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1 Introduction

The effects of magnetic field on the phase structure of quantum chromodynamics (QCD)

have prompted intensive research activity recently. This wave of interest is motivated by

applications to both the relativistic heavy-ion collision experiments and the astrophysics of

neutron stars. Many of the theoretical efforts have focused on the properties of matter at

zero net baryon number density due to the availability of results from lattice simulations

in this regime; see ref. [3] for a recent review.

The progress in understanding the properties of matter at nonzero baryon density has

been hindered by the sign problem on the one hand, and by model ambiguities on the other

hand. However, an intriguing observation was made a decade ago in ref. [4]: a combination

of an external magnetic field with a nonzero baryon number chemical potential can lead to

a spatially modulated condensate of neutral pions as a consequence of the axial anomaly.

Such a condensate carries baryon number and can under certain circumstances replace

“ordinary” (fermionic) nuclear matter as the ground state of QCD.

The exact solution of the equation of motion for the neutral pion condensate has only

been found recently [1]. It turned out that similarly to e.g. chiral magnets [5] and cholesteric

liquid crystals [6], the condensate takes the form of a chiral soliton lattice (CSL) when the

magnetic field exceeds certain critical value. It was confirmed using a model-independent
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effective field theory that the CSL is the ground state of QCD within a range of magnetic

fields and baryon densities that might occur in the cores of magnetars. Furthermore, the

CSL is characterized by a gapless phonon-like excitation that may be interpreted as a

Nambu-Goldstone (NG) boson of the spontaneously broken translation invariance.

Since neutral pions interact anomalously with the electromagnetic field, a natural ques-

tion arises as to what effect the CSL structure has on the propagation of photons. This

issue was addressed in ref. [2] for the simplest case of the chiral limit where the CSL carries

a uniform baryon number density. An intriguing birefringence effect was found. Namely,

the dispersion relation of photons propagating along the magnetic field lines depends on

their circular polarization: one polarization receives a gap and thus becomes attenuated

at low frequencies, whereas the other remains gapless and moreover is softened, acquir-

ing a nonrelativistic, quadratic dispersion relation. The analysis was subsequently further

developed in ref. [7] where more general, possibly time-dependent backgrounds were con-

sidered, and the propagation of photons in directions not parallel to the magnetic field was

investigated. In another recent paper [8], a simple model for the nonuniform background

lattice was analyzed. In such a case, the photon spectrum takes the form of a set of energy

bands just like the electron spectrum in solids. Otherwise, its main distinguishing features

remain unaltered: one of the photon polarizations is gapped, whereas the other is gapless

with a quadratic dispersion relation at low momentum.

All the above-mentioned works are based on the same approximation wherein the chiral

background anomalously interacting with the electromagnetic field is treated as fixed. This

is justified in condensed-matter analogs such as the topological insulators, which are the

actual subject of interest of ref. [8]. However, it is not appropriate for the interacting system

of neutral pions where the CSL structure emerges spontaneously. As a consequence, the

spectrum of the system is expected to contain another soft mode apart from the photons,

namely the NG mode of the spontaneously broken translations. It is well known that for

a correct low-energy description of a given system, all low-energy degrees of freedom have

to be taken into account appropriately.

The goal of the present paper is to fill the gap in the existing analyses and investigate

the behavior of the coupled system of neutral pion and photon fluctuations of the CSL back-

ground. This allows us not only to refine the existing conclusions about the effect of the CSL

on the propagation of photons, but also to quantify the effect that dynamical electromag-

netic fields have on the CSL and its fluctuations. The results are remarkable. In the absence

of coupling between pions and photons, the system will have three gapless excitations: two

photon polarizations and the phonon of the CSL. Turning the coupling on gaps two of these

excitations and leaves only one gapless mode, in spite of spontaneous breaking of spatial

translations and the absence of the Higgs mechanism for photons. The only gapless mode

is in general a mixture of the two photon polarizations and the neutral pion, which can be

disentangled only in special kinematic limits. For instance, for modes propagating along

the external magnetic field, unbroken rotational invariance allows one to define helicity

and thus clearly distinguish photons from pions. In this limit, one can assert that the CSL

phonon receives a gap as a result of its coupling to photons, despite the Goldstone theorem.
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The paper is organized as follows. In section 2 we review our basic setup, using the

leading-order chiral perturbation theory [9] augmented with the anomalous Wess-Zumino-

Witten term. In section 3 we then summarize the most important results of ref. [1] regarding

the CSL solution for the neutral pion condensate. Most of the novel material of this paper

is contained in section 4. We first derive the coupled set of equations of motion for the

neutral pion and photon excitations. Closed analytic solutions can be given in several cases,

namely in the chiral limit, and for pion-like excitations above the general CSL background,

propagating along the external magnetic field. In some other cases we provide approximate

solutions in various limits. In section 4.4 we discuss how the presence of a single gapless

excitation is compatible with the Goldstone theorem.

Finally, in section 5 we initiate the analysis of the thermal excitations in the sys-

tem. We first show that even the soft, nonrelativistic dispersion of the gapless mode does

not lead to the Landau-Peierls instability that would destroy the order parameter at any

nonzero temperature. Subsequently, we calculate the leading contribution to pressure at

low temperatures. Due to the very same nonrelativistic dispersion, this turns out to scale

with temperature as T 5/2(B/fπ)3/2, in contrast to the naively expected T 4 scaling for both

the photons and the gapless pions (CSL phonons). This previously unnoticed contribution

dominates the low-temperature pressure of a pion gas in external magnetic fields.

