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1 Introduction

The expectation value of a Wilson loop (WL) operator in planar N = 4 super Yang-

Mills theory is conjected to be given, at strong coupling, by the AdS5 × S5 superstring

path integral with appropriate boundary conditions [1–3]. The computation of the leading

strong-coupling correction to the classical area term given by the logarithm of the 1-loop

string partition function was addressed in [4–6] and, in general, is technically challenging.

Simplest examples correspond to supersymmetric Wilson loops, e.g., 1/2 BPS circular

loop [6–8], 1/4 BPS family of “latitudes” [9–14], the k-wound circle case (dual to WL in

k-fundamental representation) [7, 15], etc. Even in the circular WL case the first string

correction appears to disagree with the subleading term in the strong coupling expansion

of the gauge-theory result [16–21].

To avoid the subtle issue of the overall normalization of the string path integral one

may consider the computation of the ratio of partition functions for minimal surfaces of the

same (disc) topology. Then the universal UV divergences and possible string tension factors

associated with the Killing vector volume [6, 18] that are independent of local world-sheet

geometry should cancel out and the result should be a well-defined function of the non-

trivial WL (i.e. world-surface) parameters. This strategy was followed in [13], where the

one-loop determinants for fluctuations about the classical string solutions corresponding
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to a generic 1/4 BPS “latitude” WL of [9–11] were evaluated with the Gel’fand-Yaglom

(GY) method. The same result for the string partition function was obtained in [14], with

a slightly different application of the GY method.1 Still, the resulting string prediction was

found to be in disagreement with the exact gauge theory result obtained by the localization

method [20, 21].

In this paper we will reconsider the computation in [13, 14] using a different approach

to evaluation of the fluctuation determinants. We shall use the perturbation theory in a

small parameter α, such that for α = 0 the world-surface becomes the same as the circular

WL surface, i.e. is equivalent to the Euclidean AdS2. Then the leading correction in α can

be found by the perturbative expansion of the heat kernels (see, e.g., [22, 23]) using that

for α = 0, i.e. in the AdS2 case, the heat kernels for the bosonic and fermionic operators

are known explicitly [24–27]. This will allow us to find the leading-order correction to

the string partition function for the near-AdS2 geometry corresponding to the latitude in

S2 ⊂ S5 parametrized by a small angle θ0. Since for θ0 = 0 it reduces to the AdS2 (circular

WL) geometry, here the small expansion parameter may be chosen as α = θ2
0.

Remarkably, we will be able to reproduce the first non-trivial term in the small-θ0

expansion of the exact gauge-theory result [20, 21] for the latitude WL expectation value

Z = 〈W(λ, θ0)〉 in the strong-coupling (λ � 1) limit. Explicitly, the gauge-theory predic-

tion for the string “effective action” Γ = − logZ is

Γ(λ, θ0)− Γ(λ, 0) =
√
λ (1− cos θ0) +

3

2
log cos θ0 +O(λ−1/2) , (1.1)

and we will reproduce precisely the leading small-θ0 term in the O(λ0) part of (1.1), i.e.
3
2 log cos θ0 = −3

4θ
2
0+O(θ4

0), from the one-loop string-theory computation (see (3.2), (3.45)).

A possible reason why the two previous attempts in [13] and [14] failed to find the

agreement with the gauge theory result may be related to some subtleties in their appli-

cation of the GY method to computation of functional determinants.2 Compared to the

heat-kernel approach, here the spectral problem is treated (after Fourier-transforming in

τ) as effectively a one-dimensional operator problem; one also uses a zeta-function-like

regularization in σ world-sheet direction and a cutoff regularization of the sum over the

Fourier modes in τ -direction. This method also requires considering ratios of determinants

for differential operators with the same principal symbol, which in turns implies a func-

tional rescaling by a conformal factor.3 Together with a possible regularization ambiguity

in the sum over modes mentioned above, what may account for the disagreement is the

fictitious boundary (a cut at the origin of the disk) introduced in [7, 13, 14] to allow for the

1In [14], the fermionic contribution was found starting with the Dirac-like first-order operator rather

than its square, as in [13]. Using a particular organization of the determinant ratios, ref. [14] computed

the analytic expression for the resulting string 1-loop correction (while the analysis in [13] was partially

numerical). Ref. [14] presented also a detailed study of the supermultiplet structure of the fluctuations.
2This method was originally suggested in [28] and later improved in [29–34]; for a review see, for exam-

ple, [33, 35], or appendix B of [13].
3One may quantify (see, e.g., appendix A of [6]) how such conformal rescaling of the operators affects

the finite part of the regularized determinants. However, a simple check for the ratio of two bosonic

operators in [13, 14] reveals that adding this contribution does not explain the discrepancy with the result

obtained here.
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calculation of determinants on a compact interval (see also [36, 37]). It would be interesting

to perform an explicit comparison of the two computations eliminating the need for this

regulator, which does not appear in the heat kernel approach.4

Below we will also test our perturbative approach based on constructing heat kernels

for 2d fluctuation operators in an expansion in a small parameter on two other examples.

The first will be the near-BPS limit of the generalized cusp of [39], corresponding to the the

strong coupling expansion of the “Bremsstrahlung function” of N = 4 SYM theory, derived

exactly using supersymmetric localization in [40]. In this case the GY method applied to

the computation of the string 1-loop correction reproduced [39] the gauge-theory result.5

Our perturbative computation will also be consistent with this matching.

Another example will be the 1-loop partition function for the surface ending on the

k-wound circle that should be representing the k-fundamental circular Wilson loop [3, 45].

Here the gauge theory result is a generalization of the k = 1 circular WL case [9, 20],

see (3.107). The string one-loop computation was previously discussed in [7] (using the

GY method and again introducing an unphysical cutoff) and in [15] (using heat kernel

construction on a cone of AdS2 with angular deficit 2π(1 − k)). Both approaches failed

to find an agreement with gauge theory. We will use an expansion about the k = 1 case,

i.e. set the small parameter to be α = k − 1. Our result (3.105) for the coefficient of the

O(k − 1) term in the 1-loop correction will differ from the gauge theory one just by an

extra γ-term (the Euler-Mascheroni constant). We will suggest that this disagreement is

due to a regularization ambiguity related to the fact that the expansion near the regular

k = 1 (i.e. AdS2) surface appears to be problematic due to a conical singularity appearing

for k 6= 1.

We will start in section 2 with the description of the perturbative procedure for com-

puting the heat kernel in a small-parameter expansion. In section 3 we will apply this

method the 1-loop string computations of the leading corrections to the three WL sur-

faces mentioned above. We will collect useful formulae and details of the calculations in

appendices A and B.

2 Perturbative expansion of heat kernel and determinant of an elliptic

operator

To prepare for the computation of leading string 1-loop corrections to Wilson loop expec-

tation values in expansion in some small parameter α here we shall present the general

relations for the perturbative expansion of the heat kernel and determinant of a differential

operator parametrized by α.

Let O be a second order elliptic operator defined on (sections of a bundle over) a

d-dimensional Riemannian manifold M with metric gij . The standard expression for the

4A more general application of the GY method [38] suggests that in the case of a non-compact interval one

may try to proceed by selecting suitably “well-behaved” eigenfunctions of the auxiliary initial value problem.
5Here the application of the GY method does not require an unphysical regulator and thus the agreement

could be expected. The GY procedure is known also to reproduce the predictions of integrability on gauge-

theory side in other non-trivial fluctuation problems [41–44].
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logarithm of its determinant defined using zeta-function regularization is (see, e.g., [46, 47])

log DetMO = −ζ ′O (0) , (2.1)

ζO (s) =
1

Γ (s)

∫ ∞
0

dt ts−1KO (t) , KO (t) =

∫
ddx
√
g trKO (x, x; t) ,

(2.2)

(∂t+Ox)KO(x, x′; t) = 0 , KO(x, x′; 0) =
1
√
g
δ(d)
(
x− x′

)
I. (2.3)

Here tr and the unit operator I correspond to the internal indices in the (vector or

spinor) bundle.

Suppose the metric gij onM as well as O depend on some parameter α, such that for

α = 0, corresponding to M̄ with metric ḡij , the spectral problem can be solved exactly.

Then we can compute KO and DetMO in perturbation theory in α. Namely, let us set

gij = ḡij + α g̃ij +O
(
α2
)
,

O = Ō + α Õ +O
(
α2
)
,

KO(x, x′; t) = K̄O(x, x′; t) + α K̃O(x, x′; t) +O
(
α2
)
,

(2.4)

where K̄O is the heat kernel corresponding to Ō, i.e.(
∂t + Ōx

)
K̄O(x, x′; t) = 0 , K̄O(x, x′; 0) =

1√
ḡ
δ(d)

(
x− x′

)
I . (2.5)

Then K̃O may be found by solving(
∂t + Ōx

)
K̃O(x, x′; t) + ÕxK̄O(x, x′; t) = 0 , K̃O(x, x′; 0) = − g̃

2ḡ3/2
δ(d)

(
x− x′

)
I .

(2.6)

The resulting solution is (see appendix A.1 for details)

K̃O
(
x, x′; t

)
= − g̃

2ḡ3/2
δ(d)

(
x− x′

)
I

+

∫ t

0
dt′
∫
ddx′′

√
ḡ K̄O

(
x, x′′; t− t′

)
Ōx′′

( g̃

2ḡ3/2
δ(d)

(
x′′ − x′

) )
−
∫ t

0
dt′
∫
ddx′′

√
ḡK̄O

(
x, x′′; t− t′

)
Õx′′K̄O

(
x′′, x′; t′

)
. (2.7)

Then the trace KO (t) in (2.2) takes the form

KO (t) = K̄O (t) + α K̃O (t) +O
(
α2
)
, (2.8)

K̃O (t) = −t
∫
ddx
√
ḡ tr

[
Õx K̄O

(
x, x′; t

) ]
x=x′

. (2.9)

Thus the perturbative expansion of the determinant of O in (2.1) becomes

DetMO
DetM̄Ō

= e−α ζ̃
′
O(0)+O(α2) , log DetMO = −ζ̄ ′O(0)− α ζ̃ ′O(0) +O

(
α2
)
, (2.10)

ζ̄O(s) =
1

Γ(s)

∫ ∞
0

dt ts−1 K̄O(t) , ζ̃O(s) =
1

Γ(s)

∫ ∞
0

dt ts−1K̃O(t) . (2.11)
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From (2.8), (2.9) one can find similar perturbative expansions for the coefficients in the

small-t expansion of the heat kernel, i.e. for the Seeley coefficients that control the UV

divergent part of log DetMO in, e.g., the proper-time regularization (see, e.g., [47, 48]). As

a check of (2.7) we show in appendix A.2 that the small-t expansion of (2.9) reproduces

the results of the standard perturbation theory applied directly to the Seeley coefficients

of the scalar Laplace operator on a manifold with no singularities.

In the following section we will consider examples where scalar and spinor operators

will be defined on the two-dimensional M̄ which will be real hyperbolic space H2. In this

case the homogeneity of H2 allows one to construct the relevant heat kernels K̄O for generic

pair of points x, x′ [24–27] (see also appendix B) and thus to compute the first corrections

K̃O according to (2.7).

