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Abstract: In this paper, following the basic prescriptions of Gauge/String duality, we

perform a strong coupling computation on classical two point correlation between local

(single trace) operators in a gauge theory dual to κ-deformed AdS3 × S3 background.

Our construction is based on the prescription that relates every local operator in a gauge

theory to that with the (semi)classical string states propagating within the physical region

surrounded by the holographic screen in deformed AdS3. In our analysis, we treat strings

as being that of a point like object located near the physical boundary of the κ-deformed

Euclidean Poincare AdS3 and as an extended object with non trivial dynamics associated to

S3. It turns out that in the presence of small background deformations, the usual power law

behavior associated with two point functions is suppressed exponentially by a non trivial

factor which indicates a faster decay of two point correlations with larger separations. On

the other hand, in the limit of large background deformations (κ� 1), the corresponding

two point function reaches a point of saturation. In our analysis, we also compute finite size

corrections associated with these two point functions at strong coupling. As a consistency

check of our analysis, we find perfect agreement between our results to that with the earlier

observations made in the context of vanishing deformation.
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1 Overview and motivation

The classic mathematical evidences regarding the existence of an integrable structure on

both sides of the AdS5/CFT4 duality [1] might be regarded as one of the major theoretical

advancements that took place during the past one and half decade [2]–[61]. It turns out

that, in the so called planar limit, the dilatation operator associated with N = 4 SYM

could be mapped to that with the corresponding Hamiltonian of an integrable spin chain in

one dimension [5]. On the other hand, the integrable structure associated with the stringy

side of the duality has been ensured due to the existence of an infinite umber of conserved

quantities associated with the Lagrangian field equations in AdS5 × S5 [4].

During the past one and half decades, the quest for an integrable deformation cor-

responding to AdS5 × S5 superstring theory has been one of the prime focus of modern

theoretical investigation [62]–[99]. Very recently, the novel discovery [73] regarding the one

parameter integrable deformation associated with AdS5 × S5 superstring sigma model has

drawn renewed attention due to its several remarkable features. At this stage one should

take a note on the fact that the deformed sigma model [73] had been formulated in the

presence of a real deformation parameter (η) such that the model exhibits two character-

istic features-(1) the presence of Lax connection and (2) the invariance under the kappa
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symmetry. The kappa symmetry associated with the deformed superstring model turns

out to be absolutely essential in order to ensure a type IIB supergarvity background.

Soon after the discovery of this new class of integrable deformations [73], the cor-

responding deformed target spacetime metric was figured out by authors in [75] where,

considering the so called light cone gauge, they perform the perturbative (2 → 2) S matrix

computation in the Hamiltonian framework. It is also noteworthy to mention that in their

analysis the authors restricted themselves only to the bosonic sector of the full theory.

On of the key outcomes of their analysis was the fact that in the limit of the large string

tension, the S matrix corresponding to the integrable q-deformed model was found to be

in a perfect agreement to that with the corresponding perturbative S matrix computed for

the η deformed model once various other parameters of the q-deformed theory could be

related to that with the real deformation parameter η ∈ [0, 1) in a following manner,

κ =
2η

1− η2
, q = e−

ϑ
T , ϑ =

2η

1 + η2
. (1.1)

The computation [75] further unveils the fact that the full 10D background corre-

sponding to the NS − NS sector supports a metric together with some non vanishing B

field. The metric contribution in the bosonic sector of the Lagrangian could be divided

into two pieces namely, the deformed AdS5 and the deformed S5. The Wess-Zumino sector

of the bosonic Lagrangian, on the other hand, sources the non trivial B field in the target

spacetime. Given the above relation (1.1), there are several interesting limits that one

might wish to explore. For example, the limit η → 0 clearly reproduces the undeformed

AdS5×S5 background. On the other hand, in the limit, η → 1 the original AdS5×S5 gets

mapped into dS5×H5 indicating the fact that the corresponding world sheet theory is non

unitary [78]. Therefore the deformation acts as an interpolation between AdS5 × S5 and

dS5 ×H5. In our analysis, while solving the corresponding stringy dynamics associated to

deformed AdS3 ⊂ AdS5, we focus particularly in these two limits in order to gain further

insights regarding the interpolating regime.

Before we actually explain the purpose of our present analysis, it worth emphasizing

that the deformed model proposed in [73]–[74] leaves behind it many open issues that need

to be addressed properly. Here we elaborate some of them. Due to the presence of the

curvature singularity at some finite radial distance, % ∼ κ−1 it turns out that strings are

eventually confined within a region, 0 < % < κ−1. The vanishing of the beta function [80]

somehow guarantees that such deformations might be allowed by string theory although

its implication is not very much clear at this moment. As a consequence of this, the de-

formed target space metric corresponding to AdS5 appears to be with no boundary in

the usual sense [78]. Instead one could think of a holographic screen [84]–[85] and solve

stringy dynamics within the region bounded by this holographic screen. It turns out that

the region bounded by this holographic screen is the only allowed physical region in the

bulk where the classical string solutions as well as the holographic correspondence make

sense [84]–[85]. The notion of the usual boundary (% → ∞) could however be recovered

only in the limit of the vanishing deformation. As a matter of fact, it turns out that the

spacetime supersymmetry associated with the target spacetime is lost and on top of it the
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bosonic isometry associated with the undeformed 10D background gets q-deformed and/or

hidden to its smaller subset. In other words, the original SO(2, 4) × SO(6) isometry is

found to be broken down to its Cartan subgroup U(1)3×U(1)3 [78] corresponding to shifts

along various bosonic directions. As a natural consequence of this, the corresponding in-

terpretation and/or the implication of these broken symmetry generators on the properties

of the dual gauge theory is not clear immediately. In other words, it is not known a priori

how various gauge invariant operators and in particular their correlation functions would

be modified under this reduced subset of symmetry generators. However, the symmetries

associated with the deformed 10D background immediately suggests that the dual gauge

theory should not manifest any conformal invariance as well as supersymmetry. Keeping

these facts in mind, it seems quite urgent to build up the necessary mathematical frame-

work that would eventually unveil the hidden symmetries associated with this mysterious

dual gauge theory at least in the regime of strong coupling. These are the precisely the

issues that we consider to be worthy of further investigation.

In order to address the above mentioned issues in a systematic way, in the present

paper we carry out a classical computation on the correlation function [28]–[46] between

heavy local operators in the gauge theory those are dual to classical spinning strings moving

non-trivially over κ-deformed background [78]. It is therefore a strong coupling compu-

tation from the perspective of the dual gauge theory. In our analysis, we consider only

the bosonic sector of the full superstring theory [75]. Our analysis might be regarded as

being the straightforward generalization of the earlier proposal in the context of AdS5×S5

superstrings [28], where we compute two point correlations between single trace operators

those are dual to semi-classical string states propagating over κ-deformed AdS5 × S5 ge-

ometry [78]. In our analysis, we consider two types of operators in the dual gauge theory

namely, the magnons and the spikes.

According to the methods developed in [28], the Polyakov action (corresponding to

these semi-classical string states over κ-deformed geometry) evaluated at the classical sad-

dle point should correspond to the desired two point correlation between the single trace

operators in the dual gauge theory at strong coupling. For the case of usual AdS5 × S5

superstrings, the same prescription provides the correct two point correlation between local

operators in the gauge theory where one could easily identify the corresponding classical

conformal dimension to that with the energy of the stringy excitation in the bulk [29].

However, this is not the scenario that one should even expect to be hold true when the

original bosonic isometry associated with the target spacetime is broken. Instead, it is

quite natural to expect that the usual power law behavior [29] associated with these two

point correlations would be modified in a non trivial fashion.

Before we actually start describing the precise mathematical framework adopted in

our computation, it is customary to mention that instead of considering the full 10D

background, we perform our analysis over the truncated target space of the full deformed

geometry namely, the κ-deformed AdS3 × S3 [78]. As long as one is concerned only with

the bosonic NS − NS sector [75] of the the full superstring theory, the resulting metric

corresponding to this truncated model turns out to be the direct sum of the two individual

sectors namely the AdS3 and the S3. This picture no longer holds true as soon as one
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turns on RR fields1 [79]. This 6D analogue of the full 10D background possesses two basic

characteristic features namely, (1) the integrability of this model is ensured from the very

outset and (2) the vanishing of the corresponding B field that was originally present in

10D [78]. Moreover, it turns out that this κ-deformed AdS3 × S3 model admits a RG

flow [78] (in the same sense as that of the two parameter deformed O(4) sigma model)

where corresponding to a large value of the deformation parameter (κ → ∞), the theory

flows to a UV fixed point namely, dS3 ×H3.

In our analysis, we consider two types of operators in the dual gauge theory namely

the magnons and the spikes [29] and we compute the associated two point correlations

for each of these operators separately. As far as the bulk picture is concerned, we treat

strings as being that of a point like object located near the physical boundary (the so

called holographic screen [84]–[85]) of the κ-deformed Euclidean Poincare AdS3 and as an

extended object moving non trivially over three sphere (S3). From our analysis, it turns out

that stringy fluctuations corresponding to deformed S3 are exactly solvable in the presence

of generic background deformations (κ). However, it turns out to be extremely difficult to

solve the same for generic κ-deformations associated to AdS3. Therefore, in our analysis,

we choose to explore the corresponding stringy excitation (associated to deformed AdS3)

both in the perturbative (0 < κ ≤ 1) as well as in the non perturbative (κ � 1) regime.

Our analysis, therefore clearly reveals an intuitive picture regarding the behavior of the two

point function corresponding to some intermediate value associated with the background

deformations (κ) during the RG flow.

Considering the perturbative regime associated with AdS3, the corresponding strong

coupling behavior associated with the two point function takes the following form,

〈O(0)O(xf )〉κ ∼
(
ε

xf

)2∆κ

e
− 2κ2q∆κ

ν
log2 | ε

xf
|+O(κ4)

(1.2)

which clearly reveals the fact that the usual power law fall off [29] is exponentially sup-

pressed by a non trivial factor. Stating in another way, the above formula (1.2) provides

the small deformation behavior of the two point function between local operators in a holo-

graphic RG flow. The exponential suppression above in (1.2) has its origin in the stringy

dynamics corresponding to deformed Euclidean AdS3 sector of the full theory. However,

at this stage, it is worth emphasizing that the associated power law behavior (1.2) (which

is the reminiscent of the usual power law fall off in a CFT [29]) is exact (in the sense

that we determine the coefficient ∆κ exactly in terms of the corresponding background

deformation (κ)) and has its origin in the stringy dynamics associated with deformed S3.

Therefore, considering the above facts together, one might treat (1.2) as being that of a

semi-perturbative expression for the two point function in the gauge theory.