2 Low-energy effective theory

The low-energy dynamics of pions is governed by the leading-order chiral perturbation

theory (χPT) Lagrangian

LχPT =
f2
π

4

[
Tr(DµΣ†DµΣ) +m2

π Tr(Σ + Σ†)
]
, (2.1)

where fπ is the pion decay constant, mπ the vacuum pion mass, and Σ an SU(2)-valued field

that represents the three pion degrees of freedom. The coupling to the electromagnetic field

Aµ is introduced through a covariant derivative, DµΣ ≡ ∂µΣ− i[Qµ,Σ], where Qµ ≡ Aµ τ32 ,

and τ3 is the third Pauli matrix. The effects of the chiral anomaly enter the χPT Lagrangian

at the next-to-leading order of the derivative expansion, and are captured by the Wess-

Zumino-Witten term. For two quark flavors, this takes the form [4]

LWZW = jµB

(
1

2
Aµ −AB

µ

)
, (2.2)

where AB
µ is an external gauge field that couples to the baryon number current and jµB is

the Goldstone-Wilczek current,

jµB = − 1

24π2
εµναβ Tr

[
(ΣDνΣ†)(ΣDαΣ†)(ΣDβΣ†) +

3i

4
Fνατ3(ΣDβΣ† +DβΣ†Σ)

]
. (2.3)

Finally, the dynamics of the electromagnetic field is described by quantum electrodynamics,

LQED = −1

4
FµνF

µν +
1

2ξ
(∂µA

µ)2 − jµbackAµ, (2.4)

– 3 –



J
H
E
P
0
3
(
2
0
1
7
)
0
1
5

where we defined as usual Fµν ≡ ∂µAν − ∂νAµ, added a gauge-fixing term and a coupling

to a classical charged background (to be discussed below), represented by the current jµback.

The total Lagrangian for our system is given by the sum L = LχPT +LWZW +LQED.

Recall that the minimal coupling to an external magnetic field Bex gives the charged pions a

gap proportional to
√
Bex [3]. While it was shown in ref. [1] that the presence of a CSL may

reverse this behavior and in sufficiently strong magnetic fields even lead to Bose-Einstein

condensation of charged pions, we will assume throughout this paper that the external

magnetic field takes such values that the charged pions are sufficiently heavy and therefore

can be dropped from the low-energy effective theory. In other words, we shall analyze

the dynamics of the coupled system of neutral pions and the electromagnetic field. The

master Lagrangian of our system then follows from eqs. (2.1), (2.2) and (2.4) by inserting

Σ = exp( i
fπ
τ3π

0) and setting AB
µ = (µ,0), where µ is the baryon chemical potential,

L =
1

2
(∂µπ

0)2 +m2
πf

2
π cos

(
π0

fπ

)
+
µC

2
ε0µναFµν∂απ

0 − C

8
π0εµναβFµνFαβ

− 1

4
FµνF

µν +
1

2ξ
(∂µA

µ)2 − jµbackAµ,

(2.5)

where we used the notation of ref. [2] and introduced the abbreviation

C ≡ 1

4π2fπ
. (2.6)

The terms in eq. (2.5) containing the Levi-Civita tensor are the contributions of the chiral

anomaly. The first one, proportional to µ, is merely a surface term, as is readily seen using

the Bianchi identity for the field-strength tensor Fµν . It does not affect the field equations

of motion, but plays a crucial role in the determination of the ground state [1, 2]. The

second term, on the other hand, corresponds to the well-known anomalous coupling of the

neutral pion, responsible among others for its two-photon decay in the vacuum. For the

record, we also note the nonrelativistic form of the Lagrangian,

L =
1

2

[
(π̇0)2 − (∇π0)2

]
+m2

πf
2
π cos

(
π0

fπ

)
+ µCB ·∇π0 + Cπ0E ·B

+
1

2
(E2 −B2) +

1

2ξ
(ϕ̇+ ∇ ·A)2 − ρbackϕ+ jback ·A,

(2.7)

where dots above fields represent time derivatives and we introduced the standard notation

ϕ, E, B for the scalar potential and the electric and magnetic field intensity, respectively.

The background charge density and current are denoted naturally as ρback and jback.

In the following, it will be important to have at hand the equations of motion following

from the master Lagrangian (2.5). These are straightforward to derive, and we therefore

just write down their final form in the nonrelativistic notation, assuming the Lorenz gauge

∂µA
µ = 0,

π̈0 −∇2π0 +m2
πfπ sin

(
π0

fπ

)
= CE ·B,

∇ ·E = ρback − CB ·∇π0,

∇×B = jback + Ė + CBπ̇0 − CE ×∇π0.

(2.8)

– 4 –



J
H
E
P
0
3
(
2
0
1
7
)
0
1
5

The first of these equations is the Klein-Gordon equation for the pion field with the Pon-

tryagin density for the electromagnetic field as a source. The second and third then are the

usual Maxwell equations with additional contributions coming from the chiral anomaly;

they are the basic equations of axion electrodynamics [2, 10].

In this paper, we study the electrodynamics of neutral pions in a uniform external

magnetic field Bex. In other words, we are looking for a ground state such that E = 0

and B = Bex. Zero electric field requires that the system has to be locally electrically

neutral, which is also consistent with the fact that overall electric neutrality is necessary

to ensure extensivity of free energy and thus the existence of a thermodynamic limit [11].

We therefore assume that in the ground state, the electric charge due to the nonuniform

pion field configuration is compensated by the background,

ρback = CBex · 〈∇π0〉, jback = 0, (2.9)

where the angular brackets denote ground state expectation value. Throughout the paper,

this background charge density will be assumed to be fixed and unaffected by pion and

electromagnetic field fluctuations. This assumption is certainly justified at sufficiently low

energies, as we explain in detail in section 6 and appendix A.

3 Chiral soliton lattice: an overview

At fixed external magnetic field, the Hamiltonian density of the neutral pion field, following

from eqs. (2.1) and (2.2), reads

H =
1

2
(∇π0)2 −m2

πf
2
π cos

(
π0

fπ

)
− µCBex ·∇π0. (3.1)

It is evident that the anomalous coupling to the magnetic field favors nonuniform field

configurations, modulated in the direction of Bex, chosen here without loss of generality

to point along the positive z-axis. The one-dimensional equation of motion for such a

nonuniform condensate is equivalent to the equation describing a simple pendulum, and

can be solved in a closed form in terms of the Jacobi elliptic functions [1, 12],

cos
φ(z̄)

2
= sn(z̄, k), (3.2)

where we introduced the shorthand notation φ ≡ 〈π0〉/fπ and the dimensionless coordinate

z̄ ≡ zmπ/k. Here k is the elliptic modulus, defining the Jacobi elliptic sine.