3 Perturbative expansion of 1-loop string correction to Wilson loop min-

imal surfaces

Our aim will be to use the above expressions to develop a perturbative approach to compu-

tation of AdS5 × S5 superstring partition function Z expanded near a particular minimal

surface ending on the AdS boundary that represents the leading strong-coupling correction

to the corresponding Wilson loop in gauge theory. In general,

Z = 〈W (λ, α)〉 ≡ e−Γ , Γ =
√
λΓ(0)(α) + Γ(1)(α) +O

(
λ−1/2

)
. (3.1)

Here
√
λΓ(0)(α) is the classical string action (

√
λ

2π is the string tension) evaluated on a

minimal surface with parameter α and Γ(1)(α) is the 1-loop correction expressed in terms

of ratios of determinants of 2nd order fluctuation operators [4–6].

While computing these determinants for a generic minimal surface is hard, expanding

in some small parameter α (such that for α = 0 the surface becomes simple) that can be

done in perturbation theory. We shall demonstrate this below in a number of cases:

(i) “latitudes” in S2 ⊂ S5 (section 3.1);

(ii) generalized cusp (section 3.2);

(iii) k-wound circle (section 3.3).

In these cases the α = 0 limit of the minimal surface will be the Euclidean AdS2 space or

H2 for which the heat kernels and determinants or relevant operators are known explicitly,

i.e. Γ(1)(0) ≡ Γ̄(1) is known. Our aim will be to find the first correction to Γ(1)(0):

Γ(1)(α) = Γ̄(1) + α Γ̃(1) +O
(
α2
)
. (3.2)

3.1 Latitude Wilson loop

Let us start with a family of 1/4-BPS Wilson loops with the minimal surface of half-

sphere topology ending on a unit circle at the boundary of AdS5 and stretched also along

– 5 –
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the latitude located at the polar angle θ0 in a S2 ⊂ S5 [9–11]. The minimal surface is

embedded into a subspace H3 × S2 of AdS5 × S5 with the metric

ds2
H3×S2 = z−2

(
dx2

1 + dx2
2 + dz2

)
+ dθ2 + sin2 θ dφ2 (3.3)

as follows

x1 =
cos τ

coshσ
, x2 =

sin τ

coshσ
, z = tanhσ , (3.4)

sin θ =
1

cosh(σ + σ0)
, cos θ = tanh(σ + σ0) , φ = τ , (3.5)

σ ∈ [0,∞) , τ ∈ [0, 2π) , tanhσ0 ≡ cos θ0 . (3.6)

The world-sheet boundary at σ = 0 is located at the boundary of AdS5, and σ0 ∈ [0,∞)

related to θ0 ∈ [0, π2 ] describes a one-parameter family of latitudes on S5. The maximally

supersymmetric (1/2-BPS) case corresponds to θ0 = 0 or σ0 = ∞ when the latitude in

S2 shrinks to a point (θ = θ0 = 0) and thus the minimal surface becomes the same as of

the circular Wilson loop. In what follows θ0 will thus play the role of the small expansion

parameter α.

The induced world-sheet geometry is that of the 2d Euclidean manifold M with the

metric

ds2
M = Ω2 (σ)

(
dτ2 + dσ2

)
,

Ω2 (σ) ≡ 1

sinh2 σ
+

1

cosh2 (σ + σ0)
=

1

sinh2 σ
+O

(
θ2

0

)
,

(3.7)

which for σ0 =∞, i.e. θ0 = 0, becomes the hyperbolic plane H2. The leading term in (3.1),

i.e. the area of this minimal surface, regularized in a standard way by introducing a small

cutoff near the boundary of AdS5, at z = ε → 0, or, equivalently, at σ = arctanh ε → ∞
is then

Γ(0)(θ0) =
1

2π

∫ 2π

0
dτ

∫ ∞
arctanh ε

dσ Ω2(σ) =
1

ε
− cos θ0 → − cos θ0 . (3.8)

The singular term here is θ0-independent and thus is the same as in the singular part of

the volume of Euclidean AdS2 space.6

Expanding the AdS5 × S5 superstring action to second order in the fluctuation fields

leads to the following one-loop contribution to (3.1) [12–14]7

Γ(1) (θ0) = − log

∏
p12,p56=±1 Det2/4

[
O2
p12,p56

(θ0)
]

Det3/2
[
O1(θ0)

]
Det3/2

[
O2(θ0)

]
Det1/2

[
O3+(θ0)

]
Det1/2

[
O3−(θ0)

] .
(3.9)

6The linearly divergent part 1
ε
, proportional to the length of the boundary at z = ε, may be subtracted

by a Legendre transform of the Wilson loop as in [6, 19, 45].
7As in earlier discussions [6, 12] it is assumed here that the same boundary conditions are imposed on the

operator of the longitudinal bosonic modes and the one of the ghosts associated with the diffeomorphisms

gauge-fixing, so that their net contribution to the ratio (3.9) equals to one.
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Here the bosonic second-order operators8

O1(θ0) ≡ 1

Ω2(σ)

(
−∂2

τ−∂2
σ+

2

sinh2 σ

)
, O2(θ0) ≡ 1

Ω2(σ)

(
−∂2

τ − ∂2
σ −

2

cosh2 (σ+σ0)

)
,

(3.10)

O3± (θ0) ≡ 1

Ω2(σ)

[
− ∂2

τ − ∂2
σ ± 2i (tanh (2σ + σ0)− 1) ∂τ

− 1− 2 tanh (2σ + σ0) + 3 tanh2 (2σ + σ0)
]

(3.11)

act on the world-sheet scalars, and the fermionic first-order operators

Op12,p56 (θ0) ≡ i

Ω(σ)

(
∂σ +

Ω′(σ)

2 Ω(σ)

)
σ1 +

1

Ω(σ)

(
−i∂τ +

p56

2
[1− tanh (2σ + σ0)]

)
σ2

+
p12

Ω2(σ) sinh2 σ
σ3 −

p12 p56

Ω2(σ) cosh2 (σ + σ0)
I2 (3.12)

act on two-dimensional spinors and are labeled by p12, p56 = ±1 (σi are Pauli matrices).9

The determinants of these operators have been evaluated exactly (for any θ0) in [13, 14].

To apply the perturbative approach developed in section 2, we choose

α
latitude

≡ θ2
0 , (3.13)

so that the reference manifold M̄ for α = 0 is H2 corresponding to the circular Wilson

loop (θ0 = 0, or σ0 =∞), i.e.

ds2
M̄ =

dτ2 + dσ2

sinh2 σ
= dρ2 + sinh2 ρ dτ2 , sinh ρ ≡ 1

sinhσ
, (3.14)

with the S1 boundary at

ρ = Λ→∞ , Λ ≡ arccosh(ε−1) . (3.15)

The string action proportional to the (renormalized) volume of this space is

Γ(0)(0) =
1

2π
VH2 =

1

2π

∫ 2π

0
dτ

∫ Λ

0
dρ sinh ρ =

1

ε
− 1→ −1 , (3.16)

which is the θ0 = 0 term in (3.8). In the limit θ0 = 0 the operators (3.10)–(3.12) take the

form of the Laplacian (B.8) and the Dirac operator (B.11)

Ō1 = −∆ρ,τ + 2 , Ō2 = Ō3± = −∆ρ,τ , Ōp12,p56 = −i /∇ρ,τ + p12 σ3 . (3.17)

8The operators O3±(θ0) in (3.10) of [13] coincide with the ones in (3.11) upon the replacement −i∂τ →
−i∂τ ± 1, which implements the shift explained in section 4 of [13]. This is equivalent to a choice of the

normal bundle gauge connection [12] that is regular everywhere on the world-sheet (see discussion below

(4.20) of [14]).
9Compared to the notation used in (3.26) of [13], the fermionic determinants are raised in (3.9) to an

additional power of two because the irrelevant label p89 is suppressed. We also made the replacement

−i∂τ → −i∂τ + p56
2

to arrive at (3.12), as motivated in section 4 of [13].
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The spectrum of physical excitations which contribute to Γ(1) (θ0 = 0) in (3.9), is composed

of 3 massive scalars
(
m2 = 2

)
, 5 massless scalars and 8 massive 2d Majorana spinors (m2 =

1) propagating in H2 [6, 7]. The regularized determinants were computed in [8] with the

heat kernel method using (B.30) and (B.31)

ζ̄ ′O1
(0) = −25

12
+

3

2
log 2π − 2 logA , (3.18)

ζ̄ ′O2
(0) = ζ̄ ′O3±(0) = − 1

12
+

1

2
log 2π − 2 logA , (3.19)

ζ̄ ′O2
p12,p56

(0) = −5

3
+ 2 log 2π − 4 logA , (3.20)

where A is the Glaisher constant (see (B.33), (B.34) and (B.39)). As a result, the one-loop

correction (3.9) in the circular Wilson loop case is

Γ(1)(0) = −3

2
ζ̄
′
O1

(0)− 3

2
ζ̄
′
O2

(0)− 1

2
ζ̄
′
O3+

(0)− 1

2
ζ̄
′
O3−(0) +

1

2

∑
p12,p56=±1

ζ̄
′

O2
p12,p56

(0) =
1

2
log 2π.

(3.21)

Expanding (3.7) in small α = θ2
0 we find that the leading correction to the metric (3.14)

in (2.4) is given by

ḡij(ρ, τ) =

(
1 0

0 sinh2 ρ

)
, g̃ij(ρ, τ) =

(
1

(1+cosh ρ)2 0

0 cosh ρ−1
cosh ρ+1

)
. (3.22)

From (3.10)–(3.12) we find that the expansion of the relevant differential operators10

Oi(θ0) = Ōi + θ2
0 Õi +O

(
θ4

0

)
, i = 1, 2, 3+, 3− , (3.23)

Op12,p56(θ0) = Ōp12,p56 + θ2
0 Õp12,p56 +O

(
θ4

0

)
, (3.24)

O2
p12,p56

(θ0) = Ō2
p12,p56

+ θ2
0

{
Ōp12,p56 , Õp12,p56

}
+O

(
θ4

0

)
, (3.25)

contains

Õ1 = Õ2 =
1

(1 + cosh ρ)2 (∆ρ,τ − 2) , (3.26)

Õ3± =
1

(1 + cosh ρ)2

[
∆ρ,τ −

sinh2 ρ

(1 + cosh ρ)2
(2± i∂τ )

]
, (3.27)

Õp12,p56 =
i

2 (1 + cosh ρ)2
/∇ρ,τ −

i (1− cosh ρ)

2 sinh ρ (1 + cosh ρ)2σ1

+
p56 sinh3 ρ

4 (1 + cosh ρ)4σ2 −
p12

(1 + cosh ρ)2 (σ3 + p56 I2) . (3.28)

For the bosonic operator O1(θ0) in (3.23), substituting (3.26) into (2.9), we obtain

K̃O1 (t) = −t
∫ 2π

0
dτ

∫ Λ

0
dρ

sinh ρ

(1 + cosh ρ)2

[
(∆ρ,τ − 2) K̄−∆+2

(
ρ, τ, ρ′, τ ′; t

) ]
ρ=ρ′,τ=τ ′

,

(3.29)

10Here by {, } we indicate the anticommutator of two (matrix-valued) differential operators.
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where Λ was defined in (3.15). As Ō1 in (3.17) is the Laplacian for a scalar field of mass

m2 = 2, its heat kernel satisfies

(∂t −∆ρ,τ + 2) K̄O1

(
ρ, τ, ρ′, τ ′; t

)
= 0 (3.30)

so that we can trade the Laplacian in (3.29) for the derivative ∂t, and then take the

coincident-point limit, getting

K̃O1 (t) = −t
∫ 2π

0
dτ

∫ Λ

0
dρ

sinh ρ

(1 + cosh ρ)2 ∂tK̄O1 (ρ, τ, ρ, τ ; t) . (3.31)

