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1 Introduction

1.1 Dyson-Schwinger equations

The correlation functions of Euclidean quantum field theory are defined by the path

integral:

〈O1(x1) . . .On(xn)〉 =
1

Z

∫
Γ
DΦ e−

1
~S[Φ] O1(x1) . . .On(xn) , (1.1)

suitably regularized and renormalized. The classical theory is governed by the Euler-

Lagrange equations, which are derived from the variational principle:

δS[Φcl] = 0 (1.2)

These equations are modified in the quantum theory: consider an infinitesimal trans-

formation

Φ −→ Φ + δΦ (1.3)

Assuming (1.3) preserves the measure DΦ in (1.1) (no anomaly), then

〈O1(x1) . . .On(xn)δS[Φ]〉=~
n∑
i=1

〈O1(x1) . . .Oi−1(xi−1)δO(xi)Oi+1(xi+1) . . .On(xn)〉 (1.4)
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Figure 1. Deformation of the integration contour: Γ→ Γ′.

In (1.3) the change of variables can be also interpreted as a small modification of the

integration contour Γ in (1.1), Γ→ Γ′ = Γ + δΓ, as in the figure 1.

The small change of contour does not change the integral of a closed form.

The usefulness of the Dyson-Schwinger equations depends on whether one can find a

convenient set of observables Oi in (1.4) and perhaps also take a limit in order to get a

closed system of equations. Formally, the loop equations [69, 72] are an example of such

a system. Another, related example, is the matrix model, i.e. the zero dimensional gauge

theory. The simplest model is the single matrix integral:

Z =

∫
LieU(N)

[
DΦ

VolU(N)

]
e
− 1
gs

TrNVp+1(Φ)
(1.5)

with the polynomial potential

Vp+1(x) =

p∑
k=0

tk
(k + 1)!

xk+1 (1.6)

The convenient observable is

Y(x) = gsTrN
1

x− Φ
− V ′(x) (1.7)

In the limit N → ∞, gs → 0, with ~ = gsN fixed, the expectation value Y (x) = 〈 Y(x) 〉
obeys:

Y (x)2 = V ′p+1(x)2 + fp−1(x) (1.8)

where fp−1(x) is a degree p− 1 polynomial of x:

fp−1(x) =

〈
TrN

(
V ′(Φ)− V ′(x)

Φ− x

) 〉
(1.9)

whose coefficients encode the expectation values of degree ≤ p − 1 Casimirs of Φ. One

can reformulate (1.8) somewhat more invariantly by stating that the singularities of Y(x)

disappear in 〈 Y(x) 〉2, in the planar limit N → ∞. For finite N, ~ the Dyson-Schwinger

equation has the form 〈
Y(x)2 − gs ∂xY(x)

〉
= V ′p+1(x)2 + fp−1(x) (1.10)
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Although the equation (1.10) is not a closed system of equations per se, it illustrates a

principle, which we shall generalize below: given the basic operator Y(x) which, as a

function of the auxiliary parameter x has singularities, one constructs an expression, e.g.

T(x) = Y(x)2 − ~∂xY(x) (1.11)

whose expectation value has no singularities in x for finite x, cf. (1.10). We shall be able

to generalize this procedure for the supersymmetric gauge theories in various spacetime

dimensions.

1.2 Non-perturbative Dyson-Schwinger identities

Let us now study the identities, which can be interpreted as the analogs of (1.4), (1.10)

corresponding to non-trivial permutations of homology classes Γ =
∑

a naΓa −→ Γ′ =∑
a n
′
aΓa, where (Γa) is some basis in the relative homology, cf. [7]

H 1
2

dim(FC, FC
+)

where FC is the space of complexified fields, and FC
+⊂FC is the domain, where ReS[Φ]�0.

H. Nakajima [76] discovered that the cohomology of the moduli spaces of instantons car-

ries representations of the infinite-dimensional algebras (this fact was used in the first strong

coupling tests of S-duality of maximally supersymmetric gauge theories [118]). These alge-

bras naturally occur in physics as symmetries of two dimensional conformal theories. This

relation suggests the existence of a novel kind of symmetry in quantum field theory which

acts via some sort of permutation of the integration regions in the path integral. The trans-

formations of cohomology classes do not, typically, come from the point symmetries of the

underlying space. Indeed, the infinitesimal symmetries, e.g. generated by some vector field

v ∈ Vect(X) act trivially on the de Rham cohomology H∗(X) of X, as closed differential

forms change by the exact forms:

δω = Lievω = d(ιvω) =⇒ [δω] = 0 ∈ H∗(X) (1.12)

The symmetries of the cohomology spaces come, therefore, from the large transformations

f : X→ X or, more generally, the correspondences L ⊂ X× X:

φL = t∗ (δL ∧ s∗) : H∗(X)→ H∗(X) (1.13)

where δL is the Poincare dual to L, the maps s, t are the projections

X× X
s ↙ ↘t

X X

(1.14)

and we assume the compactness and smoothness. There exist generalizations which relax

these assumptions.

The physical realization of the symmetries generated by (1.14) is yet to be understood.

It was proposed in [89, 97, 98] that there are symmetries acting between different quantum
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Figure 2. Path integral in U(3) gauge theory in the sector with k = 14 instanons. The labels

(λ
(1)
1 , λ

(1)
2 , . . .)(λ

(2)
1 , λ

(2)
2 , . . .)(λ

(3)
1 , λ

(3)
2 , . . .) denote various instanton configurations.

field theories, for example changing the gauge groups. Conjecturally [81] supersymmetric

domain walls in quantum field theory separating different phases of one theory or even

connecting, e.g. in a supersymmetric fashion, two different quantum field theories can be

used to generate the generalized symmetries of the sort we discussed earlier. More precisely,

one exchanges the spatial and the temporal directions, producing the S-brane [48] version

of the domain wall.

This paper deals with another type of large symmetries. They are generated by the

transformations (1.3) changing the topological sector, i.e. mapping one connected compo-

nent of the space of fields to another. We shall be concerned with gauge theories, i.e. the

Yang-Mills theory on the space-time N,

Z =

∫
DA exp

(
− 1

4g2

∫
N

TrFA ∧ ?FA +
iϑ

8π2

∫
N

TrFA ∧ FA
)

(1.15)

with the gauge group Gg, and its supersymmetric generalizations. The connected com-

ponents of the space of gauge fields are labeled by the topology types of the principal

Gg-bundles, and measured, in particular, by the instanton charge

n = − 1

8π2

∫
N

TrFA ∧ FA. (1.16)

Gauge theory path integral is the sum over n of the path integrals over the space of fields

of fixed topology: see figure 2.

The analog of the contour deformation (1.3) is the discrete deformation, as in the

figure 3.

There is no a priori way to deform a connection A0 on a principal bundle P0 to a

connection A1 on a principal bundle P1, which is not isomorphic to P0. However, imagine

that we modify P0 in a small neighborhood of a point x ∈ N so that it becomes isomorphic

to P1. It means that outside a small disk Dx ⊂ N there is a gauge transformation, which

makes A0 deformable to A1. One can loosely call such a modification adding a point-like

instanton at x

A −→ A+ δ(1)
x A (1.17)
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Figure 3. Path integral in U(3) gauge theory in the sector with k = 14 instanons, and discrete

deformation to account for k = 15 instantons.

One can imagine a successive application of the modifications δ
(1)
x1 δ

(1)
x2 , which add point-like

instantons at two distinct points x1 6= x2 ∈ N, or adding two instantons at the same point,

A −→ A+ δ
(2)
x A, and so on.

The specific realization of such modifications is possible in the string theory context,

where the gauge theory instantons are the codimension four D-branes dissolved inside

another brane [28]. The modification changing the instanton number is then a transition

where, say, a point-like instanton becomes a D0-brane departed from the D4-brane.

1.3 Organization of the presentation

We want to study such modifications in the gauge theory language. Specifically, we shall

work in the context of N = 2 supersymmetric gauge theories subject to Ω-deformation.

We explore these theories using the special observables X and Y, which will help us to

organize the non-perturbative Dyson-Schwinger identities reflecting the invariance of the

path integral with respect to the transformations (1.17). We shall see that these identities

are organized in a structure, the qq-characters, which suggest a deformation of the q-

deformed Kac-Moody symmetry. The latter is familiar from the study of lattice and massive

integrable field theories in two dimensions [10, 20–23, 30–33, 35, 36, 38, 39, 53, 60, 109–115].

The qq-characters are local observables, the corresponding operators can be inserted

at a point in space-time. One can also define and study non-local observables, which are

associated to two-dimensional surfaces in space-time. These will be studied elsewhere.

It is worth revealing at this point that the qq-characters (and the analogous surface

operators) can be defined most naturally in the context of string theory, where the gauge

– 5 –



J
H
E
P
0
3
(
2
0
1
6
)
1
8
1

theory in question arises as a low energy limit of the theory on a stack of D3-branes

(the ‘physical’ branes) in some supersymmetric background. The qq-characters in this

realization are the low-energy limits of the partition function of the auxiliary theory, which

lives on a stack of D3-branes intersecting the physical branes transversely at a point. We

define the qq-character operators in the presence of the surface operators in [103].

In the companion paper [100] these constructions of gauge theories with and without

surface defects, as well as the qq-character operators are given a unified treatment using

what we call the gauge origami, a generalized gauge theory, which is best thought of a

low-energy limit of a theory on a stack of Dp-branes in type II string theory, which span

the coordinate C2-planes inside C4 times a common flat 2p− 4-dimensional space.

Orbifolding this construction by discrete symmetries, preserving supersymmetry and

the Ω-deformation, leads to more examples of qq-observables and defect operators in quiver

gauge theories on asymptotically locally Euclidean spaces.

These constructions can be realized mathematically with the help of novel moduli

spaces, which we call the crossed instantons and the spiked instantons. The space of

crossed instantons describes the low-energy modes of open strings connecting k D(−1)

instantons and two stacks of D3-branes, spanning two transversely intersecting copies of

R4 inside R8. When one of the two stacks is empty the moduli space coincides with the

ADHM moduli space of (noncommutative) instantons on R4, together with the obstruction

bundle, isomorphic, in this case, to the cotangent bundle. The space of spiked instantons

is the further generalization, describing the low-energy modes of the open strings stretched

between the D(−1)-instantons and six stacks of D3-branes spanning the coordinate com-

plex 2-planes in C4, a local model of the maximal number of complex surfaces intersecting

at a point in a Calabi-Yau fourfold.