The above solution represents a lattice of topological solitons, the CSL, with lattice

spacing given by

` =
2kK(k)

mπ
, (3.3)

where K(k) is the complete elliptic integral of the first kind. The actual value of the elliptic

modulus k is determined by minimization of the Hamiltonian, following from eq. (3.1), and

is found to be given implicitly by the condition

E(k)

k
=

µBex

16πmπf2
π

, (3.4)
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where E(k) is the complete elliptic integral of the second kind. Since the function E(k)/k

is bounded from below by 1 in the physically acceptable range of k (0 ≤ k ≤ 1), it follows

that the CSL solution exists only above a critical magnetic field BCSL, equal to

BCSL =
16πmπf

2
π

µ
. (3.5)

Note that the critical case B = BCSL corresponds to the limit k → 1 where the Jacobi

elliptic functions approach the hyperbolic functions. The solution (3.2) then describes an

isolated domain wall [4],

φwall(z) = 4 tan−1 emπz. (3.6)

It can be shown that above the critical field BCSL, the CSL solution is always energetically

preferred over the usual QCD vacuum. Moreover, for µ ≈ mN where mN is the nucleon

mass, it is also preferred over nuclear matter [1].

For illustration, let us insert the physical values fπ ≈ 92 MeV, mπ ≈ 140 MeV, and

estimate µ = 900 MeV, that is, close to the expected onset of nuclear matter. We then get

from eq. (3.5) that BCSL ≈ 0.066 GeV2. In the units used here where the Planck constant,

speed of light as well as the elementary electric charge is set to one, the conversion to

the more usual unit for magnetic field is defined by 1 GeV2 ≈ 1.7 × 1020 G. The critical

magnetic field for CSL formation is therefore approximately 1019 G, which might be reached

in the cores of magnetars [3].

While the above-given expressions summarize the exact analytic solution of the equa-

tion of motion for the neutral pion condensate, it is convenient to have some analytic

results in terms of elementary functions. This can be achieved in the chiral limit (mπ → 0)

where the potential term is absent in the Hamiltonian (3.1). The energy functional is then

obviously minimized by a field of a constant gradient,

φ(z) =
µBexz

4π2f2
π

=
C

fπ
µBexz. (3.7)

In this case, the soliton “lattice” is a linear profile with a uniform charge density. The

corresponding “lattice spacing” is determined either by taking the limit of eq. (3.3), or by

using eq. (3.7) directly to find the distance over which the phase φ increases by 2π,

lim
mπ→0

` =
8π3f2

π

µBex
. (3.8)

Below, we will often use the chiral limit as a benchmark case that allows fully analytic

calculations. Since the elliptic modulus k depends according to eq. (3.4) only on the ratio

Bex/mπ, the linear profile (3.7) also describes very well the ground state with nonzero pion

mass but in sufficiently strong magnetic fields. In fact, the numerical results of ref. [1] show

that the chiral limit regime is effectively reached for magnetic fields of just a few (two to

three, depending on the precision required) times BCSL.

Finally, we note that the CSL solution spontaneously breaks translations in the z-

direction, and we thus expect a phonon-like gapless excitation to appear in the spectrum.

This is indeed the case, and the corresponding dispersion relation was found in ref. [1],

ω2 = p2
x + p2

y + (1− k2)

[
K(k)

E(k)

]2

p2
z +O(p4

z). (3.9)
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4 Excitation spectrum

In this section, we analyze in detail the spectrum of excitations above the CSL ground state.

We do so by looking for solutions to the equations of motion (2.8), linearized around the

CSL background. To that end, we introduce the field fluctuations δπ0, δE and δB through

π0 = 〈π0〉+ δπ0, E = δE, B = Bex + δB. (4.1)

Expanding eq. (2.8) to first order in these fluctuations and using the equation of motion

for the background leads to the set of equations

δπ̈0 −∇2δπ0 +m2
πδπ

0 cos

(
〈π0〉
fπ

)
= CBex · δE,

∇ · δE = −CδB · 〈∇π0〉 − CBex ·∇δπ0,

∇× δB = δĖ + CBexδπ̇
0 − CδE × 〈∇π0〉.

(4.2)

Next we use the fact that the background only depends on the z-coordinate to carry out a

Fourier transform in the transverse coordinates x, y (denoted collectively with the symbol

⊥) as well as in time. We introduce the conjugate frequency and transverse momentum

variables ω and p⊥, and the z-dependent complex amplitudes Π(z), e(z) and b(z), through

δπ0(r, t) = Π(z)e−iωteip⊥·r⊥ ,

δE(r, t) = e(z)e−iωteip⊥·r⊥ ,

δB(r, t) = b(z)e−iωteip⊥·r⊥ .

(4.3)

The Bianchi identity ∇ × E = −Ḃ can then be solved for the magnetic field amplitude.

When inserted in eq. (4.2), one finds that the equation for ∇ · δE (the Gauss law) becomes

redundant, whereas the rest of eq. (4.2) gives altogether four equations for the unknown

functions Π(z) and e(z),

(−∂2
z − ω2 + p2

⊥ +m2
π cosφ)Π− CBexez = 0,

iω2CBexΠ + p⊥ · ∂ze⊥ + i(ω2 − p2
⊥)ez = 0,

i(∂2
z + ω2 − p2

y)ex + (ipxpy + ωCfπ∂zφ)ey + px∂zez = 0,

(ipxpy − ωCfπ∂zφ)ex + i(∂2
z + ω2 − p2

x)ey + py∂zez = 0.

(4.4)

These are our master equations that we will use below to find the spectrum of exci-

tations. Before discussing specific cases for the background φ(z), it is worth pointing out

some general features of these equations though. Namely, for modes propagating along the

magnetic field (p⊥ = 0), the equations partially decouple. The first pair reduces to

(−∂2
z − ω2 + C2B2

ex +m2
π cosφ)Π = 0, (4.5)

augmented with an explicit solution for the longitudinal electric field, ez = −CBexΠ. This

describes a pion, propagating on the CSL background. Since the pion fluctuation induces

a fluctuation of local electric charge density, it is naturally accompanied by a fluctuating

– 7 –
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electric field, but no magnetic field. The term C2B2
ex in eq. (4.5) is new compared to the

situation where the electromagnetic field is fixed to its background value. Since in that

case, the pion excitation is always gapless, both in the chiral limit and away from it [1],1

we can conclude, without actually solving the equation of motion, that as a result of the

feedback from the electromagnetic field fluctuations, the pion receives a gap equal to

ω = CBex =
Bex

4π2fπ
. (4.6)

Note that since the dispersion relation must be a continuous function of the three-momen-

tum p, this result also holds for other directions of propagation. However, for directions

other than z, the mode with the above gap does not necessarily behave as the neutral pion;

it is in general a nontrivial mixture of oscillating pion and electromagnetic fields.

