
J
H
E
P
0
3
(
2
0
1
6
)
2
1
1

Published for SISSA by Springer

Received: November 14, 2015

Revised: January 21, 2016

Accepted: March 20, 2016

Published: March 31, 2016

Fundamental composite 2HDM: SU(N) with

4 flavours

Teng Maa,b and Giacomo Cacciapagliac,d

aDepartment of Physics, Tsinghua University,

Beijing, 100084 China
bCenter for High Energy Physics, Tsinghua University,

Beijing, 100084, China
cUniv. Lyon, Université Claude Bernard Lyon 1,
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dInstitut de Physique Nucléaire de Lyon (UMR5822), CNRS/IN2P3,

4 rue Enrico Fermi, F-69622 Villeurbanne Cedex, France

E-mail: mat11@mails.tsinghua.edu.cn, g.cacciapaglia@ipnl.in2p3.fr

Abstract: We present a new model of composite Higgs based on a gauged SU(N) group

with 4 Dirac fermions in the fundamental representation. At low energy, the model has a

global symmetry SU(4)×SU(4) broken to the diagonal SU(4), containing 2 Higgs doublets

in the coset. We study in detail the issue of the vacuum alignment. In particular, we

prove that, without loss of generality, the vacuum can always be aligned with one doublet.

Under certain conditions on the top pre-Yukawas, the second doublet, together with the

additional triplets, is stable and can thus play the role of Dark Matter. This model can

therefore be an example of composite inert-2HDM model.

Keywords: Beyond Standard Model, Technicolor and Composite Models

ArXiv ePrint: 1508.07014

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP03(2016)211

mailto:mat11@mails.tsinghua.edu.cn
mailto:g.cacciapaglia@ipnl.in2p3.fr
http://arxiv.org/abs/1508.07014
http://dx.doi.org/10.1007/JHEP03(2016)211


J
H
E
P
0
3
(
2
0
1
6
)
2
1
1

Contents

1 Introduction 1

2 The model: SU(N) with 4 Dirac flavours in the fundamental 4

2.1 Vacuum alignment part 1: top Yukawa couplings fix β 7

2.2 Vacuum alignment part 2: fixing θ and the pNGB masses 12

2.3 Bounds from the Higgs couplings and EWPTs 14

2.4 The bottom mass, and flavour alignment 17

3 Discrete symmetries and dark matter candidates 20

4 Spectrum of resonances, and lattice results 22

5 Conclusions and outlook 24

A Couplings to gauge bosons 26

B Most general vacuum structure 27

B.1 Custodial invariant vacua 27

B.2 Non-custodial invariant vacua 28

C Mass matrices for the pions 30

1 Introduction

A consistent mechanism to provide mass to gauge bosons was proposed in 1964 by Brout,

Englert and Higgs [1–3], based on the concept of spontaneous symmetry breaking. Once

the mechanism is realised in terms of scalar fields, besides the massless Goldstone boson

eaten by the massive gauge bosons, the spectrum typically contains massive degrees of

freedom [3]: in the case of the Standard Model (SM), this sector consists of a single neutral

state, aka the Higgs boson. Its discovery in 2012 by ATLAS [4] and CMS [5] at the Large

Hadron Collider (LHC), coming 50 years after its theoretical proposal, can be considered

the crowning of a long-standing physics program.

The outstanding experimental results have obtained a precise determination of the

mass of the new resonance [6], however the measurement of its couplings, which is the

ultimate test of the SM predictions, has been achieved with limited accuracy [7, 8]. While

the central values seem to suggest that the SM hypothesis is correct, the precision attained

is only at the level of 10% in the best channels (WW and ZZ). This precision is a far

cry from the one attained in other observables of the electroweak sector, where precisions

at the level of 0.1% are common [9, 10]. From the experimental data, therefore, there is
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still ample space for extensions of the Higgs sector of the theory, and one may still expect

new particles to be present at mass scales not far from the TeV scale. This expectation is

also corroborated by theoretical considerations, mainly based on the stability of the Higgs

mass, and of the electroweak scale, under quantum corrections — the infamous hierarchy

problem. Furthermore, the SM fails to provide a candidate of Dark Matter, and to explain

Baryogenesis (the generation of matter-antimatter asymmetry in the Universe).

Extensions of the Higgs sector of the SM are often required in models of New Physics

addressing the hierarchy problem. One very attractive possibility is to replace the ele-

mentary scalar at the origin of the symmetry breaking in the SM with a confining sector

which spontaneously breaks the symmetry via confinement. Such a physical effect does

occur in nature in Quantum Chromodynamics (QCD), the confining sector describing nu-

clear strong interactions. Early attempts were made in the late 70’s by scaling up QCD

dynamics [11] to energies apt to generate the electroweak scale (old school Technicolor),

however such theories did not have a light Higgs boson and typically induced too large

corrections to electroweak precision measurements [12]. One way to introduce a Higgs-like

boson is to extend the global symmetry of the model so that a light scalar can be left in

the spectrum as a pseudo-Nambu-Goldstone boson (pNGB) [13, 14]. This idea received

new life in the early 90’s when, following the conjecture of a duality between warped extra

dimensions and 4-dimensional conformal theories, a pNGB Higgs was associated with a

gauge field in extra dimensions (holographic Higgs) [15]. The first concrete and feasible

model was proposed in [16, 17], based on the minimal coset SO(5)/SO(4) that provides just

a SM-like Higgs with custodial symmetry. A lot of work has been dedicated to this class of

models (for recent reviews, see [18] and [19]), however most of the work has been dedicated

to the minimal scenario and formulated in an effective field theory context. Furthermore,

following the holographic Higgs construction, the model building efforts have been relying

on the presence of fermionic bound states (top partners) which couple linearly to the SM

fermions (the top) in an attempt to give the top mass without incurring in large flavour

violating effects.

In this paper we will take a different approach to the problem: instead of relying on an

effective Lagrangian (possibly completed by a conformal theory) or extra dimensions, we

will define an Ultra-Violet (UV) completion based on a simple confining gauge group with

fundamental fermions. Relying on a Fundamental Composite Dynamics (FCD) allows us to

draw a precise relation between the components of the underlying model and the composite

states present in the spectrum of the effective theory. Furthermore, one can study the

relation between the limit in which the Higgs appears as a pNGB, and a Technicolor-like

limit of the theory [20]. The minimal FCD model, based on a gauged SU(2)FCD confining

dynamics with 4 Weyl fermions in the fundamental representation [21, 22], enjoys a global

symmetry SU(4) broken to Sp(4). The symmetry breaking pattern has been confirmed

on the Lattice [23]. The phenomenology of the scalar sector, which contains an extra

singlet, has been recently studied in [24]. This example shows that an extended Higgs

sector is typically predicted in composite models with an underlying FCD. We are thus

interested in exploring less minimal possibilities, with a two-fold purpose. On one hand,

the pNGB scalars are the lightest particles one would naturally expect in this class of
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models, thus it is of paramount importance to establish the capability of the LHC to

discover them or probe their existence. On the other hand, larger symmetry groups can

enjoy unbroken discrete symmetries that may protect some of the pNGBs, thus providing

a natural composite Dark Matter candidate. This possibility has been studied in the

literature in the SU(4)/Sp(4) case in the effective field theory context [25, 26], however

only having a UV completion allows us to determine the stability of the pNGB. In fact,

Wess-Zumino-Witten anomaly terms [27, 28], generated by the fermionic components of

the composite scalar, may induce prompt decays into a pair of gauge bosons: this indeed

occurs in the minimal case [20, 22, 29].

We focus here on the case of a global symmetry SU(4)×SU(4) broken to the diagonal

SU(4), which can be obtained from a FCD based on the confining gauge group SU(N)FCD

with 4 Dirac fermions in the fundamental representation. The fermion multiplicity 4 is the

minimal one required in order to have a Higgs-like state among the pNGBs and custodial

symmetry,1 as SO(4)⊂SU(4). This same symmetry breaking pattern has been used in the

construction of a Little Higgs (as the isomorphic SO(6)×SO(6)) in [30]. A nice feature of

this model is that it contains two electroweak doublets in the pNGB spectrum, thus giving

rise to a 2 Higgs Doublet Model (2HDM): a first general analysis of composite 2HDMs can

be found in [31], where the authors focus on symmetries with the minimal cosets, while

other cases have been considered in [32]. Contrary to supersymmetry or standard 2HDMs,

where both doublets can acquire a vacuum expectation value independently on their cou-

plings, in composite scenarios the structure of the vacuum depends on the couplings to

the fermions (in particular, the top). This fact derives from the loop induced potential for

the Higgs, which is generated by explicit breaking terms of the global symmetry, like the

Yukawa couplings. We will study in detail the vacuum alignment mechanism, using the UV

completion as a guiding line. In our model, the fermion masses come directly from four-

fermion interactions bilinear in the elementary fields: we will pragmatically assume that

the physics responsible for generating such interactions does not induce too large flavour

changing neutral currents. This is a non trivial assumption [33], however the eventual

solution to the flavour puzzle should not affect the Higgs potential and low energy pNGB

Lagrangian. In modern incarnations of composite pNGB Higgs models, the flavour puz-

zle is partially addressed by the mechanism of partial compositeness [34], inspired by the

flavour protection in models on warped extra dimensions [35, 36]. Partial compositeness,

however, requires the presence of light coloured fermionic bound states in the low energy

spectrum, and obtaining such states in a FCD model can be quite challenging [37]. First

attempts to build underlying models with partial compositeness for the top can be found

in ref.s [38, 39]. Furthermore, in the 4-dimensional model, an explanation of the origin of

the mixing terms, which are typically related to four-fermion interactions, is missing.

One of the main advantages of FCD formulations of composite Higgs model is that

it allows for Lattice simulation to study the spectrum and behaviour of the dynamical

model: the case of SU(3)FCD with 4 flavour in the fundamental representation has been

studied and shown to condense [40–43], as expected. Furthermore, perturbative arguments

1Note that SU(3)×SU(3) would also contain a Higgs-like state, but without custodial symmetry.
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indicate that the model is outside of the conformal window, thus expected to condense, for

any value of the FCD colours N [44].

The paper is organised as follows: in section 2, after presenting the general set up

of the model, we discuss in detail the alignment of the vacuum and constraints from the

Higgs couplings and electroweak precision measurements. Then in section 3 we discuss the

conditions allowing for the presence of a Dark Matter candidate. In section 4 we discuss

the spectrum of heavier states, before the concluding remarks.