In the next section we recall the relevant details about the BPS side of the BPS/CFT

correspondence, the supersymmetric partition functions of N = 2 theories. In this paper

we discuss the bulk partition functions, in the companion papers [100, 103] we study

the theories with defects. We also give a rough definition of the X and Y observables,

and some physics behind them. In the section 3 we review quiver gauge theories with

unitary gauge groups, which are superconformal in the ultraviolet. The section 4 gives the

mathematical expression for the integrals over instanton moduli spaces. The path integrals

in the quiver gauge theories under consideration, with and without defects, reduce to those

finite dimensional integrals by localization. The section 5 defines the Y-observables in gauge

theory, both in the physical theory and in the mathematical problem of integration over the

instanton moduli. The section 6 introduces informally the X-observables, the qq-characters,

and formulates the main theorem. The section 7 presents the examples of qq-characters.

The section 8 defines the qq-characters rigorously, by explicit formulas.
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– 6 –



J
H
E
P
0
3
(
2
0
1
6
)
1
8
1

thanks are to O. Tsymbalyuk who read the preliminary versions of this manuscript and sug-

gested lots of improvements. Part of the work was done while the author visited the Euler

International Mathematical Institute in Saint-Petersburg and the Imperial College London.

Research was supported in part by the NSF grant PHY 1404446.

The results of the paper, notably the formulae for the qq-characters and their con-

sequences, the equations on the gauge theory correlation functions, were reported at.1

The preliminary version of this paper was published under the title “Non-Perturbative

Schwinger-Dyson Equations: From BPS/CFT Correspondence to the Novel Symmetries

of Quantum Field Theory” in the proceedings [47] of the ITEP conference (June 2013) in

honor of the 100-th anniversary of Isaac Pomeranchuk. It took us a long time to write up

all the details of the story. While the paper was being prepared, several publications have

appeared with some degree of overlap. The paper [56] supports the validity of our main

theorem in the case of the A-type quivers. The papers [116, 117] contain some discussion

of the (0, 4)-sigma model on our moduli space M(n, w, k) (for ζ = 0). The paper [16] con-

tains the first few instanton checks of some of the results of our paper (for the Â0 theory).

The paper [41] studies the codimension defects using the superconformal index and sphere

partition functions, and the RG flows from vortex constructions, also at the level of the

first few instanton checks. The paper [14] discusses the algebra of our Y -observables in the

A-type quiver theories.

2 The BPS/CFT correspondence

We start by briefly reviewing the BPS/CFT correspondence [83] between supersymmet-

ric field theories with eight supercharges in four, five, and six dimensions, and conformal

1Various conferences in 2013-2015:

• “Facets of Integrability: Random Patterns, Stochastic Processes, Hydrodynamics, Gauge Theories

and Condensed Matter Systems”, workshop at the SCGP, Jan 21-27, 2013

• Gelfand Centennial Conference: A View of 21st Century Mathematics, MIT, Sept 2013

• ITEP conference in honor of the 100-th anniversary of Isaac Pomeranchuk, June 2013

• MaximFest, IHES, June 2013

• Strings’2014, Princeton, June 2014

• ‘Frontiers in Field and String Theory’, Yerevan Physics Institute, Sept 2014

• “Gauged sigma-models in two dimensions”, workshop at the SCGP, Nov 3-7, 2014

• “Wall Crossing, Quantum Integrable Systems, and TQFT”, Nov 17-21, 2014

• “Recent Progress in String Theory and Mirror Symmetry”, FRG workshop at Brandeis, Mar 6-7,

2015

• “Resurgence and localization in string theory and quantum field theory”, workshop at the SCGP,

Mar 16-20, 2015

• “Algebraic geometry and physics”, workshop at the Euler Mathematics Institute, Saint-Petersburg,

May 2015

seminars in 2013-2015: http://scgp.stonybrook.edu/video portal/video.php?id=1599.
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and integrable theories in two dimensions. It is based on the observation that the super-

symmetric partition functions [94] are the remarkable special functions, which generalize

all the known special functions given by the periods, matrix integrals, matrix elements of

group, Kac-Moody, and quantum group representations etc. [67, 84, 94]. The particular

implementations of this correspondence are well-known under the names of the AGT con-

jecture [2, 120], and the Bethe/gauge correspondence [89, 96] (see [43, 44, 74] for the prior

work). For details the interested reader may consult the references in, e.g. [86].

2.1 N = 2 partition functions

For the definition and some details see [84, 94]. The supersymmetric partition function of

N = 2 theory

Z(a; m; τ ; ε) = Ztree(a; m; τ ; ε) Z1−loop(a; m; ε) Z inst(a; m; q; ε) (2.1)

depends on the vacuum expectation value a of the adjoint Higgs field in the vector multiplet,

it belongs to the complexified Cartan subalgebra of the gauge group of the theory, the set

m of complex masses of the matter multiplets, and the set τ of the complexified gauge

couplings,

τ =
ϑ

2π
+

4πi

g2
,

one per simple gauge group factor (we shall not discuss the issue of SU(n) versus U(n)

gauge factors in this paper). We denote by q the set of the exponentiated couplings, the

instanton factors,

q = exp 2πiτ

The non-perturbative factor Z inst(a; m; q; ε) in (2.1) has the q-expansion, for small |q|:

Z inst(a; m; q; ε) =
∑
k

qk Zk(a; m; ε) (2.2)

Finally, ε=(ε1, ε2)∈C2 are the complex parameters of the Ω-deformation of the theory [94].

2.1.1 Asymptotics of partition functions

The function (2.1) contains non-trivial information about the theory. For example, the

asymptotics at ε → (0, 0), for generic a, produces the prepotential [106, 107] of the low-

energy effective action of the theory:

Z(a; m; τ ; ε) ∼ exp
1

ε1ε2
F(a; m; τ ) + less singular in ε1, ε2. (2.3)

the low-energy effective action being given by the superspace integral

Seff =

∫
R4|4

d4xd4ϑ F(a + ϑψ + ϑϑF− + . . .; m; τ ) (2.4)

– 8 –
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The prepotential F(a; m; τ ) as a function of a determines the special geometry [34] of the

moduli space Mvector of Coulomb vacua:

d

 a

∂F
∂a

 = periods of $C (2.5)

along the 1-cycles on the abelian variety Ab, the fiber p−1(b) of the Lagrangian projection

p : P −→Mvector (2.6)

of a complex symplectic manifold (P, $C), the moduli space of vacua of the same gauge

theory, compactified on a circle [108]. The manifold P is actually the phase space of an

algebraic integrable system [27]. The first example of this relation, the periodic Toda chain

for the SU(2) pure super-Yang-Mills theory, was found in [46]. The asymptotics of (2.1)

at ε2 → 0 with ε1 = ~ fixed, for generic a, gives the effective twisted superpotential

Z(a; m; τ ; (~, ε2)) ∼ exp
1

ε2
W(a; m; τ ; ~) + less singular in ε2, ε2 → 0 (2.7)

of a two dimensional effective theory. This function plays an important role in quantization

of the symplectic manifold P and the Bethe/gauge correspondence [86, 87, 89, 90, 96].

The asymptotics (2.7), (2.3) are modified in an intricate way when the genericity

assumption on a is dropped. The interesting non-generic points are where a and ε1 (with

ε2 → 0) are in some integral relation. The behavior near such special points and its rôle

in the Bethe/gauge correspondence will be discussed elsewhere.

2.2 Defect operators and lower-dimensional theories

In addition to the Z-functions, which are the partition functions of the theory on R4,

in [103] we also consider the partition functions Ψ of the same gauge theory in the presence

of defects preserving some fraction of supersymmetry. These defects could be point-like,

or localized along surfaces. We derive the differential equations, which can be used to

relate the theory with a surface operator to the theory without one. As a by-product we

get the explicit realization of the Bethe/gauge correspondence [89, 96] with an additional

bonus: the gauge theory produces not only the equations, characterizing the spectrum of

the quantum integrable system, but also gives an expression for the common eigenfunction

of the full set of quantum integrals of motion. In particular, we shall show [102] in that

a class of surface defect operators in the N = 2 theory with U(n) gauge group and 2n

fundamental hypermultiplets solves the Knizhnik-Zamolodchikov (KZ) equation, which is

obeyed by the 4-point conformal block of the SU(n) Wess-Zumino-Witten theory on the

sphere; that a class of surface defect operators in the N = 2∗ theory with the U(n) gauge

group solves the Knizhnik-Zamolodchikov-Bernard (KZB) equation, which is obeyed by

the 1-point conformal block of the SU(n) Wess-Zumino-Witten theory on the torus. In

the ε2 → 0 limit these surface operators become the eigenfunctions of Gaudin Hamiltonian

and the elliptic Calogero-Moser Schrödinger equation, respectively, in agreement with the

conjectures in [3, 96] and earlier ideas.

– 9 –
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In addition to the codimension two defects in four or five dimensional theories we can

also consider lower dimensional theories. For example, gauge theory on the AdS3 space with

appropriate boundary conditions can be viewed as the U(1)-orbifold of a four dimensional

superconformal gauge theory. We study these cases in [100].

2.3 The Y- and X-observables

The main tools in our analysis are the gauge invariant observables Yi(x) and Xi(x), defined

for each simple factor U(ni) of the gauge group. Here i belongs to the set Vertγ , which in

our story is the set of vertices of a quiver. The Yi(x) are the suitable generalizations of the

characteristic polynomials of the adjoint Higgs field,

Yi(x) ∼ Det(x− Φi) . (2.8)

They are the gauge theory analogues of the matrix model resolvents (1.7). As a function of

x, each operator Yi(x) has singularities, i.e. the relation (2.8) is modified. This modification

is due to the mixing between the adjoint scalar and gluinos, e.g.

