, n) = (0, 0). Fortunately, for these

cases one can find explicit analytic solutions for the co-kernel equations.

i) p = 0 and n 6= 0. In this case we can solve for Ψ using the third co-kernel equation.

Ψ(r) = − ∂r ˆ̃c(r)

2Ln sinh r
. (4.35)

Substituting this in the second co-kernel equation one gets a second order differential

equation which has the general solution:

ˆ̃c(r) = C1(cosh r)
γ+ + C2(cosh r)

γ− (4.36)

where γ± are defined in (4.32). The acceptable solution is the one with γ− and for

this the complete one-parameter family of solution, after solving the inhomogeneous

equation for c, is

ˆ̃c(r) = C1(cosh r)
γ− (4.37)

Ψ(r) = − ∂r ˆ̃c(r)

2Ln sinh r
(4.38)

c(r) =
ˆ̃c(r)

2n
. (4.39)
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ii) p 6= 0 and n = 0. In this case we can solve for Ψ using the third co-kernel equation.

Ψ(r) =
sinh r∂r ˆ̃c(r)

2p
. (4.40)

Substituting this in the second co-kernel equation one gets a second order differential

equation

sinh r∂2
r
ˆ̃c(r) + cosh r∂r ˆ̃c(r)− p2

sech2 r

sinh r
ˆ̃c(r) = 0 . (4.41)

The indicial roots near r = 0 are ±|p|. Asymptotically, changing the variable from

r to z = e−r, the indicial roots at z = 0 are 0 and 1. Moreover expanding the two

solutions near z = 0 shows that there are no logarithmic terms in z. The smooth

solution, i.e. the solution that behaves as r|p| at r = 0, can be expressed in terms of

hypergeometric function:

ˆ̃c(r) = (tanh r)|p|2F1

(

1

2
(|p|+ γ̂−),

1

2
(|p|+ γ̂+); 1 + |p|; tanh2 r

)

(4.42)

where γ̂± = 1
2(1 ±

√

1 + 4p2). This solution, when analytically continued to the

asymptotic region, behaves as

√
πΓ(1 + |p|)

Γ
(

1
2(1 + |p|+ γ̂−)

)

Γ
(

1
2(1 + |p|+ γ̂+)

) +
4
√
πΓ(1 + |p|)

Γ
(

1
2(|p|+ γ̂−)

)

Γ
(

1
2(|p|+ γ̂+)

)e−r + . . .

(4.43)

so that it is a linear combination of the two asymptotic solutions that are both

acceptable. Particularly note that the coefficient of solution behaving as e−r is non-

vanishing. This is consistent with the argument given in (4.34) that shows that the

boundary term in (4.31) at r = ∞ does not vanish for the solution of (ˆ̃c,Ψ) that

behaves as (e−r, O(1)).

Substituting the above solution for (ˆ̃c(r),Ψ(r)) in the first co-kernel equation,

we can easily find the inhomogeneous solution for c. The complete one-parameter

solution for n = 0 and p 6= 0 is:

ˆ̃c(r) = C2(tanh r)
|p|

2F1

(

1

2
(|p|+ γ̂−),

1

2
(|p|+ γ̂+); 1 + |p|; tanh2 r

)

(4.44)

Ψ(r) = −sinh r∂r ˆ̃c(r)

2p
(4.45)

c(r) =
Lˆ̃c(r)

2p
. (4.46)

iii) (p, n) = (0, 0). In this case the solution for the last two co-kernel equations have

constant solutions ˆ̃c(r) = C1 and Ψ = C2. Plugging this in the first co-kernel equation

one finds the solution for c as

c(r) = C3 + C2L log
(

tanh
r

2

)

+ C4

(

log
(

tanh
r

2

)

+ cosh r
)

. (4.47)
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Smoothness at r = 0 and the asymptotic boundary condition on c implies that

C4 = C2 = 0. Thus we have a two paraometer family of solutions:

ˆ̃c(r) = C1, Ψ(r) = 0, c(r) = C2 . (4.48)

These are, however, just the constant modes of c and c̃ that, we had argued earlier,

should be removed from the path-integral.

4.4 Summary and result for the one loop determinant

Let us summarize here the results. Dim(ker(D10)) = 0 for all n and p. Dim(coker(D10)) = 0

for n 6= 0 and p 6= 0, Dim(coker(D10)) = 1 for p = 0 and n 6= 0 as well as for n = 0 and

p 6= 0 and Dim(coker(D10)) = 2 for n = p = 0. Therefore the index of D10 operator is

1. indD10 = 0 for n 6= 0 and p 6= 0,

2. indD10 = −1 for n 6= 0 and p = 0,

3. indD10 = −1 for n = 0 and p 6= 0,

4. indD10 = −2 for n = 0 and p = 0.