2 The model: SU(N) with 4 Dirac flavours in the fundamental

The model is based on a strongly interacting SU(N)FCD group with 4 Dirac fermions

ψi in the fundamental representation. The electroweak (EW) symmetry is embedded by

assigning electroweak quantum numbers to the fundamental fermions (techni-fermions), as

detailed in table 1. The custodial symmetry SO(4) ∼ SU(2)L× SU(2)R is realised by ψ3,4

forming a doublet of SU(2)R (with the hypercharge associated to the diagonal generator of

SU(2)R, as usual). As the couplings are vector-like, no gauge anomalies are introduced, so

that the model is consistent. The global symmetry of the strong sector is SU(4)1× SU(4)2×
U(1)TB. The non-anomalous U(1)TB corresponds to the techni-baryon (TB) number, which

is conserved in this model. The Lagrangian, to be added to the SM one, is

LFCD = iψ̄Dµγ
µψ − ψ̄MQψ . (2.1)

The mass MQ is invariant under the SM custodial symmetry:

MQ =

(
mU 0

0 mD

)
, (2.2)

i.e., the masses of ψ3 and ψ4 are chosen to be equal to preserve SU(2)R. The covariant

derivative contains both the FCD gauge interactions, and the EW gauge interactions, which

are embedded in the diagonal SU(4)D as:

T iL =
1

2

(
σi 0

0 0

)
, T iR =

1

2

(
0 0

0 σi

)
. (2.3)

Note that the hypercharge is given by Y = T 3
R.

The FCD dynamics leads to condensation in the infrared: it is convenient to analyse

the model by using Weyl fermions

ψ =

(
χ

η̄

)
(2.4)

where χ (the left-handed chirality) transforms as a 4 of SU(4)1 and η (the right-handed

chirality) as a 4̄ of SU(4)2. The condensate transforms as

〈ηχ〉 = (4, 4̄)SU(4)1×SU(4)2 (2.5)
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SU(N) SU(2)L U(1)Y

ψU =
(ψ1

ψ2

)
2 0

ψD =
(ψ3

ψ4

) 1 1/2

1 -1/2

Table 1. Quantum numbers of the fundamental fermion under the confining FCD group SU(N),

and the electroweak group SU(2)L× U(1)Y . The values refer to the left-handed component of the

Dirac fermion.

and it breaks SU(4)1× SU(4)2 → SU(4)D. The condensate has no TB charge. This breaking

entails 15 Goldstone Bosons, transforming as the adjoint of the unbroken SU(4)D. We can

first align the vacuum along the direction that does not break the EW symmetry, i.e.

〈ηχ〉 =

(
1 0

0 1

)
, (2.6)

which is aligned with the SU(4)D preserving techni-fermion mass (mU = mD). The 15

pNGBs transform under the custodial symmetry SU(2)L× SU(2)R as

15SU(4)D = (2, 2) + (2, 2) + (3, 1) + (1, 3) + (1, 1) ; (2.7)

the model therefore contains two doublets that may play the role of the Brout-Englert-Higgs

doublet field. The pion matrix can now be parametrised as:

Π =
1

2

(
σi∆

i + s/
√

2 −iΦH

iΦ†H σiN
i − s/

√
2

)
(2.8)

with

σi∆
i =

(
∆0

√
2∆+

√
2∆− −∆0

)
, σiN

i =

(
N0

√
2N+

√
2N− −N0

)
, (2.9)

being the two triplets of SU(2)L and SU(2)R respectively, s the singlet, and ΦH containing

the two bi-doublets H1,2:

ΦH = (iσ2(H∗1 + iH∗2 ), H1 + iH2) . (2.10)

We can already note a special feature of this model: the two Higgs doublets appear as

a complex bi-doublet of the custodial symmetry, and this fact will have important conse-

quences for the vacuum structure. The pion matrix is then embedded in

U = eiΠ/f , (2.11)

where f is the decay constant, that sets the scale of the condensation. The pion matrix U

transforms linearly under the stability group SU(4)D as U → ΩD · U · Ω†D, where ΩD is a

generic SU(4) matrix.
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The vacuum where the EW symmetry is broken can be though of as being generated

by a vacuum expectation value (VEV) for the two doublets:

〈ΦH〉 =
v√
2
eiβ 1 (2.12)

where v =
√
v2

1 + v2
2 and tan β = v2

v1
, v1,2 being the VEVs of the two doublets. Note

that the VEV in eq. (2.12) is the most general one that preserves the custodial symmetry:

any other choice would contribute to the ρ parameter at tree level. This effect is more

properly described as a misalignment of the vacuum generated by a symmetry of the

broken generators. In this case, we have:

Ω(θ, β) =

(
cos θ2 eiβ sin θ

2

−e−iβ sin θ
2 cos θ2

)
, Σ1 = Ω · Ω = Ω(2θ, β) , (2.13)

with v = 2
√

2fθ, and Σ1 the properly aligned vacuum. As the symmetry breaking pattern

is unaltered, the pion matrix contains the same number of Goldstone bosons, which, in the

new vacuum, can be parametrised as the linearly transforming matrix

Σ = Ω(θ, β) · U · Ω(θ, β) . (2.14)

At leading order, the chiral Lagrangian is given by the kinetic term for Σ:

LCCWZ = f4Tr[(DµΣ)†DµΣ] . (2.15)

This term contains mass terms for the W and Z

m2
W = 2g2f2 sin2 θ , m2

Z =
m2
W

cos2 θW
. (2.16)

so that

2
√

2f sin θ = vSM = 246 GeV . (2.17)

The Goldstone Bosons eaten by the massive W and Z are

π± = cosβ H±1 + sinβ H±2 , π0 =
√

2 Im[cosβ H0
1 + sinβ H0

2 ] , (2.18)

and, following the usual notation in 2HDMs, we define the physical scalars as:

H± = − sinβ H±1 + cosβ H±2 , A0 =
√

2 Im[− sinβ H0
1 + cosβ H0

2 ] ,

h1 =
√

2 Re[cosβ H0
1 + sin β H0

2 ] , h2 =
√

2 Re[− sinβ H0
1 + cosβ H0

2 ] . (2.19)

The only field with linear couplings to the gauge bosons is h1, which thus can play the role

of the Higgs boson. Its couplings are given by

gWWh1 = cos2 θW gZZh1 =
√

2g2f sin θ cos θ =
2m2

W

vSM
cos θ = gSM

WWh cos θ . (2.20)
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The couplings of two scalars to gauge bosons are reported in the appendix A: we note here

that none of the couplings depend on β. In fact, the parameter β can be rotated away

from the vacuum by using the transformation

Ωβ = Exp

[
−iβ

2

(
1 0

0 −1

)]
=

(
e−iβ/2 0

0 eiβ/2

)
(2.21)

so that

Σ1(β = 0) = Ωβ · Σ1 · Ω†β . (2.22)

As the gauge interactions (and the techni-fermion mass) are left invariant under this trans-

formation, the Lagrangian in eq. (2.15) is independent on β, once the pion fields are

properly re-labeled as in eq. (2.19). The transformation in eq. (2.21) is generated by a

U(1) symmetry which is unbroken in the EW-preserving vacuum: under such symmetry,

the complex bi-doublet ΦH is charged, while the triplets and singlet are neutral.

The transformation of the pion matrix under CP can be obtained by the composition

of the scalars in terms of fundamental fermions:

CP(Σ) = Σ∗(−−→x ) ; CP(Aµ) = (−1)δ
µ0
ATµ , CP(xµ) = −(−1)δ

µ0
xµ , (2.23)

where the gauge vector, and space-time co-ordinates, are CP-transformed in the standard

way. From the above definition, it is clear that β is a CP-odd parameter, i.e. it violates

CP invariance. Thus, one can define the CP properties of the pNGBs only in the case

β = 0. As usual when writing an effective Lagrangian for Goldstone bosons, it is possible

to define an intrinsic parity of the pion, dubbed Goldstone parity (GP), which acts on the

pion matrix as:

GP(Σ) = PGP · Σ†(−−→x ) · P †GP , (2.24)

while the gauge vectors and co-ordinates are CP-transformed, and

PGP =

(
σ2 0

0 −σ2

)
. (2.25)

As PGP ·Ω†(θ, β) · P †GP = Ω(θ, β), it is clear that this time β is a GP-even parameter. The

transformation under GP, and CP for β = 0, of the pNGBs are summarised in table 2: we

see that under CP, it is the singlet s, the triplets, and h2 that transform as pseudo-scalar

fields. On the other hand, under GP, which is compatible with a non-zero value of β, it is

s and A0 to be odd, like in more traditional 2HDM models.

2.1 Vacuum alignment part 1: top Yukawa couplings fix β

The alignment of the condensate in the flavour space is determined by the explicit symmetry

breaking terms: in the minimal model, they are the mass of the techni-fermions MQ, the

gauge couplings and the terms giving mass to the SM fermions. The last two generate a

potential via loops. As the mass and gauge interactions are invariant under the symmetry

– 7 –
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h1 h2 A0 s ∆0 N0 H± ∆± N±

CP (β = 0) + − + − − − − − −
GP + + − − + + + + +

Table 2. Parities under CP (for β = 0) and GP of the pNGBs: for the charged states, it is left

understood that they transform in their complex conjugates (anti-particles).

in eq. (2.21), only the top loops may be sensitive to the value of β. We will therefore

concentrate first on the effect of the top mass on the vacuum alignment, and discuss the

alignment in the full potential in the next section.

We will assume here that the top Yukawa couplings are generated via 4-fermion op-

erators connecting the elementary quarks to the techni-fermions, which are bilinear in the

elementary fields. This situation is well known to potentially suffer from large flavour

changing neutral currents, once the full flavour structures of the SM are included [45]:

however, as we will comment in more details below, we propose this structure as a guide-

line to understand the properties of the vacuum alignment as the results of our analysis are

fairly independent on the specific origin of the top Yukawas. The possibility of generating

the top mass via partial compositeness will be considered in detail in a future work (see

also [46]). The couplings are generated by an unspecified physics at a scale Λt & 4πf , and

in most generality 4 terms can be written down:

L4−Fermi = − 1

Λ2
t

(q̄αLtR)

[
ψ̄3

(
ỹt1

1− γ5

2
+ ỹt2

1 + γ5

2

)
ψU,α

+(iσ2)αβψ̄
β
U

(
ỹt3

1− γ5

2
+ ỹt4

1 + γ5

2

)
ψ4

]
+ h.c. (2.26)

= − 1

Λ2
t

(q̄αLtR)

[(
ỹt1P1,α + ỹt3(iσ2)αβP

β
2

)ij
ψ̄i

1− γ5

2
ψj

+
(
ỹt2P1,α + ỹt4(iσ2)αβP

β
2

)ij
ψ̄i

1 + γ5

2
ψj

]
+ h.c. (2.27)

where α and β are indices in the gauged SU(2)L, and i (j) are indices in SU(4). We recall

that ψ3,4 for a doublet of the custodial SU(2)R (see table 1). The four couplings ỹt1...4 are,

in principle, independent and they are distinguished by the chirality of the techni-quarks.