The second pair of equations in eq. (4.4) can for p⊥ = 0 likewise be rewritten as

(−∂2
z − ω2 ± ωCfπ∂zφ)e± = 0, (4.7)

where e± ≡ ex ± iey are the helicity eigenstates of the electric field. This describes a pure

transverse electromagnetic wave propagating along the z-direction. As noticed in ref. [2],

the two helicity eigenstates propagate with different dispersion relations. Without actually

solving the equation of motion (4.7), we can see from it that one of these eigenstates

will always be gapless. The presence of the term linear in ω indicates that the dispersion

relation will be quadratic at low momentum. However, in order to say more about the

dispersion relations, we need to specify the background φ(z).

4.1 Chiral limit

We start with the chiral limit, which allows for the most complete analytic treatment

without further approximations. As noted above, taking the pion mass to zero is also a

reasonably accurate approximation in strong magnetic fields, hence the results obtained

below are representative for a large region in the QCD phase diagram in the µ-Bex plane.

In the chiral limit, the background (3.7) has a constant gradient, fπ∂zφ = µCBex.

As a consequence, we can carry out a Fourier transform in the z-coordinate as well, upon

which the set of equations (4.4) simplifies to

(−ω2 + p2)Π− CBexez = 0,

ω2CBexΠ + pzp⊥ · e⊥ + (ω2 − p2
⊥)ez = 0,

(ω2 − p2
y − p2

z)ex + (pxpy − iµωC2Bex)ey + pxpzez = 0,

(pxpy + iµωC2Bex)ex + (ω2 − p2
x − p2

z)ey + pypzez = 0.

(4.8)

The dispersion relations of the quasiparticle excitations are found by setting the determi-

nant of the matrix of coefficients of this set of equations to zero. For a general direction

of p, this leads to a cubic equation for the squared frequency with a cumbersome analytic

1Recall that the neutral pion fluctuation of the CSL simultaneously plays the role of the phonon of the

spontaneously broken translation invariance.
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solution. It is, however, easy to find the leading terms of the low-momentum expansion for

all three different excitations,

ω1 =
|p|
CBex

√
p2
⊥ +

p2
z

µ2C2
+O(p4),

ω2 = µC2Bex +O(p2),

ω3 = CBex +O(p2).

(4.9)

In other words, there is one gapless mode whose dispersion relation is quadratic at low

momentum, and anisotropic. The other two modes are gapped.

We would like to briefly contrast this result to those of refs. [2, 7]. Therein, it was

found that for a fixed linear-profile background, the gapless photon mode has a quadratic

dispersion relation in the z-direction and a linear dispersion relation in other directions.

Coupling the photons to the fluctuations of the background therefore has a dramatic effect,

making the dispersion quadratic in all directions.

Full dispersion relations can be found for special directions of momentum. For instance,

for propagation in the z-direction one gets

ω1,2 =
1

2

[
∓µC2Bex +

√
4p2
z + (µC2Bex)2

]
,

ω3 =
√
p2
z + C2B2

ex.
(4.10)

It is easy to check using eqs. (4.5) and (4.7) that ω3 corresponds to the pion and ω1,2 to

the two circularly polarized photons. On the other hand, for propagation in the transverse

plane we find

ω1,3 =
1

2

(
∓CBex +

√
4p2
⊥ + C2B2

ex

)
,

ω2 =
√
p2
⊥ + (µC2Bex)2.

(4.11)

In this case, both ω1 and ω3 constitute a mixture of a pion and an electromagnetic wave

polarized linearly in the z-direction. The ω2 mode, on the other hand, corresponds to an

electromagnetic wave, polarized eliptically in the xy plane. It is interesting to note that in

the low-momentum limit, the gapless mode ω1 becomes predominantly pion-like. In this

limit, both photon polarizations are therefore gapped.

4.2 Single domain wall

Before moving away from the chiral limit to the general CSL case, we would like to briefly

discuss the domain wall solution (3.6), which corresponds to the extreme CSL at the critical

magnetic field B = BCSL [4]. Since this solution is only of limited interest, we will focus

solely on the special case of pions propagating in the z-direction.

Substituting from eq. (3.6), we find that

cosφ = 1− 2

cosh2mπz
. (4.12)

– 9 –
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Introducing a dimensionless coordinate z̃ ≡ mπz then allows us to rewrite the equation of

motion (4.5) as an eigenvalue problem, HΠ = λΠ, where

H = −∂2
z̃ −

2

cosh2 z̃
, λ =

1

m2
π

(ω2 −m2
π − C2B2

ex). (4.13)

Recognizing H as the well-known Pöschl-Teller Hamiltonian then tells us the spectrum at

once. First, there is a single bound state with λ = −1. In physical units, this solution

has the energy ω = CBex and represents a pion fluctuation localized on the domain wall.

Note that such a mode could be expected on general grounds: the complete breaking of

translation invariance in the z-direction by the domain wall leads to a NG mode propagating

along the domain wall surface [13, 14]. The peculiarity of our system is that this would-be

pion-like NG mode acquires a gap through the interaction with the electromagnetic field.

The actual gapless mode appears in the electromagnetic sector of the system.

Second, there is a continuous spectrum of states at λ ≥ 0, physically corresponding

to energies ω ≥
√
m2
π + C2B2

ex. These are delocalized states that describe scattering of

pions on the domain wall. As is well known, such scattering states are reflectionless for the

Pöschl-Teller potential.

4.3 General chiral soliton lattice case

Having discussed the simpler cases of the uniform linear profile and the domain wall, we

shall now deal with the spectrum for the general CSL background, given by eq. (3.2). From

now on, we will only consider modes propagating in the z-direction since as explained above,

this allows a clear separation of the pion and photon degrees of freedom, and thus facilitates

the physical interpretation of the results. Solutions with a general direction of propagation

have to be obtained numerically.