1In [79], the authors had explored the corresponding 6D supergravity background supported by κ-

deformed AdS3 × S3. In their analysis, the authors had constructed one parameter family of supergravity

solution (in the presence of non trivial RR fields, dilation and the three form) in 6D as a consistent truncation

of type IIB 10D supergravity on T 4. However, it turns out that for the supergravity background to be a

consistent solution, the parameter cannot be arbitrary and has to take certain specific values in different

limiting conditions.
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On the other hand, the nontrivial leading order contributions corresponding to the

non perturbative regime (η → 1, κ � 1) has its source in the background deformations

associated with the deformed S3 sector of the full geometry namely,

〈O(0)O(xf )〉κ→∞ ∼ eiS
3 ∼ e−

T̂ s̄C
κ2 +O

(
1
κ4

)
∼ const. (1.3)

It turns out that the contribution from the deformed AdS3 sector appears only in the

subleading order and which might be regarded as the consequence of the fact that the

physical AdS3 region allowed for strings eventually shrinks to zero in the corresponding

limit. In other words, at leading order the deformed AdS3 contribution is suppressed

compared to that of the contribution associated with deformed S3. Also it should be

kept in mind that this large deformation (κ → ∞) regime would correspond into the

enhancement of the so called unphysical domain that has its route in the non-unitarity

associated with the world sheet theory for superstrings in the curved background [78]. To

summarize: (1) the two point function corresponding to small background deformations

exhibits a faster fall off than what is expected from the perspective of the usual CFT and

(2) it gradually saturates to some constant value for large background deformations.

The organization for the rest of the analysis is the following: in section 2, we solve the

stringy dynamics associated with the κ-deformed AdS3 × S3 background. We use these

solutions in section 3, in order to compute the two point correlations between giant mognons

at strong coupling. We also compute the effects of incorporating finite size corrections [30]

to these correlation functions at strong coupling. We perform identical analysis for spikes

in section 4. At this stage, it is also noteworthy to mention that in the limit of the

vanishing deformation, all our results matches smoothly to that with the earlier findings

of [29] where one could easily identify the entity, ∆κ=0 = ∆ = Estring as being that of

the classical conformal dimension associated with local operators in the dual gauge theory.

Finally we conclude in section 5.

2 Strings in deformed AdS3 × S3

We start our analysis by considering the Polyakov action for open strings over the κ-

deformed geometry2 [78],

ds2 = −h(%)dt2 + f(%)d%2 + %2dψ2 + h̃(θ)dϕ2 + f̃(θ)dθ2 + cos2 θdφ2 (2.1)

where, the individual metric coefficients could be formally expressed as,

h =
1 + %2

(1− κ2%2)
, f =

1

(1 + %2)(1− κ2%2)

h̃ =
sin2 θ

(1 + κ2 cos2 θ)
, f̃ =

1

(1 + κ2 cos2 θ)
(2.2)

2The classical integrability of the deformed model (2.1) is ensured from the fact that the deformed

S3 could be identically mapped to the corresponding two parameter deformation of O(4) sigma model

under special circumstances namely, with the choice of the left right symmetric deformation that correctly

reproduces the symmetries associated with the 3D target spacetime [78]. The latter model was proved to

be equivalent to (classical) integrable Fateev’s two parameter SU(2) principal chiral model [100].
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such that the NS-NS two form vanishes during the process of consistent reduction from

AdS5 × S5 [78]. Notice that, here ϕ, θ and φ are the angular coordinates on deformed S3.

From (2.1), it is therefore indeed quite evident that there is as such no mixing between

the coordinates of AdS3 to that with the coordinates corresponding to S3. Hence we can

analyze them separately.

2.1 Solutions in AdS3

2.1.1 κ-deformed Euclidean Poincare AdS3

Our goal in this analysis would be to solve the (point particle) dynamics associated with

the Polyakov action corresponding to open string configurations over the curved back-

ground (2.1). We perform our analytic computations with the choice of the conformal

gauge conditions for the Polyakov action. In our analysis, we would treat strings as being

that of a point like object located near the holographic screen [84]–[85] of the κ-deformed

Euclidean Poincare AdS3 and thereby ignore fluctuations on the world sheet of the string.

Before we proceed further, it is also noteworthy to mention that our results are perturbative

as we retain ourselves only upto leading order in the background deformations.

The deformed AdS3 sector of the full spacetime could be formally expressed as,

ds2
AdS3

= −h(%)dt2 + f(%)d%2 + %2dψ2 (2.3)

where we implement the following change of variables,

% = sinhχ (2.4)

which finally yields,

ds2
AdS3

= −
(

cosh2 χ

1− κ2 sinh2 χ

)
dt2 +

dχ2

(1− κ2 sinh2 χ)
+ sinh2 χdψ2. (2.5)

Clearly, the above metric (2.5) is expressed in the so called global coordinates. However,

for the sake of our present calculation, we need to re-express (2.5) in the Euclidean Poincare

coordinates [84]–[85] which corresponds to Wick rotating the real time axis, t→ it̃.

In order to proceed further, we make the following choice,

coshχ =
1

cos γ
. (2.6)

Using (2.6), we finally rewrite the Euclidean AdS3 as,

ds2
EAdS3

=
(dt̃2 + dγ2)

cos2 γ − κ2 sin2 γ
+

sin2 γ

cos2 γ
dψ2. (2.7)

Next, we substitute,

z = et̃ cos γ, r = et̃ sin γ (2.8)

into (2.7), which yields,

ds2
EAdS3

=
1

z2

(
dz2 + dr2

1− κ2r2

z2

+ r2dψ2

)
. (2.9)
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Finally, we perform another set of coordinate transformations namely,

x0 = t = r sinψ, x1 = x = r cosψ (2.10)

which precisely ends up being giving rise to the so called Euclidean Poincare AdS3 associ-

ated with non trivial κ-deformations,

ds2
EAdS3

=
1

z2

(
dz2 + dx2

1− κ2x2

z2

)
− κ2(tdx− xdt)2

z2
(

1− κ2x2

z2

) (2.11)

where, we denote, x2 = (x0)2 + (x1)2 = t2 + x2. The above equation (2.11) corresponds to

the exact form of the Euclidean Poincare metric with κ-deformations. For the sake of our

current analysis, we re-express (2.11) as,

ds2
EAdS3

= Z(z, x)dz2 + T (z, x)dt2 + X (z, x)dx2 + 2K(z, x)dtdx (2.12)

where, the above metric functions could be formally expressed as,

Z(z, x) =
1

z2
(

1− κ2x2

z2

) , T (z, x) =
1− κ2x2

z2
(

1− κ2x2

z2

)
X (z, x) =

1− κ2t2

z2
(

1− κ2x2

z2

) , K(z, x) =
κ2tx

z2
(

1− κ2x2

z2

) . (2.13)

Before we conclude this section, it is noteworthy to mention that the metric singularity

corresponding to |xz | =
1
κ above in (2.12) is an artifact of the inherent curvature singularity

associated with the string metric that was present originally at, % = κ−1 [78]. On top of it,

from the structure of the above singularity, it is indeed evident that the maximum spatial

volume that one could associate with the holographic screen [84]–[85] cannot be arbitrary

and in fact it is fixed by the corresponding location of the screen at a fixed radial distance

(z = zB) in the bulk and vice verse. In other words, if z = zB be the radial location of the

holographic screen in the bulk, then the maximal spatial region that one could associate

with this screen (for generic background deformation (κ)) is given by,

AB =
πz2

B

κ2
(2.14)

such that, zB ≤ z < ∞. In other words, the gauge invariant (local) operators as well

as their correlation functions in the dual gauge theory are defined only within the spatial

volume, A ≤ AB associated with the holographic screen. Clearly, the area associated with

the holographic screen shrinks to zero (AB → 0) in the limit of the large background

deformations (κ � 1). On the other hand, the volume becomes infinitely large in the

limit, κ → 0. Finally, considering all the previous arguments it should be clear by now

that the volume, A = AB could be regarded as being that of the minimal spatial region

that one could associate with z = const. hypersurface corresponding to a given background

deformation (κ) in the bulk.
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2.1.2 Perturbative solutions

Our next task would be to substitute (2.11) into the Polyakov action and solve the corre-

sponding dynamics on the world sheet. In order to solve these fluctuations, we make the

following ansatz corresponding to the coordinates on the world sheet [29],

z = z(τ), t = t(τ), x = x(τ) (2.15)

which finally results in the Polyakov action of the following form,

SPAdS3 =
T̂

2

∫
d2σ

(
Z(z, x)(∂τz)2 + T (z, x)(∂τ t)

2 + X (z, x)(∂τ x)
2 + 2K(z, x)(∂τ t)(∂τ x)

)
(2.16)

where, T̂ = T
√

1 + κ2 (with, T =
√
λ

2π ) is the effective string tension [78] associated with

the deformed background.

In order to proceed further, we first note down the equations of motion associated

with the coordinates on the world sheet namely, z(τ) and, xa(τ) where, we combine the

remaining set of variables into a single variable, xa = {x0 = t, x1 = x} which yield the

following set of equations3 in the background deformations,

z′′(τ)− z′2(τ)

z(τ)
+
x′a2

z(τ)
+ κ2Γ(τ) +O(κ4) = 0

x′′a(τ)− 2x′az′

z(τ)
+ κ2Ξa(τ) +O(κ4) = 0 (2.17)

where, the functions Γ(τ) and Ξa(τ) could be formally expressed as,

Γ(τ) =
2x2z′2

z3
+ z2

(
x2z′

z4

)′
− 1

z
(x2t′2 + t2x′2) +

2x2

z3
(t′2 + x′2) +

2txt′x′

z

Ξa(τ) = − tz′2

z2
− t

z2
(t′2+x′2)−z2

(
x2t′

z2

)′
+tx′2−xt′x′+z2

(
txx′

z2

)′
+z2

(
x2t′

z4

)′
. (2.18)

In order to solve (2.17) perturbatively in the deformation parameter (κ), we consider

the following expansion for the variables namely,

z(τ) = z(0)(τ) + κ2z(1)(τ) +O(κ4)

xa(τ) = xa(0)(τ) + κ2xa(1)(τ) +O(κ4). (2.19)

Substituting (2.19) into the equations of motion (2.17), we first note down the zeroth

order equations,

z′′(0) − z′(0)2

z(0)
+
x′a(0)2

z(0)
= 0

x′′a(0) − 2x′a(0)z′(0)

z(0)
= 0. (2.20)

3Here, prime corresponds to derivatives w.r.t. τ .
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In order to solve (2.20), we first note that,

x′a(0) =
z2(0)

√
2
. (2.21)

Substituting (2.21) into (2.20), we finally solve zeroth order equations,

z(0)(τ) =
1

coshβτ

xa(0)(τ) =
1√
2

tanhβτ (2.22)

which thereby correspond to a specific parametrization of geodesics in AdS3 [28].