In the second line, we have embedded the couplings in the full flavour SU(4)1×SU(4)2 space

by use of spurion matrices P1 and P2, which transform as a doublet and an anti-doublet of

SU(2)L, defined as:

P1,1 =


0 0 0 0

0 0 0 0

1 0 0 0

0 0 0 0

 , P1,2 =


0 0 0 0

0 0 0 0

0 1 0 0

0 0 0 0

 ;

P 1
2 =


0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

 , P 2
2 =


0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0

 . (2.28)
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The above Lagrangian contains 4 independent complex couplings, the pre-Yukawas ỹti,

however not all the phases are physical. This fact can be easily understood in terms of

the 4-fermion interactions in eq. (2.26). After fixing the techni-fermion mass terms real,

2 phases can be reabsorbed in an arbitrary phase redefinition of the fermion fields: the

relative phase between the SU(2)L and SU(2)R doublets and the relative phase between

the two SM fields. The former can be embedded in SU(4) and identified with the following

transformations:

Ωβ =

(
e−iβ/2 0

0 eiβ/2

)
, (2.29)

which coincides with the SU(4) transformation in eq. (2.21) that allows to remove β from

the vacuum structure, thus suggesting that β may be an unphysical parameter unless the

loop-induced potential generates spontaneously a non-vanishing value at the minimum.

The phase redefinition of the SM fields is the usual one that allows to write a real mass

for the top. The phase structure of the pre-Yukawa couplings is crucial as it determines

the alignment of the vacuum: we will therefore use the 2 arbitrary phases to align the

vacuum to its simplest form. Operatively, minimising the potential allows to determine β

as a function of the phases in the pre-Yukawas; then we can fix the pre-Yukawa phases,

or equivalently apply the phase transformation in eq. (2.21), to set β = 0 in the vacuum,

without loss of generality. This means that vacua with non-vanishing β are physically

equivalent to the vacuum with β = 0.

In the effective Lagrangian the Yukawa couplings can be written in the form:2

LYuk = −f (q̄αLtR)
[
Tr[P1,α(yt1Σ + yt2Σ†)] + (iσ2)αβTr[P β2 (yt3Σ + yt4Σ†)]

]
+ h.c.(2.30)

where yti are related to the 4-fermion couplings ỹti via form factors of the dynamics.

While the above expression is related directly to the 4-fermion interactions in eq. (2.26),

its validity is more general. In fact, independently on its origins, the Yukawa couplings

connect a SM fermion bilinear which transforms like the quantum numbers of the Higgs

doublet to the strong dynamics. The projectors P1,2 in eq. (2.30) pick all the components

of the pion matrix that transform like the Higgs doublets, thus they parametrise the most

general structure of the Yukawa couplings. In partial compositeness scenarios, the above

interactions can thus be though of as effective mass terms obtained after integrating out

the heavier top partners. Once expanding Σ, this term will generate a mass for the top,

and couplings of the pNGBs to the top and bottom quarks. To study the effect on the

vacuum, we will assume that it acquires the simplest possible form, i.e. eq. (2.14) with

β = 0. It is convenient to define combinations of the Yukawa couplings as follows:

Yt =
yt1 − yt2 − (yt3 − yt4)

2
√

2
, YD =

yt1 − yt2 + (yt3 − yt4)

2
√

2
,

YT =
yt1 + yt2 + (yt3 + yt4)

2
√

2
, Y0 =

yt1 + yt2 − (yt3 + yt4)

2
√

2
. (2.31)

2Note that in terms of Dirac fermions, Σij = ψ̄j
1−γ5

2
ψi and Σ†ij = ψ̄i

1+γ5

2
ψj .
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Expanding eq. (2.30) to linear order in the pNGB fields, we obtain:

LYuk = −
[
YtvSM + Yt cos θ h1 + iYD h2 + YD cos θ A0 + i

YT√
2

sin θ (N0 + ∆0)

]
(t̄LtR)

−
[
−i
√

2YD cos θ H− + iYT sin θ (N− + ∆−)
]

(b̄LtR) + h.c. (2.32)

The above expansion clearly shows how to interpret the various couplings: Yt corresponds

to the effective top Yukawa coupling with mt = YtvSM, YD is the coupling of the second

doublet to the top, YT is the coupling of the two triplets.3

A loop of tops will generate a potential term for the pNGBs, in the form

Vt = −f4Ct

∣∣∣Tr[P1,α(yt1Σ + yt2Σ†)] + (iσ2)αβTr[P β2 (yt3Σ + yt4Σ†)]
∣∣∣2 (2.33)

with the appropriate SU(2)L contractions left understood, and with Ct being a positive

coefficient depending on the dynamics. Expanding around the β = 0 vacuum up to linear

order in the pNGB fields, we obtain:

Vt = −f4Ct

(
8|Yt|2 sin2 θ + 2

√
2|Yt|2 sin(2θ)

h1

f
− i 2

√
2(Y ∗DYt − YDY ∗t ) sin θ

h2

f

+
√

2(Y ∗DYt + YDY
∗
t ) sin(2θ)

A0

f
− i 2(Y ∗T Yt − YTY ∗t ) sin2 θ

N0 + ∆0

f
+ . . .

)
. (2.34)

The first term, which only depends on θ, provides a potential that dynamically fixes the

value of the alignment angle. Its form, sin2 θ, reminds a mass term for the “field” respon-

sible for the breaking of the EW symmetry: this form is very general, as it can also be

obtained if the top mass is generated via partial compositeness. The presence of tadpoles

for the neutral pNGBs implies that the chosen vacuum is not consistent: the tadpole for

h1 will be fixed once the proper minimum value for θ is chosen, in fact the top contribution

alone generates a minimum for θ = π/2 (corresponding to the Technicolor limit) for which

the tadpole vanishes. For the other pNGBs, the tadpoles need to vanish as they are only

generated by top loops. The tadpole of h2 is correlated to the value of β on the vacuum:

it is proportional to the Im(YtY
∗
D), and it can be shown that the phases of Yt and YD are

directly related to the 2 arbitrary phases of the 4 Yukawa couplings. In other words, one

can always choose Yt and YD to be real by properly fixing the phase of the fundamental

techni-fermion fields. Then, the minimisation condition of the potential will fix β in the

vacuum and the vanishing of the tadpole proves that β = 0 is the correct value at the

minimum. A general analysis of this condition can be found in appendix B. This analysis

finally proves that β in the vacuum is an unphysical parameter, and in the following we

will always work in the vacuum with β = 0.

The tadpoles of A0 and of the triplets are physically relevant as their presence would

force the vacuum to a direction that breaks custodial symmetry. Experimental constraints,

especially from electroweak precision measurements, would require their values to be small.

3The SU(2)L and SU(2)R triplets share the same coupling due to custodial symmetry, as they form a

6-plet of SO(4).
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In the following we will limit ourselves to a vacuum that is exactly custodial invariant, thus

eliminating the two tadpoles imposes non-trivial conditions on the 4 Yukawa couplings.

Using the arbitrary overall phase to render Yt real and positive, the vanishing of the tadpoles

can be obtained by imposing

Re(YD) = 0 , Im(YT ) = 0 , (2.35)

where, as we already discussed, Im(YD) can be set to zero without loss of generality.

It is instructive to analyse the two conditions in two simple scenarios: one where

the 4-fermion interactions are generated by a spin-1 mediator, á la Extended Technicolor

(ETC) [33], and one where the mediator is a heavy scalar with custodial invariant couplings,

á la Bosonic Technicolor (BTC) [47, 48]. In the case where the top Yukawa is generated via

partial compositeness, the explicit form of the couplings will depend on the representation

under the global symmetry of the fermionic bound states that couple to the top.

“ETC” Yukawas: spin-1 mediator. As a spin-1 gauge boson only couples to vector

currents, the only pre-Yukawas that can be generated after Fierzing are ỹt1 and ỹt3: in this

case, there are only two phases which are both unphysical, so that we can choose all the

pre-Yukawas real. Furthermore

Yt = Y0 =
yt1 − yt3

2
√

2
, YD = YT =

yt1 + yt3

2
√

2
, (2.36)

and, as the doublet and triplet Yukawas are equal, the vanishing of the tadpole for A0 is

enough to ensure the vanishing of the triplet tadpoles. Custodial invariance in the vacuum

can therefore be recovered if the two pre-Yukawas are related:

yt3 = −yt1 , ⇒ Yt = Y0 =
yt1√

2
, YD = YT = 0 . (2.37)

“BTC” Yukawas: scalar mediator. In this case we imagine that the 4-fermion in-

teractions are generated by a heavy scalar field transforming as a real bi-doublet of the

custodial SU(2)L× SU(2)R, which has Yukawa couplings with both techni-fermions and

the elementary quarks. Only the couplings to the techni-fermions need to be custodial

invariant, while the SM quarks couple with the SU(2) doublet component with the correct

hypercharge. This leads to a peculiar structure in the Yukawa couplings:

yt4 = y∗t1e
−2iγ0 , yt3 = y∗t2e

−2iγ0 , (2.38)

i.e. pair of couplings are one the complex conjugate of the other up to an overall arbitrary

phase (γ0). Choosing the overall phase equal to zero, the physical Yukawa couplings are

given by

Yt =
Re(yt1−yt2)√

2
, YD = i

Im(yt1−yt2)√
2

, YT =
Re(yt1+yt2)√

2
, Y0 = i

Im(yt1+yt2)√
2

.

The fact that YD is always imaginary, while Yt and YT are real, immediately explains why

the tadpole for A0 and the triplets are identically vanishing: this is a direct consequence
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of the custodial invariance of the couplings of the scalar mediator to the techni-fermions.

Finally, YD = 0 by choosing the relative phase of the techni-fermions, which thus cancels

the relative phase between yt1 and yt2. This model can therefore be described in terms

of 3 physical parameters: the top Yukawa Yt (fixed by the top mass value), YT and the

imaginary parameter Y0.

2.2 Vacuum alignment part 2: fixing θ and the pNGB masses

A potential for the light scalars, which also determines the alignment of the vacuum in the

SU(4)1×SU(4)2 space, is generated by the explicit breaking of the global symmetry. In the

minimal case, there are only 3 sources of breaking, necessary to have a viable model: the

mass of the techni-fermions MQ, the partial gauging of the global symmetry (i.e. the SM

gauge couplings), and the top Yukawas. At leading order, therefore, we can expect 3 main

contributions to the potential.

The first comes from the techni-fermion mass terms:

Vmass = −Cmf3Tr[MQ · Σ] + h.c.