Φi ∼ Φcl
i + εαβεj′j′′ (d

∗
Ai
dAi

)−1 [ψαj
′

i , ψβj
′′

i ] (2.9)

which have zero modes in the presence of gauge instantons, leading to the poles in x, in

a way we make much more precise below. The Xi(x) are composite operators, built out

of Y’s. They are Laurent polynomials or series in Yi(x)’s with shifted arguments and their

derivatives. They are the analogues of the matrix model operators (1.11). Their main

property is the absence of singularities in 〈 Xi(x) 〉 for finite x, similarly to the matrix

model case, cf. (1.10). In the weak coupling limit Xi(x) → Yi(x) → (2.8). We define also

the observables Xw,ν(x), labelled by the string w = (wi)i∈Vertγ ∈ ZVertγ
≥0 of non-negative

integers and the string ν = (~νi)i∈Vertγ , ~νi ∈ Cwi of complex numbers. Here Vertγ is the set

of simple gauge group factors. The expectation values
〈
Xw(x)

〉
also have no singularities,

while in the limit of zero gauge couplings Xw,ν(x) approach

∏
i

wi∏
f=1

Yi(x+ νi,f ).

We call Xw,ν(x) the qq-characters. For w = (δi,j)j∈Vertγ , and ν = 0, we call Xw,ν(x) =:

Xi(x) the fundamental qq-characters. The reason for and the meaning of the terms will

hopefully become clear in the coming sections.

2.4 The physics of X-observables

The X-observables can be interpreted as the partition functions of the auxiliary gauge

theory living on a space, transverse to the space-time of our gauge theory, the “physical

space-time”. The auxiliary theory has massive degrees of freedom coupled to the degrees

of freedom of our gauge theory at some point p ∈ R4 in the physical space-time, so that

integrating them out induces an operator Ow,ν,x(p) inserted at p. The data w is the choice

of the auxiliary gauge theory while ν and x fix its vacuum.
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Figure 4. Gauge theory on with observables obtained by integrating out degrees of freedom living

on the orbifolded transverse directions.

Figure 5. Gauge theory with X-observables in the brane picture.

The dimensionality of the auxiliary gauge theory is a somewhat subtle issue. Most

of the theories we study in the paper, such as the N = 2 quiver theories with affine

quivers have the X-observables which come from a four dimensional auxiliary theory. The

theories with finite quivers can be viewed as a sector in the auxiliary four dimensional

theory corresponding to an affine quiver. In fact, the finite quivers of A-type can be

realized as a subsector of the Â∞ theory, which corresponds to the orbifold of C2 by

U(1). Gauge theory living on such an orbifold can be viewed either as a three dimensional

theory on a manifold with corners (or, conformally, on the AdS3), or, for the purposes of

supersymmetric partition functions, as a two dimensional sigma model [100].

Here is a sketch of the string theory construction. Consider IIB string theory on the

ten-dimensional manifold of the form R2
φ × N ×W/Γ, where N = R4, W = R4, and Γ a

finite subgroup of SU(2) (see [54] for the discussion of IIB string theory on ALE spaces).

Recall [29] that N = 2 quiver gauge theories with affine A,D,E quivers can be realized

as the low energy limit of the theory on a stack of n D3-branes located at ϕ×N× 0, with

ϕ ∈ R2
φ a point, and 0 the tip of the W/Γ singularity, with Γ being the discrete subgroup

of SU(2), McKay dual [71] to the corresponding A,D,E simple Lie group.

The worldvolume of these D3 branes is a copy of N. Let us now add a stack of w

D3-branes located at x × 0 ×W/Γ, with the worldvolume being a copy of W/Γ. Here

x ∈ R2
φ ≈ C is a complex number, and 0 ∈ N is a fixed point. Here is the picture:

The low energy configurations in this system of two orthogonal stacks of D3 branes

are labelled by the separation of branes along R2
φ encoded in ν, and by the choice of flat

U(w) connection at infinity S3/Γ of W/Γ, which is equivalent to the choice of the string w.
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Figure 6. Gauge theory with the observables X(x1),X(x2),X(x3).

The qq-character Xw,ν(x) is simply the observable in the original theory on the stack of

N D3-branes living along N, which is obtained by integrating out the degrees of freedom on

the transversal D3-branes, in the vacuum corresponding to the particular asymptotic flat

connection w and the vacuum expectation values ν of the scalars in the vector multiplets

living on W/Γ.

The next piece of our construction is the Ω-deformation using a subgroup of the spin

cover of the group Spin(8) of rotations of W × N which commutes with Γ, preserves the

configuration of branes, and some supersymmetry. This subgroup generically has rank

two, which enhances to three for Γ of A type. The parameters of the Ω-deformation are

generically two complex numbers ε = (ε1, ε2), and for Γ of A-type there is an additional

parameter m. This parameter is the mass of the adjoint hypermultiplet in the Â0-case,

and the sum of masses of all k+1 bi-fundamental hypermultiplets in the Âk case for k > 0.

It is convenient to introduce four ε-parameters, εa, a = 1, 2, 3, 4, which sum to zero:

ε1 + ε2 + ε3 + ε4 = 0 (2.10)

so that ε3 = m, ε4 = −m − ε, ε = ε1 + ε2. Together they parametrize the generic SU(4)

Ω-deformation.

The K-theoretic and elliptic versions of qq-characters correspond to the five- and six-

dimensional theories, which are engineered in the analogous fashion, with R2
φ replaced by

S1 × R1 and S1 × S1, respectively. In the five dimensional case we use IIA string and the

D4 branes wrapped on S1 instead of D3’s, in the six dimensional case we are back in the

IIB realm with D5 branes wrapped on S1 × S1.

The configuration of D3 branes which we described above can be generalized, by

considering other orbifolds of the ten dimensional Euclidean space R2
φ × N × W. For

example, the orbifolds R2
φ × N/ΓN ×W/ΓW with D3 branes wrapping N tW define the

qq-characters relevant for the γΓW
-quiver gauge theory on the ALE space Ñ/ΓN. The most

general orbifold we could employ is by the subgroup Γ = ΓN × Γ∆ × ΓW ⊂ SU(2)N,L ×
SU(2)∆ × SU(2)W,L ⊂ Spin(4)N × Spin(4)W ⊂ Spin(8). We explain the rôle of this group

and its subgroups in the following sections. Using this construction we also realize various

defect operators in various quiver gauge theories on conical spaces.

The final piece of the construction is turning on the appropriate B-field which makes

the configurations where the D(−1)-instantons are separate from the D3-branes non-

supersymmetric. The D(−1)-instantons bound to the two orthogonal stacks of D3 branes

give rise to what we call the crossed instantons. We can also study the generalization

involving six stacks of D3 branes spanning complex 2-planes inside R8 ≈ C4. The complex

coordinate x parametrizes the remaining R2 ≈ C1, which is orthogonal to C4 in the ten

dimensional Euclidean space-time of the type IIB string.
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The main claim, i.e. the absence of singularities in x of
〈
Xw,ν(x)

〉
, is the statement

that the combined system of the intersecting stacks of D3 branes has no phase transitions

and no runaway flat directions at special values of x, in the presence of Ω-deformation.

Mathematically, the argument is the compactness of the moduli space of crossed (for two

orthogonal stacks of branes) and spiked instantons (for six stacks of branes), the super-

symmetric configurations of the combined system of branes, with the Ω-deformation and

appropriate B-field turned on. We describe the moduli spaces in [101].

One can also apply the orientifold projection (which, unfortunately, would not be

consistent with the B-field we are using) to arrive at the theory of crossed instantons for

the orthogonal and symplectic groups.

2.5 Hidden symmetries

The IIB string theory on R4/Γ × R1,5 contains the non-abelian tensionless strings [119]

with the A,D,E tensor symmetry (it becomes the gauge symmetry of the A,D,E type

upon compactification on a circle, i.e. when Σ = S1 × R1).

In the limit ε1, ε2 → 0 our qq-characters approach the ordinary characters for the Kac-

Moody group built on the quiver (i.e. the affine Lie group Â, D̂, Ê for affine quivers, and

the simple A,D,E groups for the finite quivers), [85]. The non-abelian tensor symmetry

seems to be realized on the worldvolume of D3 branes by the large field deformations which

lead to the non-perturbative Dyson-Schwinger equations we discuss in this paper. The qq-

character observables may teach us something important about the nature of the tensor

symmetry representation. See [58] for the discussion of the qq-deformed W-algebras and

their gauge theory realizations.

2.6 Some notations

2.6.1 Finite sets

We use the following notations for certain finite sets:

[p] ≡ {1, 2, . . . , p}, p ∈ Z+,

[0, q] ≡ {0, 1, 2, . . . , q}, q ∈ Z≥0

(2.11)

and

(xi)i∈I ≡ { xi | i ∈ I } (2.12)

Also for the set (zi)i∈I of complex numbers indexed by the set I we use the notation

zI =
∏
i∈I

zi (2.13)

for their product. This is consistent with the notation (2.23).

2.6.2 Roots of unity

i =
√
−1 , (2.14)

and

$p = exp
2πi

p
(2.15)

so that i = $4,−i = $3
4.
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2.6.3 Parameters of Ω-deformations

In four dimensions, we have two parameters ε = (ε1, ε2) ∈ C2. We also use their sum

ε = ε1 + ε2 , (2.16)

their exponents

q1 = eβε1 , q2 = eβε2 , q = eβε = q1q2 , (2.17)

and the virtual characters

P = (1− q1)(1− q2) , P ∗ = (1− q−1
1 )(1− q−1

2 ) (2.18)

The parameter β is the circumference of the circle of compactification of a 4+1 dimensional

supersymmetric theory.

In the context of the BPS/CFT correspondence, the parameter

b2 = ε1/ε2 (2.19)

is useful.

In eight dimensions, or for the theories in four dimensions with adjoint matter, it will

be useful to have four parameters

ε̄ = (ε, ε̃) ≡ (ε1, ε2, ε3, ε4) ∈ C4 , (2.20)

which sum to zero:

ε3 + ε4 = −ε (2.21)

We denote 4 = {1, 2, 3, 4} and

qa = eβεa , Pa = (1− qa), a ∈ 4

q∗a = q−1
a , P ∗a = (1− q−1

a ), (2.22)

For any subset S ⊂ 4 we define S̄ = 4\S, and:

qS =
∏
a∈S

qa, q∗S = qS̄ , PS =
∏
a∈S

Pa, P ∗S = (−1)|S| qS̄ PS (2.23)

so that q∅ = q4 = 1.