The case of pions is easy to deal with. Indeed, the pion equation of motion, eq. (4.5),

is identical to the equation of motion for CSL phonons, investigated in ref. [1], except for

the C2B2
ex term. As a consequence, the pion spectrum can be read off eq. (3.9) upon the

corresponding shift,

ω2 = C2B2
ex + (1− k2)

[
K(k)

E(k)

]2

p2
z +O(p4

z). (4.14)

Note that as remarked under eq. (4.5), the gap in the pion spectrum is independent of the

background profile: we found the same result CBex for the linear profile in the chiral limit,

for the domain wall as well as for the general CSL solution.

The propagation of photons is governed by eq. (4.7). Below, we provide its approximate

analytic solution in two complementary cases: for very strong magnetic fields where k → 0

and for close-to-critical magnetic fields (k → 1). Finally, we conjecture a closed expression

for the photon dispersion relation valid for arbitrary k.

4.3.1 Photons in very strong magnetic fields

The equation of motion for the circularly polarized photons is given by eq. (4.7). Sub-

stituting for the CSL background from eq. (3.2), using some elementary properties of the
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Jacobi elliptic functions [15], and introducing the dimensionless coordinate and frequency

z̄ ≡ zmπ/k and ω̄ ≡ ωk/mπ, it can be cast as[
−∂2

z̄ − ω̄2 ∓ ω̄

2π2
dn(z̄, k)

]
e± = 0. (4.15)

While we are not able to solve this equation analytically for arbitrary k, we can make some

progress by using the series expansion of the Jacobi dn function valid for small k,

dn(z̄, k) ≈ 1− k2

2
sin2 z̄. (4.16)

This represents a well-defined improvement over the result obtained previously in the chiral

limit, which would correspond to keeping just the leading 1 in the expansion. Despite its

simplicity, this expression gives, in fact, considerable numerical accuracy over a range of

magnetic fields. Using the condition for k in terms of the magnetic field, eq. (3.4), one can

easily check that the “potential” dn(z̄, k) is thus approximated with an accuracy of 5% or

better for all z̄ for B/BCSL > 2, and with a 1% accuracy for B/BCSL > 3.

Using the above approximation and introducing some further notation,

a ≡ ω̄2 ± ω̄

2π2

(
1− k2

4

)
, q ≡ ∓ ω̄k2

16π2
, (4.17)

brings the equation of motion (4.15) into the form of the so-called Mathieu equation,[
∂2
z̄ + (a− 2q cos 2z̄)

]
e± = 0. (4.18)

Since this is equivalent to the Schrödinger equation in a periodic potential, the solution

can be sought in the Bloch form e±(z̄) = eip̄z z̄P (z̄), where p̄z is the dimensionless crystal

momentum and P (z̄) is periodic in z̄. According to eq. (20.3.15) of ref. [15], the Mathieu

“energy” a is related to the crystal momentum via

a = p̄2
z +

q2

2(p̄2
z − 1)

+O(q4). (4.19)

While not a fully analytic solution in a closed form, this allows us to determine at least the

leading low-momentum behavior of the most interesting, gapless mode in the spectrum.

Solving this equation iteratively for ω̄ as a function of p̄z and going back to the physical

units, we obtain

ω =
p2
z

mπ

2π2k

1− k2

4

+O(p4
z), (4.20)

where the elliptic modulus k is determined implicitly by eq. (3.4).

Eq. (4.20) is an exact solution of the Mathieu equation (4.18) for the dispersion relation

of the gapless photon, propagating along the z-direction. As such, it is expected to be

accurate for medium-to-small k. In the next section, we will complement this result by

an approximate calculation valid in the opposite limit of k close to one. For the moment,

we just observe as a consistency check that the result (4.20) is compatible with what we
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previously found for the chiral limit. Indeed, note that in strong fields, the elliptic modulus

k, as given by eq. (3.4), equals asymptotically

k

mπ
≈ 8π2f2

π

µBex
. (4.21)

Inserting this in eq. (4.20) and keeping just the leading term in the expansion in powers of

k, we reproduce the dispersion relation given in eq. (4.9).

4.3.2 Photons in close-to-critical magnetic fields

For k → 1, the Jacobi elliptic functions take the form of a lattice of widely separated thin

domain walls. We can therefore simplify the solution of eq. (4.7) by adopting the thin-

wall approximation, in which the domain walls are treated as infinitesimally thin. Let us

illustrate this approximation on the example of a single isolated domain wall, discussed in

section 4.2. The analog of eq. (4.13) for the photons then reads(
−∂2

z̃ − ω̃2 ∓ ω̃

2π2

1

cosh z̃

)
e± = 0. (4.22)

For wavelengths much longer than the thickness of the domain wall, we can approximate the

“potential” by 1/ cosh z̃ → πδ(z̃). Adding accordingly the other domain walls of the soliton

lattice, with spacing ` given by eq. (3.3), then maps the problem onto that of the Dirac

comb, known from elementary quantum mechanics and defined by the Hamiltonian [16]

H = − 1

2m

d2

dz̃2
+

Ω

m

∑
n∈Z

δ(z̃ − na), (4.23)

with a ≡ mπ` and Ω ≡ ∓ω̃/(4π). Using the known spectrum of this Hamiltonian [16] then

gives an implicit solution for the frequency ω as a function of momentum pz,

cos(pz`) = cos(ω`)∓ 1

4π
sin(ω`). (4.24)

Note that in this thin-wall approximation, the sole dependence on the external magnetic

field Bex comes through the lattice spacing `. One of the photon helicities is gapless as

expected, with the low-momentum dispersion relation given by

ω = 4πkK(k)
p2
z

mπ
+O(p4

z). (4.25)

The other helicity is gapped with the energy

ω =
mπ

kK(k)
tan−1 1

4π
+O(p2

z). (4.26)