Here we can send the upper limit to infinity (Λ →∞ corresponds to ε→ 0 in (3.15)) and

then use the integral representation of the traced heat kernel (B.23) for mass m2 = 2

K̃O1 (t) =
t

2

∫ ∞
0

dv v tanh (πv)

(
v2 +

9

4

)
e−t(v

2+ 9
4) . (3.32)

To evaluate ζ̃O1(s) one proceeds as in appendix B.1, interchanging the integration over the

spectral parameter v and the proper time t in the definition (2.11) of the zeta-function,

and writing tanh(πv) = 1− 2/(e2πv + 1) to get

ζ̃O1(s) =

∫ ∞
0

dv
sv

2
(
v2 + 9

4

)s − ∫ ∞
0

dv
sv

(e2πv + 1)
(
v2 + 9

4

)s . (3.33)

As the first integral above converges only for Re s > 1, one can first integrate over v

assuming this is true and then analytically continue to all values of s

ζ̃O1 (s) =
s

4 (s− 1)

(
9

4

)1−s
− s

∫ ∞
0

dv
v

(e2πv + 1)
(
v2 + 9

4

)s , (3.34)

and one obtains

ζ̃
′
O1

(0) = − 7

12
. (3.35)

The same steps may be followed for O2(θ0), for which one gets

K̃O2 (t) =
t

2

∫ ∞
0

dv v tanh (πv)

(
v2 +

9

4

)
e−t(v

2+ 1
4) , (3.36)

ζ̃O2(s) =

∫ ∞
0

dv
sv(

v2 + 1
4

)s
(

1

2
+

1

v2 + 1
4

)
−
∫ ∞

0
dv

sv

(e2πv + 1)
(
v2 + 1

4

)s
(

1 +
2

v2 + 1
4

)

=
s

4 (s− 1)

(
1

4

)1−s
+

1

2

(
1

4

)−s
− s

∫ ∞
0

dv
v

(e2πv + 1)
(
v2 + 1

4

)s − 2s

∫ ∞
0

dv
v

(e2πv + 1)
(
v2 + 1

4

)s+1 ,

ζ̃
′
O2

(0) = − 1

12
+ γ . (3.37)

Here we used (B.36) and γ is the Euler-Mascheroni constant.
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The operators O3+(θ0) and O3−(θ0) coincide for θ0 = 0 in (3.17) and therefore the

derivatives ∂τ in (3.27) cancel each other in the sum11

K̃O3+ (t) + K̃O3− (t)

= −2t

∫ 2π

0
dτ

∫ ∞
0

dρ
sinh ρ

(1 + cosh ρ)2

[(
∆ρ,τ − 2

sinh2 ρ

(1 + cosh ρ)2

)
K̄−∆(ρ, τ, ρ′, τ ′; t)

]
ρ=ρ′,τ=τ ′

= t

∫ ∞
0

dv v tanh (πv)

(
v2 +

5

4

)
e−t
(
v2+ 1

4

)
. (3.38)

Then for the combined zeta-functions one obtains

ζ̃O3+(s) + ζ̃O3−(s) =

∫ ∞
0

dv
sv(

v2 + 1
4

)s
(

1 +
1

v2 + 1
4

)

+

∫ ∞
0

dv
−2sv

(e2πv + 1)
(
v2 + 1

4

)s
(

1 +
1

v2 + 1
4

)
(3.39)

=
s

2 (s− 1)

(
1

4

)1−s
+

1

2

(
1

4

)−s
− 2s

∫ ∞
0

dv
v

(e2πv + 1)
(
v2 + 1

4

)s − 2s

∫ ∞
0

dv
v

(e2πv + 1)
(
v2 + 1

4

)s+1 ,

ζ̃
′
O3+

(0) + ζ̃
′
O3− (0) = − 1

6
+ γ , (3.40)

where we used (B.36). In the fermionic case the relevant operator is the square of

Op12,p56(θ0), a positive-definite operator with a well-defined θ0-expansion of its heat kernel

defined in (3.24)

K̃O2
p12,p56

(t) = −t
∫ 2π

0
dτ

∫ ∞
0

dρ sinh ρ tr
[{
Ōρ,τp12,p56

, Õρ,τp12,p56

}
K̄− /∇2

+1
(ρ, τ, ρ′, τ ′; t)

]
ρ=ρ′,τ=τ ′

= t

∫ ∞
0

dv v coth (πv)
(
v2 + 2

)
e−t(v

2+1) . (3.41)

Here one has to work with the full heat kernel (B.13) for m2 = 1 and the rest of the

computation is essentially unchanged, giving

ζ̃O2
p12,p56

(s) =

∫ ∞
0

dv
sv

(v2 + 1)s

(
1 +

1

v2 + 1

)
+

∫ ∞
0

dv
2sv

(e2πv − 1)(v2 + 1)s

(
1 +

1

v2 + 1

)
=

s

2(s− 1)
+

1

2
+2s

∫ ∞
0
dv

v

(e2πv−1)(v2+1)s
+2s

∫ ∞
0

dv
v

(e2πv−1)(v2+1)s+1 ,

(3.42)

ζ̃
′

O2
p12,p56

(0) = −11

12
+ γ . (3.43)

where we split coth(πv) = 1 + 2/(e2πv − 1) and the last relation follows from (B.41).

11The derivatives come with opposite signs in (3.27) as the fields acted upon by (3.11) in the fluctuation

Lagrangian [12–14] are a complex scalar and its complex conjugate, coupled to a U(1) connection with

opposite charges [14].
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We can now sum over the bosonic and fermionic contributions to get

Γ(1)(θ0)− Γ(1)(0) = θ2
0 Γ̃(1) +O(θ4

0) , (3.44)

Γ̃(1) = −3

2
ζ̃
′
O1

(0)− 3

2
ζ̃
′
O2

(0)− 1

2
ζ̃
′
O3+

(0)− 1

2
ζ̃
′
O3−(0)+

1

2

∑
p12,p56=±1

ζ̃
′

O2
p12,p56

(0)

= −3

4
. (3.45)

Remarkably, we thus find the agreement with the strong-coupling expansion of the exact

gauge-theory result (1.1), expanded also in small θ0.

Let us note that to the same result (3.45) can be found by reversing the order of

taking the derivative in the zeta-function variable s and summing over the scalar and

spinor fields. The expressions for zeta-functions in (3.33)–(3.42) above are written as

ζ̃O(s) ≡ ζ̃
(power)
O (s) + ζ̃

(exp)
O (s), where ζ̃

(power)
O (s) includes the 1 from the expansion of the

hyperbolic functions and is defined for Re s > 1, and ζ̃
(exp)
O (s) is well-defined for s close

to 0. The analytic continuation of each ζ̃
(power)
O (s) is not necessary if one considers, before

taking the derivative, the sum of all (perturbed) zeta-functions. It can be easily checked

that the sum of “power” contributions

3

2
ζ̃

(power)
O1

(s) +
3

2
ζ̃

(power)
O2

(s) +
1

2
ζ̃

(power)
O3

(s)− 1

2

∑
p12,p56=±1

ζ̃
(power)
O2
p12,p56

(s) (3.46)

=

∫ ∞
0

dv

[
3sv

4
(
v2 + 9

4

)s +
3sv

2
(
v2 + 1

4

)s
(

1

2
+

1

v2 + 1
4

)

+
sv

2
(
v2 + 1

4

)s
(

1 +
1

v2 + 1
4

)
− 2sv

(v2 + 1)s

(
1 +

1

v2 + 1

)]
is well defined for Re s > s0 for a certain negative s0. One may then first take s-derivative

of the integrands in

ζ̃tot(s) =
3

2
ζ̃O1(s) +

3

2
ζ̃O2(s) +

1

2
ζ̃O3+(s) +

1

2
ζ̃O3−(s) − 1

2

∑
p12,p56=±1

ζ̃O2
p12,p56

(s) , (3.47)

set s = 0 and then integrate over v. It is easy to check that this leads again to (3.45).

One may track down the origin of such regular behavior for the full sum (3.47)

by studying the small-t expansion of the leading correction terms in heat kernels

in (3.32), (3.36), (3.38), (3.41). For that one may isolate the exponentials of t and in-

tegrate the rest,12

K̃O1(t) =
t

2

∫ ∞
0

dv

(
v − 2v

e2πv + 1

)(
v2 +

9

4

)
e−t(v

2+ 9
4

)

=
4 + 9t

16t
e−9t/4 − t

∫ ∞
0

dv
v

e2πv + 1

(
v2 +

9

4

)
e−t(v

2+ 9
4) =

1

4t
+O(t) ,

K̃O2(t) =
1

4t
+

1

2
+O(t) , K̃O3+(t) + K̃O3−(t) =

1

2t
+

1

2
+O(t) ,

K̃O2
p12,p56

(t) =
1

2 t
+

1

2
+O(t) . (3.48)

12Equivalently, as explained in appendix A.2, one could use (A.19).
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Then considering the zeta-function

ζ̃O(s) =
1

Γ(s)

∫ 1

0
dt ts−1K̃O(t) +

1

Γ(s)

∫ ∞
1

dt ts−1K̃O(t) (3.49)

one finds that the second integral here is finite for s = 0 while the first one is singular due

to the asymptotics in (3.48).13 This explains the need to analytically extend zeta-functions

to s = 0 before computing their derivatives.

The t → 0 singularities cancel in the sum of heat traces, due to the special spectrum

of scalar and spinor fields and the values of their masses

3

2
K̃O1(t) +

3

2
K̃O2(t) +

1

2
K̃O3+(t) +

1

2
K̃O3−(t)− 1

2

∑
p12,p56=±1

K̃O2
p12,p56

(t) =
0

t
+ 0 +O(t) .

(3.50)

Thus, in the θ2
0 term in the total zeta-function (3.47) no analytic continuation to s = 0

is necessary. This regularity of the leading correction (3.50) to the sum of traces of heat

kernels or, equivalently, the UV finiteness of the θ2
0 term (and, in fact, higher terms) in the

expansion of the logarithm of the string 1-loop partition function has a simple explanation.

The logarithmic UV divergences (determined by the Seeley coefficient a2 of the t0 part

in the small-t expansion of heat kernel) in 2d are proportional, for smooth manifolds,

to the Euler number which is the same for both the minimal surface (3.7) and its θ0 = 0

limit (3.14), both having the same topology (see also [13]).14 These divergences thus cancel

in the ratio of the partition functions of the latitude and the circle minimal surfaces, i.e.

in Γ(θ0)− Γ(0).