= −4Cmf
3(mU +mD) cos θ +

√
2Cmf

2(mU +mD) sin θ h1 + . . . (2.39)

One loop of EW gauge bosons contributes:

Vgauge = −Cgf4

(
g2
∑
a

Tr[T aL · Σ · T aL · Σ†] + g′
2
Tr[T 3

R · Σ · T 3
R · Σ†]

)

= −Cgf4 3g2 + g′2

2
cos θ2 + Cgf

3 3g2 + g′2

4
√

2
sin(2θ)h1 + . . . (2.40)

The two coefficients Cm and Cg are form factors generated by the dynamics. These first

two contributions are independent on the parameter β in the vacuum Σ. As we have

demonstrated in the previous section, its value is not physical, as it can always redefined

away as a phase of the techni-fermion spinors, thus in the following we will work in the

simplest vacuum with β = 0. The one loop of tops is given in eq. (2.33): after imposing

the minimal conditions in eq. (2.35) to ensure the vanishing of the tadpoles for the triplets

and the second doublet,

Vtop = −Ctf4

(
8Y 2

t sin2 θ + 2
√

2Y 2
t sin(2θ)

h1

f
+ . . .

)
. (2.41)

The total potential for θ reads:

V (θ) = −8Ctf
4Y 2

t sin2 θ − Cgf4 3g2 + g′2

2
cos θ2 − 4Cmf

3(mU +mD) cos θ , (2.42)

which is minimised for

cos θ|min =
Cm(mU +mD)

4fCtY 2
t

(
1− 3g2+g′2

16
Cg
CtY 2

t

) (2.43)
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which is the same as one obtains in the minimal case SU(4)/Sp(4) [20, 22, 49]. A comment

is in order: in this work we tune the value of the mass of the techni-quarks to destabilise

the vacuum away from the TC limit, which is preferred by the top loop alone. This is an al-

ternative method to the one usually employed in the recent composite Higgs literature [18],

where the contribution of light top partners is used to reduce the top loop contribution [50]

and the stability of the minimum is guaranteed by the effect of subleading contributions

of order Y 4
t sin4 θ. Therefore, in the case where the top Yukawas are generated via par-

tial compositeness, the top partners are not required to be light and the top mass and

contribution to the potential are generated by integrating out the heavy fermionic states.

Expanding the potential at higher order allows to compute the masses of the pNGBs:

general formulas for the mass terms can be found in appendix C. Using the above minimum

condition to eliminate Cm in favour of θ, the mass of the Higgs-like state h1, which does

not mix with other pNGBs, is given by

m2
h1 = f2 sin2 θ

(
2CtY

2
t − Cg

3g2 + g′2

8

)
=
Ct
4
m2

top −
Cg
16

(2m2
W +m2

Z) . (2.44)

The other state that does not mix to other pNGBs is the pseudo-scalar singlet s, whose

mass is given by

m2
s =

m2
h1

sin2 θ
. (2.45)

Interestingly, the masses are the same as the ones obtained in the minimal SU(4)/Sp(4)

case, however the coefficients Ct and Cg, which depend on the underlying FCD, will differ.

The spectrum of the other states is more complicated due to non-trivial mixings,

generated by the top and gauge loop corrections. To have an approximate feeling of the

behaviour, we can limit ourselves to the “ETC” Yukawa case, where Y0 = Yt and YT = 0:

in this case, A0 decouples from the other neutral scalars, and its mass is

m2
A0

= 2CtY
2
t f

2 + Cg
g2 − g′2

8
f2 sin2 θ ∼

m2
h1

sin2 θ
+O(g2, g′

2
) . (2.46)

The remaining 3 charged and neutral states mix with each other: neglecting the smaller

gauge corrections, the mass matrices, in the bases {h2,∆0, N0} and {H±,∆±, N±}, are

given by

M2 = 2CtY
2
t f

2


1 ± sin θ√

2
sin θ√

2

± sin θ√
2

1 + δ cos θ 0

sin θ√
2

0 1− δ cos θ

 , (2.47)

where the + (−) is for the neutral (charged) masses. The parameter δ encodes the explicit

violation of SU(4)D in the techni-fermion mass, and it is defined as:

δ =
mU −mD

mU +mD
. (2.48)
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Figure 1. Mass splitting of the pNGBs as a function of θ (f) for Cg = 1 and δ = 0 (left), δ = 0.2

(right). In solid black, the singlet s, in solid blue A0, in red the charged states and in dashed blue

the neutral pseudo-scalars.

The mass eigenstates, which are equal for the two matrices, up to gauge corrections, are

m2
1,2,3 = 2CtY

2
t f

2 ×


1−

√
sin2 θ + δ2 cos2 θ

1

1 +
√

sin2 θ + δ2 cos2 θ

(2.49)

We see, therefore, that all the additional states have a mass of order mh1/ sin θ ∼ f . The

degeneracies among such states are thus removed by gauge corrections. A numerical study

of the spectrum is shown in figure 1, where we plot the ratio between the pNGB masses

and the scale f as a function of θ, in the case of “ETC” Yukawas. In the numerical

examples, we use mW , mtop and mh = 125 GeV as inputs to fix the values of Yt, Ct and

the relation between f and θ. The figure shows that, besides the singlet s whose mass is

simply proportional to f , the scalars split into 3 near-degenerate groups: this is mainly due

to the fact that the mixing between the triplets and the second doublet are proportional

to sin θ. The 3 groups can therefore be identified with the SU(2)R triplet N (lighter states,

one neutral and one charged), the second doublet (group of 2 neutral and one charged) and

the SU(2)L triplet ∆ (heavier states, one neutral and one charged). For θ ∼ 0, the splitting

is due to gauge loops, while the top Yukawa induces further splitting proportional to sin θ,

as it can be seen in eq. (2.49): this explains the linear behaviour of the mass eigenstates

for increasing θ. The effect of δ is to split the masses of the two triplets: for positive δ, N

is pushed lighter while ∆ is heavier, as it can be seen in the right panel of figure 1. This

can be understood from the definition of δ in eq. (2.48), as δ > 0 implies that the mass of

ψU is larger than the mass of ψD.

2.3 Bounds from the Higgs couplings and EWPTs

Like any other model of strong dynamics, our mode suffers from corrections to electroweak

precision tests (EWPTs), that can be conveniently expressed in terms of the S and T
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parameters [12]. These two parameters are sufficient to characterise precision constraints in

this model: in fact, assuming that flavour physics is well reproduced by the UV completion

generating the four fermion operators, non-universal corrections to the gauge couplings (like

the Zbb̄ coupling) are avoided. Furthermore, large contributions to LEP2 observables [51,

52] can be assumed small because axial/vector resonances should appear at a sufficiently

high energy (see discussion in section 4).

To estimate the impact on S and T , we will follow the same procedure as in [24]: we

divide the corrections in 3 contributions

∆S = ∆SHiggs + ∆SpNGB + ∆SFCD , (2.50)

and similarly for T , where the first term, ∆SHiggs comes from the modification of the Higgs

couplings and is Log-sensitive to the cut-off of the effective field theory ΛFCD ∼ 4πf , the

second, ∆SpNGB contains the loop corrections from the additional light pNGBs, and finally

∆SFCD contains the UV contribution of the strong dynamics. It should be noted, however,

that the 3 contributions are not really independent, as both the Higgs-like state and the

other pNGBs are part of the fundamental dynamics [53]. In fact, the scheme we use is to

separate out the contribution of the light degrees of freedom from the heavy ones: thus,

∆SFCD encodes, schematically, loops of the heavier bound states, like the axial/vectors in

vector meson dominance. The contribution of the Higgs can be estimated by rescaling the

scalar loop and subtracting the contribution of the SM Higgs

∆SHiggs =
1− κ2

V

6π
ln

ΛFCD

mh
, ∆THiggs = −

3(1− κ2
V )

8π cos2 θW
ln

ΛFCD

mh
, (2.51)

wheremh = 125 GeV is the measured Higgs mass, and κV = cos θ is the ratio of the coupling

of the Higgs-like state h1 to SM gauge boson over the SM prediction. This contribution

is common to most composite Higgs models [54]. Note also that the cut-off ΛFCD is close

in value to the masses of the spin-1 states, so that it marks the separation of the low

energy contribution of the light scalars from the contribution of the heavier resonances.

The second terms are generated by loops of the additional pNGBs: the second doublet and

the triplets. In the limit where all the masses are degenerate, we find

∆SpNGB = −sin2 θ

4π
, ∆TpNGB =

sin2 θ

8π sin2 θW

m2
H± −m2

A0

m2
W

ln
ΛFCD

mpNGB
∼ 0 , (2.52)

where the T parameter is proportional to the mass splitting between the charged Higgs and

the CP-odd neutral one in the doublet, and is therefore small (smaller than the contribution

of the Higgs). The last contribution can be approximate by the contribution of loops of

techni-fermions (thus diagrammatically close to the contribution of the spin-1 resonances),

and reads [12, 55]

∆SFCD =
sin2 θ

3π
N , ∆TFCD ∼ 0 , (2.53)

where N is the number of FCD colours, and T vanishes as the dynamics is approximately

custodial invariant by construction. Note that the result for S and T are nothing but a
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Figure 2. Upper bound on sin θ from EWPTs on S and T as a function of the number of FCD

colours N . For comparison, we show the upper bounds derived from the Higgs coupling measure-

ments at CMS (red) and ATLAS (blue), where the lines correspond to 1σ (dotted), 2σ (dashed)

and 3σ (solid).

rough estimate due to the intrinsic non-perturbativity of the model we are studying, and

one would have to rely on Lattice results for a more precise calculation (once the proper

identification of contribution has been done [53]). In the present work, we use the results

from the electroweak fit in ref. [56].

A more recent measurement that poses relevant constraints on the value of θ followed

the discovery of the Higgs boson with the determination of its couplings to SM particles [7,

8]. The simplest way to analyse the Higgs couplings is to parametrise the ratio of the

couplings on the SM prediction, and compare this to the experimental results. We will use

the parametrisation proposed in [57], where the contribution of loops has been separated

out from the modification of tree-level couplings. In our model, 4 parameters are relevant:

κV = cos θ , κf = cos θ , κγγ = −3 tan2 θ

16
, κgg = 0 . (2.54)

The first two contain the tree level modification to the couplings to massive gauge bosons,

WW and ZZ which are equal due to the custodial invariance, and the modification to

fermions, which are also assumed to be universal and equal to the one for the top. The last

two contain the loop contributions of new states to the couplings to photons and gluons:

the coupling to photon is corrected by the contribution of loops of the charged component

of the second doublet and the triplets. For the calculation, we used the masses in the

simplified case as in eq. (2.49). For the fitting procedure, we follow ref.s [58, 59].