2.6.4 Chern characters and Euler classes

Let E → X be the rank m = rkE complex vector bundle, and ci(E) ∈ H2i(X,Z) the

corresponding Chern classes. Then e(E) = ctop(E) = cm(E) is the Euler class of E, and

εz(E) = e(E) + zcm−1(E) + z2cm−2(E) + . . . zm (2.24)

is the Chern polynomial.
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2.6.5 Weights from characters

For a virtual representation R of a Lie group H, the weights w are computed using its

character as follows:

R = R+ 	R− , Tr R±(eθ) =
∑

w∈W (R±)

ew(θ), Tr R(eθ) = Tr R+(eθ)− Tr R−(eθ) , (2.25)

where R± are the vector spaces, the actual representations of H, and W (R±) are the sets

of the corresponding weights (the linear functions on Lie(H) which take integer values on

the root lattice).

2.6.6 Chern polynomials from characters

We denote by εθ(R) the following Weyl-invariant rational function on the Cartan subalgebra

hC of Lie(HC):

εθ(R) =

∏
w∈W (R−)w(θ)∏
w∈W (R+)w(θ)

, θ ∈ hC, (2.26)

where the weights w(θ) are given by (2.25). Note that in (2.26) the weights of R+ are in

the denominator. It follows from the definition (2.25) that

εθ(R)εθ(−R) = 1 , (2.27)

if R does not contain ±1 as a summand, and, more generally:

εθ(R1 ⊕R2) = εθ(R1)εθ(R2) . (2.28)

Also,

εθ(R
∗) = ε−θ(R) = (−1)dR εθ(R) (2.29)

where

dR = dimCR
+ − dimCR

− (2.30)

2.6.7 Chern functions from characters

In our story we occasionally encounter the generalizations of the formulas like (2.26) where

the representations R± are infinite dimensional. In order for (2.26) to make sense in this

case we use the

2.6.8 ζ-function regularization

The map from the character (2.25) to εθ(R) can be given in the integral form:

εθ(R) = exp
d

ds

∣∣∣∣∣
s=0

Λs

Γ(s)

∫ ∞
0

dβ

β
βsTr Re

βθ (2.31)

where one chooses s and θ with the real part in the appropriate domain to ensure the

convergence of the integral in the right hand side of (2.31), and then analytically continues.

For finite dimensional R the result does not depend on Λ. For infinite dimensional R the
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left hand side of (2.31) really is defined by the right hand side. More precisely, we assume

R is graded,

R =

∞⊕
n=0

Rn , (2.32)

with the finite dimensional virtual subspaces Rn = R+
n −R−n , dimR±n <∞, whose superdi-

mensions grow at most polynomially with n. We define

εθ(R) = Limt→+0 exp
d

ds

∣∣∣∣∣
s=0

Λs

Γ(s)

∫ ∞
0

dβ

β
βs
∞∑
n=0

e−βt(n+1) Tr Rne
βθ (2.33)

where the integral in the right hand side converges for sufficiently large <(t),<(s), defining

an analytic function, whose asymptotics near s, t = 0 defines the left hand side.

For example, take R = C[z1, z2, z3, . . . , zδ] with H = (C×)
δ+1

acting via:

t : f 7→ f t, f t(z) = t0f(t−1
1 z1, t

−1
2 z2, . . . , t

−1
δ zδ) (2.34)

The character Tr Re
βθ

Tr Re
βθ = eβθ0

δ∏
i=1

1

1− eβθi
(2.35)

and the refined character (where we define the grading by the polynomial degree)

∞∑
n=0

e−βt(n+1) Tr Rne
βθ = eβ(θ0−t)

δ∏
i=1

1

1− eβ(θi−t)
(2.36)

are easy to compute.

The integral on the right hand side of (2.33) absolutely converges for <t > maxδi=0<θi
and <s > δ.

2.6.9 Asymptotics of the ζ-regularized εθ’s

Let R be a virtual representation, θ ∈ hC, and χR,θ(β) = Tr Re
βθ. For β → 0 the function

χR,θ(β) has an expansion:

χR,θ(β) =

+∞∑
n=−δR

βn χR,θ,n (2.37)

where χR,θ,n is a homogeneous rational function of θ of degree n, obeying:

χR∗,θ,n = χR,−θ,n = (−1)nχR,θ,n (2.38)

We are interested in the large x asymptotics of

ε−x+θ(R) ≡ exp
d

ds

∣∣∣∣∣
s=0

Λs

Γ(s)

∫ ∞
0

dβ

β
βse−βxTr Re

βθ ∼

∼ exp

− 0∑
n=−δR

χR,θ,n
(−x)n

(−n)!

(
log
( x

Λ

)
−
−n∑
k=1

1

k

)
× exp

( ∞∑
n=1

χR,θ,n
(n− 1)!

xn

)
(2.39)
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(since the variable x shifts the auxiliary variable t used to regularize an infinite trace, we

can safely set t = 0 in (2.39)). Thus,

εx+θ(R
∗) = ε−x+θ(R) × exp

−πi
0∑

n=−δR

χR,θ,n
(−x)n

(−n)!

 (2.40)

2.6.10 Flips  

We shall also use a notation, for a virtual representation R = R1 ⊕R2,

R R1 ⊕R∗2 (2.41)

and similarly for their characters:

TrR  TrR1 + Tr∗R2
(2.42)

where we also use the convention

χ∗ =
∑

w∈W (R)

e−w(θ), for χ =
∑

w∈W (R)

ew(θ) (2.43)

Sometimes, when the choice of the element θ ∈ hC is understood, we denote the trace

TrR(eθ) in the representation R by the same letter R.

For example

(1 + q−1)(1− q1) 1− q1 + q1q2 − q2 = P (2.44)

The multiplicative measures of the finite dimensional virtual representations R, given by

the products (2.26) of weights w(θ) and their K-theoretic analogues, given by the products

of 2sin
(
w(θ)

2

)
do not change, up to a sign, under the  modifications:

εθ(R
′) = (−1)dR2 εθ(R), R R′ (2.45)

In the infinite dimensional case the multiplicative anomaly of the measure (2.31) follows

from (2.40).

2.7 Equivariant virtual Chern polynomials

Let R be a virtual representation as above, and

R =
(
⊕w∈W (R+)R

+
w

)
	
(
⊕w∈W (R−)R

−
w

)
(2.46)

be the corresponding weight decomposition. Let Ew, with the weights w ∈W (R+)∪W (R−)

be some vector bundles over X, and

E =
(
⊕w∈W (R+)R

+
w ⊗ Ew+

)
	
(
⊕w∈W (R−)R

−
w ⊗ Ew−

)
(2.47)

be the associated virtual bundle over X. We denote by (cf. (2.24), (2.26))

εθ(E) =

∏
w∈W (R−) εw(θ)(Ew−)∏
w∈W (R+) εw(θ)(Ew+)

(2.48)

the rational function on the Cartan subalgebra hC with values in H∗(X,C).
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Figure 7. Note that the source and the target of an edge may coincide, as in the Â0 example

above.

3 Supersymmetric gauge theories

In this section we go back to the gauge theory narrative. Our gauge theories are charac-

terized by a quiver diagram. Let us start by reviewing what we mean by them.

3.1 Quivers

A quiver is an oriented graph γ, with the set Vertγ of vertices and the set Edgesγ of oriented

edges. We have two maps s, t : Edgesγ −→ Vertγ , sending each edge e to its source s(e)

and the target t(e), respectively.

We shall also use an unconventional term arrow which is a pair (e, σ), where e ∈
Edgesγ , σ = ±1. The set Arrowsγ = Edgesγ × 2Edgesγ of arrows is equipped with two maps

s̄, t̄ : Arrowsγ → Vertγ , defined by:

s̄(e, σ) =


s(e), if σ = +1

t(e), if σ = −1

t̄(e, σ) =


t(e), if σ = +1

s(e), if σ = −1

3.2 Quivers with colors

In addition to the quiver diagram, the gauge theory is characterized by the vectors n, m,

sometimes called the colorings of the quiver:

n = (ni)i∈Vertγ ∈ ZVertγ
>0 , m = (mi)i∈Vertγ ∈ ZVertγ

≥0 (3.1)

to which we associate the vector spaces Ni = Cni ,Mi = Cmi .

3.3 The symmetry groups

3.3.1 The gauge group

The gauge group Gg of the theory is the product

Gg =
�

i∈Vertγ

U(ni) (3.2)
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3.3.2 The flavor symmetry

The theory has the global symmetry which is usually called the flavor symmetry. The

flavor symmetry group Gf is a quotient:

Gf =

�
i∈Vertγ

U(mi)×U(1)Edgesγ

 /U(1)Vertγ (3.3)

where U(1)Vertγ acts on �
i∈Vertγ

U(mi)×U(1)Edgesγ

as follows:

(ui)i∈Vertγ :
(

(gi)i∈Vertγ , (ue)e∈Edgesγ

)
7→
(

(uigi)i∈Vertγ , (us(e)ueu
−1
t(e))e∈Edgesγ

)
(3.4)

This action is equivalently both left and right, therefore U(1)Vertγ is a normal subgroup

of ×i∈Vertγ U(mi) × U(1)Edgesγ . In fact, the flavor group Gf occasionally enhances. For

example, the N = 4 theory, viewed as an N = 2 supersymmetric theory, is a particular

example of the quiver theory, corresponding to the quiver Â0 with one vertex v, and one

edge e, connecting this vertex to itself s(e) = t(e) = v. The flavor symmetry is enhanced

from U(1) to SU(2) in this case. This is a subgroup of the R-symmetry group SU(4) which

commutes with the SU(2)×U(1)A R-symmetry of the particular N = 2 subalgebra of the

N = 4 theory.

3.3.3 Rotational symmetries

Our four dimensional gauge theories, in the absence of defects to be discussed below, are

Poincare invariant. In what follows we shall be breaking the translational invariance by

deforming the theory in a rotationally covariant way. The spin cover Spin(4)N of the group

of rotations is the product

Spin(4)N = SU(2)N,L × SU(2)N,R (3.5)

The regularization of the instanton integrals which we employ in [94] and here breaks the

Spin(4)N invariance down to its subgroup Grot = SU(2)N,L × U(1)N,R ≈ U(2) ⊂ Spin(4)N
which is the group of rotations of the Euclidean space-time N = R4, preserving the identi-

fication of the latter with the complex vector space C2.