The results (4.20) and (4.25) for the gapless photon dispersion relation, obtained in the

opposite limits of k → 0 and k → 1, agree in their power expansions in k up to corrections

of order k5. This indicates that there might be an (albeit approximate) expression for the

dispersion relation, valid across the whole range 0 ≤ k ≤ 1. To get such an expression, we
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Figure 1. The dimensionless factor κ in the gapless photon dispersion relation, ω = κp2z/mπ, as a

function of the magnetic field. The elliptic modulus k is determined by the magnetic field implicitly

by eq. (3.4). The solid red line corresponds to eq. (4.25), conjectured to hold across the whole

range of k. The dashed black line corresponds to eq. (4.20), obtained in the limit k → 0. The

divergence of the coefficient κ in the limit Bex → BCSL indicates that the dispersion relation is no

longer quadratic at low momentum in this limit. Indeed, in presence of a single isolated domain

wall, there are photons propagating in the bulk with the usual relativistic dispersion relation.

return to eq. (4.15). Provided that the wavelength of the photon is long enough, we can

replace the Jacobi elliptic function dn(z̄, k) with its average value [15],

dn(z̄, k)→ π

2K(k)
, (4.27)

upon which eq. (4.15) can be Fourier-transformed, leading immediately to

p̄2
z − ω̄2 ∓ ω̄

4πK(k)
= 0. (4.28)

Remarkably, this reproduces exactly the dispersion relation (4.25), obtained using a com-

pletely different approach. Although the above argument is far from rigorous, it leads us to

conjecture that the dispersion relation of the gapless photon is given exactly or accurately

by eq. (4.25) for an arbitrary value of the magnetic field (and thus k). A comparison of

different approximations to the gapless photon dispersion is shown in figure 1.

Finally, the same approximation gives the energy of the gapped photon at pz = 0 as

ω = mπ/[4πkK(k)]. This is not exactly equal to the result obtained using the thin-wall

approximation, eq. (4.26). However, the dependence of the two results on k is the same

and the numerical values of the prefactor only differ by about 0.2%. It it interesting to note

that the above expression has the correct asymptotic behavior in strong magnetic fields, or

in the chiral limit. Indeed, it is easy to check using eq. (4.21) that for k → 0 it reproduces

the gap of the ω2 mode in eq. (4.9).
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4.4 Identification of the Nambu-Goldstone boson

Our results for the dispersion relations of the various excitations were obtained using model-

independent effective field theory, and therefore apply to any physical system described by

axion electrodynamics coupled to a light neutral scalar. Since the effective field theory

framework is largely based on symmetry, it would be instructive to gain some insight into

the results in relation to spontaneous breaking of the symmetries of the system. This is

indeed known to have nontrivial consequences in case of spacetime symmetries. First, some

of the symmetries may be redundant and thus not give rise to independent NG modes in the

spectrum [17, 18]. Second, in presence of topological solitons, a central charge may appear

in the Lie algebra of the symmetry generators upon quantization, leading to quadratic

dispersion relations and a further reduction of the number of NG modes [19, 20].

Let us start by listing the symmetries of the system as defined by the Lagrangian (2.5).

Once the charged pions are discarded, all that is left of the chiral symmetry of QCD is

an internal U(1) symmetry under which π0 shifts by a constant. This is an approximate

symmetry for a nonzero pion mass mπ that becomes exact in the chiral limit. It is com-

plemented by the gauge invariance of quantum electrodynamics. Finally, the Poincaré

symmetry of relativistic field theory is reduced by the magnetic field Bex to spacetime

translations, boosts in the z-direction and rotations around the z-axis.

The CSL ground state breaks spontaneously translations and boosts in the z-direction

as well as the internal U(1) symmetry. The z-boost is redundant with the z-translation and

thus does not give rise to an independent NG mode [17]. The low-energy spectrum of the

system is therefore determined by the spontaneous breaking of the internal U(1) symmetry

and of translations in the z-direction. In the chiral limit, a “diagonal” U(1) subgroup is

left unbroken by the linear profile (3.7), under which the π0 field and the z-coordinate shift

simultaneously. Off the chiral limit, only a discrete subgroup thereof is left unbroken by the

CSL background (3.2). However, only the translations then represent an exact symmetry

in the first place. Therefore, there is one exact symmetry for any mπ that is spontaneously

broken and gives rise to a NG mode.

To understand the connection of the anticipated NG mode to the gapless mode found

through a direct computation, we calculate the Noether currents of the two symmetries

in question. First, an internal U(1) symmetry transformation shifts the Lagrangian by a

surface term due to the presence of the anomalous π0E ·B interaction. This affects the

form of the corresponding current,

jµ = ∂µπ0 +
C

4
εµναβAνFαβ . (4.29)

This current contains a term linear in π0, and we therefore expect the π0 field to couple to

the one-particle NG state. Note that thanks to the background magnetic field, the current

also contains a term linear in Aµ, in particular the corresponding charge density j0 gets a

contribution proportional to Az. However, this contribution is gauge-dependent and thus

should not be assigned a definite physical meaning.

The translational invariance of the system implies the existence of a conserved energy-

momentum tensor. The symmetric energy-momentum tensor that can be obtained for
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instance by varying the action with respect to a background metric, reads

Θµν = ∂µπ0∂νπ0 − FµαF να − gµνL

= ∂µπ0∂νπ0 − gµν
[

1

2
(∂απ

0)2 +m2
πf

2
π cos

(
π0

fπ

)]
− FµαF να +

1

4
gµνFαβF

αβ +
C

8
gµνπ0εαβγδFαβFγδ,

(4.30)

where we dropped the surface term in the Lagrangian (2.5) that does not contribute to

the action for the order parameter fluctuations as well as the gauge-fixing and the back-

ground current terms. The generator of translations in the z-direction is the corresponding

momentum density,

Pz = Θ0z = −π̇0∂zπ
0 − F 0αF zα. (4.31)

This again contains a term linear in the fluctuation δπ0 provided that 〈∂zπ0〉 6= 0, which is

exactly the condition for spontaneous breaking of translations. There is obviously no term

linear in the electromagnetic field fluctuation in this case.