The numerical results are shown in figure 2. In black, we show the upper bound on

sin θ as a function of the number of FCD colours N : the plot shows a mild dependence

on the number of colours, while the constraints is set around sin θ . 0.2. To be more
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specific, for N = 3 we find sin θ < 0.22, while for N = 4, we obtain sin θ < 0.21. In the

same figure we also show the constraints from the Higgs coupling measurements, which are

independent on the number of FCD colours. The constraints are the same as we found in

the minimal case [24], except for the contribution of the charged pNGBs to the di-photon

decays: numerically we find that at 3σ CMS imposes a bound sin θ < 0.64, while ATLAS

requires sin θ < 0.57. We do not attempt to combine the two experiments, as this would

require a thoroughly understanding of the systematic uncertainties. The bounds from the

Higgs measurements are milder that the constraint from EWPTs, however the improvement

in the measurements at LHC Run-II will certainly increase their relevance.

2.4 The bottom mass, and flavour alignment

The bottom mass can be generated in a similar way as the top one, by adding 4-fermion

interactions or appropriate mixing with fermionic bound states that, in the low energy

effective theory, generate terms similar to eq. (2.30):

LYuk,b = −f (q̄αLbR)
[
Tr[Pb1,α(yb1Σ + yb2Σ†)]− (iσ2)αβTr[P βb2(yb3Σ + yb4Σ†)]

]
+ h.c.(2.55)

where the projectors are defined in terms of the top ones as Pb1,α = (Pα2 )† and Pαb2 = (P1,α)†.

After defining the combination of pre-Yukawas

Yb =
yb1 − yb2 − (yb3 − yb4)

2
√

2
, YbD =

yb1 − yb2 + (yb3 − yb4)

2
√

2
,

YbT =
yb1 + yb2 + (yb3 + yb4)

2
√

2
, Yb0 =

yb1 + yb2 − (yb3 + yb4)

2
√

2
, (2.56)

expanding eq. (2.55) to linear order in the pNGB fields yields, for β = 0,

LYuk,b = −
[
YbvSM+Yb cos θ h1+iYbD h2−YbD cos θ A0−i

YbT√
2

sin θ (N0+∆0)

]
(b̄LbR)

−
[
i
√

2YbD cos θ H+ + iYbT sin θ (N+ + ∆+)
]

(t̄LbR) + h.c. (2.57)

which is very similar to eq. (2.32), up to the signs of the couplings of A0, N0, ∆0 and H±.

The contribution to the potential of the pNGBs also resembles the top one in eq. (2.34),

up to signs:

Vb = −f4Ct

(
8|Yb|2 sin2 θ + 2

√
2|Yb|2 sin(2θ)

h1

f
− i 2

√
2(Y ∗bDYb − YbDY ∗b ) sin θ

h2

f

−
√

2(Y ∗bDYb + YbDY
∗
b ) sin(2θ)

A0

f
+ i 2(Y ∗bTYb − YbTY ∗b ) sin2 θ

N0 + ∆0

f
+ . . .

)
.

(2.58)

We expect the coefficient Ct generated by the dynamics to be the same as for the top, as

the structure of the operator under the FCD is the same. Remarkably, the two terms with

different sign are the tadpoles for A0 and for the triplets, which would violate custodial

symmetry. This fact becomes clear when looking at eq.s 2.30 and 2.55: assembling tR and
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bR into an SU(2)R doublet would in fact require that yti = ybi for i = 1, . . . 4, thus any

violation of custodial invariance should be proportional to the difference of pre-Yukawas.

In fact, the tadpole for A0 is proportional to

(Y ∗DYt + YDY
∗
T )− (Y ∗bDYb + YbDY

∗
b ) = Re(δYD)(Yt + Yb) + δYfRe(YD + YbD) , (2.59)

where δYD = YD − YbD and δYf = Yt − Yb, and we have assumed real Yt and Yb. A similar

analysis can be done for the triplet tadpole. As it is not possible to set all pre-Yukawa

differences to zero (we know that Yt 6= Yb), the only way to ensure a custodial invariant

vacuum is to have Re(YD) = Re(YbD) = 0 and Im(YT ) = Im(YbT ) = 0: these conditions

are automatically ensured in the case of “BTC” interactions.

The custodial invariant h2 tadpole, on the other hand, is connected to the presence

of β in the vacuum. As we already discussed, β in the vacuum can be removed by the

transformation in eq. (2.21), which corresponds to the redefinition of an unphysical phase in

the techni-fermion fields. The procedure to follow, therefore, is the following: we minimise

the potential by ensuring the vanishing of the h2 tadpole, thus determining β as a function

of the phases in the top and bottom Yukawas; we then use Ωβ to set β = 0 on the vacuum,

and at the same time changing the phases of the top and bottom Yukawas (YD and YbD),

without however loss of generality as we are simply fixing an unphysical phase in the FCD.

This reasoning shows that one can always work in the β = 0 vacuum, and think of the

vanishing of the h2 tadpole as of the fixing of an arbitrary phase. It is interesting that in

the “BTC” case, the phases of YD and YbD are aligned, so that one can make both real

with the same phase redefinition.

The masses for the light generations, and flavour mixing, can also be added to the

model by promoting the pre-Yukawas yti and ybi to matrices in the SM flavour space. In

the most general set up, the model will however suffer from large flavour changing neutral

currents (FCNCs) generated by the couplings of the second doublet and the triplets. This

problem can be avoided if the combinations of Yukawas Yt, YD and YT (and similarly for the

down-type quarks) can be simultaneously aligned. The FCNC-free scenario would therefore

correspond to pre-Yukawa couplings which are all proportional to the same flavour matrix:

yti = λabt yi , ybi = λabb yi , (2.60)

where the pre-Yukawas yi parametrise universal couplings of the mediators to the techni-

fermions, while the λ matrices contain all the information about the quark masses and

flavour mixing. This scenario corresponds to a minimal flavour violation setting, and it

naturally arises in “BTC” frameworks. Another possibility is to ensure the vanishing of all

the triplet and doublet couplings, so that there is a single flavour violating matrix for each

type of SM quark, thus ensuring a minimal flavour violating scenario.

These considerations are general and independent on the precise origin of the Yukawas.

However there are additional flavour violating contributions that depend on the details of

the UV theory, like for instance potentially large 4-fermion interactions among SM fermions

that may be generated at the same scale as the one in eq. (2.26), as one may expect in

the case of 4-fermion interactions. While we leave the construction of a UV completion
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for flavour to future work, we can comment on the possibility to remove or alleviate the

flavour issue in the various cases.

- “ETC” 4-fermion interactions : this case suffers from 2 main issues, i.e. the absence

of hierarchies in the masses and the low flavour scale [45]. The latter comes directly

from the fact that the four fermion interactions are suppressed by a mass scale and,

even assuming some conformal dynamics inducing large anomalous dimensions for the

fermion bi-linear operator [60], such scale cannot be pushed arbitrarily high [61, 62].

The former issue is due to the fact that the pre-Yukawas are not hierarchical as they

are associated to gauge couplings. However, one can envision a scenario where the

hierarchies are associated to different flavour scales: at low scale, only a mass for

the top (and bottom) are generated. Additional 4-fermion interactions giving rise to

the light quark masses can be generated by a second ETC sector at a higher scale.

The FCNCs generated by the low energy scale on the third generation will thus be

transmitted to the light quarks via small flavour mixing terms. For the other FCNCs

generated at the higher scale, it may be sufficient to have a mild anomalous dimension

for the techni-fermion condensate to push the flavour violating scale to sufficiently

high scales.

- “BTC” 4-fermion interactions : in this case, the 4-fermion interactions are generated

by a scalar mediator transforming like the Higgs doublet [47, 48]. Thus, it is natural to

generate the flavour structure via a single matrix per fermion type, like in the SM, thus

naturally suppressing all the FCNCs. The naturalness of the mass of the elementary

scalar may be addressed by supersymmetry [63, 64], without the phenomenological

shortcomings of the MSSM. Alternatively, the UV theory may be an asymptotically

safe gauge-Yukawa theory [65, 66]. See also [67, 68] for recent models studying the

interplay of a composite and elementary Higgs.

- Partial compositeness : the absence of 4-fermion interactions bilinear in the SM

fermions is sufficient to open the possibility that direct FCNCs are not generated

at the same scale. Furthermore, the 4-fermion interactions generating the linear mix-

ings, may have large anomalous dimensions that allow to generate large flavour scales

and hierarchies in the flavour matrices. This scenario is thus designed to soften the

flavour issues [69–71]. Our analysis of the vacuum stability is also valid in this case,

as the effective Yukawas would be generated after integrating out the fermionic res-

onances. We would like to remark that the fermionic bound states that mix with

the SM fermions can be heavy, i.e. they may appear at the natural scale of the other

resonances ∼ 4πf .

Another possibility would be to generate the top (and bottom) masses via partial com-

positeness, while the light quarks are generated by 4-fermion interactions, thus potentially

suppressing FCNCs [72] (see also [73]). It should also be stressed that having defined an

underlying theory, the origin of the flavour structures, which are associated to 4-fermion

interactions in all cases, can be explicitly tested. This includes the origin of the linear

mixings needed in the partial compositeness scenario: in the model under consideration,

the top partners can be generated by the same strong dynamics, as proposed in [46], and
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the mixing terms (inducing pre-Yukawas) would be generated by 4-fermion interactions

where only one of the fermions is neutral under the underlying strong interactions.

3 Discrete symmetries and dark matter candidates

Besides the Higgs-like scalar h1 and the eaten Goldstone bosons, the model contains 11

additional pNGBs: the chiral Lagrangian one can write down respecting the symmetry

breaking patters is invariant under a parity changing sign to all pNGBs, thus they only

appear in bilinear couplings. This property is however violated by the explicit symmetry

breaking terms: we have seen this in the loop-induced potential, which generates mixing

between scalars, and the couplings to the top quarks. In order to understand if any of

the additional pNGB may be stable, it is useful to think in terms of multiplets of the

electroweak symmetry, as different states within a multiplet are always connected by gauge

interactions. Thus, in the limit θ = 0, the model contains a second doublet H2, a SU(2)L
triplet ∆, a SU(2)R triplet N (consisting on a charged and a neutral singlet), and a singlet

s. To identify a Dark Matter candidate we need to establish both the mixing patterns

among the multiplets, and their direct couplings to SM states.

The mass mixing structures we found in appendix C can be summarised as follows:

- gauge interactions mix the two triplets, ∆ and N ;

- top Yukawa couplings mix the doublet with the triplets, with a coupling proportional

to Y0;

- top Yukawa couplings mix the two triplets with coupling proportional to YT .

We see already that the singlet s does not mix with the others states. While gauge inter-

actions cannot be turned off, the Yukawa couplings involved in the mixing may be zero

depending on their origin, and we will be particularly interested in Y0, which generates

mixing between the doublet and the triplets.

Regarding possible decay channels, there are two terms in the lowest order effective

Lagrangian that generate couplings of a single pNGB to SM states: one is due to the

couplings to the tops, and another to the Wess-Zumino-Witten (WZW) [27, 28] anomaly.