Let S±N be the defining two dimensional representations (chiral spinors) of SU(2)N,L
and SU(2)N,R, respectively, so that NC = S+

N ⊗ S
−
N . Under Grot, S

−
N splits as LN ⊕ L−1

N .

Let us denote the two dimensional representation of Grot by QN ≈ C2. Then

QN = S+
N ⊗ LN . (3.6)
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3.4 The parameters of Lagrangian

The field content of the theory is the set of N = 2 vector multiplets Φi = (Φi, . . . , Ai),

i ∈ Vertγ , transforming in the adjoint representation of Gg, the set Qi = (Qi, . . . , Q̃i),

i ∈ Vertγ of hypermultiplets transforming in the fundamental representation Cni of Gg, and

the antifundamental representation Cmi of Gf, and the setQe, e ∈ Edgesγ of hypermultiplets

transforming in the bi-fundamental representation
(
Cns(e) ,Cnt(e)

)
of Gg.

The Lagrangian L of the theory is parametrized by the complexified gauge couplings

τ = (τi)i∈Vertγ ,

via

L = − 1

8π2

∑
i∈Vertγ

iReτi

∫
N

TrNi
FAi
∧ FAi

+

+ Imτi

∫
N

TrNi
FAi
∧ ?FAi

+ TrNi
DAi

Φi ∧ ?DAi
Φ̄i + TrNi

[Φi, Φ̄i]
2 + . . .

and the masses

m = (me)e∈Edgesγ ⊕ (mi)i∈Vertγ ,

where

me ∈ C, mi = diag(mi,1, . . . , mi,mi
) ∈ End(Cmi) . (3.7)

which enter the superpotential (in the N = 1 language)

W =
∑

i∈Vertγ

TrMi

(
miQiQ̃i

)
+

∑
e∈Edgesγ

meTrNs(e) Q̃eQe +

∑
i∈Vertγ

TrMi

(
QiΦiQ̃i

)
+

∑
e∈Edgesγ

TrNs(e)

(
Q̃eΦt(e)Qe − Q̃eQeΦs(e)

)
,

i.e. we view the scalars in the hypermultiplet Qi as the linear maps, the matrices:

Qi : Ni →Mi, Q̃i : Mi → Ni,

and those in Qe as

Qe : Ns(e) → Nt(e), Q̃e : Nt(e) → Ns(e) .

The vacua of the theory are parametrized by the Coulomb moduli

a = (ai)i∈Vertγ , ai = diag(ai,1, . . . , ai,ni
) ∈ End(Cni) , (3.8)

so that

〈 Φi 〉a = ai .

It is convenient to package the masses mi and the Coulomb moduli ai into the polynomials:

Pi(x) =

mi∏
f=1

(x− mi,f ) , Ai(x) =

ni∏
α=1

(x− ai,α) (3.9)
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We also use the characters

Ni =

ni∑
α=1

eβai,α , Mi =

mi∑
f=1

eβmi,f (3.10)

which contain the same information about the masses and Coulomb moduli as the polyno-

mials (3.9).

3.5 The group H

Define

H = Gg × Gf × Grot , (3.11)

The complexification of the Lie algebra of the maximal torus TH of this group is parame-

terized by (a; m; ε). It is the domain of definition of the supersymmetric partition functions

Zk in the eq. (2.2).

3.6 Perturbative theory

3.6.1 Perturbative consistency and asymptotic freedom

The theory defined by the quiver data is perturbatively asymptoticaly free if the one-loop

beta function of all gauge couplings is not positive. For this to be possible we must restrict

the gauge group to be the product of special unitary groups

Gg −→
�

i∈Vertγ

SU(ni) (3.12)

since the abelian factors are not asymptotically free, if there are fields charged under them.

For the SU(ni) gauge coupling the beta function is easy to compute:

βi = µ
d

dµ
τi = −2ni +mi +

∑
e∈t−1(i)

ns(e) +
∑

e∈s−1(i)

nt(e) (3.13)

The requirement βi ≤ 0 for all i ∈ Vertγ implies (see [51, 57, 65, 85] for details) that γ

is a Dynkin graph of finite or affine type of a simply-laced finite dimensional or affine Lie

algebra gγ . In the latter case m = 0 (not to be confused with m 6= 0).

3.6.2 Examples

1. The Ar-type quiver γ, with r ≥ 1, has:

Vertγ = [r], Edgesγ = [r−1], s(e) = e, t(e) = e+1, e = 1, . . . , r−1 . (3.14)

2. The quiver Âr, with r ≥ 0, has (see the figure 6)

Vertγ = Edgesγ = [r + 1], s(e) = e, t(e) = 1 + (e mod(r + 1)) . (3.15)

3. The D and E-type quivers have a single tri-valent vertex, see the figure 6.
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Figure 8. Affine A,D,E quivers with their n-coloring. Finite A,D,E quivers are obtained by

removing the green node.

3.6.3 Perturbative partition function

The description of the tree level and the perturbative contributions to the partition function

(the latter is given exactly by one loop computation) can be found in [86].

Here we just quote the results.

Ztree
γ (a; m; τ ; ε) =

∏
i∈Vertγ

q
− 1

2ε1ε2

∑ni
α=1 a

2
i,α

i , (3.16)

and

Z1−loop
γ (a; m; ε) = εa,m,ε(−T pert

γ ) (3.17)

where (cf. (3.10)):

T pert
γ =

1

(1− e−βε1)(1− e−βε2)

 ∑
i∈Vertγ

(Mi −Ni)N
∗
i +

∑
e∈Edgesγ

eβmeNt(e)N
∗
s(e)

 (3.18)

The character (3.18) is not a finite sum of exponents as in (2.25), so the map ε from the

sums of exponents to the products of weights is defined by analytic continuation, cf. (2.33):

εa,m,ε(−T pert
γ ) = − d

ds

∣∣∣∣∣
s=0

Λs

Γ(s)

∫ ∞
0

dβ

β
βs T pert

γ (3.19)

There are subtle points of the regularization of (3.19) related to boundary conditions in

gauge theory. These will be discussed elsewhere. The ultraviolet, Λ → ∞ asymptotics

of (3.19), has, a priori, the terms proportional to Λ2, Λ, Λ2logΛ, ΛlogΛ, and logΛ. The

physically relevant terms are in the last one, they correspond to the one-loop beta-function

of τi if the coefficient of logΛ contain the terms proportional to

ch2(Ni) ≡
ni∑
α=1

a2
i,α (3.20)

Thus, these terms are absent precisely when (3.13) holds.
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3.6.4 Beyond asymptotic freedom

If the asymptotic freedom/conformality conditions are not obeyed, our partition functions

are defined as formal power series in the qi couplings, and some additional couplings, which

we call the higher times.

3.6.5 The extended coupling space

Gauge theory can be deformed, in the ultraviolet, by the irrelevant (higher degree) oper-

ators, which preserve N = 2 supersymmetry. One adds to the tree level prepotential the

terms of the form:

F tree =
∑

i

∞∑
l=0

1

(l + 2)!
τi,lTrΦ

l+2
i (3.21)

The parameters τi,l with l > 0 are bosonic, in general nilpotent, variables. Actually, for

some observables one can make sense of the parameters τi,1 in a finite domain near zero [70].

One can also add the multi-trace operators ∼ TrΦl′
i TrΦ

l′′
j etc. which can be analyzed with

the help of Hubbard-Stratonovich transformation.

3.7 Realizations of quiver theories

3.7.1 Affine quivers and McKay correspondence

For affine quivers γ, the choice of gauge group Gg is characterized by a single integer N ,

for the equation βi = 0 for all i ∈ Vertγ implies:

ni = Nai (3.22)

where ai ≥ 1 solves

2ai =
∑

e∈t−1(i)

as(e) +
∑

e∈s−1(i)

at(e)

with the normalization, that for some 0 ∈ Vertγ , a0 = 1. It is well-known, that the numbers

ai = dimRi are the dimensions of the irreducible representations of some finite subgroup

Γ ∈ SU(2).

The Ar-type subgroup of SU(2) is Zr+1, whose generator ΩAr acts on C2 via (cf. (2.15)):

ΩAr : (z1, z2) 7→
(
$r+1 z1, $−1

r+1 z2

)
, (3.23)

so that Ωr+1
Ar

= 1. The Dr-type subgroup of SU(2) (r ≥ 4) is the product Z2(r−2) ×Z2 Z4,

whose generators ΩDr and ΞDr act on C2 via:

ΩDr : (z1, z2) 7→
(
$2(r−2) z1, $−1

2(r−2) z2

)
, ΞDr : (z1, z2) 7→ (z2,−z1) (3.24)

so that Ωr−2
Dr

= Ξ2
Dr

, Ξ4
Dr

= 1.

The E6,7,8-type subgroups SU(2) are the binary covers of the symmetry groups of the

three platonic solids (and their duals, see [85] for more details): see figure 9.

The quiver γ is associated to Γ as follows: the set Vertγ is identified with Γ∨, the

set of irreducible representations of Γ, 0 ∈ Vertγ corresponds to the trivial representation
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Figure 9. Platonic solids corresponding to E-type subgroups of SU(2).

R0 = C1. The set Edgesγ of edges is recovered from the tensor products as follows: define

the matrix A : Vertγ × Vertγ → Z≥0 by

Ri ⊗ S =
⊕

j∈Vertγ

CAij ⊗Rj (3.25)

where S ≈ C2 is the defining two dimensional representation of SU(2). The matrix A is

symmetric. There exists another matrix E : Vertγ × Vertγ → Z≥0 such that E + Et = A.

Then

Edgesγ =
⊔

(i,j)∈Vertγ×Vertγ

[Ei,j]× (i, j) s (k × (i, j)) = i, t (k × (i, j)) = j (3.26)

The choice of E given A is the choice of the orientation of edges of γ. Note that this

definition associates to Γ = 1 the quiver Â0.