3.2 Cusped Wilson loop

Next, let us consider the string world-sheet ending on a pair of oppositely oriented (“an-

tiparallel”) lines in R×S3 ⊂ AdS5, separated by a geometric angle π−φ along a great circle

of S3 (that can be mapped to a cusp on the plane) and with an internal (R-symmetry)

angle θ. The classical solution was written in [11] in terms of Jacobi elliptic functions.15

Here we will consider only the case of vanishing θ [42, 45]. Then the angular opening φ

and the parameters b, p, q of the classical solution in appendix B of [39] can be expressed

in terms of just one independent parameter k ∈ [0 , 1√
2
)

b =

√
1− 2k2

k
, p2 =

b4

1 + b2
, q = 0 , φ = π − 2p2

b
√
b4 + p2

[
Π

(
b4

b4 + p2
|k2

)
− K

(
k2
)]

(3.51)

and the classical surface M lies entirely inside an AdS3 subspace of AdS5 with the metric

ds2
AdS3

= − cosh2 ρ dt2 + dρ2 + sinh2 ρ dϕ2. After t → it, the induced world-sheet metric

13More generally, since the operators (3.10)–(3.11) and the square of (3.12) have positive eigenvalues,

the Mellin transform of their heat kernel traces (2.11) is convergent at the upper limit of the integral and

singularities originate only from t = 0 (cf. [46, 47]).
14 The part of the 1-loop superstring partition function on the disc given by the ratio of determinants as

in (3.9) is known to contain a universal logarithmic UV divergence which is cancelled in the total partition

function against the cutoff dependent factors in the conformal Killing vector measure included [6].
15We adhere to the notation in appendix F of [39]: sn, cn, dn are the three basic Jacobi elliptic functions,

K is the complete elliptic integral of the first kind and Π is the complete elliptic integral of the third kind.
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is Euclidean

ds2
M =

1− k2

cn2 (σ|k2)

(
dσ2 + dτ2

)
, −K

(
k2
)
< σ < K

(
k2
)
, τ ∈ R , (3.52)

where σ, τ are related to ρ, t by

cosh ρ =

√
1 + b2

b cn (σ|k2)
, t =

b p√
b4 + p2

τ . (3.53)

Introducing large cutoffs 0 ≤ ρ ≤ ρ0, 0 < t ≤ T translates into

σ ∈ (−σ0, σ0) , τ ∈ [0, T ] , σ0 ≡ cn−1

(√
1 + b2

b cosh ρ0
|k2

)
, T ≡

√
b4 + p2

b p
T .

(3.54)

The classical string action (the first term in (3.1)) proportional to the regularized area of

the surface is given, after the subtraction of the divergence due to the two boundary lines

at ρ = ρ0 →∞, in terms of elliptic integrals [39]

Γ(0)(k) =
1

2π

∫ T
0
dτ

∫ σ0

−σ0

dσ
1− k2

cn2(σ|k2)

=
T

2π

[
eρ0 +

2
√
b4 + p2

b p

(
(b2 + 1)p2

b4 + p2
K(k2)− E(k2)

)
+O(e−ρ0)

]

→ T

2π

2
√
b4 + p2

b p

[
(b2 + 1)p2

b4 + p2
K(k2)− E(k2)

]
. (3.55)

The one-loop effective action reads formally (cf. (3.9)) [39, 42]

Γ(1) (k) = − log
Det8/4[O2

F (k)]

Det5/2[O0(k)] Det2/2[O1(k)] Det1/2[O2(k)]
(3.56)

with the bosonic and the fermionic fluctuation operators given by

O0 (k) ≡
cn2

(
σ|k2

)
1− k2

(
−∂2

σ − ∂2
τ

)
, O1 (k) ≡ O0 (k) + 2 , (3.57)

O2 (k) ≡ O0 (k) + 2− 2
k2cn4

(
σ|k2

)
1− k2

, (3.58)

OF (k) ≡ −i
cn
(
σ|k2

)
√

1− k2
σ1

(
∂σ +

sn
(
σ|k2

)
dn
(
σ|k2

)
2cn (σ|k2)

)
− i

cn
(
σ|k2

)
√

1− k2
σ2∂τ + σ3 . (3.59)

The limiting case of k = 0 (φ = 0) corresponds to a surface M̄ stretching between a pair

of lines that are antipodal in R×S3,16 at the AdS boundary, a configuration for which the

corresponding Wilson loop is a 1/2 BPS protected observable with the expectation value

equal to one [49]. Thus the natural choice for the expansion parameter α is

αcusp ≡ k2 . (3.60)

16Considering the theory in R4, related to the theory in R × S3 by the stereographic projection, this is

the infinite straight line.
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In this case the world-sheet cutoffs in (3.54) also depend on α and that may be confusing.

A sensible expansion would require introducing new world-sheet coordinates r, w with the

range independent of k. For the world-sheet time, one can simply choose it to be the

AdS time

w ≡ t =
b p√
b4 + p2

τ , w ∈ [0, T ] , (3.61)

while finding a suitable spatial world-sheet coordinate appears to be more problematic.17

A good candidate [50] in the ρ0 →∞ limit is

r ≡ πσ

2K(k2)
, r ∈

(
−π

2
,
π

2

)
, (3.62)

as in this limit σ0 = K(k2), see (3.54). At finite and large ρ0, however, the maximum value of

|r| is πσ0/(2K(k2)) = π/2+O(e−ρ0) and k reappears in the exponentially suppressed terms.

We will later take into account that the integrals over r may generate such k-dependent

contributions (see footnote 23).

In the limiting case k = 0 eqs. (3.53) and (3.61)–(3.62) simplify to sinh ρ = | tanσ| =
| tan r| and t = τ = w, the cutoffs (3.54) become σ0 = arctan(sinh ρ0) and T = T ,

and (3.52) reduces to that of the infinite-strip parametrization or H2 that we will call Ĥ2

(with boundary R instead of S1)

ds2
M̄ =

1

cos2 r

(
dr2 + dw2

)
. (3.63)

In this case the regularized volume or the value of string action vanishes (cf. (3.55))

Γ(0)(0) =
1

2π
VĤ2 =

1

2π

∫ T

0
dw

∫ arctan(sinh ρ0)

−arctan(sinh ρ0)

dr

cos2 r
=

T

2π

[
eρ0 +O(e−ρ0)

]
→ 0 , (3.64)

in agreement with the k = 0 limit of (3.55). For k = 0 the operators (3.57)–(3.59) become

those of the straight line Wilson loop [5, 6]

Ō0 = −∆r,w , Ō1 = Ō2 = −∆r,w + 2 , ŌF = −i /∇r,w + σ3 , (3.65)

with the Laplacian given in (B.9) and the Dirac operator in (B.12). Here the multiplicities

and the masses coincide with those in the spectrum (3.17) corresponding to a circular

Wilson loop in R4. The zeta-functions (B.30) of these operators are proportional to the

volume VĤ2 whose renormalized value is zero (3.64) and thus we get [8, 18]18

Γ(1)(0) = −5

2
ζ̄
′
O0

(0)− 2

2
ζ̄
′
O1

(0)− 1

2
ζ̄
′
O2

(0) +
8

4
ζ̄
′

O2
F

(0) = 0 . (3.66)

17For instance, we discard ρ because its minimum value arccosh(
√

1 + b2/b) is a function of k, and the

relation (3.53) between σ and ρ is not one-to-one. Another possibility is r′ ≡ πσ/(2σ0) which varies in

the constant interval (−π/2, π/2), however this choice would introduce the cutoff ρ0 via σ0 into (3.52)

and (3.57)–(3.59) once the change of coordinates is made. This implies that the metric at k = 0 is still

dependent on one parameter and cannot have the geometry of H2. The perturbative analysis for small k

would be then problematic, as the procedure relies on the knowledge of the heat kernels at k = 0, which in

this case one would still need to evaluate.
18The minimal surface (3.4)–(3.6) bounded by a circle and the one ending on a straigh line or two

antiparallel lines have the same local geometry of H2, as they are mapped to each other through an isometry

of AdS5. The difference in the values of their regularized volumes (3.16) and (3.64) is a regularization effect

due to the different global properties of the two spaces — different topology of the boundary (see [8, 15, 18]

for a discussion of this point).

– 14 –



J
H
E
P
0
3
(
2
0
1
7
)
0
0
3

For small values of αcusp = k2 the angle in (3.51) is also small, φ = πk + O(k3). In this

near-BPS limit we get, expanding the elliptic integral in the metric (3.52) (cf. (2.4))

ḡij(r, w) =
1

cos2 r

(
1 0

0 1

)
, g̃ij(r, w) =

(
−1

2 0

0 3
2 cos2 r

− 1
2

)
. (3.67)

The order k2 terms in the operators (3.57)–(3.59) are found to be barred operators given

by (3.65) and their perturbations by

Õ0 = Õ1 =
cos2 r

2

[
− cos2 r∂2

r +
(
2 + sin2 r

)
∂2
w

]
, (3.68)

Õ2 =
cos2 r

2

[
− cos2 r∂2

r +
(
2 + sin2 r

)
∂2
w − 4 cos2 r

]
, (3.69)

ÕF = − i cos3 r

4
σ1∂r −

i (cos 3r − 9 cos r)

16
σ2∂w −

3i sin r cos2 r

8
σ1 . (3.70)

As in (3.25), we will actually be using the expansion of the square of the fermionic operator:

O2
F (k) = Ō2

F + k2 {ŌF , ÕF }+O(k4) . (3.71)

For each operator in (3.56) we will repeat a procedure similar to that explained be-

tween (3.29)–(3.35), with two differences. Since we rescaled the world-sheet coordi-

nates (3.61)–(3.62) differently, none of the operators (3.68)–(3.70) can be written in terms

of the Laplacian (B.9) or the Dirac operator (B.12). Therefore we will use the full heat

kernels (B.10) and (B.13) instead of their simpler expressions at coincident points. Also,

in the integrals over the (regularized) world-sheet, the domain of integration of r depends

on the perturbative parameter k, and divergences appear if the radial cutoff ρ0 → ∞ is

removed at fixed k. By analogy with (3.64), we shall assume that a sensible regularization

at small k consists in doing the integrals for finite ρ0, expanding in ρ0 →∞ and dropping

all positive powers of eρ0 . It is easy to check that since negative powers of k2 are absent, in

what is left we can simply take the limit k → 0 (see also footnote 23). Applying this to the

bosonic operator O0 = Ō0+k2Õ0+... we find for the correction to its heat kernel (see (2.9))

K̃O0(t) = −t
∫ πσ0

2K(k2)

− πσ0
2K(k2)

dr

∫ T

0

dw

cos2 r

[
Õ0K̄−∆(r, w, r′, w′; t)

]
r=r′,w=w′

=
1

8π

[(
3eρ0 − 2π +O(e−ρ0)

)
+O(k2)

]
t T

∫ ∞
0

dv v tanhπv

(
v2 +

1

4

)
e−t
(
v2+ 1

4

)
→ − t T

4

∫ ∞
0

dv v tanhπv

(
v2 +

1

4

)
e−t(v

2+ 1
4

) , (3.72)

where we used that πσ0/(2K(k2)) = arctan(sinh ρ0) +O(k2) after taking the large-ρ0 limit.