We have already seen in the previous section that, in a custodial preserving vacuum, only

the triplets are allowed direct couplings to tops via a combination of Yukawas YT . The

WZW term, on the other hand, is generated by a triangle loop of techni-fermions and

it contains potential couplings of the pNGBs to EW gauge bosons. The pNGBs can be

associated to the following current

Jµa5 = ψ̄γµΩT aΩ†
1 + γ5

2
ψ − ψ̄γµΩ†T aΩ

1− γ5

2
ψ , (3.1)

where Ω = Ω(θ, 0) in eq. (2.13). Following the results in ref.s [28, 74], the result of the

triangle anomaly can be expressed as

ΓWZW ∼
{
a1 Tr

[
T aT b(ΩΠΩ† + Ω†ΠΩ)

]
+a2 Tr

[
T a(ΩΠΩT bΩ†Ω† + Ω†ΠΩ†T bΩΩ)

]}
V aV b , (3.2)
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where a1,2 are numerical coefficients and T a,b are now the gauged generators of the global

symmetry SU(4)2 associated to the gauge bosons V a,b
µ : the first term of the above expression

can be understood as a triangle anomaly of the current J5, while the second term derives

from a box diagram. As a result, we can extract the following couplings:

LWZW ∼ k cos θ s (g2WµνW̃
µν − g′2BµνB̃µν) , (3.3)

where k is a numerical factor. This result shows that s cannot play the role of Dark Matter.

Interestingly, the WZW anomaly only involves the singlet s, and its couplings are similar

to the ones in the minimal SU(4)/Sp(4) case [22, 24]: in particular, no coupling to two

photons is generated.

The only pNGBs that may play the role of Dark Matter are therefore the triplets and

the second doublet. Their mixing and decays are ruled by the top Yukawa couplings, as

discussed above: Y0 induces a mass mixing between the doublet and the triplets, YT induces

decays of the triplets directly to tops. The situation can be summarised as follows:

DM candidates YT = 0 YT 6= 0

Y0 = 0 H2 and ∆–N H2

Y0 6= 0 mixed no DM

This analysis, based on the lowest order Lagrangian, is not conclusive as additional mix-

ing/decays may be generated by higher order terms in the Lagrangian: we thus need to

identify a symmetry that protects the DM candidate.

As the techni-fermions are vector-like with respect to the FCD gauge and the SM

ones, the strong sector will be invariant under P and C separately, which act on the pNGB

matrix and gauge bosons as

P (Σ) = Σ† , P (Aµ) = −(−1)δ
0µ
Aµ , C(Σ) = ΣT , C(Aµ) = −ATµ . (3.4)

The vacuum, however, is not invariant under C nor P: it is invariant under CP only for

β = 0. We identified 2 symmetries that act as parities on the pNGB fields:

- A: parity P combined with an SU(4) transformation, acting as

Σ→ PAΣ†P †A , Aµ → −(−1)δ
0µ
Aµ , with PA =

(
1 0

0 −1

)
. (3.5)

Under this symmetry, Π→ −PAΠP †A, thus s and the triplets ∆ and N are odd. The

top Yukawas break the symmetry unless the following relation between the couplings

is imposed:4

yt2 = −yt1 , yt4 = −yt3 , ⇒ YT = Y0 = 0 . (3.6)

This symmetry, however, is broken in the present model: besides the gauge interac-

tions of the SM fermions, that violate P, the WZW term is allowed by this symmetry

as it couples odd scalars to a P-odd combination of vector bosons. In principle, a

WZW term is allowed for both the singlet and the triplets.

4This relations are only possible for “BTC” pre-Yukawas, but not for “ETC” ones.
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- B: a second symmetry we identified acts as charge conjugation plus a global SU(4):

Σ→ PBΣTP †B , Aµ → −PBATµP
†
B = Aµ , with PB =

(
σ2 0

0 −σ2

)
. (3.7)

The vacuum Σ1, however is only invariant if β = 0. The pNGBs transform as

Π → PBΠTP †B, thus we find that the triplets ∆ and N and the second doublet H2

are odd. In this case, the gauge interactions of the SM are also invariant. A condition

is nevertheless needed on the top pre-Yukawas:

yt3 = −yt1 , yt4 = −yt2 , ⇒ YD = YT = 0 . (3.8)

Note that, as the dynamics respects this symmetry, a WZW term for the triplets is

forbidden in general. Also, a model invariant under this symmetry has automatically

a custodial invariant vacuum.

From the above analysis we can conclude that the only viable Dark Matter candidates

are the second doublet and the triplets, in models where the symmetry B is preserved (i.e.

YT = YD = 0). Note that this condition can be satisfied by BTC Yukawa couplings, with

yt2 = −y∗t1. Furthermore, for an imaginary Y0, one needs to identify the symmetry “GP” to

the ordinary CP. We also checked that the full WZW term is invariant under the symmetry

B, so that no violation is present at any order in the pNGB field expansion.

4 Spectrum of resonances, and lattice results

Insofar we have focused on the physics of the light scalar degrees of freedom of the theory,

i.e. the pNGBs, however the model also contains massive composite states of other spins.

We are particularly interested in Baryonic bound states, as they carry TB number and are

therefore stable and potential candidates for (asymmetric) Dark Matter. The properties

of such states depend crucially on the number of FCD colours in SU(N)FCD, as the bound

state will be made of N techni-fermions: if N is odd, the bound state will be a fermion,

while for even N it will be a boson. We will focus here, for concreteness, on the smallest

numbers of FCD colours, i.e. N = 3 and N = 4.

For N = 3, the baryons are made of 3 techni-fermions, thus they belong to the following

representations of the flavour group SU(4):

4⊗ 4⊗ 4 = ⊕ 2× ⊕ = 4̄⊕ 2× 20⊕ 20′′ . (4.1)

It should be recalled here that the FCD colour indices are fully anti-symmetric, thus the

wave function in terms of the flavour indices, spin and orbital momentum should be overall

symmetric. To identify the ground state, i.e. states that have zero orbital momentum, it is

useful to include the spin indices into the flavour ones: each techni-fermion is thus doubled

into two states with spin up and spin down respectively, and the global symmetry is thus

extended to SU(8). The ground state, which has no orbital momentum, must therefore
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be fully symmetric in the SU(8) space, and it thus belongs to the 3-index symmetric

representation 120SU(8). Under spin and SU(4), it decomposes into:

120SU(8) = spin-1/2× 20⊕ spin-3/2× 20′′ . (4.2)

The other states in the decomposition in eq. (4.1) must therefore carry some orbital mo-

mentum, and they belong to heavier excited states. The spin-1/2 bound states decompose

under the custodial SU(2)L×SU(2)R as:

20 = (3, 2) + (2, 3) + (2, 1) + (2, 1) + (1, 2) + (1, 2) . (4.3)

All the states in this multiplet have semi-integer electric charge, ±1/2 and ±3/2: in order

to avoid the strong bounds on stable non-integer charge states [75], we can partly charge the

TB number, so that the ordinary hypercharge is generated by T 3
R + TB, without affecting

the properties of the Higgs-like states and of the pNGBs, which do not carry TB number.

Notice that this partial gauging does not break a global TB, which remains a conserved

number. Assigning gauged TB equal to +1/2 or −1/2, all the stable spin-1/2 states will

have integer charges, with the neutral components that may play the role of Dark Matter.

In the case N = 4, the baryons are made of 4 techni-fermions and are therefore bosons.

They decompose under SU(4) as:

4⊗ 4⊗ 4⊗ 4 = ⊕ 3× ⊕ 3× ⊕ 2× ⊕
= 1⊕ 3× 15⊕ 3× 45⊕ 2× 20′ ⊕ 35 . (4.4)

To identify the ground state, we follow the same procedure as above: the 4-index symmetric

representation of SU(8) is a 330SU(8), which decomposes as

330SU(8) = spin-0× 20′ ⊕ spin-1× 45⊕ spin-2× 35 . (4.5)

The lowest spin scalar baryons, thus, belong to a 20′ rep of SU(4), which decomposes under

the custodial symmetry as

20′ = (3, 3) + (2, 2) + (2, 2) + (1, 1) + (1, 1) . (4.6)

In this case, all the states have integer charges and the multiplet contains neutral states

which are candidates for Dark Matter.

The model also contains spin-1 resonances, common to any model of compositeness.

Like in QCD, the lightest resonances consist on a set of vector (CP-even) states and a set

of axial (CP-odd) states, associated respectively to the fermionic currents:

ρµ = 〈ψ̄γµψ〉 , aµ = 〈ψ̄γµγ5ψ〉 , (4.7)

where ψ are the techni-fermion Dirac spinors. Both vector and axial mesons transform as

the adjoint of the unbroken SU(4) group, thus they transform under the SU(2)L× SU(2)R
subgroup like the pNGBs:

ρµ , aµ = (2, 2) + (2, 2) + (3, 1) + (1, 3) + (1, 1) . (4.8)
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The phenomenology of the triplets is similar to the one of vector resonances in minimal

models [76, 77]: as they have the same quantum numbers of the SM gauge bosons, they will

mix with them in the effective Lagrangian, and thus acquire a direct coupling to the SM

fermions. They will therefore be produced at the LHC in Drell-Yan, and decay either into

a pair of fermions or into a pair of gauge bosons. On the other hand, the properties of the

doublets can be quite novel: due to their quantum numbers, they cannot couple directly

to the SM fermions. Their only couplings may therefore involve the additional pNGBs

present in the model. We postpone a detailed study of their couplings to a further study.

In cases where the model has a Dark Matter candidate, as detailed in section 3, some of the

spin-1 resonances may be odd under the same parity stabilising the Dark Matter pNGB

candidate. We verified that, under the parity B in eq. (3.7), one of the doublets and the

singlet vectors, together with the other doublet and the triplets of the axial states, are odd

and therefore can only decay into a stable pNGB.

Lattice results [40–43] are very useful in the study of the vector resonances due to the

relative ease in extracting their masses from data. In [78], it is reported that the mass of

the vectors in the case SU(3)FCD, in units of the pNGB decay constant is

Mρ

Fπ
= 13± 1 ,

(
Mρ

Fπ

∣∣∣∣
QCD

∼ 8

)
; (4.9)

where we show, for comparison, the ration in QCD (with 3 flavours). Rescaling the value

of the mass to the EW scale, Fπ = 246 GeV, we find a mass Mρ ∼ 3.2 TeV in the TC

limit (i.e. sin θ = 1).5 In the pNGB Higgs limit, the mass should be multiplied by a factor

1/ sin θ, thus for sin θ < 0.22 one obtains Mρ > 14 TeV. These preliminary results on the

vector masses, therefore, indicate that they are expected to be very heavy and beyond

the reach of the LHC Run-II. They may however be accessible to a higher energy proton

collider, like the proposed 100 TeV colliders.