Altogether, we conclude that the spectrum of the system should contain one NG boson

that couples to the π0 field. This is indeed consistent with the explicit calculation carried

out above. However, the realization of the Goldstone theorem is still nontrivial. Namely,

recall that for modes propagating along the z-direction, we found that the pion and elec-

tromagnetic fields decouple and the pion mode is gapped. The π0 field nevertheless has an

overlap with the gapless state in the spectrum for all other directions of momentum than

along the z-axis. This is sufficient to saturate the Goldstone commutator where the whole

phase space is integrated over. Finally, it is remarkable that apart from the mode predicted

by the Goldstone theorem, there are no other gapless modes in the spectrum in spite of

the gauge invariance of the system. The single gapless mode does contain an admixture of

the electromagnetic field for all directions of propagation though.

5 Effects of thermal fluctuations

Now that we know the spectrum of excitations of the CSL in presence of dynamical elec-

tromagnetic fields, we shall in this section briefly discuss the effects of these excitations at

nonzero temperature. This is important, among others, for establishing the stability of the

CSL. Indeed, it is well known that some ordered states with one-dimensional modulation

are unstable with respect to thermal fluctuations in the transverse directions, destroying

the long-range order at an arbitrarily low but nonzero temperature [21, 22]. It was argued

in ref. [1] that the CSL is safe from such an instability due to the linear dispersion relation

of the phonon excitation (3.9), which makes the thermal fluctuations essentially harmless.

However, as we saw in the previous section, including the coupling to dynamical electro-

magnetic fields makes the dispersion relation of the softest mode quadratic in all directions,

providing a much larger density of states and in turn a substantial enhancement of infrared

fluctuations. The argument therefore has to be carefully revisited.

In this section, we restrict ourselves for simplicity to the chiral limit where a sim-

ple analytic expression for the background CSL profile (3.7) is available. We go back to
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the Lagrangian (2.5) and expand it to second order in the fluctuations of the pion and

electromagnetic fields, δπ0 and δAµ. Formally, this bilinear Lagrangian can be cast as

Lbilin =
1

2

(
δπ0 δAµ

)
D−1
µν

(
δπ0

δAν

)
, (5.1)

where the 5× 5 inverse matrix propagator takes, upon a Fourier transform, the form

D−1
µν (p) =

 p2 iC
2 εµναβ〈F

αβ〉pµ

iC
2 εµναβ〈F

αβ〉pν −gµνp2 +
(
1 + 1

ξ

)
pµpν + iCεµναβ〈∂απ0〉pβ

 . (5.2)

Whether or not the thermal fluctuations destroy the order parameter can be judged

by looking at the two-point correlator of the field that defines this order parameter [23],

in this case π0. At nonzero temperature, the infrared fluctuations are dominated by the

zero Matsubara mode. Setting frequency to zero and inverting the matrix (5.2), we then

get for the π0π0 correlator in momentum space the expression

Dπ0π0(ω = 0) = −
(p2)2 + (µC2Bex)2p2

⊥
p2
[
(p2)2 + (µC2Bex)2p2

⊥ + C2B2
exp

2
z

] . (5.3)

This obviously gives an infrared-finite correlation function upon Fourier transforming to

the coordinate space. We therefore conclude that the thermal excitations do not give rise

to an instability of our system in spite of their quadratic dispersion relation.

In order to assess the effect of the thermal fluctuations on the thermodynamics of the

system, we next evaluate their leading, one-loop contribution to the pressure. To that end,

we need to evaluate the thermal sum-integral of the logarithm of the determinant of D−1
µν (p).

First we note that the sole dependence of the determinant on the gauge-fixing parameter

ξ comes through an overall prefactor 1/ξ, and hence the pressure is gauge-independent

as it should be. In addition, the determinant carries a trivial factor (p2)2 = (ω2 − p2)2,

which is cancelled by the contribution of ghost degrees of freedom. The thermal part of

the pressure2 is then given by

P = −T
3∑
i=1

∫
d3p

(2π)3
log
[
1− e−βωi(p)

]
, (5.4)

where the functions ωi(p) coincide with the dispersion relations of the three physical exci-

tations, derived using the equations of motion in section 4.1. This is of course expected;

the argument of this section, based on the evaluation of the fluctuation determinant, there-

fore serves merely as an independent verification of the results for the dispersion relations,

obtained before.

Due to the complicated form of the dispersion relations for a general direction of prop-

agation, it seems impossible to give a closed expression for the pressure even in the chiral

limit. However, noting that two of the excitations are gapped, see eq. (4.9), we can obtain

2We shall not discuss the zero-temperature one-loop contributions to pressure from the chemical potential

and magnetic field here.
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Figure 2. Numerical values of the anisotropy factor ϕ(x), defined by eq. (5.6). In physical units and

for the physical value fπ ≈ 92 MeV, the argument x = 1/(µC) corresponds roughly to 3600 MeV/µ.

Thus, only values considerably larger than one are realistic.

a closed approximate expression for the pressure, valid at sufficiently low temperatures.

As long as T � min{µC2Bex, CBex}, only the gapless mode ω1 contributes significantly.

Approximating furthermore its dispersion with the leading O(p2) term leads to an integral

that is easily calculable, giving

P =
ζ(5

2)

16π3/2
(CBex)3/2T 5/2ϕ

(
1

µC

)
. (5.5)

The sole dependence of pressure on the chemical potential comes from the anisotropy factor

ϕ(x) ≡
∫ π

0

sin θ dθ

(sin2 θ + x2 cos2 θ)3/4
. (5.6)

The function ϕ(x) is bounded on the real line, and is plotted numerically in figure 2. For

certain special values of the argument it can be evaluated in terms of elementary functions,

thus: ϕ(0) = 23/2K(2−1/2) ≈ 5.24, ϕ(1) = 2, and ϕ(∞) = 0.

Note that the expression for the pressure in eq. (5.5) vanishes in the limit µ → 0.