The corresponding zeta-function is

ζ̃O0(s) = −s T
4

∫ ∞
0

dv
1(

v2 + 1
4

)s (v − 2v

e2πv + 1

)
= − s T

8
(
s− 1

) (1

4

)1−s
+
s T

2

∫ ∞
0

dv
v(

e2πv + 1
)(
v2 + 1

4

)s , (3.73)

ζ̃
′
O0

(0) =
1

24
T . (3.74)
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Similarly, for the remaining bosonic and fermionic operators one gets

K̃O1(t) = −t
∫ πσ0

2K(k2)

− πσ0
2K(k2)

dr

∫ T

0

dw

cos2 r

[
Õ1K̄−∆+2(r, w, r′, w′; t)

]
r=r′,w=w′

(3.75)

= − t T
4

∫ ∞
0

dv v tanhπv

(
v2 +

1

4

)
e−t(v

2+ 9
4

) ,

ζ̃O1(s) = −s T
4

∫ ∞
0

dv
1(

v2 + 9
4

)s
(

1− 2

v2 + 9
4

)(
v − 2v

e2πv + 1

)
(3.76)

= − s T

8
(
s− 1

) (9

4

)1−s
+
T

4

(
9

4

)−s
+
s T

2

∫ ∞
0

dv
v(

e2πv + 1
) (
v2 + 9

4

)s
− s T

∫ ∞
0

dv
v(

e2πv + 1
) (
v2 + 9

4

)s+1 , ζ̃
′
O1

(0) =

(
− 5

24
+

1

2
γ

)
T , (3.77)

K̃O2(t) = −t
∫ πσ0

2K(k2)

− πσ0
2K(k2)

dr

∫ T

0

dw

cos2 r

[
Õ2K̄−∆+2(r, w, r′, w′; t)

]
r=r′,w=w′

(3.78)

=
t T

4

∫ ∞
0

dv v tanhπv

[
−
(
v2 +

1

4

)
+ 2

]
e−t(v

2+ 9
4) ,

ζ̃O2

(
s
)

=
s T

4

∫ ∞
0

dv
1(

v2 + 9
4

)s
(
−1 +

4

v2 + 9
4

)(
v − 2v

e2πv + 1

)
(3.79)

= − s T

8
(
s− 1

) (9

4

)1−s
+
T

2

(
9

4

)−s
+
s T

2

∫ ∞
0

dv
v(

e2πv + 1
) (
v2 + 9

4

)s
− 2s T

∫ ∞
0

dv
v(

e2πv + 1
) (
v2 + 9

4

)s+1 , ζ̃
′
O2

(0) =

(
−17

24
+ γ

)
T , (3.80)

K̃OF (t) = −t
∫ πσ0

2K(k2)

− πσ0
2K(k2)

dr

∫ T

0

dw

cos2 r
tr
[{
Ōr,wF , Õr,wF

}
K̄− /∇2

+1
(r, w, r′, w′; t)

]
r=r′,w=w′

=
t T

2

∫ ∞
0

dv v cothπv
[
1−

(
v2 + 1

)]
e−t
(
v2+1

)
, (3.81)

ζ̃O2
F

(s) =
s T

2

∫ ∞
0

dv
1(

v2 + 1
)s ( 1

v2 + 1
− 1

)(
v +

2v

e2πv − 1

)
(3.82)

= − s T

4
(
s− 1

) +
T

4
−
∫ ∞

0
dv

s Tv(
e2πv − 1

)(
v2 + 1

)s +

∫ ∞
0

dv
s Tv(

e2πv − 1
)(
v2 + 1

)s+1 ,

ζ̃
′

O2
F

(0) =

(
− 1

24
+
γ

2

)
T , (3.83)

where (B.37) was used to compute (3.77) and (3.80), and (B.41) — to find (3.83).

The resulting one-loop effective action is then

Γ(1) (k)− Γ(1) (0) = k2T

(
−5

2
ζ̃
′
O0

(0)− 2

2
ζ̃
′
O1

(0)− 1

2
ζ̃
′
O2

(0) +
8

4
ζ̃
′

O2
F

(0)

)
+O(k4)

=
3

8
Tk2 +O(k4) ≡ 3

8π2
Tφ2 +O(φ4) , (3.84)
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where in the last line we substituted the expansion of (3.51). This reproduces, as it should,

the result of [39] for the so-called Bremsstrahlung function [40].

As in the case of the latitude Wilson loop, it is not difficult to check that considering

the sum of perturbed contributions to the zeta-functions

ζ̃tot(s) =
5

2
ζ̃O0(s) +

2

2
ζ̃O1(s) +

1

2
ζ̃O2(s)− 8

4
ζ̃O2

F
(s) (3.85)

eliminates the need of an analytical continuation in s: setting s = 0 in the total integrand

and then performing the integration gives (3.84). This is again consistent with the fact

that the trace of the full heat kernel, which equals to the sum of (3.72), (3.75), (3.78)

and (3.81), vanishes for small t

K̃tot(t) =
5

2
K̃O0(t) +

2

2
K̃O1(t) +

1

2
K̃O2(t)− 8

4
K̃OF (t) =

0

t
+ 0 +O(t) , (3.86)

which implies that (3.85) does not develop any singularity in s = 0.

3.3 k-wound circular Wilson loop

Our next example is the minimal surface generalizing the circular Wilson loop one (given

by the θ0 = 0 limit of (3.4)–(3.6)) to the case of an arbitrary integer winding number k

along the circle. The string theory solution should be representing, at strong coupling, the

gauge-theory circular Wilson loop in the k-fundamental representation.

This classical solution can be found simply by the replacements σ → kσ and τ → kτ

in (3.14) [7, 9], so that the induced metric becomes

ds2 = Ω2(σ)
(
dσ2 + dτ2

)
, Ω(σ) =

k

sinh(kσ)
, σ ∈ [0,∞) , τ ∈ [0, 2π) .

(3.87)

The corresponding geometry is a cone of AdS2 with negative angular deficit δ = 2π(1−k).

Given a singular nature of this geometry one may wonder if a perturbation theory near

k = 1 limit is meaningful. We will first proceed formally and then comment on possible

issues at the end of this section.

The relation z = tanh(kσ) from (3.4) implies that the world-sheet coordinate σ is to

be cut off at k−1arctanh ε in order keep the same physical cutoff at z = ε for any value of

k. Then the classical string action is [7] (cf. (3.16))

Γ(0)(k) =
1

2π

∫ 2π

0
dτ

∫ ∞
k−1arctanh ε

dσ
k2

sinh2(kσ)
=
k

ε
− k → −k . (3.88)

One may define the new coordinate ρ that ranges in the same interval [arccosh(ε−1),∞)

for any k by

sinh ρ ≡ (sinh(kσ))−1 . (3.89)

The one-loop correction in (3.1) is [7, 15]

Γ(1)(k) = − log
Det5/2[O0(k)] Det3/2[O1(k)]

Det8/4[OF (k)]
, (3.90)
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where

O0 (k) ≡ sinh2(kσ)

k2

(
−∂2

τ − ∂2
σ

)
, O1 (k) ≡ O0 (k) + 2 , (3.91)

OF (k) ≡ i

k
sinh(kσ)σ1

[
∂σ −

k

2
coth(kσ)

]
− i

k
sinh(kσ)σ2∂τ + σ3 . (3.92)

For k = 1 the corresponding world-sheet surface (3.87) becomes that of M̄ = H2, i.e. (3.14),

with the boundary S1 at ρ = arccosh(ε−1) and the regularized area in (3.16). The spectrum

of excitations then coincides with (3.17)

Ō0 = −∆ρ,τ , Ō1 = −∆ρ,τ + 2 , ŌF = −i /∇ρ,τ + σ3 (3.93)

so that the 1-loop correction in (3.1) is also the same as in (3.21)

Γ(1) (k = 1) = −5

2
ζ̄
′
O0

(0)− 3

2
ζ̄
′
O1

(0) +
8

4
ζ̄
′

O2
F

(0) =
1

2
log 2π . (3.94)

For k = 2, 3, ... the space (3.87) is a cone of H2 with a conical singularity at ρ = 0. We

shall formally treat k as a real number and expand in k−1, i.e. define the small parameter

α as

α
k−circle

≡ k − 1 . (3.95)

The small-α expansion of the metric (3.87) yields the leading and subleading terms as

ḡij(ρ, τ) =

(
1 0

0 sinh2 ρ

)
, g̃ij(ρ, τ) =

(
0 0

0 2 sinh2 ρ

)
. (3.96)

For the leading-order corrections in the operators (3.91), (3.92) we find

Õ0 = Õ1 =
2

sinh2 ρ
∂2
τ , ÕF =

i

sinh ρ
σ2∂τ . (3.97)

In the perturbative expansion in k − 1 of the heat kernels and zeta-functions the integrals

will contain similar 1
ε divergences as in the volume (3.88). As in section 3.2, we will first

compute the integrals at finite cutoff, then take the limit ε → 0 in the result and finally

drop terms with negative powers of ε. Using this regularization prescription we find (here

– 18 –



J
H
E
P
0
3
(
2
0
1
7
)
0
0
3

Λ = arccosh(ε−1) as in (3.15))

K̃O0 (t) = −t
∫ Λ

0
dρ

∫ 2π

0
dτ

2

sinh ρ

[
∂2
τ K̄−∆(ρ, τ, ρ′, τ ′; t)

]
ρ=ρ′,τ=τ ′

= −t
∫ ∞

0
dv v tanh (πv)

(
v2 +

1

4

)
e−t(v

2+ 1
4) , (3.98)

ζ̃O0 (s) =

∫ ∞
0

dv
−sv(

v2 + 1
4

)s +

∫ ∞
0

dv
2sv

(e2πv + 1)
(
v2 + 1

4

)s
= − s

2 (s− 1)

(
1

4

)1−s
+ 2s

∫ ∞
0

dv
v

(e2πv + 1)
(
v2 + 1

4

)s , ζ̃
′
O0

(0) =
1

6
, (3.99)

K̃O1 (t) = −t
∫ Λ

0
dρ

∫ 2π

0
dτ

2

sinh ρ

[
∂2
τ K̄−∆+2(ρ, τ, ρ′, τ ′; t)

]
ρ=ρ′,τ=τ ′

= −t
∫ ∞

0
dv v tanh (πv)

(
v2 +

1

4

)
e−t(v

2+ 9
4) , (3.100)

ζ̃O1 (s) =

∫ ∞
0

dv
−sv(

v2 + 9
4

)s
(

1− 2

v2 + 9
4

)
+

∫ ∞
0

dv
2sv

(e2πv + 1)
(
v2 + 9

4

)s
(

1− 2

v2 + 9
4

)

= − s

2 (s− 1)

(
9

4

)1−s
+

(
9

4

)−s
+ 2s

∫ ∞
0

dv
v

(e2πv + 1)
(
v2 + 9

4

)s
− 4s

∫ ∞
0

dv
v

(e2πv + 1)
(
v2 + 9

4

)s+1 , ζ̃
′
O1

(0) = −5

6
+ 2γ , (3.101)

K̃O2
F

(t) = −
∫ Λ

0
dρ

∫ 2π

0
dτ sinh ρ tr

[{
Ōρ,τF , Õρ,τF

}
K̄− /∇2

+1
(ρ, τ, ρ′, τ ′; t)

]
ρ=ρ′,τ=τ ′

= −t
∫ ∞

0
dv v coth (πv)

(
2v2 + 1

)
e−t(v

2+1) , (3.102)

ζ̃O2
F

(s) =

∫ ∞
0

dv
−sv

(v2 + 1)s

(
2− 1

v2 + 1

)
+

∫ ∞
0

dv
−2sv

(e2πv − 1) (v2 + 1)s

(
2− 1

v2 + 1

)
= − s

s− 1
+

1

2
− 4s

∫ ∞
0

dv
v

(e2πv − 1) (v2 + 1)s
+2s

∫ ∞
0

dv
v

(e2πv − 1) (v2 + 1)s+1 ,

(3.103)

ζ̃
′

O2
F

(s) =
1

3
+ γ , (3.104)

where we used (B.37) and (B.41). Combining these results, the one-loop effective ac-

tion reads

Γ(1) (k)− Γ(1) (k = 1) = c1(k − 1) +O
(
(k − 1)2

)
, (3.105)

c1 = −5

2
ζ̃
′
O0

(0)− 3

2
ζ̃
′
O1

(0) +
8

4
ζ̃
′

O2
F

(0) =
3

2
− γ . (3.106)

At the same time, the strong-coupling expansion of the gauge theory prediction for the

expectation value 〈W (λ, k)〉 = e−Γ(λ,k) of k-fundamental circular loop normalized to the

k = 1 value is (cf. (1.1)) [9, 20]

Γ(λ, k)− Γ(λ, k = 1) =
√
λ (1− k) +

3

2
log k +O(λ−1/2) . (3.107)
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Our string theory result (3.106) thus coincides with the k → 1 expansion of the log k term

in (3.107) just up to an extra γ (the Euler-Mascheroni constant) term in c1.