Now we note that for the case (n = 0, p = 0) we have two constant ghost modes (4.48). As

we argued earlier these are zero modes and we take the path integral measure such that

there are no integrations over constant mode for ghost fields. We therefore, neglect these

zero modes and their contribution to index.7

Combining all the results above we get the final answer for the 1-loop super-determi-

nant around the saddle point:

Z1-loop(α) =
∏

ρ

√

∏

n 6=0

(n− iρ · α)
∏

p 6=0

( p

L
− iρ · α

)

. (4.49)

Substituting the above in (4.1), we obtain the matrix model

Z =

∫

dα exp(−πiLκTrα2)
∏

ρ>0

(ρ · α)2
∏

ρ

√

∏

n 6=0

(n− iρ · α)
∏

p 6=0

( p

L
− iρ · α

)

= N
∫

dα exp(−πiLκTrα2)
∏

ρ>0

sinh(πρ · α) sinh(πLρ · α). (4.50)

Here N is some constant which depends only on L. In order to compute the L depen-

dence in N , we need to include also the contribution to the determinant from the Cartan

part8
∏rank

i=1

√

∏

n 6=0 n
∏

p 6=0

( p
L

)

. Therefore, we need to regularize the infinite product of

L coming from both the Cartan and non-Cartan part of the determinant. Using the zeta

7One could absorb these zero modes by introducing two bosonic ghosts of ghost which would give a

contribution of +2 to the index. It would be interesting to check this explicitly following the analysis in [5].
8The Cartan part of the determinant does not contain any α dependence and hence are not useful for

most of the analysis.
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function regularization one finds that N ∝ L
r
2 where r is the rank of the Lie algebra. Thus

we find that the L dependence in N exactly cancel the
√
L dependence in (4.4).9 In the

non abelian case there is another potential source of L in the partition function coming

from the L dependence in one of the sinh function. We do this integral explicitly for a

general gauge group in the appendix C and find that total L dependence in the partition

function Z coming from the index computation is just a pure phase. The rest of the in-

tegral equals that of the partition function of the bosonic Chern-Simons theory on S3.10

Finally we mention the result in (4.50) is also equal to the result of the partition function

of Chern-Simons theory of a q fold cover of the sphere S3 where q = 1
L obtained in [24].

This can be seen by a simple rescaling of the integral in (4.50).

5 Wilson loop

In this section we determine the expectation value of a supersymmetric Wilson loop in

AdS2 × S1. We consider the following Wilson loop operator in the representation R of the

gauge group

WR =
1

dimR
TrR P exp

[

i

∮

dt(Aµẋ
µ − σ|ẋ|)

]

. (5.1)

The susy transformation of the above Wilson loop is given by

δWR =
1

dimR
TrR P

[

i

∮

dt(δAµẋ
µ − δσ|ẋ|)

]

exp

[

i

∮

dt(Aµẋ
µ − σ|ẋ|)

]

. (5.2)

Using susy transformation of the vector multiplet, we write the above expression as

δWR =
1

dimR
TrR P

∮
{

i

2
(ǫγµλ̃+ γ̃µλ)ẋ

µ +
i

2
(ǫλ̃− ǫ̃λ)|ẋ|

}

exp

[

i

∮

dt(Aµẋ
µ − σ|ẋ|)

]

.

(5.3)

Thus the Wilson loop preserve susy if the following relations hold

(γµẋ
µ − |ẋ|)ǫ = 0, (γµẋ

µ + |ẋ|)ǫ̃ = 0 . (5.4)

Now if we choose the Wilson loop wrapping the τ -direction i.e. ẋµ = h eµ1 , h is some

constant, then we find the following condition on the killing spinor

(γ1 − 1)ǫ = 0, (γ + 1)ǫ̃ = 0 . (5.5)

Using the explicit form of the killing spinor (3.6), we see that this condition is satisfied if

sinh r
2 = 0. Thus the Wilson loop preserve the killing spinor if it wraps the circle at the

origin of the AdS2. The expectation value of this Wilson loop is given by

〈WR〉 =
1

Z̃dimR

∫

dαTrR exp[2πhα] exp(−πiLκTrα2)
∏

ρ>0

sinh(πρ ·α) sinh(πLρ ·α) (5.6)

where Z̃ is the partition function without N .