5 Conclusions and outlook

Compositeness as a paradigm to explain the origin of the Higgs boson, discovered at the

LHC, is still one of most appealing extensions of the Standard Model. In this work, we

pursued compositeness by defining a fundamental composite dynamics (FCD) based on

a simple confining gauge group plus fermionic matter. This approach has the advantage

of guiding the building of the low energy chiral Lagrangian, and it can be simulated on

the Lattice in order to have non-perturbative predictions of the spectrum. The need for

numerical prediction is in fact essential for studying the viability of such models vis a vis

the results at the LHC.

The minimal model of FCD has a global symmetry breaking pattern SU(4)/Sp(4).

Here we focus on a less minimal case based on the symmetry breaking SU(4)×SU(4)/SU(4),

which is the smallest symmetry of this kind that enjoys custodial symmetry. The under-

lying dynamics is provided by a gauged SU(N)FCD with 4 Dirac techni-fermions in the

5The precise relation between Fπ and the decay constant in our notation is Fπ = 2
√

2f = vSM/ sin θ.
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fundamental representation. This theory is known to condense. We construct the effective

Lagrangian for the 15 pseudo-Nambu-Goldstone bosons, which transform, in the limit of

unbroken symmetry, as 2 bi-doublets, one SU(2)L and one SU(2)R triplet (a 6 of the cus-

todial SO(4)) and one singlet. The model has therefore two potential Higgs doublets: the

alignment of the EW symmetry breaking vacuum along the two doublets, however, depends

on the structure of the interactions generating the top mass. We found that, adding only

a mass for the top, the vacuum is aligned with one of the two doublets, thus effectively

generating a composite inert 2HDM. Interestingly, the custodial invariant direction on the

second doublet corresponds to a phase in the vacuum, which can be associated with a

global U(1) subgroup of the SU(2)2 symmetry. One can therefore use this symmetry to

always set the second doublet vacuum to zero, without affecting the physical properties

of the model. This U(1) corresponds in the FCD to an unphysical phase redefinition of

the techni-fermion fields. We also determine the conditions on the Yukawa couplings that

ensure a custodial invariant vacuum.

The model suffers from contributions to electroweak precision observables, mainly

the S parameter: we show that such contributions can be under control when the an-

gle parametrising the alignment along the EW breaking direction is small. We found that

values sin θ . 0.2 are still allowed. The measurements of the Higgs couplings also pose a

constraint on the angle, which is however milder at present, sin θ . 0.57 ÷ 0.64. These

constraints are very similar to the ones obtained in the minimal model, thus showing that

less minimal cases are equally likely to be realised.

The most interesting feature of non-minimal cases is that the additional pNGBs may

be stable due to residual unbroken parities. Under certain conditions on the Yukawa

couplings, we identified a symmetry that protects the second doublet and the two triplets.

This symmetry is exact, and it is preserved by all the explicit breaking we add and by the

entire Wess-Zumino-Witten term: the Dark Matter candidate is therefore a component

of the second inert doublets, which mixes with the two triplets. Finally, we studied the

spectrum of the heavier composite states: spin-1 vector and axial resonances and spin-1/2

(or spin-0) techni-baryons. The latter are stable due to a conserved techni-baryon number,

and may thus play the role of an asymmetric Dark Matter. However, the masses of such

states are expected to lie in the O(10) TeV range, thus they may only be explored directly

at a 100 TeV collider.

The model we explored here is very similar to QCD with 4 flavours. In fact, the case

SU(3) has already been studied on the lattice and confirmed to condense. It would be very

interesting to further study this model on the Lattice to calculate the masses of the bound

states, in particular the vectors and techni-baryon. The spectrum can be a precious guide

in defining the search strategies at the LHC and at a future 100 TeV collider, and also allow

us to study in detail the relic abundance of the stable techni-baryons.

The SM flavour physics of this model may be very interesting, as each Yukawa coupling

is generated by 4 operators (typically four-fermion interactions or operators generated

after integrating out the top partners in the partial compositeness scenario). However, the

only way to reliably study flavour physics is by defining a UV completion that generates

the needed four-fermion interactions. Another possibility that we plan to explore is to
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extend the model in order to have techni-baryons that may mix linearly with the top

quark (top partners).
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A Couplings to gauge bosons

In the gauge basis, defining

ϕ1
←→
∂µϕ2 = ϕ1(∂µϕ2)− (∂µϕ1)ϕ2, (A.1)

the couplings of a single gauge boson to the pNGBs can be written as:

LA = igsWA
µ
(
H−
←→
∂µH

+ +N−
←→
∂µN

+ + ∆−
←→
∂µ∆+

)
, (A.2)

LZ =
ig

2cW
Zµ
(
c2W H−

←→
∂µH

+ + icθ A0
←→
∂µh2 + (c2W − cθ) N−

←→
∂µN

+

+(c2W + cθ) ∆−
←→
∂µ∆+

)
, (A.3)

LW =
ig

2
Wµ,−

(
cθ h2

←→
∂µH

+ − iA0
←→
∂µH

+ − 2s2
θ/2 N0

←→
∂µN

+

−2c2
θ/2 ∆0

←→
∂µ∆+

)
+ h.c. (A.4)

where cW = cos θW , sW = sin θW , c2W = cos 2θW and cθ = cos θ.

The couplings of 2 gauge bosons with 2 charged scalars can be written as:

LAA± = g2s2
W AµA

µ
(
H+H− +N+N− + ∆+∆−

)
, (A.5)

LAZ± =
g2sW
cW

AµZ
µ
(
c2W H+H−+(c2W−cθ) N+N−+(c2W +cθ) ∆+∆−

)
, (A.6)

LZZ± =
g2

8c2
W

ZµZ
µ
(
2c2

2W H+H− + (3c2
θ − 4c2W cθ + c4W ) N+N−

+(3c2
θ + 4c2W cθ + c4W ) ∆+∆− − s2

θ(∆
+N− +N+∆−)

)
, (A.7)

LWW± =
g2

2
Wµ,+W−µ

(
c2
θ H

+H− − 2s2
θ/2cθ N

+N− + 2c2
θ/2cθ ∆+∆−

)
, (A.8)

LWW++ =
g2

4
Wµ,−W−µ

(
s2
θ H

+H+ − 2(c2
θ/2 ∆+ − s2

θ/2 N
+)2
)

+ h.c. ; (A.9)
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The quadrilinear couplings with neutral scalars are:

LZZ0 =
g2

8c2
W

ZµZµ

(
c2θ h

2
1 + c2

θ h
2
2 + c2θ A

2
0 −

1

2
s2
θ (N0 −∆0)2 − s2

θ s
2

)
, (A.10)

LWW0 =
g2

4
Wµ,+W−µ

(
c2θ h

2
1 + c2

θ h
2
2 +A2

0 + s2
θ/2(1− 3cθ) N

2
0

+c2
θ/2(1 + 3cθ) ∆2

0 − s2
θ N0∆0 − s2

θ s
2
)
. (A.11)

Finally, for the charged currents:

LWA =
g2sW

2
AµW−µ

(
cθ H

+h2 − i H+A0 − 2s2
θ/2 N

+N0 − 2c2
θ/2 ∆+∆0

)
+ h.c. , (A.12)

LWZ =
g2

2cW
ZµW−µ

(
−cθs2

WH
+h2 − i(c2

W − c2
θ) H

+A0 − s2
θ/2(c2W − cθ) N+N0

−c2
θ/2(c2W + cθ) ∆+∆0 +

1

2
s2
θ (N+∆0 + ∆+N0)

)
+ h.c. . (A.13)

B Most general vacuum structure

B.1 Custodial invariant vacua

To better understand the conditions leading to the vanishing of the tadpoles in E. 2.34, it

is useful to parametrise the phases of the 4 Yukawa couplings as follows:

yt1 = |yt1|e−i(γ0+β0+ϕ0+δ0) , yt2 = |yt2|e−i(γ0+β0−ϕ0−δ0) ,

yt3 = |yt3|e−i(γ0−β0+ϕ0−δ0) , yt4 = |yt4|e−i(γ0−β0−ϕ0+δ0) ; (B.1)

where ϕ0 and δ0 are physical phases, β0 can be rotated away with an SU(4) rotation in

eq. (2.21) and γ0 is the overall unphysical phase. The vanishing of the tadpole for h2,

Y ∗DYt = YDY
∗
t , can be always guaranteed by a proper choice of the unphysical phase β0:

β0 = −δ0 +
1

2
arg
[
(|yt1| − |yt2|e2i(δ0+ϕ0))(|yt3| − |yt4|e2i(δ0−ϕ0))

]
mod π/2 . (B.2)

This analysis proves that the parameter β in the vacuum is never physical, and can always

be reabsorbed by a phase redefinition of the techni-fermions.

The vanishing of the tadpoles for A0 and for the triplets, on the other hand, requires

physical restrictions on the Yukawa couplings, which can be written in the form:∣∣∣|yt1| − |yt2|e2i(ϕ0+δ0)
∣∣∣ =

∣∣∣|yt3| − |yt4|e2i(ϕ0−δ0)
∣∣∣ ,

δ0 = −β0 +
1

2
arg
[
(|yt1|+ |yt4|e2i(β0+ϕ0))(|yt2|+ |yt3|e2i(β0−ϕ0))

]
mod π/2 , (B.3)

where β0 has already been fixed to cancel the h2 tadpole.

The same procedure can be applied when other Yukawa couplings are added, like the

bottom one.
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B.2 Non-custodial invariant vacua

The most general vacuum can be build by rotating the EW preserving vacuum along all

directions that preserve the electromagnetic U(1), and are non trivial in the EW space: this

is equivalent to giving a vacuum expectation value to the two doublets and the two triplets:

〈H1〉 =
1√
2

(
0

v1

)
, 〈H2〉 =

1√
2

(
0

v2 + iv3

)
, 〈σi∆i〉 = 〈σiN i〉 =

vt√
2
σ3 . (B.4)

We assume that both triplets gets the same VEV, as they belong to a sextet of the custodial

SO(4). A misalignment along the singlet s is not interesting, as it does not touch the

gauge interactions nor the Yukawa couplings.6 The most general vacuum can therefore be

written as

Σgen = eA , with A =
1

2
√

2f

(
ivt σ3 (v1 + iv2) 1 + v3 σ3

−(v1 − iv2) 1− v3 σ3 ivt σ3

)
. (B.5)

The vacuum can be expressed in terms of the following angles:

τ =
vt

2
√

2f
, tanβ1 =

v2

v1 + v3
, tanβ2 =

v2

v1 − v3
, (B.6)

and

θ+ =

√
(v1 + v3)2 + v2

2

2
√

2f
, θ− =

√
(v1 − v3)2 + v2

2

2
√

2f
, with

θ2
+

θ2
−

=
1 + tan−2 β1

1 + tan−2 β2
. (B.7)

The result reads

Σgen =


eiτ cos θ+ 0 ei(β1+τ) sin θ+ 0

0 e−iτ cos θ− 0 ei(β2−τ) sin θ−
−ei(−β1+τ) sin θ+ 0 eiτ cos θ+ 0

0 ei(−β2−τ) sin θ− 0 e−iτ cos θ−

 . (B.8)

The limit of custodial vacuum can be reached by setting τ = 0, θ+ = θ− = θ, and

β1 = β2 = β.7 It can also be shown that the above vacuum is equivalent to one constructed

starting from the custodial invariant one, to which a rotation along the imaginary part of

the second doublet and along the neutral triplets is applied.