Our next task would be to use these zeroth order solutions in order to obtain the leading

order corrections due to the background deformations (κ). The corresponding equations

at leading order turn out to be,

z′′(1) − z′(0)2

z(0)

(
2z′(1)

z′(0)
− z(1)

z(0)

)
+
x′a(0)2

z(0)

(
2x′a(1)

x′a(0)
− z(1)

z(0)

)
+ Γ(0)(τ) = 0

x′′a(1) − 2x′a(0)z′(0)

z(0)

(
x′a(1)

x′a(0)
+
z′(1)

z′(0)
− z(1)

z(0)

)
+ Ξ(0)(τ) = 0 (2.23)

where, the entities like, Γ(0)(τ) and Ξ(0)(τ) comprise of all the zeroth order solutions in κ.

A straightforward computation yields the following,

Γ(0)(τ) = −β2 sinhβτ tanhβτ

Ξ(0)(τ) =
β2

√
2

tanhβτ. (2.24)

Substituting (2.24) into (2.23), one finds,

z′′(1)+2β tanhβτz′(1)−β
2

2
(1−3 tanh2 βτ)z(1)+

( √
2β

coshβτ

)
x′a(1)−β2 sinhβτ tanhβτ = 0

x′′a(1) + 2β tanhβτx′a(1) −

( √
2β

coshβτ

)
z′(1) −

√
2β2

(
tanhβτ

coshβτ

)
z(1) +

β2

√
2

tanhβτ = 0.

(2.25)

The first equation in (2.25) could be schematically expressed as,

(Dτ + m2)z(1) = J(z)(τ)

J(z)(τ) = −
√

2β coshβτx′a(1) + β2 sinh2 βτ coshβτ (2.26)

where, Dτ = ∂τ (cosh2 βτ∂τ ). One could express the corresponding solution in terms of

Green’s function that eventually yields,

z(1)(τ) = −
∫
dτ ′G(z)(τ, τ

′)J(z)(τ
′) (2.27)
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subjected to the fact,

(Dτ + m2)G(z)(τ, τ
′) = −δ(τ − τ ′). (2.28)

Let us now focus on the second equation in (2.25). Like in the previous example, this

equation could also be expressed schematically as,

Dτxa(1) = J(x)(τ)

J(x)(τ) =
√

2β coshβτz′(1) +
√

2β2 sinhβτz(1) − β2

√
2

sinhβτ coshβτ. (2.29)

The solution turns out to be,

xa(1)(τ) = −
∫
dτ ′G(x)(τ, τ

′)J(x)(τ
′) (2.30)

where, G(x)(τ, τ
′) is the corresponding Green’s function that satisfies,

DτG(x)(τ, τ
′) = −δ(τ − τ ′) (2.31)

together with some specific boundary conditions that will be discussed below.4

Therefore, the complete set of solutions upto leading order in the deformation turns

out to be,

z(τ) =
1

coshβτ
− κ2

∫
dτ ′G(z)(τ, τ

′)J(z)(τ
′) +O(κ4)

xa(τ) =
1√
2

tanhβτ − κ2

∫
dτ ′G(x)(τ, τ

′)J(x)(τ
′) +O(κ4). (2.32)

Substituting (2.32) into (2.16) and retaining ourselves upto leading order in the defor-

mation (κ) we find,

SPAdS3 =
T̂

2
(S(0) + κ2S(1)) +O(κ4)

=
T̂

2

∫ s/2

−s/2
dτ

∫ L

−L
dσβ2γ(τ)

γ(τ) = 1 + κ2K(τ) +O(κ4) (2.33)

where, the full Polyakov action could be formally expressed as the sum of the usual on-shell

piece without any deformation [28],

S(0) =

∫ s/2

−s/2
dτ

∫ L

−L
dσβ2 (2.34)

and the contribution to the on-shell action sourced due to the background deformations

namely,

S(1) =

∫ s/2

−s/2
dτ

∫ L

−L
dσβ2K(τ) (2.35)

4In the appendix, we provide the most general form of the solution corresponding to these Green’s

functions in the frequency (w) space.
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where, the function,

K(τ) = 2β−1 sinhβτ

∫
dτ ′G′(z)(τ, τ

′)J(z)(τ
′) + 2 sinh βτ tanhβτ

∫
dτ ′G(z)(τ, τ

′)J(z)(τ
′)

− 2
√

2β−1

∫
dτ ′G′(x)(τ, τ

′)J(x)(τ
′) +

2

coshβτ

∫
dτ ′G(z)(τ, τ

′)J(z)(τ
′) + sinh2 βτ

(2.36)

yields the first non trivial correction to the Polyakov action in AdS3 in the presence of the

background κ-deformations.

Note that, in order to arrive at the equations of motion, we had deliberately dropped

the boundary terms (associated with a constant τ surface) in the Polyakov action which

thereby invokes certain boundary conditions for the fields on the world-sheet. We are

now in a position to implement these boundary conditions [28]. The first set of boundary

conditions that we implement is the following [28],

xa(−s/2) = 0

z(−s/2) = ε . (2.37)

On the other hand, the second set of boundary conditions turn out to be [28],

xa(s/2) = xf

z(s/2) = ε (2.38)

where, ε is some appropriate UV cutoff (in the presence of background deformations) such

that, |ε− zB| � 1 together with the fact that the bound, x2
f & AB is satisfied.

Considering the zeroth order solutions for β(≈ 2
s log(xf/ε̃)) (where, ε̃(� 1) is the usual

UV cutoff without background deformations [28]), it is in fact quite intuitive to note that

to leading order in the deformations,

G(x)(±s/2, τ ′) ' G(z)(±s/2, τ ′) ≈
ε̃2

2πx2
f

∫
dw

w2
e−iwβ(±s/2−τ ′) (2.39)

which therefore yields a vanishing contribution at the end points of the time evolution.

Using (2.39), it is now quite trivial to note down,

z(±s/2) =
1

coshβ(±s/2)
+O(κ2ε̃2)

xa(±s/2) =
1√
2

tanhβ(±s/2) +O(κ2ε̃2) (2.40)

where, we could ignore the subleading contributions as they appear as a fourth order

term in the perturbative expansion. Therefore this implies that upto leading order in the

deformation,

β ' 2

s
log(xf/ε) + . . . (2.41)
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2.1.3 A note on large κ solutions

In this section, we study equations of motion corresponding to the large values of the

background deformations (κ� 1). In the presence of large background deformations, the

corresponding Polyakov action (2.16) takes the following form,

SPAdS3 =
T̂

2

∫
d2σ

x2

(
xt′ − tx′

)2
+O

(
1

κ2

)
. (2.42)

The corresponding leading order equations of motion turn out to be,

t′
(

1 +
t2

x2

)
+

xtx′

x2
= 0

x′
(

1 +
x2

x2

)
+

xtt′

x2
= 0. (2.43)

The solution corresponding to the above set of equations (2.43) could be formally

expressed as,

z(τ) = O
(

1

κ2

)
x(τ) = t(τ) = c +O

(
1

κ2

)
. (2.44)

Therefore, in the non perturbative (κ � 1) regime, the leading order contribution

to the on-shell action vanishes. Let us now go beyond this trivial regime and consider

corrections corresponding to the next sub-leading order at large κ. The corresponding

action takes the following form,

SPAdS3 '
T̂

2

∫
d2σ

x2

(
xt′ − tx′

)2 − T̂

2κ2

∫
d2σ

x4

(
x2z′2 − z2

(
xt′ − tx′

)2)
+ . . . (2.45)

Considering the following fact namely,

z′(τ) ∼ x′(τ) ∼ O
(

1

κ2

)
(2.46)

it is quite trivial to notice (without solving any of the equations of motion explicitly),

SPAdS3 ' O
(

1

κ4

)
+ . . . (2.47)

which thereby possesses a vanishingly small contribution (to the full on-shell action

(SAdS3×S3)) as compared to that of the corresponding contribution appearing from S3

in the large κ(� 1) limit (as we shall see shortly). In other words, in the non pertur-

bative regime (κ � 1), the dynamics associated with the two point correlation is largely

determined by the corresponding partition function associated with the three sphere (S3).
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2.2 Solutions in S3

We now consider the dynamics of strings in S3. In order to proceed further, we choose the

following ansatz [29],

θ = θ(ς), ϕ = ντ + g(ς), φ = C (2.48)

where, ς = aτ + bσ. With this choice in hand, we essentially confine ourselves to the

subspace S2 of the full three sphere.

In order to proceed further, we first note-down the equation of motion corresponding

to ϕ(ς) which yields,

∂ς

(
sin2 θ

(1 + κ2 cos2 θ)
(aν + (a2 − b2)g′(ς))

)
= 0 (2.49)

where, the prime denotes derivative w.r.t. the variable, ς.

Integrating the above equation (2.49) once we find,

g′(ς) =
1

(b2 − a2)

(
aν − C(1 + κ2 cos2 θ)

sin2 θ

)
(2.50)

where, C is some integration constant.

We now focus our attention towards computing the equation of motion correspond-

ing to θ(ς). In order to do that, instead of considering the dynamics directly, we turn

our attention towards the first integrals of motion namely the Virasoro constraints of the

theory [26],

Tττ + Tσσ + 2Tτσ = 0. (2.51)

A straightforward computation yields the following,

θ′2 =
b2ν2

(b2−a2)2 sin2 θ

(
1+

κ2C
bν

)2

− sin4 θ +
C̃2(1 + κ2)2

b2ν2
(

1 + κ2C
bν

)2 sin2 θ − C2(1 + κ2)2

b2ν2
(

1 + κ2C
bν

)2

 .
(2.52)

As a next step of our analysis, we factorize (2.52) as,

θ′2 =
b2ν2

(b2 − a2)2 sin2 θ

(
1 +

κ2C
bν

)2

(sin2 θmax − sin2 θ)(sin2 θ − sin2 θmin) (2.53)

where,

sin2 θmax + sin2 θmin =
C̃2(1 + κ2)2

b2ν2
(

1 + κ2C
bν

)2

sin2 θmax sin2 θmin =
C2(1 + κ2)2

b2ν2
(

1 + κ2C
bν

)2 . (2.54)

Notice that, here θmax and θmin correspond to extremal values of θ such that θ′ = 0.