This indicates merely that our approximation is not appropriate in this limit. First of

all, there is no CSL in the ground state at zero chemical potential. It turns out that the

anomalous coupling of neutral pions to photons still leads to their mixing at µ = 0 as long

as an external magnetic field is present. However, the resulting dispersion relations scale

differently with momentum and, likewise, the pressure scales differently with temperature

and magnetic field than eq. (5.5) would suggest.3

3Work in progress.
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6 Summary and discussion

In ref. [1] it was shown that the ground state of QCD at moderate baryon chemical potential

and in sufficiently strong magnetic fields contains a neutral pion condensate forming a

soliton lattice. In this paper, we investigated the spectrum of excitations above such

CSL state, taking into account the coupling of neutral pions to dynamical electromagnetic

fields. We found analytic expressions for the dispersion relations at low momentum in case

of propagation along the magnetic field,

ω1 = 4πkK(k)
p2
z

mπ
+O(p4

z),

ω2 =
mπ

4πkK(k)
+O(p2

z),

ω3 = CBex +O(p2
z),

(6.1)

where the elliptic modulus k is determined implicitly in terms of the external magnetic

field Bex by eq. (3.4). The modes ω1,2 describe the two circular polarizations of the pho-

ton, whereas ω3 corresponds to the neutral pion. More complete solution including other

directions of propagation is possible in the chiral limit, or equivalently in the limit of very

strong magnetic fields, and is given in eq. (4.9). In general, the three excitation modes are

admixtures of the pion and photon degrees of freedom. One of the modes is always gapless

with a quadratic dispersion relation whereas the other two modes are gapped.

Our second main result is an explicit expression for the pressure of the system (5.5),

valid in the chiral limit and at sufficiently low temperatures such that the contributions of

the gapped modes are exponentially suppressed. As a result of the quadratic dispersion re-

lation of the gapless mode, the pressure features an anomalous dependence on temperature,

being proportional to (CBex)3/2T 5/2. The chiral anomaly thus changes the thermodynam-

ics of the system qualitatively: in contrast to the naively expected black-body-like scaling

∼ T 4, the pressure becomes enhanced at low temperatures as a consequence of the high

density of states for the gapless mode. This previously unnoticed contribution dominates

the low-temperature pressure of a pion gas in external magnetic fields and at nonzero

baryon chemical potential.

We would like to append a remark concerning our effective field theory setup. While the

basic framework is based solely on symmetry and thus is model-independent, we did make

an approximation by neglecting the dynamics of charged pions as well as the oscillations

of the charged background, required to render the system electrically neutral as a whole.

We would now like to justify this approximation and at the same time illustrate some of

our results numerically. For the sake of simplicity, we will restrict ourselves to the chiral

limit. There, the low-energy spectrum of the system contains four different energy scales,

corresponding to the gaps of various excitation branches. These are the two gapped neutral-

pion-photon mixtures, the charged pion, and the plasma oscillation of the background (see

appendix A for a discussion of the latter). Collecting the results displayed in eqs. (4.9)
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Figure 3. Comparison of various energy scales in our system as a function of the external magnetic

field at µ = 900 MeV. The red and blue lines correspond to the gapped modes listed in eq. (4.9):

ω2 = µC2Bex and ω3 = CBex, respectively. The solid black line represents the mass of the charged

pion in the chiral limit, mπ± =
√
Bex. The dashed black line stands for the frequency of plasma

oscillations of the background, eq. (A.3). All numerical values were obtained using fπ ≈ 92 MeV.

and (A.3), their gaps are respectively given by

ω2 = µC2Bex, ω3 = CBex, ωπ± =
√
Bex, ωpl =

[
µ(CBex)2

π
√

3

]1/3

. (6.2)

(The gap of the charged pion follows from the standard Landau level quantization [3].) The

numerical values of these gaps are shown in figure 3 for a realistic range of magnetic fields,

using µ = 900 MeV for illustration.4 This confirms that our setup is consistent: the two

neglected modes are considerably heavier than the two gapped modes in the neutral-pion-

photon sector. The range of validity of our effective theory is set by the plasma oscillation

frequency (A.3). The red curve in figure 3 at the same time illustrates the range of validity

of the low-temperature approximation, leading to the expression for the pressure (5.5).

Finally, we add a comment on the presence of a quadratic dispersion relation of the

photon, first observed in ref. [2]. Regardless of the concrete dynamics responsible for this

effect, it is an interesting question per se to ask under what circumstances the photon can

acquire a quadratic dispersion. Barring accidental cancellations in the spatial part of the

photon’s kinetic term, the only possibility seems to be the presence of a term with a single

time derivative, schematically Ai∂0Aj , in the bilinear part of the photon Lagrangian. It

turns out that under the requirement of full translation invariance, there is only one such

term that is consistent with U(1) gauge invariance, namely the Chern-Simons term in

4While fine details might change, the basic pattern would remain the same for other values of µ or for

a nonzero but sufficiently light pion mass mπ.
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two spatial dimensions [24]. This term is automatically Lorentz-invariant and gives the

photon a mass rather than making it nonrelativistic. Therefore, the only way to give the

photon a quadratic dispersion relation is to break translations, explicitly or spontaneously.

Spontaneous breaking of translations in one direction as in the CSL scenario discussed in

this paper provides a particular, minimal mechanism to accomplish this goal.
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A Plasma oscillations of the background

In this appendix, we provide some details behind our assumption that the charged back-

ground, compensating the electric charge of the CSL itself, does not affect the dynamics

of the low-energy excitations discussed in this paper. The actual composition of this back-

ground may depend on the concrete (astro)physical environment in which the CSL of neu-

tral pions is realized: it may consist for instance of charged pions, electrons or nucleons [4].

For the sake of an estimate, we will assume that the background is composed of massless

spin-1/2 particles of unit electric charge, coupled minimally to the electromagnetic field.

Also, we will focus on the chiral limit where the CSL carries a uniform charge density.

In presence of an electromagnetic field, a gas of charged massless particles undergoes

plasma oscillations, characterized in the long-wavelength limit by the frequency [25]

ωpl =

√
ρback

µback
, (A.1)

where µback is the chemical potential of the gas and ρback its charge density. (Recall that we

use units in which the elementary electric charge is set to one.) Neglecting the background

dynamics is therefore justified for energies well below this frequency, which sets the range

of validity of our effective theory.

The charge density needed to neutralize the CSL is given by eq. (2.9),

ρback = µ(CBex)2. (A.2)

For a gas of massless spin-1/2 Dirac fermions, the density is related to the chemical potential

via ρback = µ3
back/(3π

2). We thus obtain for the plasma frequency

ωpl =
µback

π
√

3
=

(
ρback

π
√

3

)1/3

=

[
µ(CBex)2

π
√

3

]1/3

. (A.3)

This expression serves as a basis for our discussion of scale separation in section 6.
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