The masses of the W and Z are now given by:

m2
W = 2g2f2(1− cos(2τ) cos θ+ cos θ−) , (B.9)

m2
Z = (g2 + g′

2
)f2(sin2 θ+ + sin2 θ−) , (B.10)

while the Weinberg angle has the same value as in the SM, cos2 θW = g2/(g2 + g′2). The

tree level correction to the ρ parameter is thus given by

ρ− 1 =
m2
W

m2
Z cos2 θW

− 1 =
(cos θ+ − cos θ−)2 + 4 sin2 τ cos θ+ cos θ−

sin2 θ+ + sin2 θ−
. (B.11)

6In fact, it corresponds to a phase redefinition of the techni-fermion fields that changes the phase of the

masses.
7Note that for v2 = 0, the two phases β1 and β2 vanish, however θ+/θ− is not determined and they

should be considered as independent free parameters.
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To have a quantitative idea of the constraints coming from ρ, which is close to 1 up to

∼ 10−3, it is useful to expand for small breaking of the custodial symmetry:

ρ− 1 ∼ (θ+ − θ−)2

2
+ 2

τ2

tan2 θ
, (B.12)

thus the constraint on θ+ − θ− is of the order of few times 10−2, while the contribution of

the triplet is enhanced by a small θ and is thus stronger.

We notice that, in the vacuum in eq. (B.8), the triplets and the real component of the

second doublet enter like phases, respectively τ and the β1,2 pair. It is therefore instructive

to investigate the relation with the Yukawa phases. We can re-write the general vacuum as

Σgen = Uτ · Σ′gen · Uτ
(B.13)

with

Σ′gen =


cos θ+ 0 eiβ1 sin θ+ 0

0 cos θ− 0 eiβ2 sin θ−
−e−iβ1 sin θ+ 0 cos θ+ 0

0 −e−iβ2 sin θ− 0 cos θ−

 . (B.14)

The vacuum Σ′gen contains the contribution of the two doublets, while the matrix Uτ ,

generated by the triplets, is given by

Uτ =

(
ei
τ ·σ3
2 0

0 ei
τ ·σ3
2

)
. (B.15)

From the general top Yukawa coupling in eq. (2.30), it is the coupling of the tops that

determines the tadpole for the triplets in the loop induced potential: such coupling can be

written as

−f(t̄LtR){Tr[P1,1(y1te
iτΣ′gen + y2te

−iτΣ′†gen)]

+iσ1,2
2 Tr[P 2

2 (y3te
−iτΣ′gen + y4te

iτΣ′†gen)]}+ h.c. (B.16)

where we have replaced the pNGB matrix with the new vacuum Σgen, and explicitly written

down the contribution of the phase induced by the triplets. Then, we can re-write the

Yukawa couplings as

y′t1 = yt1e
iτ = |yt1|e−i(γ0+β0+ϕ0+(δ0−τ)) , y′t2 = yt2e

−iτ = |yt2|e−i(γ0+β0−ϕ0−(δ0−τ)) ,

y′t3 = yt3e
−iτ = |yt3|e−i(γ0−β0+ϕ0−(δ0−τ)) , y′t4 = yt4e

iτ = |yt4|e−i(γ0−β0−ϕ0+(δ0−τ)) .

(B.17)

The above equations show therefore that the vacuum along the triplet direction corresponds

to a redefinition of the phase δ0 in the 4 Yukawa couplings: as such a phase is physical

(i.e., it cannot be removed by a phase redefinition of the techni-fermion fields), it is δ0 − τ
that contains the physical effect of the triplet vacuum. This analysis also confirms that
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the tadpole for the triplet can be eliminated by appropriately fixing the value of δ0, as

in eq. (B.1).

The two phases generated by the second doublet vacuum, β1 and β2, can be rotated

away by two rotations Ωβ in eq. (2.21) and Θϕ:

(Θϕ · Ωβ) · Σgen · (Θϕ · Ωβ)† = Uτ ·


cos θ+ 0 sin θ+ 0

0 cos θ− 0 sin θ−
− sin θ+ 0 cos θ+ 0

0 − sin θ− 0 cos θ−

 · Uτ (B.18)

with ϕ = β1−β2
2 , β = β1+β2

2 . Θϕ corresponds to a local phase transformation generated by

the generator of the Hypercharge:

Θϕ =

 12×2 02×2

02×2

(
eiϕ 0
0 e−iϕ

)  . (B.19)

So the kinetic terms are independent on the phases β1 and β2, and thus the mass of W±µ
and Zµ in eq. (B.9). As Θϕ is only a global hypercharge U(1)Y transformation, ϕ = β1−β2

2

is an unphysical phase. We already know that Ωβ is simply a redefinition of techni-fermion

unphysical phase, which can transfer the phase β = β1+β2
2 from the vacuum to the fermion

Yukawa couplings. So we can always use this freedom to set β = β1+β2
2 in vacuum to be

zero which is equivalent to set both β1,2 be zero and also means we can always set υ2 = 0.

C Mass matrices for the pions

The pNGBs in the theory receive mass contributions from the 3 terms in the potential:

M2
ϕ = ∆M2

M + ∆M2
G + ∆M2

T , (C.1)

respectively coming from the techni-fermion mass, the gauge loops and top loops.

The contribution of the TQ mass-induced potential, eq. (2.39), gives diagonal and

gauge invariant masses to the pNGB multiplets

∆M2
h1 = ∆M2

H2
= ∆M2

s =
Cm(mU +mD)f

2
cθ , (C.2)

∆M2
∆ =

Cm(mU +mD)f

2
(cθ + δ) , (C.3)

∆M2
N =

Cm(mU +mD)f

2
(cθ − δ) ; (C.4)

where the subscript H2, ∆ and N indicate the common mass of the second doublet, and

the two triplets respectively, and we have defined

δ =
mU −mD

mU +mD
. (C.5)
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Loops of gauge bosons in eq. (2.40), on the other hand, give different mass contribution

to the components of the multiplets, as the vacuum is not gauge invariant. Notably, the

masses are diagonal in the gauge-basis, except for a mixing between the two triplets:

∆M2
h1 =

Cgf
2

8
(3g2 + g′

2
)c2θ , (C.6)

∆M2
h2 =

Cgf
2

8
(3g2 + g′

2
)c2
θ , (C.7)

∆M2
A0

= ∆M2
h2 +

Cgf
2

8

(
g2 − g′2

)
s2
θ , (C.8)

∆M2
H± = ∆M2

h2 +
Cgf

2

8

(
g2 + g′

2
)
s2
θ , (C.9)

∆M2
s = −Cgf

2

8
(3g2 + g′

2
)s2
θ ; (C.10)

and the triplet masses, expressed as 2×2 matrices in the ∆–N basis:

∆M2
∆0−N0

=
Cgf

2

8

{
8g2

(
c2
θ/2 0

0 s2
θ/2

)
− 1

2

(
7g2 + g′2 g2 − g′2

g2 − g′2 7g2 + g′2

)
s2
θ

}
, (C.11)

∆M2
∆±−N± = ∆M2

∆0−N0
+
Cgf

2

8
g′

2

(
(1− cθ)2 s2

θ

s2
θ (1 + cθ)

2

)
. (C.12)

The above formulas explicitly show that in the limit θ → 0, the multiplets receive a common

mass, while in the triplet N only the charged components receives a correction from the

hypercharge gauge boson.

The contribution of top loops to the pNGB masses (and potential) is in eq. (2.33). After

imposing the conditions on the pre-Yukawas that ensure a custodial invariant vacuum, i.e.

Re(YD) = 0 and Im(YT ) = 0, and using the arbitrary phase redefinitions to fix Yt real and

β = 0 (i.e., Im(YD) = 0), the mass matrices depend on 4 independent parameters: the top

Yukawa Yt, YT and the complex parameter Y0. Contrary to the other contributions, the

top loops generate mixing among all the neutral pNGBs (expect the Higgs-like state h1),

and the charged ones. The mass correction to h1 is given by:

∆M2
h1 = −2Ctf

2Y 2
t c2θ . (C.13)

The singlet s is also left unmixed:

∆M2
s = 2Ctf

2Y 2
t s

2
θ . (C.14)

The contribution to the neutral masses, in the basis {A0, h2,∆0, N0}, and writing Y0 =

Y R
0 + iY I

0 is given by:

∆M2
0 = 2Ctf

2


Y 2
t s2

θ 0 1
2
√

2
YtY

I
0 s2θ

1
2
√

2
YtY

I
0 s2θ

0 Y 2
t s2

θ
1√
2
YtY

R
0 sθ

1√
2
YtY

R
0 sθ

1
2
√

2
YtY

I
0 s2θ

1√
2
YtY

R
0 sθ

(
Y 2
t − 1

2Y
2
T

)
s2
θ −1

2Y
2
T s2

θ

1
2
√

2
YtY

I
0 s2θ

1√
2
YtY

R
0 sθ −1

2Y
2
T s2

θ

(
Y 2
t − 1

2Y
2
T

)
s2
θ

 . (C.15)
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It is interesting to notice that in the case of real pre-Yukawas, Y I
0 = 0, A0 decouples from

the other neutral scalars, due to the different CP properties of the fields: in fact, A0 is

CP-even in this limit. On the other hand, for a purely imaginary Y0, i.e. Y R
0 = 0, it is h2

that decouples: in this limit therefore, one can redefine the CP properties of the pNGBs

so that h2 is CP even and A0 CP-odd. In the charged sector, in the basis {H±,∆±, N±},
we have

∆M2
± = 2Ctf

2

 Y 2
t s2

θ − 1√
2
Yt(Y

R
0 + iY I

0 cθ) sθ Y 2
t

1√
2
Yt(Y

R
0 − iY I

0 cθ) sθ

− 1√
2
Yt(Y

R
0 − iY I

0 cθ) sθ
(
Y 2
t − 1

2Y
2
T

)
s2
θ −1

2Y
2
T s2

θ

1√
2
Yt(Y

R
0 + iY I

0 cθ) sθ −1
2Y

2
T s2

θ

(
Y 2
t − 1

2Y
2
T

)
s2
θ

 .

(C.16)
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