It turns out that the size of the magnon and/or spike in the dual gauge theory could be
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estimated by means of θmax [29]. In our analysis, we first consider the infinite size limit

associated with these single trace operators in the dual gauge theory. This infinite size limit

corresponds to setting, sin θmax = 1 in the bulk. As far as the dual field theory is concerned,

this infinite size limit would correspond magnons with large angular momenta together with

finite angular difference (or momentum) and spikes with large angular difference between

its two end points together with finite angular momentum [29].

At this stage, it is noteworthy to mention that the two point correlations between these

heavy states in the dual gauge theory should not follow the usual power law behavior [29]

of a CFT and in fact there should be a clear deviation from the usual power law behavior

indicating the fact that the original conformal symmetry is broken. Therefore it remains

as an interesting direction to be explored how does this two point correlation behave in

the presence of an integrable one parameter background deformations [73]. In the first

part of our analysis, we precisely address this issue by analytically computing the two

point correlations between two heavy magnon states. In the second part of our analysis,

considering the large size limit, we compute two point correlation function between single

trace operators dual to spiky constructions over the deformed background. We also discuss

the finite size corrections to these correlation functions in each of the above examples.

3 Magnons

3.1 The large size limit

Both the infinite as well as the finite size limit for magnons correspond to setting, ∂σϕ = 0

at θ = θmax [29]. For θmax = π
2 , this implies a large value for the angular momenta at a

finite angular difference [29]. Using (2.50), this naturally implies,

sin2 θmax =
C(1 + κ2)

aν(1 + κ2C
aν )

. (3.1)

The infinite size limit for magnons corresponds to setting, C = aν [29]. Substitut-

ing (3.1) into (2.54), this further yields,

sin2 θmin =
a2(1 + κ2)2

b2
(

1 + κ2a
b

)2 . (3.2)

Clearly, in the limit, κ → 0 one recovers the results corresponding to the giant magnon

solutions constructed over the un-deformed background [29]. Using, (3.1) and (3.2) we can

re write (2.53) as,

θ′2 =
b2ν2

(b2 − a2)2 sin2 θ

(
1 +

κ2C
bν

)2
(
C(1 + κ2)

aν(1 + κ2C
aν )
− sin2 θ

)sin2 θ − aC(1 + κ2)2

b2ν
(

1 + κ2a
b

)2

 .

(3.3)

The purpose of the present analysis is to perform an explicit analytic computation

on two point correlations between two heavy magnon states in the classical limit [29]. It
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turns out that in the classical limit, the path integral is dominated by the Polyakov action

evaluated at the classical saddle point [28]. Following the original prescription [28], the

classical Polyakov action (corresponding to S3) for giant magnon solutions turns out to be,

S̄PS3 = SPS3 −
∫
d2σ

(
Πθθ̇ + Πϕϕ̇

)
(3.4)

where, Πθ and Πϕ are the conjugate momenta and dot corresponds to derivative w.r.t. τ .

A straightforward computation yields,

S̄PS3 = − T̂
2

∫
d2σ

(
f̃(θ)(a2 + b2)θ′2 + h̃(θ)(ν2 + 2aνg′ + (a2 + b2)g′2)

)
. (3.5)

Using (2.50) and (3.3), we finally obtain,

S̄PS3 = − T̂
2

∫ s/2

−s/2
dτ

∫ L

−L
dσ
ν2
(

1 + 2κ2ab cos2 θ
(a+b)2

)
(1 + κ2 cos2 θ)

= −T̂ sαν2

(
1 +

κ2a

b

)−1 ∫ π/2

θmin

sin θ
(

1 + 2κ2ab cos2 θ
(a+b)2

)
cos θ(1 + κ2 cos2 θ)

dθ√
sin2 θ − sin2 θmin

= −T̂ sLν2Θ(M) (3.6)

where, the entity Θ(M) could be formally expressed as,

Θ(M) =
α

L

(
1 +

κ2a

b

)−1 ∫ π/2

θmin

sin θ
(

1 + 2κ2ab cos2 θ
(a+b)2

)
cos θ(1 + κ2 cos2 θ)

dθ√
sin2 θ − sin2 θmin

(3.7)

and α is some numerical prefactor. Interestingly enough and unlike the AdS3 example, the

above expression (3.6) is exact in trms of the background deformations. Finally, it is also

noteworthy to mention that, in the limit, κ → 0 one could trivially convert the θ integral

into an integral over σ which finally yields, Θ(M) = 1.

Combining (2.33) and (3.6), we finally obtain,

iSAdS3×S3 = iT̂ sL

(
4

s2
Z(s) log2 |

xf
ε
| − ν2Θ(M)

)
(3.8)

where, the entity Z(s) could be formally expressed as,

Z(s) = 1 +
κ2

s

∫ s/2

−s/2
dτK(τ) +O(κ4)

= 1 +
κ2

s
Q(s) +O(κ4) (3.9)

where, the functional form of Q(s) could be uniquely fixed by means of the corresponding

saddle point equation evaluated at the classical saddle point.

As a next step of our analysis, we determine the classical saddle point, s = s̄ which

is achieved by varying the action (3.8) w.r.t. the parameter s that yields the following

differential equation,

− 1

s
− sν2Θ(M)

4 log2 |xfε |
+ κ2

(
Q(s)

s

)′
− κ2

(
Q(s)

s2

)
= 0. (3.10)
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In the following, we would work out the saddle point solutions corresponding to (3.10)

upto leading order in the deformation parameter. In other words, our solutions would be

valid ∼ O(κ2). These solutions turn out to be,

Q(s̄) ≈ Q(s̄(0)) = iqs̄2(0) +O(κ2)

= −4iq

ν2
log2 |

xf
ε
|+O(κ2)

= − iqβ
2s̄2(0)

ν2
+O(κ2)

s̄ ≈ − 2i

ν
√

Θ(M)
log |

xf
ε
| (3.11)

where, q is the integration constant.

Substituting (3.11) into (3.8), the semi-classical partition function evaluated at the

classical saddle point turns out to be,

iSAdS3×S3 ≈
(

1 +
κ2q

ν
log |

xf
ε
|
)

log | ε
xf
|2∆κ (3.12)

which in the limit, κ→ 0 precisely matches to that with the standard formula corresponding

to the semi classical string partition function estimated over the AdS5×S2 background [29].

Here, the entity,

∆κ = T̂

∫ L

−L
dσν

√
Θ(M) (3.13)

could be thought of as being that of the reminiscent of the classical conformal dimension

associated with heavy single trace operators in the dual gauge theory. In the limit, κ→ 0

this precisely matches with the classical conformal dimension associated with single trace

operators dual to long stringy solutions in the bulk.

As a consistency check of our analysis, below we show that in the appropriate limit

(κ → 0), our result trivially reduces to that of the giant magnon dispersion relation at

strong coupling [19] where one could easily identify the entity ∆κ=0 as being that of the

classical energy associated with stringy excitation in the bulk [29].

We first compute the angular momentum,

Jϕ = 2T̂

∫ π/2

θmin

sin θ

cos θ
√

sin2 θ − sin2 θmin

(
1 + κ2a

b

)−1

(1 + κ2 cos2 θ)

(
sin2 θ − a2

b2
(1 + κ2 cos2 θ)

)
dθ

(3.14)

which clearly diverges in the limit, θ → π/2. However, the difference

∆κ − Jϕ = 2T̂

∫ π/2

θmin

sin θ

cos θ
√

sin2 θ − sin2 θmin

F(κ2, θ)dθ (3.15)

where, the function F(κ2, θ) could be formally expressed as,

F(κ2, θ) =
√

Θ(M)

(
1 +

2κ2a

(a + b)

)−1(
1 +

κ2a

b

)
cos2 θmin

−

(
1 + κ2a

b

)−1

(1 + κ2 cos2 θ)

(
sin2 θ − a2

b2
(1 + κ2 cos2 θ)

)
. (3.16)
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It turns out that in the limit, κ→ 0

∆κ=0 − Jϕ = 2T

∫ π/2

θmin

sin θ cos θ√
sin2 θ − sin2 θmin

dθ = 2T cos θmin (3.17)

which is finite as expected [19].

On the other hand, the angle difference between the two end points of the string turns

out to be,

∆ϕ ≡ p = 2

∫ π/2

θmin

a

b

(
1 +

κ2a

b

)−1
(1 + κ2) cos θ

sin θ
√

sin2 θ − sin2 θmin

dθ

=
2

sin θmin

a

b

(
1 +

κ2a

b

)−1

(1 + κ2) sin−1(cos θmin) (3.18)

which trivially reduces to,

∆ϕ ≡ p = 2 sin−1(cos θmin) (3.19)

in the limit, κ→ 0. In summary, the dispersion relation [19, 29],

∆κ=0 − Jϕ = 2T | sin p
2
| (3.20)

is trivially satisfied in the limit, κ → 0. However, the above relation (3.20) does not hold

in the presence of background deformations and it receives non trivial corrections namely,

∆κ − Jϕ = 2T̂

∫ π/2

θmin

sin θ

cos θ
√

sin2 θ − 1 + sin2 ∆ϕ̃
F(κ2, θ)dθ (3.21)

where,

F(κ2, θ) =
√

Θ(M)

(
1 +

2κ2a

(a + b)

)−1(
1 +

κ2a

b

)
sin2 ∆ϕ̃

−

(
1 + κ2a

b

)−1

(1 + κ2 cos2 θ)

(
sin2 θ − a2

b2
(1 + κ2 cos2 θ)

)
(3.22)

together with the fact that,

∆ϕ̃ =

(
2a

b sin θmin

)−1(
1 +

κ2a

b

)
(1 + κ2)−1∆ϕ. (3.23)

Therefore, the excitation associated with the gauge theory dual to κ-deformed back-

ground are not magnons in the usual sense. As a natural consequence of this, it is also not

quite confirmed whether the corresponding spin chain description holds for the dual gauge

theory in the limit of weak couplings.

We now compute two point function between magnon like excitations in the dual gauge

theory. Following the original prescription [28], the corresponding two point correlation

between the heavy magnon like states finally turns out to be,

〈O(0)O(xf )〉κ = e
iSAdS3×S3 ≈

(
ε

xf

)2∆κ

e
− 2κ2q∆κ

ν
log2 | ε

xf
|+O(κ4)

(3.24)
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where, the exponential suppression above in the two point function (3.24) has its origin

in the point particle dynamics within the deformed AdS3 sector. On the other hand, the

associated power law behavior is exact in the deformation and its origin lies entirely on

the dynamics of strings over the deformed sphere. It is therefore quite tempting to claim

that (3.24) is a semi-perturbative result in itself.

The above relation (3.24) is also quite intuitive in the sense that for a given separation

(δx = xf ), the leading contribution to the two point correlations between heavy magnon

like states is exponentially suppressed compared to that of their cousins in the gauge theory

(CFT2) dual to undeofrmed AdS3 × S3. In other words, in the presence of background

deformations, the leading contribution to the two point correlation function between two

heavy operators dies at rate faster compared to that of the original unreformed theory.