9We note here that there might be a L dependence in the Jacobian in the path integral measure coming

from the change of variables to cohomological variables.
10Note that going from first line to second line in (4.50), converting infinite product to the hyperbolic

functions, we have ignored infinite products of (−1)’s under square root. Carefully treating the sign in the

square root using the gauge invariant regularization as in [27], one recovers the usual shift in κ.
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6 General conformal transformations

In this section we will consider a family of manifolds which are conformally equivalent to

AdS2 × S1 and show that the index and the partition function do not change. We begin

with the following metric

ds2 = f2
s (r)(dτ

2 + L2(dr2 + sinh2 r dθ2)) . (6.1)

The metric is conformally equivalent to AdS2×S1 and we choose the conformal factor fs(r)

such that it does not change the asymptotic behaviour of all fields. This will ensure that

the space of functions over which we will calculate the index does not change drastically.

This implies that we take fs(r) such that it approaches ∼ O(1) as r → 0 and ∞. Also the

family of conformally equivalent manifolds, we will consider here are labelled by parameter

s such that fs=0(r) = 1 which corresponds to AdS2 × S1. An example of a such function

which we will use in our computations is11

fs(r) = 1− s+ s sech r . (6.2)

We see that for s = 1 the metric (6.1) is that of branched S3 and any other value of s ≤ 1

corresponds to the metric which is non singular and asymptotically AdS2 × S1.

The metric (6.1) admits Killing spinors. Following a similar analysis presented in

appendix B, we obtain the following Killing spinors

ǫ = e
iθ
2

√

fs(r)

(

i cosh
(

r
2

)

sinh
(

r
2

)

)

, ǫ̃ = e−
iθ
2

√

fs(r)

(

sinh
(

r
2

)

i cosh
(

r
2

)

)

. (6.3)

These Killing spinors correspond to the Killing vector (Kµ = ǫ̃γµǫ)

K =
∂

∂τ
+

1

L

∂

∂θ
. (6.4)

However in the present case the background supergravity fields Aµ, Vµ and H acquire non

trivial dependence on the function fs(r) to satisfy the Killing spinor equations. Their

explicit forms are

Aτ =
2fs(r) + 3 coth r ∂rfs(r)

2Lfs(r)
, Vτ =

fs(r) + coth r ∂rfs(r)

2Lfs(r)
, Ar,θ = 0 ,

Vr,θ = 0, H =
i∂rfs(r)

Lf2
s (r) sinh r

. (6.5)

Thus we can use this background to compute the partition function using the localization

technique. We begin with the QV action. The bosonic part of the QV action in the present

case is given by

QVloc{bosonic} =
∫

d3x
√
gTr

[

1

4
FµνF

µν− 1

2f2
s (r) cosh

2 r
Dµ(fs(r) cosh r σ)D

µ(fs(r) cosh r σ)

− 1

32

(

G− 4

Lfs(r) cosh r
σ

)2
]

. (6.6)

11It would be very interesting to explore the other possible choices of function fs(r) and prove that the

index does not change.
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The minima of the above action are the solutions to the following equations

Fµν = 0 , Dµ(fs(r) cosh r σ) = 0 , G =
4σ

Lfs(r) cosh r
. (6.7)

As we described earlier, the solution of the above equation upto a gauge transformation is

given by

Aν = 0, σ =
iα

fs(r) cosh r
, G =

iα

L(fs(r) cosh r)2
. (6.8)

And thus we see that the Chern-Simons action evaluated on the above background remains

unchanged

exp
( κ

4π
SCS

)

= exp(−πiLκTrα2) . (6.9)

Next we look for D10 operator. It is not very hard to convince oneself that the relevant

terms in the Q̂V action needed for D10 operator are the same as given in (4.20). Since

the killing spinors now depend on the function fs(r), the explicit form of the kernel and

cokernel equations will also depend on the function fs(r) through the killing spinors. We

will not present here the details of these equations. To solve these equations we will follow

exactly the same analysis presented in the subsection 4.3. Since we have presented the

analysis for s = 0 in details, we will not repeat here the same analysis and therefore, just

state the results. We find that for s < 1, the spaces of kernel and cokernel of the D10

operator remain unchanged compared to s = 0 case and thus the index of D10 is again

given by 1–4. The situation becomes interesting for the s = 1 case. In this case we find that

the spaces of kernel and cokernel of the D10 operator are different than the one for s = 0

case. In particular the kernel is one dimensional for every (n, p) satisfying (n > 0, p > 0)

and (n < 0, p < 0). On the other hand the space of cokernel is also one dimensional for

every combination of (n, p) satisfying (n > 0, p > 0), (n < 0, p < 0), (n = 0, p 6= 0) and

(n 6= 0, p = 0). The cokernel is 2 dimensional for (n = 0, p = 0) which are pure constant

modes for ghost fields and we do not integrate over these modes. Thus we see that although

the spaces of kernel and cokernel for s = 1 case are very different than the s 6= 1, the index

remains same.