Our value for c1 = 3
2 − γ ≈ 0.923 may be compared to the results of the two previous

string theory computations of Γ(1) (k) in [7] and in [15]. The 1-loop correction in [7] was

Γ
(1)
KT (k) =

1

2
ln(2π) +

(
2k +

1

2

)
ln k − ln Γ(k + 1) , (3.108)

so that (c1)KT = 3
2 + γ ≈ 2.077, which, surprisingly, differs from (3.106) just by the sign

of the γ term. This suggests that the presence of this extra γ term in both approaches is

a regularization artifact (see also below). The result of [15] was given by

Γ
(1)
BT (k) =

1

2
k log(2π) + I(k) , (3.109)

I(k) =−1

4

∫ ∞
0

dy

y sinh y

[
(5e−y + 3e−3y)

(
coth

y

k
−k coth y

)
+16e−2y

(
1

sinh y
k

− k

sinh y

)]
,

so that (c1)BT = 1
2 ln(2π)+I ′(1) ≈ 0.9189+0.3161 = 1.235 which is closer but still different

from the gauge-theory prediction c1 = 1.5 in (3.106).

From a technical point of view, the presence of the extra γ term in (3.106) can be

traced back to the dependence on a regularization used to define the s = 0 limit in the

zeta-functions, which, in contrast to the examples in the previous two subsections, does

not cancel out in the sum of leading-order corrections to the zeta-functions. Splitting the

power and exponential terms in the integrands in (3.98)–(3.102) (cf. (3.46)), i.e. ζ̃O ≡
ζ̃

(power)
O (s) + ζ̃

(exp)
O (s), we find

5

2
ζ̃

(power)
O0

(s) +
3

2
ζ̃

(power)
O1

(s)− 8

4
ζ̃

(power)

O2
F

(s) (3.110)

=

∫ ∞
0

dv

[
− 5sv

s
(
v2 + 1

4

)s − 3sv

2
(
v2 + 9

4

)s
(

1− 2

v2 + 9
4

)
+

2sv

(v2 + 1)s

(
2− 1

v2 + 1

)]
,

which is divergent for s→ 0. Proceeding without performing an analytical continuation in

s gives

d

ds

(
−5

2
ζ̃O0(s)− 3

2
ζ̃O1(s) +

8

4
ζ̃O2

F
(s)

)
s=0

(3.111)

=

∫ ∞
0

dv
2v(2v2 − 3)

4v4 + 13v2 + 9
+

d

ds

(
−5

2
ζ̃

(exp)
O0

(s)− 3

2
ζ̃

(exp)
O1

(s) +
8

4
ζ̃

(exp)

O2
F

(s)

)
s=0

,

where the integral diverges logarithmically for large v. This reflects the presence of t0 term

in the small-t expansion of the leading k−1 correction to the heat kernel (cf. (3.50), (3.86))

K̃tot(t) =
5

2
K̃O0(t) +

3

2
K̃O1(t)− 8

4
K̃O2

F
(t) =

0

t
+

1

2
+O(t) (3.112)

where we used that according to (3.98), (3.100), (3.102),

K̃O0(t) = − 1

2t
+O(t) , K̃O1(t) = − 1

2t
+1+O(t) , K̃O2

F
(t) = −1

t
+

1

2
+O(t) . (3.113)
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It is interesting to note that (3.113) matches the small-t asymptotics of the heat kernels

on the cone of H2 found in [15] when expanded for k → 1,19

[
K̃O0(t)

]
BT

= K̄−∆(t) +
e−

1
4
t

√
4πt

∫ ∞
0

dy e−
y2

t
y − sinh y cosh y

sinh3 y
= − 1

2t
+O(t) , (3.114)

[
K̃O1(t)

]
BT

= K̄−∆+2(t) +
e−

9
4
t

√
4πt

∫ ∞
0

dy e−
y2

t
y − sinh y cosh y

sinh3 y
= − 1

2t
+ 1 +O(t) ,

(3.115)[
K̃O2

F
(t)
]

BT
= K̄− /∇2

+1
(t)− 4e−t√

4πt

∫ ∞
0

dy e−
y2

t
y cosh y − sinh y

sinh3 y
= −1

t
+

1

2
+O (t) .

(3.116)

Here we used the expansions (B.25)–(B.26) and performed the change of variable y →
√
t y.

The non-vanishing t0 term in the O(k − 1) correction to the total heat kernel K̃tot

in (3.112) implies the presence of k-dependent logarithmic UV divergence in the logarithm

of the one-loop string partition function (implicit also in [15]). The presence of this k-

dependent UV divergence appears to be in contradiction with the fact that the Euler

number of the cone of AdS2 is the same as of the disc (χ = 1) for any k which suggests

that the UV divergence should actually cancel in the ratio of k 6= 1 and k = 1 partition

functions (as in the latitude example of section 3.1). In general, it is known that conical

singularities produce extra contributions to the heat coefficient a2 [46, 47] (cf. (A.14)).

What happens is that the regular k-dependent bulk contribution to the Euler number is

cancelled against the k-dependent tip contribution.20

One may then suspect that our perturbative approach to computation of heat ker-

nels may be missing some subtleties of the heat asymptotics around the tip of the cone.21

Namely, it may be missing the singular tip of the cone contribution to a2 so that instead

of being proportional to the full (k-independent) Euler number equal to 1 it appears to

be given just by the regular bulk contribution χreg
v = k (we drop the 1

ε part in χreg
v in

footnote 20 as our usual IR regularization prescription). Explicitly, one may then inter-

pret (3.112) as the O(k − 1) term in the total heat kernel where the t0 term is given by

χreg
v , i.e.

Kreg
tot (t) =

0

t
+
k

2
t0 +O(t) =

0

t
+

[
1

2
+

1

2
(k − 1)

]
t0 +O(t) , (3.117)

19Here we give the terms proportional to k−1 in the expansion of eqs. (2.19) (with m2 = 0, 2) and (3.17)

(with m2 = 1) in [15].
20The Euler number is given by the sum of the volume and boundary contributions, χ = χv+χb. The vol-

ume part of the Euler number χv = 1
4π

∫
d2x
√
gR contains the “regular” and “singular” (tip) contributions:

χv = χreg
v + χtip

v . The regular part of the curvature of the metric (3.87) is Rreg = −2Ω−2∂2
σ log Ω = −2,

while the tip part is Rtip = 4π (1−k) δ(2)(x), so that χreg
v = 1

4π

∫ 2π

0
dτ
∫∞
k−1arctanh ε

dσΩ2 (σ)Rreg = − k
ε

+k

and χtip
v = 1 − k. Thus χv = 1 − k

ε
. The geodesic curvature of the boundary at σ̄ = k−1arctanh ε

is κg = ∂σΩ−1(σ)|σ=σ̄ = 1
ε
, so that the boundary part of the Euler number is χb = 1

2π

∫
ds κg ≡

1
2π

∫ 2π

0
dτ Ω(σ̄)κg = k

ε
. As a result, the total Euler character χ = χv + χb = 1 is finite and does not

depend on k, i.e. is the same as of a disc.
21See, for example [51] and references therein. We thank D. Seminara for a discussion on this point. Note

also that our test for the scalar Laplacian in appendix A.2 applied only to smooth manifolds.
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Then the effect of proper accounting for the tip contribution should be, in particular, the

replacement of the k
2 t

0 term in (3.117) by 1
2 t

0 and thus the cancellation of the 1
2 term

in (3.112).

This suggests that the presence of the extra γ term in (3.106) (which represents the

difference with the gauge theory result) may be an artifact of the superficial presence of

k-dependent UV divergences before the tip contribution is taken into account. We leave a

careful resolution of this issue for the future.
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A Perturbation theory for heat kernel and Seeley coefficients

In this appendix we collect some details on the derivation of (2.7), (2.9) and show, as non-

trivial consistency check, that our perturbative expansion reproduces the standard pertur-

bation theory applied directly to the Seeley coefficients of the scalar Laplacian operator.

A.1 Perturbation theory for heat kernel

To obtain the first correction K̃(x, x′; t) to the heat kernel in (2.4), we solve equation (2.6)

using the standard method of variation of constants. We start with the ansatz

K̃O(x, x′; t) ≡ − g̃(x)

2ḡ3/2(x)
δ(d)(x− x′)I +

∫
ddx′′

√
ḡ(x′′)K̄O(x, x′′; t)CO(x′′, x′; t) ,

(A.1)

lim
t→0+

CO(x, x′; t) = 0 ,

which guarantees that the initial condition in (2.6) is satisfied, and solve for CO(x′′, x′; t)∫
ddx′′

√
g(x′′)K̄O

(
x, x′′; t

)
∂tCO

(
x′′, x′; t

)
= Ōx

(
g̃(x)

ḡ3/2(x)
δ(d)(x− x′)

)
− ÕxK̄O(x, x′; t).

(A.2)

We now multiply both sides by
√
ḡ(x)K̄O(x′′′, x;−t),22 and integrate over x, using the

composition law∫
ddx′

√
ḡ(x′)K̄O(x, x′; t)K̄O

(
x′, x′′; t′

)
= K̄O

(
x, x′′; t+ t′

)
, t, t′ > 0 . (A.3)

22This step is not fully rigorous because the identity (A.3) holds only for positive values of the proper

times. In fact, the inverse heat kernel K̄−1
O (x′′′, x; t) = K̄O(x′′′, x;−t) is not guaranteed to be a well-defined

operator when it acts on arbitrary functions f(x) taking values in a vector bundle. However, this potentially

problematic operator will not enter the final formula (2.7), which indeed contains heat kernels with only

positive arguments t′ and t − t′. We could alternatively start with (2.7) and check that it is a solution

of (2.5) without the need of inverting heat kernels. A similar discussion is found in Chapter 14 of [23].
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With the initial condition in (2.5), we then obtain

∂tCO(x′′′, x′; t) =

∫
ddx
√
ḡ(x)K̄O(x′′′, x;−t)Ōx

(
g̃(x)

ḡ3/2(x)
δ(d)(x− x′)

)
−
∫
ddx
√
ḡ(x)K̄O(x′′′, x;−t)ÕxK̄O(x, x′; t) . (A.4)

Relabeling x′′′ → x′′, x→ x′′′, t→ t′ it is straightforward to integrate over the proper time

to get

CO(x′′, x′; t) =

∫ t

0
dt′
∫
ddx′′′

√
ḡ(x′′′)K̄O(x′′, x′′′;−t′)Ōx′′′

(
g̃(x′′′)

2ḡ3/2(x′′′)
δ(d)(x′ − x′′′)

)
−
∫ t

0
dt′
∫
ddx′′′

√
ḡ(x′′′)K̄O

(
x′′, x′′′;−t′

)
Õx′′′K̄O

(
x′′′, x′; t′

)
. (A.5)

Substituting in (A.1) this leads to the explicit integral form (2.7), with a few more steps

that employ (2.5) and (A.3).

Next, the order α correction K̃O(t) in (2.8) receives contributions23 from both the α-

correction to volume factor
√
g(x) (cf. (2.4)) and from the α-correction to the heat kernel

in (2.7), i.e.