Before we finish our discussion, it is worth specifying the corresponding behavior of

the two point correlation in the non perturbative regime, namely for κ � 1. It turns out

that in the non perturbative (κ� 1) regime,

S̄PS3 '
iT̂ sC(M)

κ2
+O

(
1

κ4

)
(3.25)

where, C(M) = 2εν(b−a)
(b+a)

sin ε
cos2 ε

and, |ε| � 1.

The above equation (3.25) clearly exhibits the fact that in the non perturbative regime

(κ � 1), the dominant contribution to the two point correlation appears from the sphere

partition function. This might be regarded as the consequence of the fact that in the limit,

κ� 1, the allowed physical region for strings moving in AdS3 eventually shrinks to zero [78].

Using (3.25), the two point correlation function associated with giant magnon like

states in the dual gauge theory could be formally expressed as,

〈O(0)O(xf )〉κ→∞ ≈ e
− T̂ s̄C

(M)

κ2 +O
(

1
κ4

)
. (3.26)

3.2 Finite size corrections

Having done our explorations on giant magnon two point correlations, the purpose of this

section is to pursue the same computation in the finite charge limit. In other words, we

compute two point correlation function between single trace operators of finite length. In

order to do that, the first thing we consider is to set θmax 6= π
2 which in turn implies that,

sin2 θmax =
C(1 + κ2)

aν(1 + κ2C
aν )

sin2 θmin =
aC(1 + κ2)

b2ν

(
1 + κ2C

aν

)
(

1 + κ2C
bν

)2 (3.27)

such that, C 6= aν. As a consequence of this we note,

θ′2 =
b2ν2

(b2−a2)2 sin2 θ

(
1+

κ2C
bν

)2
(
C(1+κ2)

aν(1+ κ2C
aν )
−sin2 θ

)sin2 θ− aC(1+κ2)

b2ν

(
1+ κ2C

aν

)
(

1+ κ2C
bν

)2

 .

(3.28)
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Our next task would be to compute the on-shell action (3.5) corresponding to deformed

S3 which for the present case yields,

S̄PS3 = − T̂
2

∫ s/2

−s/2
dτ

∫ L

−L
dσ
Cν
a

%(θ)

(1 + κ2 cos2 θ)

= −T̂ sLCν
ab

Θ
(M)
F = −T̂ sLν2

FΘ
(M)
F

Θ
(M)
F =

1

L

∫ θmax

θmin

%(θ)

θ′(1 + κ2 cos2 θ)
dθ (3.29)

where, the entity %(θ) could be formally expressed as,

%(θ) =
(a2 + b2)(1 + κ2)

(b2 − a2)2
(

1 + κ2C
aν

) [b2

(
1 +

κ2C
bν

)2

+ a2

(
1 +

κ2C
aν

)2
]
− 4a2b2(1 + κ2 cos2 θ)

(b2 − a2)2

− 2κ2ab(a2 + b2)

(b2 − a2)2

[
sin2 θ +

C
bν

(1 + κ2)

]
. (3.30)

Two points are to be noted here. First of all, the above expression (3.29) is an ex-

act result in terms of the background deformation and secondly it produces the correct

result [30] in the limit, κ→ 0.

As a next step, we write down the total action,

iSAdS3×S3 = iT̂ sL

(
4

s2
Z(s) log2 |

xf
ε
| − ν2

FΘ
(M)
F

)
. (3.31)

Following the same steps as earlier and evaluating (3.31) at the classical saddle point

we find,

iSAdS3×S3 ≈
(

1 +
κ2q

νF
log |

xf
ε
|
)

log | ε
xf
|2∆

(F )
κ (3.32)

where, the entity,

∆(F )
κ = T̂

∫ L

−L
dσνF

√
Θ

(M)
F (3.33)

becomes exactly the classical conformal dimension associated with finite sized single trace

(magnons) operators in the limit, κ→ 0 [30].

Finally, we note down the corresponding two point correlation function between single

trace operators of finite size which takes the following form,

〈O(0)O(xf )〉κ ≈
(
ε

xf

)2∆
(F )
κ

e
− 2κ2q∆

(F )
κ

νF
log2 | ε

xf
|+O(κ4)

. (3.34)

Therefore, compared with the previous example, the only difference that we encounter here

is that the entities like, ∆κ and ν are now corrected due to the finite size effects.

Like in the previous section, we now focus on the large κ(� 1) behavior of two point

function in the limit of finite size corrections where we note,

S̄PS3 '
iT̂ sC

(M)
F

κ2
+O

(
1

κ4

)
(3.35)

where, C
(M)
F =

4εν2
F a

2b2

(b2−a2)C
sin ε

cos2 ε
.
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Using, (3.35), the finite size corrections to two point correlation function in the limit

of large background deformations could be formally expressed as,

〈O(0)O(xf )〉κ→∞ ≈ e
−
T̂ s̄C

(M)
F
κ2 +O

(
1
κ4

)
. (3.36)

4 Spikes

4.1 The large size limit

Having done our computations on two point correlations between single trace (magnon)

operators, we now turn our attention towards the computation of two point correlation

function between operators dual to spiky string solutions over the κ-deformed background.

We first consider the large size limit which corresponds to a large angular difference between

the two end points of the spike [29]. The corresponding boundary condition that one uses

is, ∂τϕ = 0 at θ = θmax [29] which for the present case yields,

sin2 θmax =
aC(1 + κ2)

b2ν
(

1 + κ2aC
b2ν

)
sin2 θmin =

C(1 + κ2)
(

1 + κ2aC
b2ν

)
aν
(

1 + κ2C
bν

)2 . (4.1)

The large size limit corresponds to setting, sin2 θmax = 1 which in turn implies, C = b2ν
a .

Using this value for the constant we find,

sin2 θmin =
b2(1 + κ2)2

a2
(

1 + κ2b
a

)2 . (4.2)

Finally, the on-shell action (3.5) corresponding to deformed S3 turns out to be,

S̄PS3 = − T̂
2

∫ s/2

−s/2
dτ

∫ L

−L
dσ

b2ν2

(b2 − a2)2

ξ(θ)

(1 + κ2 cos2 θ)

= −T̂ sL bν2

(b2 − a2)2
Θ(S) = −T̂ sLν̃2Θ(S)

Θ(S) =
1

L

∫ π/2

θmin

ξ(θ)

θ′(1 + κ2 cos2 θ)
dθ (4.3)

where, the entity ξ(θ) could be formally expressed as,

ξ(θ) = (a2 + b2)

[(
1 +

κ2b

a

)2

cos2 θ − b2

a2

cos2 θ

sin2 θ
(1 + κ2)2

]
+

b2 cos4 θ

sin2 θ
(1 + κ2)2

+ a2 sin2 θ − 2b2(1 + κ2 cos2 θ) +
b4

a2

(1 + κ2 cos2 θ)2

sin2 θ
. (4.4)

– 20 –



J
H
E
P
0
3
(
2
0
1
7
)
0
4
3

It is now quite trivial to check that in the limit, κ→ 0 one finds,

ξ(θ) =
(b2 − a2)2

a2
(4.5)

which upon substitution into (4.3), clearly reproduces the previous results of [29].

Following almost similar steps as that for the magnons, the full Polyakov action turns

out to be,

iSAdS3×S3 = iT̂ sL

(
4

s2
Z(s) log2 |

xf
ε
| − ν̃2Θ(S)

)
. (4.6)

Evaluating (4.6) at the classical saddle point, the two point correlation function be-

tween single trace operators corresponding to the dual field theory turns out to be,

〈O(0)O(xf )〉κ ≈
(
ε

xf

)2∆κ

e
− 2κ2q∆κ

ν̃
log2 | ε

xf
|+O(κ4)

(4.7)

where, the entity ∆κ associated with spikes turns out to be,

∆κ = T̂

∫ L

−L
dσν̃

√
Θ(S). (4.8)

As expected, the qualitative behavior of the two point correlation (4.7) does not change

compared to that with the previous example with magnons. On the other hand, the only

difference between magnons and spikes appears to be in the coefficient, ∆κ which in the

limit, κ → 0 precisely matches to that with the classical conformal dimension associated

with the single trace operator in the dual gauge theory.

Like in the case for magnons, we now compute two point function in the limit of large

background deformations. A straightforward computation yields the following,

S̄PS3 '
iT̂ sC(S)

κ2
+O

(
1

κ4

)
(4.9)

where, C(S) = 2εν̃2a(b2−a2)
ν

sin ε
cos2 ε

.

Using (4.9), it is now indeed trivial to compute the corresponding two point function

which turns out to be,

〈O(0)O(xf )〉κ→∞ ≈ e
− T̂ s̄C

(S)

κ2 +O
(

1
κ4

)
. (4.10)

4.2 Finite size corrections

Like in the case for magnons, we consider, θmax 6= π
2 in order to explore the effects associ-

ated with the finite size corrections on two point correlation function between single trace

operators in the dual gauge theory.

With this choice in hand, we note,

sin2 θmax =
aC(1 + κ2)

b2ν
(

1 + κ2aC
b2ν

)
sin2 θmin =

C(1 + κ2)
(

1 + κ2aC
b2ν

)
aν
(

1 + κ2C
bν

)2 (4.11)
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together with the expression for,

θ′2 =
b2ν2

(b2 − a2)2 sin2 θ

(
1 +

κ2C
bν

)2
 aC(1 + κ2)

b2ν
(

1 + κ2aC
b2ν

) − sin2 θ


sin2 θ −

C(1 + κ2)
(

1 + κ2aC
b2ν

)
aν
(

1 + κ2C
bν

)2

 (4.12)

such that the coefficient, C 6= b2ν
a .