7 Conclusions

We have used the method of localization to evaluate the partition function of Chern-Simons

theory on the non-compact space AdS2 × S1. The radius of AdS2 is L = 1/q times that

of the S1. The partition function agrees precisely with that on the q fold cover of S3

as expected from the conformal symmetry which relates the partition function on these

spaces. Furthermore since the theory is topological, this partition function is equal to

that on S3 by a pure phase which depends on L, upto some L dependent factor coming

from the Jacobian in the path integral measure. This constitutes a non-trivial check of the

method of localization developed for AdS2 × S1 in this paper. Though this paper focuses

on the N = 2 vector multiplet, the method can be generalised to matter multiplets and to

theories with higher supersymmetry. We expect the equality between partition functions
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of conformal fields theories on AdS2 × S1 and S3 to hold for general super conformal field

theories in 3 dimensions.

In our analysis we showed that the relation between the partition function on AdS2×S1

and S3 was obtained by considering the usual space of square integrable wave functions on

AdS2 × S1. The localizing Lagrangian in particular did not develop any boundary terms

in any steps which involved a total derivative. The fields satisfied boundary conditions to

ensure that total derivative terms vanished at the origin and the boundary of AdS2.

Finally we mention that this method of localization developed for AdS2 × S1 can

be generalized to higher dimensions. The space AdS2 × S2 is particularly an interesting

one. One can extend the approach of this paper and address localization of 4 dimensional

supersymmetric field theories in non-compact space. There is an added benefit of studying

localization in this space. AdS2 × S2 is the near horizon geometry of supersymmetric

black holes in 4 dimensions. Developing localization in this space will lead to a better

understanding of black hole microstates from the bulk. We hope to address some of these

aspects in the future.
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A Conventions

The covariant derivative of a fermion is given by

∇µψ =

(

∂µ +
i

4
ωµabε

abcγc

)

ψ, ε123 = 1. (A.1)

Our choice of gamma matrices are

γ1 =

(

1 0

0 −1

)

, γ2 =

(

0 −1

−1 0

)

, γ3 =

(

0 i

−i 0

)

. (A.2)

They satisfy gamma matrices algebra

γaγb = δab + iεabcγc , (A.3)

γaT = −CγaC−1, C =

(

0 1

−1 0

)

, CT = −C = C−1 . (A.4)

In Lorentzian space ψ and ψ̄ are complex conjugate to each other but in Euclidean space

fermions ψ and ψ̄ are independent two component complex spinor. The product of two

fermions ǫ and ψ is defined through charge conjugation matrix

ǫψ = ǫTCψ . (A.5)
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B Solving Killing spinor equations

The Killing spinor equations are given by

(∇µ − iAµ) ǫ = −1

2
Hγµǫ− iVµǫ−

1

2
ǫµνρV

νγρǫ

(∇µ + iAµ) ǫ̃ = −1

2
Hγµǫ̃+ iVµǫ̃+

1

2
ǫµνρV

νγρǫ̃ . (B.1)

Here εµνρ = 1√
g ǫ

µνρ, ǫτηθ = 1.

In order to solve the above equations we make the following ansatz

ǫ(τ, r, θ) = e
iθ
2

(

ǫ1(r)

ǫ2(r)

)

, ǫ̃(τ, r, θ) = e−
iθ
2

(

ǫ̃1(r)

ǫ̃2(r)

)

, Vr = Vθ = 0 . (B.2)

In particular the ansatz for Killing spinor does not depend on the τ -coordinate. Solving

the τ component equations, one finds

Aτ = Vτ , H = 0 . (B.3)

The θ-component equation is given by
(

1− cosh r − 2Aθ −i sinh r VτL

−i sinh r VτL 1− 2Aθ + cosh r

)(

ǫ1(r)

ǫ2(r)

)

= 0 . (B.4)

Similarly for ξ̃. Requiring the existence of a non trivial solution for ξ determines Aθ in

terms of Vτ as

Aθ =
1

2

(

1±
√

1 + (1− L2V 2
τ ) sinh

2 r

)

. (B.5)

Now we look at the r-component equations,

∂rǫ1(r)− iArǫ1(r)−
i

2
LVτ ǫ2(r) = 0

∂rǫ2(r)− iArǫ2(r) +
i

2
LVτ ǫ1(r) = 0

∂r ǫ̃1(r) + iAr ǫ̃1(r) +
i

2
LVτ ǫ̃2(r) = 0 (B.6)

∂r ǫ̃2(r) + iAr ǫ̃2(r)−
i

2
LVτ ǫ̃1(r) = 0 .

One finds that if we define R = ǫ2(r)
ǫ1(r)

and R̃ = ǫ̃1(r)
ǫ̃2(r)

, then from above set of equations

∂rR = − iL

2
Vτ (1 +R2), ∂rR̃ = − iL

2
Vτ (1 + R̃2) . (B.7)

Now let us look at the form of the Killing vector.