K̃O(t) =

∫
ddx

g̃(x)

2
√
ḡ(x)

trK̄O(x, x; t) +

∫
ddx
√
ḡ(x) trK̃O(x, x; t) . (A.6)

Plugging here the diagonal element x = x′ of (2.7), we get

K̃O(t) =

∫
ddx

g̃(x)

2
√
ḡ(x)

trK̄O(x, x; t)− δ(d)(0)

∫
ddx

g̃(x)

2ḡ(x)
trI (A.7)

−
∫ t

0

dt′
∫
ddx
√
ḡ(x)

∫
ddx′′

√
ḡ(x′′)tr

[
K̄O (x, x′′; t− t′) Õx′′K̄O (x′′, x; t′)

]
+

∫ t

0

dt′
∫
ddx
√
ḡ(x)

∫
ddx′′

√
ḡ(x′′)tr

[
K̄O (x, x′′; t− t′) Ōx′′

(
g̃(x′′)

2ḡ(x′′)3/2
δ(d) (x− x′′)

)]
.

This expression is potentially affected by two types of divergences. The first one is the

δ(d)(0), short-distance divergence originating from (2.7); it will eventually cancel against

the delta-function in the last integrand. The second is a possible infrared divergence

that may appear if M and M̄ are non-compact. In the applications to string theory in

section 3 the volume divergences will be regulated by a cutoff and then subtracted through

the renormalization prescription suggested in similar calculations in [8, 15].

23 There is no correction due the integration over the xi because they range in a subset of Rn that is the

same for M and M̄. Although one may argue that the expansion (2.4) needs to assume that the range

of coordinates should not depend on α, the analysis in section 3.2 shows that one may allow their domain

to change infinitesimally when expanding in small α. This weaker condition on the choice of coordinates

should be valid as long as the change in the integration domain in the final formula (2.9) produces only

small additional terms, proportional to positive powers of α, that are eventually neglected in (2.8) at linear

order in α.
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To bring the integral (A.7) into a more convenient form, we shall assume that Ō is a

self-adjoint operator on a vector bundle of the manifold M̄,24∫
ddx
√
ḡ(x) f †(x)Ōxh(x) =

∫
ddx
√
ḡ(x)

(
Ōxf(x)

)†
h(x) . (A.8)

Combining this with (2.5) and setting t′′ = t− t′, we rewrite the last term in (A.7) as

−
∫ t

0
dt
′′
∫
ddx

g̃(x)

2
√
ḡ(x)

tr
(
∂t′′ K̄O

(
x, x; t

′′
))

= −
∫
ddx

g̃(x)

2
√
ḡ(x)

trK̄O (x, x; t) + δ(d)(0)

∫
ddx

g̃(x)

2
√
ḡ(x)

trI , (A.9)

which simplifies (A.7) to

K̃O(t) = −
∫ t

0
dt′
∫
ddx
√
ḡ(x)

∫
ddx′′

√
ḡ(x′′) tr

[
K̄O

(
x, x′′; t− t′

)
Õx′′K̄O

(
x′′, x; t′

)]
.

(A.10)

We can now use the cyclicity of the trace to write

K̃O(t) =−
∫ t

0
dt′
∫
ddx
√
ḡ(x)

∫
ddx′′

√
ḡ(x′′) tr

[
Õx′′

(
K̄O
(
x′′, x; t′

)
K̄O
(
x, x′; t− t′

))]
x′=x′′

,

(A.11)

where it is understood that the limit x′ → x′′ is taken after Ox′′ has acted on the argument

in round brackets. Making use of (A.3) we then get the compact expressions in (2.9).

A.2 Perturbative expansion of Seeley coefficients of scalar Laplacian

Consider the scalar Laplacian on a compact non-singular space M with metric gij

O = − 1
√
g
∂i
(√
ggij∂j

)
+ E . (A.12)

Under the standard conditions the corresponding heat kernel may be expanded as [47, 48]

KO(x, x; t) ' 1

(4π)d/2

∞∑
k=0

t(k−d)/2 bk/2(x) , KO(t) '
∞∑
k=0

t(k−d)/2 ak , (A.13)

where ak ≡ (4π)−d/2
∫
ddx
√
g(x) bk(x). Then the UV divergences of log DetO may be

expressed in terms of the Seeley coefficients ak with k ≤ d. As in section 3 we are interested

in the case of d = 2, here we shall concentrate only on the leading ak. For compact

manifolds without boundary, odd Seeley coefficients a2l+1 vanish and the first non-trivial

ones read [47, 48]25

a0 =
1

(4π)d/2

∫
d2x
√
g , a2 =

1

(4π)d/2

∫
d2x
√
g

(
R

6
− E

)
. (A.14)

24A natural inner product is defined as (f, h) ≡
∫
ddx
√
g(x) f†(x)h(x) .

25The manifolds discussed in section 3 are not compact. We regularize integrations over infinite re-

gions by introducing a cutoff, i.e. a boundary at a finite distance. This renders the integrals defining

the Seeley coefficients a0 and a2 finite, and suggests that we should also consider the boundary term

a1 = − 1
4

(
1

4π

) d−1
2
∫
∂M
√
g proportional to the length of the boundary. However, if we assume that all the

IR divergences are completely subtracted, that implies that the renormalized value of a1 is effectively zero

and we can restrict consideration to a0 and the (the volume part of) a2 (cf. also [6, 12, 52]).
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Consider now two conformally equivalent metrics gij and ḡij , gij = e2αΩ(x)ḡij , with α

being a small parameter. Setting E = Ē + α Ẽ +O(α2) and using (2.4) we get

O = Ō + α Õ +O
(
α2
)

(A.15)

=

[
− 1√

ḡ
∂i(
√
ḡḡij∂j) + Ē

]
+ α

[
− (d− 2) ḡij∂iΩ∂j +

2Ω√
ḡ
∂i
(√
ḡḡij∂j

)
!+!Ẽ

]
+O

(
α2
)
.

Using also the expansion for the scalar curvature26

R = R̄+ αR̃+O(α2) = R̄− 2α

[
ΩR̄+

d− 1√
ḡ
∂i
(√
ḡḡij∂jΩ

)]
+O(α2) , (A.16)

one obtains to linear order in α the following expansion for the relevant Seeley coefficients,

ak = āk + α ãk +O(α2) , (A.17)

ā0 =
1

(4π)d/2

∫
ddx
√
ḡ , ā2 =

1

(4π)d/2

∫
ddx
√
ḡ

(
1

6
R̄− Ē

)
, (A.18)

ã0 =
d

(4π)d/2

∫
ddx
√
ḡΩ , ã2 =

1

(4π)d/2

∫
ddx
√
ḡ

(
d− 2

6
Ω R̄− dΩ Ē − Ẽ

)
.

(A.19)

As a consistency check of the perturbative approach developed in section 2 let us show

that ã0 and ã2 in (A.19) are reproduced from the small-t expansion of the heat kernel trace

in (2.8), (2.9). Using (A.15) we get

K̃O(t) = t

∫
ddx

{
(d− 2)

√
ḡ(x)ḡij(x)∂xi Ω(x)

(
∂xj K̄O(x, x′; t)

)
x=x′

(A.20)

−2 Ω(x)
[
∂xi

(√
ḡ(x)ḡij(x)∂xj K̄O(x, x′; t)

)]
x=x′
−
√
ḡ(x)Ẽ(x)K̄O(x, x; t)

}
.

Integrating by parts in the first term using that the unperturbed Laplacian satis-

fies (2.5) gives

K̃O(t) = t

∫
ddx

[
− (d− 2)∂xj

(√
ḡ(x)ḡij(x)∂xi Ω(x)

)
K̄O(x, x; t) (A.21)

− 2
√
ḡ(x) Ω(x) ∂tK̄O(x, x; t)−

√
ḡ(x)

(
2Ω(x)Ē(x) + Ẽ(x)

)
K̄O(x, x; t)

]
.

Expanding in t→ 0+ and using (A.13) we get

KO(t) = K̄O(t) +
α

(4π)d/2

[
d t−d/2

∫
ddx
√
ḡ(x) Ω(x) (A.22)

+ t(2−d)/2

∫
ddx
√
ḡ(x)

(
d− 2

6
Ω(x)R̄(x)− dΩ(x)Ē(x)− Ẽ(x)

)
+O(t(3−d)/2)

]
+O(α2) .

26Under a conformal rescaling of the metric, R̄→ R = e−2αΩ
[
R̄− 2α(d−1)√

ḡ
∂i
(√
ḡḡij∂jΩ

)
−α2(d− 1)(d−

2)ḡij∂iΩ∂jΩ
]
.

– 25 –



J
H
E
P
0
3
(
2
0
1
7
)
0
0
3

Reading off the values of the first corrections ã0, ã2 one finds that they match the ones

in (A.19).

B Heat kernels and zeta-functions for operators on H2

In this appendix we will review the known expressions for heat kernels of Laplace and Dirac

operators on the Euclidean AdS2 or 2d hyberbolic space H2 with the metric

ds2 = dρ2 + sinh2 ρ dτ2 , ρ > 0 , τ ∈ [0, 2π) , (B.1)

where τ parametrizes the S1 boundary at ρ = ∞. The geodesic distance d(x, x′) between

two points x = (ρ, τ) and x′ = (ρ′, τ ′) is

cosh d(x, x′) = cosh ρ cosh ρ′ − sinh ρ sinh ρ′ cos(τ − τ ′) . (B.2)

We will also considered the “infinite-strip” parametrization x = (r, w) of AdS2 that we call

Ĥ2, which has the real line instead of S1 as its boundary

ds2 =
1

cos2 r
(dr2 + dw2) , r ∈

(
−π

2
,
π

2

)
, w ∈ R , (B.3)

with geodesic distance function

cosh d(x, x′) = − tan r tan r′ +
cosh(w − w′)

cos r cos r′
. (B.4)

The change of coordinates between the two systems is

cosh ρ =
coshw

cos r
, sin τ =

sin r√
sin2 r + sinh2w

, cos τ =
sinhw√

sin2 r + sinh2w
,

(B.5)

tan r = sinh ρ sin τ , tanhw = tanh ρ cos τ . (B.6)

We shall consider a Laplace type operator acting on function in a vector bundle − 1√
g (∂i +

Ai)
(√
ggij(∂j +Aj)

)
+E and also a Dirac type acting on two-dimensional spinors −i /∇+

V ≡ ie i
a Γa∇i+V, where the spinor derivative is ∇i ≡ ∂i+ 1

4ω
ab
ce
c
iΓab.

27 eai is the zweibein,

ωabc is the spin connection and Γa are hermitian SO(2) Dirac matrices

Γ1 = σ1 , Γ2 = σ2 , Γ3 = −iΓ1Γ2 = σ3 , {Γa ,Γb} = 2δabI2 , (B.7)

The explicit expressions for the scalar Laplacian in the two coordinates (B.1) and (B.3) are

∆ ≡ 1
√
g
∂i
(√
ggij∂j

)
, ∆ρ,τ = ∂2

ρ + coth ρ ∂ρ + sinh−2 ρ ∂2
τ , (B.8)

∆r,w = cos2 r
(
∂2
r + ∂2

w

)
. (B.9)

27The coordinate indices are i, j, ... = 1, 2, the indices of the local orthonormal frame are a, b, ... = 1, 2

and α, β, ... = 1, 2 are the indices of the spinor bundle over M (we follow mainly the conventions of

appendix A of [13]).