Using (4.12), the on-shell action (3.5) corresponding to deformed S3 turns out to be,

S̄PS3 = − T̂
2

∫ s/2

−s/2
dτ

∫ L

−L
dσ

b2ν2

(b2 − a2)2

ξF (θ)

(1 + κ2 cos2 θ)

= −T̂ sL bν2

(b2 − a2)2
Θ

(S)
F = −T̂ sLν̃2Θ

(S)
F

Θ
(S)
F =

1

L

∫ θmax

θmin

ξF (θ)

θ′(1 + κ2 cos2 θ)
dθ (4.13)

where, the entity ξF (θ) could be formally expressed as,

ξF (θ) =
(a2+b2)

sin2 θ

(
1+

κ2C
bν

)2
 aC(1 + κ2)

b2ν
(

1 + κ2aC
b2ν

) − sin2 θ


sin2 θ −

C(1 + κ2)
(

1 + κ2aC
b2ν

)
aν
(

1 + κ2C
bν

)2


+

(a2 − b2)2

b2
sin2 θ +

(a2 + b2) sin2 θ

b2ν2

(
aν − C(1 + κ2 cos2 θ)

sin2 θ

)2

+
2a sin2 θ

b2ν

(
aν − C(1 + κ2 cos2 θ)

sin2 θ

)
. (4.14)

Finally, following the same steps as in the previous examples, the two point correlation

function between single trace operators takes the following form,

〈O(0)O(xf )〉κ ≈
(
ε

xf

)2∆κ

e
− 2κ2q∆κ

ν̃
log2 | ε

xf
|+O(κ4)

(4.15)

where, the entity ∆κ corresponding to operators dual to spiky solutions turns out to be,

∆κ = T̂

∫ L

−L
dσν̃

√
Θ

(S)
F . (4.16)

To conclude our discussion on spikes, following our previous methodology, we compute

two point function in the limit of large background deformations (κ � 1) which for the

present case yields,

〈O(0)O(xf )〉κ→∞ ≈ e
−
T̂ s̄C

(S)
F

κ2 +O
(

1
κ4

)
(4.17)

where, C
(S)
F = 2εν̃2a(b2−a2)

b2ν
sin ε

cos2 ε
.
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5 Summary and final remarks

We conclude our paper by mentioning some its possible future extensions that one might

wish to explore. Before going into that, we first summarize the entire analysis performed

so far. The goal of the present paper was to explore the underlying symmetries associated

with the mysterious dual gauge theory description corresponding to κ-deformed AdS3×S3

background at strong coupling. We address this issue through a systematic computation

of two point correlations between local operators at strong coupling. Our analysis is based

on the basic principle [28], that relates every local operator in a gauge theory to that with

the (semi)classical sting states propagating over the curved geometry.

In order to compute the two point function at strong coupling, we first solve the corre-

sponding stringy dynamics within the physical region bounded by the so called holographic

screen [84]–[85] in deformed AdS3. In our analysis, we consider two classes of local opera-

tors in the dual gauge theory namely, the magnons and the spikes. It turns out that one

could solve the dynamics for strings quite exactly in deformed S3. However, it does not

quite work that well for the deformed AdS3 sector. Considering both of these scenarios

together, we finally able to probe the behavior of the two point function corresponding to

two extremal limits of background deformations namely, the (semi)perturbative as well as

the non perturbative (κ� 1) regime. Our results could therefore be extrapolated further

towards the interpolating region in order to have a full qualitative understanding on the

behavior of the two point function for generic background deformations.

Our analysis reveals that in the limit of small background deformations (0 < κ ≤ 1)

associated with the deformed AdS3 sector of the full background geometry, the correspond-

ing two point correlation function between single trace operators in the dual gauge theory

is exponentially suppressed and as a result it decays at a rate faster than that what is

expected in the usual framework of a CFT [29]. This indeed confirms that the associated

conformal invariance in the dual gauge theory is explicitly broken and also clarifies all the

previous arguments [78] in favor of this observation. One should further take a note on the

fact that for strings attached to the holographic screen the correlation function eventually

vanishes due to large exponential suppresion.

Considering the other limit namely, κ � 1 we observe that at leading order in the

background deformations, the corresponding two point function receives contributions from

S3 and the contribution from AdS3 appears only at subleading order and which is thereby

suppressed compared to that of the sphere contribution. This eventually results in the

saturation of the corresponding two point function at large background deformations.

Before we conclude finally, it is worth emphasizing that answers to various doubts

and/or confusions associated with η-deformed models are not yet upto the mark. It still

remains as a matter of debate whether the deformed sigma model leads towards any type

IIB string theory after all. In this paper, instead of addressing this issue, we choose a rather

different question to be addressed namely whether the usual notion of Gauge/String duality

makes sense corresponding to classical target space solutions associated with η-deformed

model. As far as two point correlation (between heavy operators) is concerned, we find

sensible answers. However, many questions are yet to be addressed that one might wish
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to explore in the future: (1) It would be really nice to uplift the present calculation for

κ-deformed AdS5 × S5 superstring model in the presence of non vanishing background B

field, (2) A systematic computation of the three point correlations between local operators

might shed further light on the symmetries associated with the mysterious dual gauge

theory description at strong coupling. (3) The present analysis could also be performed

in the presence of Lax pairs. It would also be nice to compute two point functions for

backgrounds without integrable deformations for example black hole geometries where

the dual field theory exhibits some suitable IR cutoff. We leave these issues for future

investigations.
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A Solutions for G(z,x)(τ, τ ′)

Here, in the appendix, we provide the classical analysis regarding the most general solution

corresponding to the Green’s functions (2.32) associated with the point particle dynamics

in deformed AdS3. We consider the most general equation of the following form,

(Dτ + k2(τ))G(τ, τ ′) = −δ(τ − τ ′) (A.1)

where, Dτ ≡ ∂τ (f(βτ)∂τ ) for some general function, f(βτ).

Let us consider the following Fourier transform for the Green’s function in the frequency

(w) space,

G(τ, τ ′) =
1

2π

∫
dwe−iwβ(τ−τ ′)G(w). (A.2)

Acting by the L.H.S. of (A.1), the above equation (A.2) yields,

(Dτ + k(τ))G(τ, τ ′) = − 1

2π

∫
(w2f(βτ) + iwf′(βτ)− k2)e−iwβ(τ−τ ′)G(w)dw. (A.3)

Using (A.3), from (A.1) we obtain,

G(w) =
1

w2f(βτ) + iwf′(βτ)− k2
(A.4)

which upon substitution in (A.2) finally yields,

G(τ, τ ′) =
1

2π

∫
dw

e−iwβ(τ−τ ′)

(w2f(βτ) + iwf′(βτ)− k2)
. (A.5)
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[18] B. Stefański Jr. and A.A. Tseytlin, Large spin limits of AdS/CFT and generalized

Landau-Lifshitz equations, JHEP 05 (2004) 042 [hep-th/0404133] [INSPIRE].

[19] D.M. Hofman and J.M. Maldacena, Giant Magnons, J. Phys. A 39 (2006) 13095

[hep-th/0604135] [INSPIRE].

[20] G. Arutyunov, S. Frolov and M. Zamaklar, Finite-size Effects from Giant Magnons, Nucl.

Phys. B 778 (2007) 1 [hep-th/0606126] [INSPIRE].

[21] M. Kruczenski, J. Russo and A.A. Tseytlin, Spiky strings and giant magnons on S5, JHEP

10 (2006) 002 [hep-th/0607044] [INSPIRE].

[22] J.A. Minahan, A. Tirziu and A.A. Tseytlin, Infinite spin limit of semiclassical string states,

JHEP 08 (2006) 049 [hep-th/0606145] [INSPIRE].

[23] M. Spradlin and A. Volovich, Dressing the Giant Magnon, JHEP 10 (2006) 012

[hep-th/0607009] [INSPIRE].

[24] C. Kalousios, M. Spradlin and A. Volovich, Dressing the giant magnon II, JHEP 03 (2007)

020 [hep-th/0611033] [INSPIRE].

[25] J. Kluson, R.R. Nayak and K.L. Panigrahi, Giant Magnon in NS5-brane Background,

JHEP 04 (2007) 099 [hep-th/0703244] [INSPIRE].

[26] B.-H. Lee, K.L. Panigrahi and C. Park, Spiky Strings on AdS4 ×CP 3, JHEP 11 (2008) 066

[arXiv:0807.2559] [INSPIRE].

[27] B.-H. Lee and C. Park, Unbounded Multi Magnon and Spike, J. Korean Phys. Soc. 57

(2010) 30 [arXiv:0812.2727] [INSPIRE].

[28] R.A. Janik, P. Surowka and A. Wereszczynski, On correlation functions of operators dual to

classical spinning string states, JHEP 05 (2010) 030 [arXiv:1002.4613] [INSPIRE].

[29] C. Park and B.-H. Lee, Correlation functions of magnon and spike, Phys. Rev. D 83 (2011)

126004 [arXiv:1012.3293] [INSPIRE].

[30] B.-H. Lee and C. Park, Finite size effect on the magnon’s correlation functions, Phys. Rev.

D 84 (2011) 086005 [arXiv:1105.3279] [INSPIRE].

[31] X. Bai, B.-H. Lee and C. Park, Correlation function of dyonic strings, Phys. Rev. D 84

(2011) 026009 [arXiv:1104.1896] [INSPIRE].

[32] M.S. Costa, R. Monteiro, J.E. Santos and D. Zoakos, On three-point correlation functions

in the gauge/gravity duality, JHEP 11 (2010) 141 [arXiv:1008.1070] [INSPIRE].

[33] R. Hernandez, Three-point correlators for giant magnons, JHEP 05 (2011) 123

[arXiv:1104.1160] [INSPIRE].

[34] C. Ahn and P. Bozhilov, Three-point Correlation functions of Giant magnons with finite

size, Phys. Lett. B 702 (2011) 286 [arXiv:1105.3084] [INSPIRE].

[35] C. Ahn and P. Bozhilov, Three-point Correlation Function of Giant Magnons in the

Lunin-Maldacena background, Phys. Rev. D 84 (2011) 126011 [arXiv:1106.5656]

[INSPIRE].

[36] P. Bozhilov, Three-point correlators: Finite-size giant magnons and singlet scalar operators

on higher string levels, Nucl. Phys. B 855 (2012) 268 [arXiv:1108.3812] [INSPIRE].