The N = 2 quiver four dimensional gauge theory corresponding to such quiver γ can

be described most simply by starting with the N = 4 super-Yang-Mills theory with the

gauge group U(N |Γ|), with the fields Aµ ∈ E ⊗ E∗,Ψα ∈ T ⊗ E ⊗ E∗,Φ ∈ Λ2T ⊗ E ⊗ E∗,
α = 1, 2, µ = 0, 1, 2, 3, with E = CN |Γ| the defining representation of U(N |Γ|) and T ≈ C4

the defining representation representation of the R-symmetry group SU(4). Now the space

of fields is endowed with the action of Γ:

T = C2 ⊗R0 ⊕ S, E = CN ⊗ CΓ =
⊕
i∈Γ∨

CNai ⊗Ri (3.27)

One then defines the new theory by imposing the Γ-invariance constraint on the fields of

the original theory. The N = 4 supersymmetry reduces to N = 2, with U(Nai)-valued

vector multiplets Φi labelled by i ∈ Vertγ , and bi-fundamental hypermultiplets labelled by

e ∈ Edgesγ . The Lagrangian of the original N = 4 theory can be then deformed, preserving

the N = 2 supersymmetry. Since the gauge group U(N |Γ|) becomes the product

U(N |Γ|) −→
�

i

U(Nai) , (3.28)

the gauge couplings τi can be chosen independently:

τ TrN |Γ|F
2 −→

∑
i∈Vertγ

τi TrNaiF
2
i

We have reviewed this well-known construction here because in what follows we shall use

its variants on several occasions.
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Figure 10. A1 theory as a limit of Â2.

3.7.2 Finite quivers

Some of the finite quiver theories can be obtained as limits of the affine quiver theories.

The rest is related to the ones we shall describe below by analytic continuation, sometimes

through a strong coupling region.

1. The Ar type theory with n1 = . . . = nr = N , and m1 = mr = N , mi = 0 for

2 ≤ i ≤ r − 1, is the limit of the Âr+1 theory, where one sends q0 → 0, qr+1 → 0.

Then a0,α−m0−ε, ar+1,α+mr become the masses of the fundamental hypermultiplets,

charged under U(n1) and U(nr), respectively.

2. A particular Dr type theory can be obtained by taking the limit q0 → 0 limit of D̂r

theory. The next-to-last node 2 with n2 = 2N has m2 = N .

There are other ways of arriving at the quiver N = 2 theories corresponding to finite

quivers.

4 Integration over instanton moduli spaces

In this section we recall the mathematical definition of the instanton partition function

Z inst of the bulk theory. In [103] we define the defect partition functions Ψinst. We give

the practical definition first, without actually describing the relevant instanton moduli

spaces. In [101] we describe the moduli spaces Mγ(n,k) whose contributions dominate the

gauge theory path integral, explicitly, via modified ADHM construction. More precisely,

the gauge theory path integral localizes to the integral of 1 over the virtual fundamental

cycle of degree (dimension) zero Mγ(n,k) which is represented, in the perfect obstruction

theory language of [11] by a smooth (super)-variety Mγ(n,k)c (c stands for coarse) and

H-equivariant vector bundle Obsγ →Mγ(n,k)c. The k-instanton contribution to the gauge

theory partition function is the Euler class

Z inst
k =

∫
Mγ(n,k)

1 =

∫
Mγ(n,k)c

ε(Obsγ) , (4.1)

where we omitted the equivariant parameters.

We shall see that for the affine quiver theories (a representative example is the N =

2∗ U(n) theory) the underlying variety Mγ(n,k)c is bosonic, while for the finite quiver

theories (a representative example is the U(n) theory with 2n fundamental hypermultiplets)
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Mγ(n,k)c is a split super-manifold, a vector bundle over an ordinary smooth variety with

odd fibers.

The same pattern holds for the theories with defects.

4.1 Instanton partition function

4.1.1 The bulk partition function Z inst

Let k = (ki)i∈Vertγ ∈ ZVertγ
+ be the vector of instanton charges for the gauge group Gg.

We denote by Mγ(n,k) the moduli space of framed quiver-graded torsion free sheaves

Eγ = (Ei)i∈Vertγ on CP2. More precisely, for each i ∈ Vertγ , Ei is a torsion free sheaf on

CP2 = C2 ∪ CP1
∞, with the charge ch2(Ei) = ki, and the framing at infinity:

Ei |CP1
∞
−→∼ Ni (4.2)

Set theoretically,

Mγ(n,k)c =
�

i∈Vertγ

M(ni, ki) (4.3)

is the product of ADHM moduli spaces of U(ni) instantons of charge ki.

Let Ei be the universal i’th sheaf over Mγ(n,k)c × CP2, and π : Mγ(n,k)c × CP2 −→
Mγ(n,k)c the projection onto the first factor. Define the obstruction sheaf Obsγ over

Mγ(n)c =
⊔
k

Mγ(n,k)c (4.4)

by:

Obsγ = Rπ∗
⊕

e∈Edgesγ

Hom(Es(e),Et(e)) ⊕
⊕

i∈Vertγ

Hom(Ei,Mi) (4.5)

The sheaves above are all HC-equivariant, where H was defined in (3.11).

The complexification of Gg acts on the isomorphisms Ei|CP1
∞
−→∼ Ni, the complexifi-

cation of Gf acts on the fibers of (4.5) in the natural way, the complexification GL(2,C) of

Grot acts by the symmetries of CP2, with the fixed point 0 ∈ C2 = CP2\CP1
∞. Let TH ⊂ H,

TC
H denote the maximal torus of H and its complexification, respectively.

The Coulomb moduli a belong to LieTC
Gg

, the masses m belong to LieTC
Gf

. The Ω-

deformed theory has two additional complex parameters ε = (ε1, ε2) which belong to the

Cartan subalgebra of Grot
C, ε ∈ LieTC

Grot
≈ C2.

In [101] we shall discuss the modification of the ADHM construction [8] producing the

moduli spaces Mγ(n,k) (cf. [77, 88]) and the obstruction sheaf. More precisely, there is a

moduli space of solutions to a system of matrix equations, determined by the quiver data,

which depends on the choice of the Fayet-Illiopoulos (stability) parameters ~ζ ∈ RVertγ . It is

the choice of these Fayet-Illiopoulos parameters which breaks the rotation symmetry from

Spin(4) down to Grot. When ~ζ is in certain chamber C ⊂ RVertγ the space of solutions to

this system of equations coincides with Mγ(n,k). The linearization of the equations at

the particular solution defines the obstruction sheaf, as the space of solutions to the dual

linear system.

– 26 –



J
H
E
P
0
3
(
2
0
1
6
)
1
8
1

The instanton factor in the partition function can be shown to reduce to the generating

function of the equivariant integrals

Z inst
γ (a; m; q; ε) =

∑
k

qk

∫
Mγ(n,k)c

εa;m;ε (Obsγ) , (4.6)

with

qk =
∏

i∈Vertγ

qkii

Mathematically (4.6) is just a definition of the left hand side. Each term of the q-expansion

is a rational function on Lie(HC), of negative degree of homogeneity for the asymptotically

free theories, and degree zero (i.e. they are homogeneous functions) for the asymptotically

conformal theories.

4.1.2 Localization and fixed points

The fixed points M(n,k)H of the TH-action on M(n,k) are the sheaves which split as direct

sums of monomial ideals:

E ∈Mγ(n,k)TH ⇔ Ei =

ni⊕
α=1

Ii,α , (4.7)

where Ii,α = Iλ(i,α) , Thus, the set of fixed points Mγ(n,k)TH is in one-to-one correspondence

with the set of quiver n-colored partitions :

Eλ ↔ λ =

{
λ(i,α)

∣∣∣∣∣ i ∈ Vertγ , α ∈ [ni], λ
(i,α) is a partition,

ni∑
α=1

|λ(i,α)| = ki

}
(4.8)

These points are also the fixed points of the action of TH on the moduli space of Γ-invariant

instantons. The fixed point formula expresses the gauge theory path integral as the sum

over the set of quiver n-colored partitions. We shall present the explicit formula in the

next section.

Now that the path integration is reduced to a finite sum, the non-perturbative field

redefinitions involving adding a point-like instanton can be discussed rigorously.

4.2 Characters, tangent spaces

The contribution of a given fixed point to the partition function can be conveniently ex-

pressed using the characters of various vector spaces involved in the local analysis of the

path integral measure. The instanton partition function can be then written as:

Z inst
γ (a; m; ε; q) =

∑
λ

qλ µλ(a; m; ε) (4.9)

where

µλ(a; m; ε) = εa;m;ε

(
−Tλ

)
, (4.10)

and

λ =
(
λ(i,α)

)α∈[ni]

i∈Vertγ
, (4.11)
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and

qλ =
∏

i∈Vertγ

ni∏
α=1

q
|λ(i,α)|
i , (4.12)

and

Tλ =

 ∑
i∈Vertγ

(NiK
∗
i +N∗i Kiq − PKiK

∗
i )


−

 ∑
i∈Vertγ

M∗i Ki +
∑

e∈Edgesγ

eβme
(
Nt(e)K

∗
s(e) +N∗s(e)Kt(e)q − PKt(e)K

∗
s(e)

) . (4.13)

In writing (4.13) we adopted a convention where the characters of the vector spaces are

denoted by the same letters as the vector spaces themselves. We are thus using the nota-

tions (3.10) and

Ki =

ni∑
α=1

eβai,α ∑
�∈λ(i,α)

eβc�

 (4.14)

In (4.14) we use the convention (2.43).

Note that the eqs. (4.14) identify Ni,Ki,Mi with representations of TH . While Ni,Mi

are Weyl-invariant, and correspond to representations of H, the spaces Ki do not, in

general, carry a representation of H.

4.3 Integral representation

The measure (4.9) can be also given an integral representation:

Z inst
γ (a; m; q; ε) =

∑
k

qk

k!

∮
Γγ

∏
i∈Vertγ

Υi

∏
e∈Edgesγ

Υe , (4.15)

where

Υi =
∧ni

α=1

ε

ε1ε2

dφi,αPi(φi,α)

Ai(φi,α)Ai(φi,α + ε)

∏
α′ 6=α′′

1

S(φi,α′ − φi,α′′)
, (4.16)

Υe =

ns(e)∏
α′=1

At(e)(φs(e),α′ − me)

nt(e)∏
α′′=1

As(e)(φt(e),α′′+ε+ me)

ns(e)∏
α′=1

nt(e)∏
α′′=1

S(φt(e),α′′ − φs(e),α′+ me)

where

S(x) = 1 +
ε1ε2

x(x+ ε)
(4.17)

and the choice of the contour

Γγ ≈
�

i∈Vertγ

Rni (4.18)

will be discussed elsewhere.