– 26 –



J
H
E
P
0
3
(
2
0
1
7
)
0
0
3

The operator −∆ is hermitian with a continuous spectrum of positive eigenvalues λ ∈
(1

4 , ∞]. The corresponding heat kernel for the massive operator −∆+m2 is [24, 25, 53–55]

K−∆+m2(x, x′; t) =
1

2π

∫ ∞
0

dv v tanh(πv)P− 1
2

+iv(cosh d(x, x′)) e−t(v
2+ 1

4
+m2) , (B.10)

where the Legendre function is indexed by v ≡
√
λ− 1

4 > 0 and the geodesic distance is

given by (B.2) and (B.4) in the coordinate sets (B.1) and (B.3) respectively.

The Dirac operator −i /∇ has the following explicit form

−i /∇ρ,τ = −iΓ1

(
∂ρ +

1

2
coth ρ

)
− isinh−1 ρ Γ2∂τ , (B.11)

−i /∇r,w = −iΓ1

(
cos r∂r +

1

2
sin r

)
− i cos r Γ2∂w (B.12)

in the two coordinate sets (B.1) and (B.3). The spinor heat kernel for the Dirac operator

with a constant chiral mass term −i /∇ρ,τ + mΓ3 (with m ∈ R) that satisfies the heat

equation for − /∇2
+ m2 can be written in a coordinate-independent form as the product

of the parallel spinor propagator U(x, x′) and a scalar function of the geodesic distance

d(x, x′) between the two points x, x′ [27]

K− /∇2
+m2(x, x′; t) =

1

2π
U(x, x′)

∫ ∞
0

dv v cothπv cosh

(
1

2
d(x, x′)

)
(B.13)

× 2F1

(
iv + 1, −iv + 1, 1,

1

2
− 1

2
cosh(d(x, x′))

)
e−t (v2+m2) .

The unitary 2 × 2 matrix U(x, x′) is the regular solution of the parallel transport equa-

tion [26]

ni(u)∇iU(x(0), x(u)) = 0, U (x(0), x(0)) = I2 , (B.14)

where ni(u) = ∂id(x(0), x(u)) is the unit vector tangent to the shortest geodesic x(u) be-

tween x(0) = x′ and x(1) = x. The explicit expression of U(ρ, τ, ρ′, τ ′) for the metric (B.1)

in the matrix representation (B.7) reads [15]

U
(
ρ, τ, ρ′, τ ′

)
= I2 cos θ

(
ρ, τ, ρ′, τ ′

)
+ iΓ3 sin θ

(
ρ, τ, ρ′, τ ′

)
, (B.15)

θ
(
ρ, τ, ρ′, τ ′

)
≡ arctan

cosh
(
ρ+ρ′

2

)
tan

(
τ−τ ′

2

)
cosh

(
ρ−ρ′

2

)
 . (B.16)

The expression in (B.13) is the solution of the heat equation(
∂t − /∇2

ρ,τ +m2
)
K− /∇2

+m2

(
ρ, τ, ρ′, τ ′; t

)
= 0 ,

lim
t→0+

K− /∇2
+m2

(
ρ, τ, ρ′, τ ′; t

)
=
δ (ρ− ρ′) δ (τ − τ ′)

sinh ρ
I2 .

(B.17)

To change the coordinates to the infinite-strip parametrization (B.3) through (B.6) recall

that spinors and the parallel spinor propagator are scalars under the diffeomorphisms, while
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under local rotations of the orthonormal frame they transform as

ψ(x)→ ψ(x̂) = S(x̂)ψ(x(x̂)) , U(x, x′)→ U(x̂, x̂′) = S(x̂)U(x(x̂), x′(x̂′))S†(x̂′) ,

S(x̂) Γâ S†(x̂) = Λâb(x̂) Γb , S(x̂) ∈ Spin(2) , Λ(x̂) ∈ SO(2) .

(B.18)

Here x = (ρ, τ) and x̂ = (r, w) represent one point and x′ = (ρ′, τ ′) and x̂′ = (r′, w′) another

point. The tangent frame rotation Λ(x̂), satisfying eâ
î
(x̂) = Λâb(x̂) ∂x

j(x̂)

∂x̂î
ebj(x(x̂)), reads

Λâb(x̂) ≡

(
cos δ(x̂) sin δ(x̂)

− sin δ(x̂) cos δ(x̂)

)
,

sin δ(x̂) =
cos r sinhw√

sin2 r + sinh2w
, cos δ(x̂) =

sin r coshw√
sin2 r + sinh2w

,

(B.19)

and the associated unitary rotation on the spinor indices is

S(x̂) = cos

(
δ(x̂)

2

)
I2 + iΓ3 sin

(
δ(x̂)

2

)
. (B.20)

The parallel spinor propagator in the infinite-strip coordinates (B.3) is thus explicitly

U(r, w, r′, w′) = I2 cos

(
θ(ρ, τ, ρ′, τ ′) +

1

2
δ(r, w)− 1

2
δ(r′, w′)

)
+ iΓ3 sin

(
θ(ρ, τ, ρ′, τ ′) +

1

2
δ(r, w)− 1

2
δ(r′, w′)

)
.

(B.21)

In these coordinates the spinor heat kernel K− /∇2
+m2(r, w, r′, w′; t) is given by (B.13) with

d(x, x′) in (B.4) and U in (B.21) satisfies(
∂t − /∇2

r,w +m2
)
K− /∇2

+m2

(
r, w, r′, w′; t

)
= 0 ,

lim
t→0+

K− /∇2
+m2

(
r, w, r′, w′; t

)
= cos r δ

(
r − r′

)
δ
(
w − w′

)
I2 .

(B.22)

B.1 Zeta-functions of the Laplace and Dirac operator

The finite parts of the determinants of the massive Laplace and Dirac operator in H2

are given by the derivative of the corresponding spectral zeta-function which itself can be

expressed in terms of the functional trace of the heat kernels (B.10) and (B.13) (see also

appendix B of [8] and [56]). The integrated heat kernel for the massive Laplace operator

−∆ +m2 is [24, 25]

K−∆+m2 (t) =
VH2

2π

∫ ∞
0

dv v tanh (πv) e−t(v
2+ 1

4
+m2) , (B.23)

and for the square of the massive Dirac operator −i /∇+mΓ3 is [26, 27]

K− /∇2
+m2 (t) =

VH2

π

∫ ∞
0

dv v coth (πv) e−t(v
2+m2) . (B.24)
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The Seeley coefficients can be read off from the small-t expansions

K̄−∆+m2 (t) =
VH2

2π

[
e−( 1

4
+m2)t

2t
−
∫ ∞

0
dv

2v

e2πv + 1
e−t(v

2+ 1
4

+m2)

]
(B.25)

=
VH2

4π

[
1

t
−
(

1

3
+m2

)
+O (t)

]
K̄− /∇2

+m2 (t) =
VH2

π

[
e−m

2t

2t
+

∫ ∞
0

dv
2v

e2πv − 1
e−t(v

2+m2)

]
(B.26)

=
VH2

4π

[
2

t
+

(
1

3
− 2m2

)
+O (t)

]
by replacing tanh(πv) = 1− 2/(e2πv + 1) and coth(πv) = 1 + 2/(e2πv − 1), and they agree

with the general results in [48]. The zeta-function for the massive Laplace operator is

ζ−∆+m2 (s) =
VH2

2π

∫ ∞
0

dv
v tanhπv(

v2 +m2 + 1
4

)s . (B.27)

This expression is valid for Re s > 1. For the analytic continuation to a neighbourhood of

s = 0, we first use tanh(πv) = 1− 2/(e2πv + 1) so that

ζ−∆+m2 (s) =
VH2

2π

[∫ ∞
0

dv
v(

v2 +m2 + 1
4

)s − ∫ ∞
0

dv
2v

(e2πv + 1)
(
v2 +m2 + 1

4

)s
]
, (B.28)

where the second integral is exponentially convergent for large v at s = 0. The analytic

continuation of the first integral can be easily found giving

ζ−∆+m2 (s) =
VH2

2π

[(
m2 + 1

4

)1−s
2 (s− 1)

− 2

∫ ∞
0

dv
v

(e2πv + 1)
(
v2 +m2 + 1

4

)s
]
. (B.29)

Then taking the derivative with respect to s and using the integral in (B.32), we obtain

ζ ′−∆+m2 (0) =
VH2

2π

[
1 + log 2

12
− logA+

∫ m2+1/4

0
dxψ

(√
x+

1

2

)]
. (B.30)

Similarly, for (B.24) using coth(πv) = 1 + 2/(e2πv − 1) and (B.38) we get28

ζ− /∇2
+m2 (s) =

VH2

π

[
(m2)1−s

2 (s− 1)
+ 2

∫ ∞
0

dv
v

(e2πv − 1) (v2 +m2)s

]
,

ζ ′− /∇2
+m2 (0) =

VH2

π

[
−1

6
+ 2 logA+

√
m2 +

∫ m2

0
dxψ

(√
x
)]

.

(B.31)

As for any homogeneous space, for which the heat kernel KO(x, x; t) is independent of the

point x, the integrated heat kernels above are all proportional to the volume of H2. The

latter has to replaced by its renormalized value, as discussed in section 3.

28Compared to [8], here we do not include the minus sign of fermionic statistics of the spinor fields in the

definition of the zeta-function, but we account for it in the sum over the scalar and spinor contributions

to the one-loop effective actions (3.21), (3.66) and (3.94). We also recall that the spinor heat kernel in

appendix B of [8] and [15] is for Majorana fermions, so the integrated heat kernel and zeta-function include

an extra factor of 1/2 with respect to the expressions (B.24) and (B.31) for Dirac spinors derived from the

heat kernel in [26, 27].
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B.2 Useful integrals

Here we collect some integrals useful for the computation of the regularized determinants

of the Laplace and Dirac operators in H2 (see also [6, 8, 56]). Below, c is some non-negative

constant, A ≈ 1.282 is the Glaisher constant, γ ≈ 0.577 is the Euler-Mascheroni constant

and ψ (x) ≡ d
dx log Γ (x) is the digamma function:∫ ∞

0
dv
v log

(
v2 + c

)
e2πv + 1

=
c

4
(1− log c)+

1 + log 2

24
− logA

2
+

1

2

∫ c

0
dxψ

(√
x+

1

2

)

(B.32)∫ ∞
0

dv
v log

(
v2 + 1

4

)
e2πv + 1

=
5

48
− log 2

8
+ logA− log π

4
(B.33)∫ ∞

0
dv
v log

(
v2 + 9

4

)
e2πv + 1

=
77

48
+

3 log 2

8
− 9 log 3

8
+ logA− 3 log π

4
(B.34)∫ ∞

0
dv

v

(e2πv + 1) (v2 + c)
= − log c

4
+

1

2
ψ

(√
c+

1

2

)
(B.35)∫ ∞

0
dv

v

(e2πv + 1)
(
v2 + 1

4

) =
log 2

2
− γ

2
(B.36)∫ ∞

0
dv

v

(e2πv + 1)
(
v2 + 9

4

) = −
log 3

2

2
+

1

2
− γ

2
(B.37)∫ ∞

0
dv
v log

(
v2 + c

)
e2πv − 1

=
c

4
(log c− 1) +

1

12
− logA−

√
c

2
− 1

2

∫ c

0
dxψ

(√
x
)

(B.38)∫ ∞
0

dv
v log

(
v2 + 1

)
e2πv − 1

= −2

3
+

log 2

2
− logA+

log π

2
(B.39)∫ ∞

0
dv

v

(e2πv − 1) (v2 + c)
=

log c

4
− 1

4
√
c
− 1

2
ψ
(√
c
)

(B.40)∫ ∞
0

dv
v

(e2πv − 1) (v2 + 1)
= −1

4
+
γ

2
(B.41)
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