– 26 –

http://dx.doi.org/10.1007/JHEP03(2013)109
https://arxiv.org/abs/1211.1952
http://inspirehep.net/search?p=find+EPRINT+arXiv:1211.1952
http://dx.doi.org/10.1088/1126-6708/2004/05/042
https://arxiv.org/abs/hep-th/0404133
http://inspirehep.net/search?p=find+EPRINT+hep-th/0404133
http://dx.doi.org/10.1088/0305-4470/39/41/S17
https://arxiv.org/abs/hep-th/0604135
http://inspirehep.net/search?p=find+EPRINT+hep-th/0604135
http://dx.doi.org/10.1016/j.nuclphysb.2006.12.026
http://dx.doi.org/10.1016/j.nuclphysb.2006.12.026
https://arxiv.org/abs/hep-th/0606126
http://inspirehep.net/search?p=find+EPRINT+hep-th/0606126
http://dx.doi.org/10.1088/1126-6708/2006/10/002
http://dx.doi.org/10.1088/1126-6708/2006/10/002
https://arxiv.org/abs/hep-th/0607044
http://inspirehep.net/search?p=find+EPRINT+hep-th/0607044
http://dx.doi.org/10.1088/1126-6708/2006/08/049
https://arxiv.org/abs/hep-th/0606145
http://inspirehep.net/search?p=find+EPRINT+hep-th/0606145
http://dx.doi.org/10.1088/1126-6708/2006/10/012
https://arxiv.org/abs/hep-th/0607009
http://inspirehep.net/search?p=find+EPRINT+hep-th/0607009
http://dx.doi.org/10.1088/1126-6708/2007/03/020
http://dx.doi.org/10.1088/1126-6708/2007/03/020
https://arxiv.org/abs/hep-th/0611033
http://inspirehep.net/search?p=find+EPRINT+hep-th/0611033
http://dx.doi.org/10.1088/1126-6708/2007/04/099
https://arxiv.org/abs/hep-th/0703244
http://inspirehep.net/search?p=find+EPRINT+hep-th/0703244
http://dx.doi.org/10.1088/1126-6708/2008/11/066
https://arxiv.org/abs/0807.2559
http://inspirehep.net/search?p=find+EPRINT+arXiv:0807.2559
http://dx.doi.org/10.3938/jkps.57.30
http://dx.doi.org/10.3938/jkps.57.30
https://arxiv.org/abs/0812.2727
http://inspirehep.net/search?p=find+EPRINT+arXiv:0812.2727
http://dx.doi.org/10.1007/JHEP05(2010)030
https://arxiv.org/abs/1002.4613
http://inspirehep.net/search?p=find+EPRINT+arXiv:1002.4613
http://dx.doi.org/10.1103/PhysRevD.83.126004
http://dx.doi.org/10.1103/PhysRevD.83.126004
https://arxiv.org/abs/1012.3293
http://inspirehep.net/search?p=find+EPRINT+arXiv:1012.3293
http://dx.doi.org/10.1103/PhysRevD.84.086005
http://dx.doi.org/10.1103/PhysRevD.84.086005
https://arxiv.org/abs/1105.3279
http://inspirehep.net/search?p=find+EPRINT+arXiv:1105.3279
http://dx.doi.org/10.1103/PhysRevD.84.026009
http://dx.doi.org/10.1103/PhysRevD.84.026009
https://arxiv.org/abs/1104.1896
http://inspirehep.net/search?p=find+EPRINT+arXiv:1104.1896
http://dx.doi.org/10.1007/JHEP11(2010)141
https://arxiv.org/abs/1008.1070
http://inspirehep.net/search?p=find+EPRINT+arXiv:1008.1070
http://dx.doi.org/10.1007/JHEP05(2011)123
https://arxiv.org/abs/1104.1160
http://inspirehep.net/search?p=find+EPRINT+arXiv:1104.1160
http://dx.doi.org/10.1016/j.physletb.2011.07.011
https://arxiv.org/abs/1105.3084
http://inspirehep.net/search?p=find+EPRINT+arXiv:1105.3084
http://dx.doi.org/10.1103/PhysRevD.84.126011
https://arxiv.org/abs/1106.5656
http://inspirehep.net/search?p=find+EPRINT+arXiv:1106.5656
http://dx.doi.org/10.1016/j.nuclphysb.2011.10.008
https://arxiv.org/abs/1108.3812
http://inspirehep.net/search?p=find+EPRINT+arXiv:1108.3812


J
H
E
P
0
3
(
2
0
1
7
)
0
4
3

[37] D. Arnaudov and R.C. Rashkov, Three-point correlators: Examples from Lunin-Maldacena

background, Phys. Rev. D 84 (2011) 086009 [arXiv:1106.4298] [INSPIRE].

[38] J.A. Minahan, Holographic three-point functions for short operators, JHEP 07 (2012) 187

[arXiv:1206.3129] [INSPIRE].

[39] T. Klose and T. McLoughlin, A light-cone approach to three-point functions in AdS5 × S5,

JHEP 04 (2012) 080 [arXiv:1106.0495] [INSPIRE].

[40] B. Gwak, B.-H. Lee and C. Park, Correlation functions of the

Aharony-Bergman-Jafferis-Maldacena model, Phys. Rev. D 87 (2013) 086002

[arXiv:1211.5838] [INSPIRE].

[41] G. Georgiou, B.-H. Lee and C. Park, Correlators of massive string states with conserved

currents, JHEP 03 (2013) 167 [arXiv:1301.5092] [INSPIRE].

[42] A. Bissi, T. Harmark and M. Orselli, Holographic 3-Point Function at One Loop, JHEP 02

(2012) 133 [arXiv:1112.5075] [INSPIRE].

[43] D. Bak, B. Chen and J.-B. Wu, Holographic Correlation Functions for Open Strings and

Branes, JHEP 06 (2011) 014 [arXiv:1103.2024] [INSPIRE].

[44] S. Ryang, Three-point correlator of heavy vertex operators for circular winding strings in

AdS5 × S5, Phys. Lett. B 713 (2012) 122 [arXiv:1204.3688] [INSPIRE].

[45] P. Bozhilov, Some three-point correlation functions in the η-deformed AdS5 × S5, Int. J.

Mod. Phys. A 31 (2016) 1550224 [arXiv:1502.00610] [INSPIRE].

[46] P. Bozhilov, More three-point correlators of giant magnons with finite size, JHEP 08 (2011)

121 [arXiv:1107.2645] [INSPIRE].

[47] T. Lukowski and O. Ohlsson Sax, Finite size giant magnons in the SU(2)× SU(2) sector of

AdS4 × CP 3, JHEP 12 (2008) 073 [arXiv:0810.1246] [INSPIRE].

[48] B.-H. Lee, R.R. Nayak, K.L. Panigrahi and C. Park, On the giant magnon and spike

solutions for strings on AdS3 × S3, JHEP 06 (2008) 065 [arXiv:0804.2923] [INSPIRE].

[49] A. Ciavarella and P. Bowcock, Boundary Giant Magnons and Giant Gravitons, JHEP 09

(2010) 072 [arXiv:1007.1674] [INSPIRE].

[50] J.R. David and B. Sahoo, Giant magnons in the D1-D5 system, JHEP 07 (2008) 033

[arXiv:0804.3267] [INSPIRE].

[51] G. Arutyunov, M. de Leeuw and S.J. van Tongeren, The exact spectrum and mirror duality

of the (AdS5 × S5)η superstring, Theor. Math. Phys. 182 (2015) 23 [arXiv:1403.6104]

[INSPIRE].

[52] A. Mohamed Adam Ali, R. de Mello Koch, N.H. Tahiridimbisoa and A. Larweh Mahu,

Interacting Double Coset Magnons, Phys. Rev. D 93 (2016) 065057 [arXiv:1512.05019]

[INSPIRE].

[53] N. Beisert, The SU(2|2) dynamic S-matrix, Adv. Theor. Math. Phys. 12 (2008) 945

[hep-th/0511082] [INSPIRE].

[54] N. Dorey, Magnon Bound States and the AdS/CFT Correspondence, J. Phys. A 39 (2006)

13119 [hep-th/0604175] [INSPIRE].

[55] H.-Y. Chen, N. Dorey and K. Okamura, Dyonic giant magnons, JHEP 09 (2006) 024

[hep-th/0605155] [INSPIRE].

– 27 –

http://dx.doi.org/10.1103/PhysRevD.84.086009
https://arxiv.org/abs/1106.4298
http://inspirehep.net/search?p=find+EPRINT+arXiv:1106.4298
http://dx.doi.org/10.1007/JHEP07(2012)187
https://arxiv.org/abs/1206.3129
http://inspirehep.net/search?p=find+EPRINT+arXiv:1206.3129
http://dx.doi.org/10.1007/JHEP04(2012)080
https://arxiv.org/abs/1106.0495
http://inspirehep.net/search?p=find+EPRINT+arXiv:1106.0495
http://dx.doi.org/10.1103/PhysRevD.87.086002
https://arxiv.org/abs/1211.5838
http://inspirehep.net/search?p=find+EPRINT+arXiv:1211.5838
http://dx.doi.org/10.1007/JHEP03(2013)167
https://arxiv.org/abs/1301.5092
http://inspirehep.net/search?p=find+EPRINT+arXiv:1301.5092
http://dx.doi.org/10.1007/JHEP02(2012)133
http://dx.doi.org/10.1007/JHEP02(2012)133
https://arxiv.org/abs/1112.5075
http://inspirehep.net/search?p=find+EPRINT+arXiv:1112.5075
http://dx.doi.org/10.1007/JHEP06(2011)014
https://arxiv.org/abs/1103.2024
http://inspirehep.net/search?p=find+EPRINT+arXiv:1103.2024
http://dx.doi.org/10.1016/j.physletb.2012.05.049
https://arxiv.org/abs/1204.3688
http://inspirehep.net/search?p=find+EPRINT+arXiv:1204.3688
http://dx.doi.org/10.1142/S0217751X15502243
http://dx.doi.org/10.1142/S0217751X15502243
https://arxiv.org/abs/1502.00610
http://inspirehep.net/search?p=find+EPRINT+arXiv:1502.00610
http://dx.doi.org/10.1007/JHEP08(2011)121
http://dx.doi.org/10.1007/JHEP08(2011)121
https://arxiv.org/abs/1107.2645
http://inspirehep.net/search?p=find+EPRINT+arXiv:1107.2645
http://dx.doi.org/10.1088/1126-6708/2008/12/073
https://arxiv.org/abs/0810.1246
http://inspirehep.net/search?p=find+EPRINT+arXiv:0810.1246
http://dx.doi.org/10.1088/1126-6708/2008/06/065
https://arxiv.org/abs/0804.2923
http://inspirehep.net/search?p=find+EPRINT+arXiv:0804.2923
http://dx.doi.org/10.1007/JHEP09(2010)072
http://dx.doi.org/10.1007/JHEP09(2010)072
https://arxiv.org/abs/1007.1674
http://inspirehep.net/search?p=find+EPRINT+arXiv:1007.1674
http://dx.doi.org/10.1088/1126-6708/2008/07/033
https://arxiv.org/abs/0804.3267
http://inspirehep.net/search?p=find+EPRINT+arXiv:0804.3267
http://dx.doi.org/10.1007/s11232-015-0243-9
https://arxiv.org/abs/1403.6104
http://inspirehep.net/search?p=find+EPRINT+arXiv:1403.6104
http://dx.doi.org/10.1103/PhysRevD.93.065057
https://arxiv.org/abs/1512.05019
http://inspirehep.net/search?p=find+EPRINT+arXiv:1512.05019
http://dx.doi.org/10.4310/ATMP.2008.v12.n5.a1
https://arxiv.org/abs/hep-th/0511082
http://inspirehep.net/search?p=find+EPRINT+hep-th/0511082
http://dx.doi.org/10.1088/0305-4470/39/41/S18
http://dx.doi.org/10.1088/0305-4470/39/41/S18
https://arxiv.org/abs/hep-th/0604175
http://inspirehep.net/search?p=find+EPRINT+hep-th/0604175
http://dx.doi.org/10.1088/1126-6708/2006/09/024
https://arxiv.org/abs/hep-th/0605155
http://inspirehep.net/search?p=find+EPRINT+hep-th/0605155


J
H
E
P
0
3
(
2
0
1
7
)
0
4
3

[56] N.P. Bobev and R.C. Rashkov, Multispin Giant Magnons, Phys. Rev. D 74 (2006) 046011

[hep-th/0607018] [INSPIRE].