For generic values of the parameters ai, ε etc. the fixed point formula (4.9) can be

used. This is equivalent to the statement that (4.15) can be evaluated by computing the
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residues at simple poles. The contributions of the particular toric instanton configuration

λ (4.11) are rational functions with lots of poles. These poles lead to potential divergencies

of the instanton partition function. For example, whenever the ratio (2.19) is a positive

rational number, b2 ∈ Q+ some of the individual terms µλ(a; m; ε) blow up. However the

divergencies cancel between several terms. The contour integral representation is more

convenient in this case, as it remains finite, as long as the contour Γγ does not get pinched

between two approaching poles.

Let us briefly explain the reason why these apparent poles occur, and why they po-

tentially cancel between themselves. A rational relation between the Coulomb parameters

and the Ω-deformation parameters means that the symmetry group used in the equivariant

localization is strictly smaller then the maximal torus of H. Reduction of the symmetry

group means a potential enhancement of the fixed point locus. For example, instead of a

set of isolated points one may find a copy of CP1 or a more complicated positive dimen-

sion subvariety. Each component of the fixed point locus contributes an integral to the

instanton partition function. This contribution is finite if the component is compact. In

the extreme case a = ε = 0, the symmetry group is trivial. The fixed point locus in this

case is the whole original moduli space Mγ(n,k), and the integral diverges.

4.4 Full partition functions

The full partition functions are the products of the instanton partition functions and the

tree and one-loop partition functions. They are given by the product of (3.16), (3.17)

and (4.1) leading to the following simple formulas

Zγ(a, m, ε; q) =
∑
λ

Q(Tλ)εa,m,ε(−T [λ]) (4.19)

where

T [λ] =
1

(1− e−βε1)(1− e−βε2)

 ∑
i∈Vertγ

(Mi − Si[λ])S∗i [λ] +
∑

e∈Edgesγ

eβmeSt(e)[λ]S∗s(e)[λ]


(4.20)

and

Q(T [λ]) =
∏

i∈Vertγ

q
− 1
ε1ε2

ch2(Si[λ])

i =

 ∏
i∈Vertγ

q
− 1

2ε1ε2

∑ni
α=1 a

2
i,α

i

 × qλ (4.21)

where

ch2(Si[λ]) =
1

2

ni∑
α=1

a2
i,α − ε1ε2ki[λ] (4.22)

5 The Y-observables

The measures (4.9) µλ(a, m; ε) define the complexified statistical models which can be

studied without a reference to the original gauge theory. To any function F = F [λ] on the
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space of quiver n-colored partitions one associates its normalized expectation value:

〈 F 〉γ =
1

Z inst
γ

∑
λ

qλ µλ(a, m; ε)F [λ] (5.1)

Sometimes we shall also use the un-normalized expectation value

⟪F⟫γ = Ztree
γ Z1−loop

γ

∑
λ

qλ µλ(a, m; ε) F [λ] = Zγ 〈 F 〉γ (5.2)

Sometimes, in what follows we shall view such a function F as an operator, acting in

the infinite-dimensional vector space H with the basis eλ labelled by the quiver n-colored

partitions,

Feλ = F [λ]eλ (5.3)

The rôle of H in gauge theory will be discussed elsewhere.

The functions F which do come from gauge theory will be called observables. An

example of observable is the i’th instanton charge:

ki[λ] =

ni∑
α=1

∣∣∣λ(i,α)
∣∣∣ (5.4)

5.1 The bulk Y-observables

The important observables are the characteristic polynomials of the adjoint Higgs fields:

Yi(x) = xni exp

∞∑
l=1

− 1

lxl
Tr (Φi|0)l (5.5)

Here we denote by Φi|0 the lowest component of the vector multiplet Φi corresponding to

the node i ∈ Vertγ , evaluated at the specific point 0 ∈ C2 in the Euclidean space-time.

This is the fixed point of the rotational symmetry Spin(4)N of which the maximal torus

U(1)×U(1) is generated by the rotations in the two orthogonal two-planes.

In the N = 2 theory the gauge-invariant polynomials of the scalar components of the

vector multiplets, i.e.

Ol(x) = Tr Φl
i(x) , (5.6)

for x ∈ R4 are invariant under some supersymmetry transformations, which are nilpotent on

the physical states. Moreover, the x-variation of such operators is in itself a supersymmetry

variation. Therefore, in the cohomology of such a supercharge, the observable Ol(x) is x-

independent. The supersymmetry of the Ω-deformed N = 2 gauge theory is such that the

operator Ol(x) is invariant only at x = 0, i.e. at the fixed point of the rotations.

Classically, i.e. for the ordinary matrix-valued function Φi(x) the exponential (5.5)

evaluates to the characteristic polynomial of this matrix (cf. (3.9)):

Yi(x)tree = Detni
(x− Φi|0) = Ai(x) (5.7)
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5.1.1 Y-observables from sheaves

Mathematically Yi(x) is defined using the virtual Chern polynomials of the universal

sheaves, localized at the point 0 ∈ C2:

Yi(x) = cx(Rπ∗
[
Ei → Ei ⊗ TP2 → Ei ⊗ ∧2TP2

]
) (5.8)

Here we used the Koszul resolution of the skyscrape sheaf S0 supported at 0 ∈ C2:

0→ ∧2T ∗P2 → T ∗P2 → OP2 → S0 (5.9)

where the second and the third maps are the contraction with the Euler vector field

z1∂z1 + z2∂z2 .

5.1.2 Y-observables from noncommutative gauge fields

The proper physical definition of the observable (5.5) is also subtler then the naive expres-

sion (5.7). In computing the instanton partition function one uses the non-commutative

deformation of the gauge theory, in order to make the instanton moduli space smooth with

isolated fixed points [88]. In the noncommutative world, the notion of a particular point

x = 0 in the space-time R4
θ makes no sense. The gauge fields and the adjoint scalar Φi are

the operators in the Hilbert space H,

H =
⊕

i∈Vertγ

Ni ⊗ H

where H is the 2-oscillator Fock space representation of the algebra of functions on R4
θ,

generated by x̂µ, µ = 1, . . . , 4, obeying the Heisenberg algebra [x̂µ, x̂ν ] = iϑµν , with constant

antisymmetric (non-degenerate) matrix θ:

Ai,µ(x) 7→ Xµ
i = x̂µ + ϑµνAi,ν(x̂)

Φi 7→ Φi =
1

2
hµνX

µ
i Xν

i + φi(x̂)

where hµν is the symmetric matrix, obeying

hµνϑ
να = Ωα

µ

with Ω being the matrix of infinitesimal rotation of R4, preserving both the metric and ϑ.

In the vacuum

Φi = diag(ai,1, . . . , ai,ni
)⊗ 1H + 1Ni

⊗ (ε1n̂1 + ε2n̂2)

where n̂ξ = a+
ξ aξ are the oscillator number operators in H, ξ = 1, 2. The observables

like (5.6) are defined, cf. [84], as the ratio of infinite dimensional determinants,

Yi(x) =
DetH(x−Φi) DetH(x−Φi − ε1 − ε2)

DetH(x−Φi − ε1) DetH(x−Φi − ε2)
(5.10)

or, equivalently, via a limiting procedure involving the regularized traces

TrH e
−tΦi

partly explaining the non-triviality of what follows. Without going into detail, let us quote

the results which we shall need in this paper.
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5.1.3 Y-observables from Chern classes

Another, equivalent, definition of Yi(x) is the following. We have the vector bundles Ni,Ki,

i ∈ Vertγ , over Mγ(n,k). Topologically Ni are trivial bundles, while Ki are, in general,

not. These bundles are H-equivariant. Then:

Yi(x) = εx(N∗i )
εx−ε1(K∗i )εx−ε2(K∗i )

εx(K∗i )εx−ε(K∗i )
(5.11)

5.1.4 Y-observables on toric instantons

For our calculations, we need the fixed point expression, i.e. the value Yi(x)[λ] of the

observable Yi(x) on the special instanton configuration Eλ:

Yi(x)[λ] =

ni∏
α=1

(x− ai,α)
∏

�∈λ(i,α)

(x− ai,α − c� − ε1) (x− ai,α − c� − ε2)

(x− ai,α − c�) (x− ai,α − c� − ε)

 =

=

ni∏
α=1

∏
�∈∂+λ(i,α)

(x− ai,α − c�)∏
�∈∂−λ(i,α)

(x− ai,α − ε− c�)

(5.12)

where for a monomial ideal Iλ, corresponding to the partition λ the outer boundary ∂+λ

and the inner boundary ∂−λ are the monomials corresponding to the generators, and the

relations (divided by the factor z1z2) of the ideal, cf. figure 11. Explicitly, given the

character χλ of the quotient C[z1, z2]/Iλ which is the same thing as the character of the

partition λ, the contents of the inner and the outer boundaries can be read off the character

of the tautological sheaf :

Sλ = 1− Pχλ =
∑
�∈∂+λ

eβc� − q
∑
�∈∂−λ

eβc� (5.13)

Note that

Sλ = Tr S+
λ
q̂ − qTr S−λ q̂ (5.14)

where S±λ are the fibers over Iλ ∈ Hilb[|λ|](C2) of the vector bundles S± which we study in

more detail in [101]. It is easy to see from the picture of the Young diagram λ, to which

stratum HMk,l ⊂ Hilb[|λ|](C2) it belongs:

λ ∈ HMk,l ⇔ k = |λ|, l = `(λ) = #∂−λ = #∂+λ− 1 . (5.15)

The Y-observable Yi(x) is essentially the character of the localized tautological complex

Si, which is the cohomology (along CP2) of the complex

Si =
(
Ei → Ei ⊗ TP2 → Ei ⊗ ∧2TP2

)
[−1] (5.16)

which is the dual Koszul complex tensored with the universal sheaf Ei. The relevant

character Si is easy to calculate:

Si = Ni − PKi =

ni∑
α=1

eβai,αSλi,α (5.17)
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Figure 11. Generators � and relations � of a monomial ideal Iλ. The character of the tautological

sheaf Sλ = 1− Pχλ.