Kµ = ǫ̃γµǫ = (a, 0, b) , (B.8)

ǫ̃1(r)ǫ2(r) + ǫ̃2(r)ǫ1(r) = −a, ǫ̃1(r)ǫ1(r) = ǫ̃2(r)ǫ2(r) =
ibL

2
sinh r . (B.9)
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Using the above equations it is very simple to determine R which is given by

R =
ǫ2(r)

ǫ1(r)
= i

a±
√

a2 + b2L2 sinh2 r

bL sinh r
. (B.10)

Substituting above in (B.7), we determine Vτ as

Vτ = ∓ b cosh r
√

a2 + b2L2 sinh2 r
. (B.11)

Substituting the expression of Vτ in (B.5), we obtain

Aθ =
1

2

[

1± a cosh r
√

a2 + b2L2 sinh2 r

]

. (B.12)

Thus susy preserving backgrounds are labelled by two real parametrs. Our choice of susy

transformation parameters (3.6) satisfy above equations with the choice a = 1, b = 1
L .

C L dependence in the partition function

To demonstrate that the L dependence in the partition function is just a pure phase we

evaluate the integral

Z̃ =

∫ r
∏

i=1

dαi e
−πiLκTrα2

∏

ρ>0

sinh(πρ · α) sinh(πLρ · α) . (C.1)

This matrix model has been studied using the method of orthogonal polynomials in [28].

We follow the steps given in [29], first we will use Weyl denominator formula

∑

w∈W
ǫ(w) ew(δ)·α =

∏

ρ>0

2 sinh
(ρ · α

2

)

. (C.2)

Here δ is the sum over positive roots

δ =
1

2

∑

ρ>0

ρ . (C.3)

We get

Z̃ =
1

Lr/2

∫ r
∏

i=1

dµi e
− 1

2gs
Trµ2 ∏

ρ>0

sinh

(

πρ · µ√
L

)

sinh(π
√
Lρ · µ) ,

=
1

22∆+Lr/2

∫ r
∏

i=1

dµi e
− 1

2gs
Trµ2 ∑

w,w′∈W
ǫ(w′′) e

w(δ)· πµ√
L ew

′(δ)·πµ
√
L . (C.4)
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Here
√
Lα = µ, 1

2gs
= πiκ, w′′ = w · w′ and ∆+ = total number of positive roots. Now we

can explicitly do the above Gaussian integral.

Z̃ =
(detC)1/2

22∆+

(

2πgs
L

)r/2
∑

w,w′∈W
ǫ(w′′)e

gsπ
2

2

(

w(δ)√
L

+w′(δ)
√
L
)

·
(

w(δ)√
L

+w′(δ)
√
L
)

,

=
(detC)1/2

22∆+

(

2πgs
L

)r/2

|W|
∑

w′′∈W
ǫ(w′′)e

gsπ
2

2
(δ·δ)( 1

L
+L) egsπ

2(δ·w′′(δ)) ,

=
(detC)1/2

22∆+

(

2πgs
L

)r/2

|W|e gsπ
2

2
(δ·δ)( 1

L
+L)

∏

ρ>0

2 sinh

(

gsπ
2ρ · δ
2

)

. (C.5)

Here C and |W| are the inverse of Cartan matrix and the order of the Weyl group, respec-

tively. Now using Freudenthal de Vries formula

(δ · δ) = dG y

12
, (C.6)

where dG is the dimension of the group and y is the dual Coxeter number, we get

Z̃ =
(detC)1/2

2∆+

(

2πgs
L

)r/2

|W|e−
iπ∆+

2 e−i π
48κ

dGy( 1
L
+L)

∏

ρ>0

sin
( π

4κ
ρ · δ

)

. (C.7)

Thus we see that the entire L dependence is a phase plus overall 1
Lr/2 . This together with

the Lr/2 contribution in N in (4.50) leaves behind a partition function which depends on

the metric through a pure phase.
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