[57] D. Roychowdhury, Multispin magnons on deformed AdS3 × S3, arXiv:1612.06217

[INSPIRE].

[58] C. Ahn and P. Bozhilov, Finite-Size Dyonic Giant Magnons in TsT-transformed

AdS5 × S5, JHEP 07 (2010) 048 [arXiv:1005.2508] [INSPIRE].

[59] M.C. Abbott, I. Aniceto and O. Ohlsson Sax, Dyonic Giant Magnons in CP 3: Strings and

Curves at Finite J , Phys. Rev. D 80 (2009) 026005 [arXiv:0903.3365] [INSPIRE].

[60] C. Kalousios, M. Spradlin and A. Volovich, Dyonic Giant Magnons on CP 3, JHEP 07

(2009) 006 [arXiv:0902.3179] [INSPIRE].

[61] S. Ryang, Three-spin giant magnons in AdS5 × S5, JHEP 12 (2006) 043 [hep-th/0610037]

[INSPIRE].

[62] O. Lunin and J.M. Maldacena, Deforming field theories with U(1)×U(1) global symmetry

and their gravity duals, JHEP 05 (2005) 033 [hep-th/0502086] [INSPIRE].

[63] S.A. Frolov, R. Roiban and A.A. Tseytlin, Gauge-string duality for superconformal

deformations of N = 4 super Yang-Mills theory, JHEP 07 (2005) 045 [hep-th/0503192]

[INSPIRE].

[64] S. Frolov, Lax pair for strings in Lunin-Maldacena background, JHEP 05 (2005) 069

[hep-th/0503201] [INSPIRE].

[65] L.F. Alday, G. Arutyunov and S. Frolov, Green-Schwarz strings in TsT-transformed

backgrounds, JHEP 06 (2006) 018 [hep-th/0512253] [INSPIRE].

[66] R. Ricci, A.A. Tseytlin and M. Wolf, On T-duality and Integrability for Strings on AdS

Backgrounds, JHEP 12 (2007) 082 [arXiv:0711.0707] [INSPIRE].

[67] N. Beisert, R. Ricci, A.A. Tseytlin and M. Wolf, Dual Superconformal Symmetry from

AdS5 × S5 Superstring Integrability, Phys. Rev. D 78 (2008) 126004 [arXiv:0807.3228]

[INSPIRE].

[68] B. Hoare, T.J. Hollowood and J.L. Miramontes, q-Deformation of the AdS5×S5 Superstring

S-matrix and its Relativistic Limit, JHEP 03 (2012) 015 [arXiv:1112.4485] [INSPIRE].

[69] M. de Leeuw, T. Matsumoto and V. Regelskis, The Bound State S-matrix of the Deformed

Hubbard Chain, JHEP 04 (2012) 021 [arXiv:1109.1410] [INSPIRE].

[70] S.J. van Tongeren, Integrability of the AdS5 × S5 superstring and its deformations, J. Phys.

A 47 (2014) 433001 [arXiv:1310.4854] [INSPIRE].

[71] G. Arutyunov, M. de Leeuw and S.J. van Tongeren, The Quantum Deformed Mirror TBA

I, JHEP 10 (2012) 090 [arXiv:1208.3478] [INSPIRE].

[72] G. Arutyunov, M. de Leeuw and S.J. van Tongeren, The Quantum Deformed Mirror TBA

II, JHEP 02 (2013) 012 [arXiv:1210.8185] [INSPIRE].

[73] F. Delduc, M. Magro and B. Vicedo, An integrable deformation of the AdS5 × S5

superstring action, Phys. Rev. Lett. 112 (2014) 051601 [arXiv:1309.5850] [INSPIRE].

[74] F. Delduc, M. Magro and B. Vicedo, Derivation of the action and symmetries of the

q-deformed AdS5 × S5 superstring, JHEP 10 (2014) 132 [arXiv:1406.6286] [INSPIRE].

– 28 –

http://dx.doi.org/10.1103/PhysRevD.74.046011
https://arxiv.org/abs/hep-th/0607018
http://inspirehep.net/search?p=find+EPRINT+hep-th/0607018
https://arxiv.org/abs/1612.06217
http://inspirehep.net/search?p=find+EPRINT+arXiv:1612.06217
http://dx.doi.org/10.1007/JHEP07(2010)048
https://arxiv.org/abs/1005.2508
http://inspirehep.net/search?p=find+EPRINT+arXiv:1005.2508
http://dx.doi.org/10.1103/PhysRevD.80.026005
https://arxiv.org/abs/0903.3365
http://inspirehep.net/search?p=find+EPRINT+arXiv:0903.3365
http://dx.doi.org/10.1088/1126-6708/2009/07/006
http://dx.doi.org/10.1088/1126-6708/2009/07/006
https://arxiv.org/abs/0902.3179
http://inspirehep.net/search?p=find+EPRINT+arXiv:0902.3179
http://dx.doi.org/10.1088/1126-6708/2006/12/043
https://arxiv.org/abs/hep-th/0610037
http://inspirehep.net/search?p=find+EPRINT+hep-th/0610037
http://dx.doi.org/10.1088/1126-6708/2005/05/033
https://arxiv.org/abs/hep-th/0502086
http://inspirehep.net/search?p=find+EPRINT+hep-th/0502086
http://dx.doi.org/10.1088/1126-6708/2005/07/045
https://arxiv.org/abs/hep-th/0503192
http://inspirehep.net/search?p=find+EPRINT+hep-th/0503192
http://dx.doi.org/10.1088/1126-6708/2005/05/069
https://arxiv.org/abs/hep-th/0503201
http://inspirehep.net/search?p=find+EPRINT+hep-th/0503201
http://dx.doi.org/10.1088/1126-6708/2006/06/018
https://arxiv.org/abs/hep-th/0512253
http://inspirehep.net/search?p=find+EPRINT+hep-th/0512253
http://dx.doi.org/10.1088/1126-6708/2007/12/082
https://arxiv.org/abs/0711.0707
http://inspirehep.net/search?p=find+EPRINT+arXiv:0711.0707
http://dx.doi.org/10.1103/PhysRevD.78.126004
https://arxiv.org/abs/0807.3228
http://inspirehep.net/search?p=find+EPRINT+arXiv:0807.3228
http://dx.doi.org/10.1007/JHEP03(2012)015
https://arxiv.org/abs/1112.4485
http://inspirehep.net/search?p=find+EPRINT+arXiv:1112.4485
http://dx.doi.org/10.1007/JHEP04(2012)021
https://arxiv.org/abs/1109.1410
http://inspirehep.net/search?p=find+EPRINT+arXiv:1109.1410
http://dx.doi.org/10.1088/1751-8113/47/43/433001
http://dx.doi.org/10.1088/1751-8113/47/43/433001
https://arxiv.org/abs/1310.4854
http://inspirehep.net/search?p=find+EPRINT+arXiv:1310.4854
http://dx.doi.org/10.1007/JHEP10(2012)090
https://arxiv.org/abs/1208.3478
http://inspirehep.net/search?p=find+EPRINT+arXiv:1208.3478
http://dx.doi.org/10.1007/JHEP02(2013)012
https://arxiv.org/abs/1210.8185
http://inspirehep.net/search?p=find+EPRINT+arXiv:1210.8185
http://dx.doi.org/10.1103/PhysRevLett.112.051601
https://arxiv.org/abs/1309.5850
http://inspirehep.net/search?p=find+EPRINT+arXiv:1309.5850
http://dx.doi.org/10.1007/JHEP10(2014)132
https://arxiv.org/abs/1406.6286
http://inspirehep.net/search?p=find+EPRINT+arXiv:1406.6286


J
H
E
P
0
3
(
2
0
1
7
)
0
4
3

[75] G. Arutyunov, R. Borsato and S. Frolov, S-matrix for strings on η-deformed AdS5 × S5,

JHEP 04 (2014) 002 [arXiv:1312.3542] [INSPIRE].

[76] O.T. Engelund and R. Roiban, On the asymptotic states and the quantum S matrix of the

η-deformed AdS5 × S5 superstring, JHEP 03 (2015) 168 [arXiv:1412.5256] [INSPIRE].

[77] G. Arutyunov, R. Borsato and S. Frolov, Puzzles of η-deformed AdS5 × S5, JHEP 12

(2015) 049 [arXiv:1507.04239] [INSPIRE].

[78] B. Hoare, R. Roiban and A.A. Tseytlin, On deformations of AdSn × Sn supercosets, JHEP

06 (2014) 002 [arXiv:1403.5517] [INSPIRE].

[79] O. Lunin, R. Roiban and A.A. Tseytlin, Supergravity backgrounds for deformations of

AdSn × Sn supercoset string models, Nucl. Phys. B 891 (2015) 106 [arXiv:1411.1066]

[INSPIRE].

[80] C. Appadu and T.J. Hollowood, β-function of k deformed AdS5 × S5 string theory, JHEP

11 (2015) 095 [arXiv:1507.05420] [INSPIRE].

[81] T.J. Hollowood, J.L. Miramontes and D.M. Schmidtt, An Integrable Deformation of the

AdS5 × S5 Superstring, J. Phys. A 47 (2014) 495402 [arXiv:1409.1538] [INSPIRE].

[82] T.J. Hollowood, J.L. Miramontes and D.M. Schmidtt, S-Matrices and Quantum Group

Symmetry of k-Deformed σ-models, J. Phys. A 49 (2016) 465201 [arXiv:1506.06601]

[INSPIRE].

[83] G. Arutyunov and S.J. van Tongeren, AdS5 × S5 mirror model as a string σ-model, Phys.

Rev. Lett. 113 (2014) 261605 [arXiv:1406.2304] [INSPIRE].

[84] T. Kameyama and K. Yoshida, A new coordinate system for q-deformed AdS5 × S5 and

classical string solutions, J. Phys. A 48 (2015) 075401 [arXiv:1408.2189] [INSPIRE].

[85] T. Kameyama and K. Yoshida, Minimal surfaces in q-deformed AdS5 × S5 with Poincaré
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