The previous formulae can be succinctly written as:

Yi(x)[λ] = β−ni ε[eβxS∗i ] (5.18)

or, in more detail, cf. the notation (10.1)

Yi(x)[λ] = xni exp

(
−
∞∑
l=1

1

lxl
[βl]Si

)
(5.19)

For large x the observable Yi(x) can be expanded as:

Yi(x) = Ai(x)
(

1 +
ε1ε2

x2
ki + . . .

)
(5.20)

5.1.5 The importance of Y-observables

The observables Yi(x) and the characters Si are used in the analysis of the non-perturbative

Schwinger-Dyson equations. The large field redefinitions (1.17) we shall employ involve

adding a point-like instanton at the i’th gauge factor, or, conversely, removing a point-like

instanton of the i’th type. This transformation maps one allowed quiver n-colored partition

λ to another one λ̃, with modified instanton charge

kj[λ̃] = kj[λ]± δi,j . (5.21)

An inspection of the picture figure 6 easily shows that the modifications of the indicated

type consist of either adding a box � ∈ ∂+λ
(i,α′) for some α′ = 1, . . . , ni, or removing a

box � ∈ ∂−λ(i,α′′) for some α′′ = 1, . . . , ni. In other words, the allowed modifications of λ

at the i’th node correspond to the zeroes and poles of Yi(x)[λ].

The measures µλ(a; m; ε) and µ
λ̃

(a; m; ε) are related to each other in a simple manner.

Indeed, the character Tλ is quadratic in Ki, more precisely, it is sesquilinear. The variation

T
λ̃
− Tλ is, therefore, linear in Ki and K∗i . In fact, it is linear in Sj’s and S∗j ’s. For the

modification λ→ λ̃ consisting of adding a box � ∈ ∂+λ
(i,α) for some α = 1, . . . , ni:

T
λ̃
− Tλ = Si[λ]ξ−1 + S∗i [λ̃]qξ −M∗i ξ−∑

e∈t−1(i)

S∗s(e)[λ]ξqeβme −
∑

e∈s−1(i)

eβmeξ−1St(e)[λ] +
∑

e∈s−1(i)∩t−1(i)

eβmeP (5.22)
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where

Kj[λ̃] = Kj[λ] + δi,jξ, ξ = eβ(ai,α+c�) (5.23)

The ratio of the measures can be, therefore, expressed as a product of the values and

residues of various functions Yj(x)[λ] in the variable x, for example, as

µ
λ̃

(a; m; ε)

µλ(a; m; ε)
= (−1)κi qi

ε

ε1ε2

Pi(x)

Yi(x+ ε)[λ]Y′i(x)[λ]
×∏

e∈t−1(i)

Ys(e)(x+ ε+ me)[λ]
∏

e∈s−1(i)

Yt(e)(x− me)[λ]×

∏
e∈s−1(i)∩t−1(i)

(me + ε1)(me + ε2)

me(me + ε)

x = ai,α + c� (5.24)

where

κi = ni − 1 +
∑

e∈s−1(i)

nt(e) (5.25)

Note the identity:

resx=ai,α+c� Yi(x+ ε)[λ̃] =
ε1ε2

ε
Yi(ai,α + c� + ε)[λ] (5.26)

5.2 Q-observables

The inspection of the eq. (5.12) shows that Yi(x)[λ] can be represented as a ratio of two

entire functions, in two ways:

Yi(x) =
Q

(1,2)
i (x)

Q
(1,2)
i (x− ε2)

=
Q

(2,1)
i (x)

Q
(2,1)
i (x− ε1)

, (5.27)

where

Q
(a,b)
i (x)[λ] =

ni∏
α=1

(−εb)
(
x−ai,α
εb

)
Γ
(
−x−ai,α

εb

) ∏
�∈λ(i,α)

x− ai,α − c� − εa
x− ai,α − c�

 , (a, b) = (1, 2) or (2, 1)

(5.28)

The rôle of these observables will be revealed in [100, 103]. In the limit ε2 → 0 with ε1-

fixed the observables Q
(2,1)
i tend to the so-called Baxter operators of the quantum integrable

system, which is Bethe/gauge-dual [97] to the gauge theory under consideration [86].

6 Enter the qq-characters

Remarkably, the Dyson-Schwinger relations based on (5.24) can be summarized in the

following proposition:
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6.1 The main theorem

For any γ-graded vector space

W =
⊕

i∈Vertγ

Wi , (6.1)

with the corresponding dimension vector w ∈ ZVertγ
≥0 , Wi = Cwi, and a choice of `-weights

ν = (νi)i∈Vertγ , νi = diag (νi,1, . . . , νi,wi) ∈ End(Wi), there is a Laurent polynomial (Laurent

power series for affine γ) in Yj(x + ξj,κ)’s , i.e. in Yj’s with possibly shifted arguments,

including the nilpotent shifts (i.e. a finite number of derivatives in x applied to Yj)

Xw,ν (Y(x+ . . .)) =
∏

i∈Vertγ

wi∏
l=1

Yi(x+ νi,l + ε) + O(q) (6.2)

such that its expectation value in the γ-quiver gauge theory:〈
Xw,ν (Y)

〉
γ
≡ 1

Z inst
γ

∑
λ

Xw,ν (Y[λ]) qλ µλ(a; m; ε) = Tw,ν(x), (6.3)

is a polynomial in x. More specifically, Tw,ν(x) is a polynomial in x of degree

deg Tw,ν(x) = w · n =
∑

i∈Vertγ

wini . (6.4)

We call Xw,ν(x) the Yangian qq-character of Y (gγ). For w = (δj,i)j∈Vertγ and ν = 0 the

corresponding qq-character will be denoted by χi(x), the i’th fundamental qq-character.

Remark. The qq-characters are the gauge theory generalizations of the matrix model

expression T(x) (1.11).

In the limit ε2 → 0 Xw,ν(x) reduces to the Yangian q-characters of finite-dimensional

representations of the Yangian Y (gγ), constructed for finite γ in [60]. In [38] the q-

characters for the quantum affine algebras Uq(gγ) for finite γ’s and in [49] for affine γ’s are

constructed. These correspond to the K-theoretic version of our story in the limit q2 → 1,

q1 = q finite, which was discussed in [86].

The K-theoretic version of our story with general (q1, q2) produces the qq-characters,

corresponding to Uq(gγ). The physical applications of the qq-characters are the five di-

mensional supersymmetric gauge theories compactified on a circle [82]. We shall give the

definition and the formulae below, without going into much detail.

7 Examples of qq-characters

In this section we prepare the reader by giving a few explicit examples of the qq-characters,

before unveiling the general formula in the next section.

7.1 A-type theories: one factor gauge group

Let us start with a couple of examples for the theories with a single factor gauge group,

i.e. either the A1 theory or the Â0 theory.
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7.1.1 The A1 case

The A1 theory is the U(n) gauge theory with Nf = 2n fundamental hypermultiplets. The

theory is characterized by the gauge coupling q and 2n masses m = (m1, . . . , m2n), which are

encoded in the polynomial

P (x) =
2n∏
f=1

(x− mf)

Since the quiver consists of a single vertex, we omit the subscript i in Y(x) and P (x).

The fundamental A1 qq-character is equal to

X1,0(x) = Y(x+ ε) + q
P (x)

Y(x)
(7.1)

The general A1 qq-character depends on a w-tuple ν of complex numbers, ν =

(ν1, . . . , νw) ∈ Cw. It is given by:

Xw,ν(x) =
∑

[w]=ItJ

q|J |
∏

i∈I,j∈J
S(νi − νj)

∏
j∈J

P (x+ νj)

Y(x+ νj)

∏
i∈I

Y(x+ ε+ νi) (7.2)

It has potential poles in ν’s, when νi = νj or νi = νj + ε, for i 6= j.

The expression (7.2) is actually non-singular at the diagonals νi = νj . The limit

contains, however, the derivatives ∂xY. For example, for w = 2, ν1 = ν2 = 0 the qq-

character is equal to:

X2,(0,0)(x) = Y(x+ ε)2

(
1− q

ε1ε2

ε
∂x

(
P (x)

Y(x)Y(x+ ε)

))
+

+ 2qP (x)
Y(x+ ε)

Y(x)

(
1− ε1ε2

ε2

)
+ q2P (x)2

Y(x)2
(7.3)

The expression (7.2) has a first order pole at the hypersurfaces where νi = νj + ε for

some pair i 6= j. The residue of Xw,ν is equal to the qq-character Xw−2,ν\{νi,νj}, times the

polynomial in x factor ∏
k 6=i,j

S(νk − νj)P (x+ νk) . (7.4)

The finite part Xfin
w,ν of the expansion of Xw,ν in νi near νi = νj + ε is the properly defined

qq-character for the arrangement of weights ν landing on the hypersurface νi = νj + ε. It

involves the terms with the derivative ∂xY. For example

Xfin
2,(−ε,0) = Y(x+ ε)Y(x)+

+ q
(

1 +
ε1ε2

2ε2

)
P (x− ε)Y(x+ ε)

Y(x− ε)
+ qP (x)

(
1− ε1ε2

ε

∂xY(x)

Y(x)

)
+

+ q2P (x)P (x− ε)
Y(x)Y(x− ε)

(7.5)
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7.1.2 The Â0 theory

The Â0 theory (also known as the N = 2∗ theory) is characterized by one mass parameter

m, the mass of the adjoint hypermultiplet, and the gauge coupling q.

Here we give the expression for the fundamental character X1(x) ≡ X1,0(x):

X1(x) =
∑
λ

q|λ|
∏
�∈λ

S(mh� + εa�) ·
∏
�∈∂+λ Y(x+ σ� + ε)∏
�∈∂−λ Y(x+ σ�)

=

= Y(x+ ε)
∑
λ

q|λ|
∏
�∈λ

S(mh� + εa�) ·
∏
�∈λ

Y(x+ σ� − m)Y(x+ σ� + m + ε)

Y(x+ σ�)Y(x+ σ� + ε)
=

= Y(x+ ε) + q S(m)
Y (x− m)Y (x+ ε+ m)

Y (x)
+ . . . (7.6)

Here

σ� = m(i− j) + ε(1− j) (7.7)

is the content of � defined relative to the pair of weights (m,−m− ε). It is not too difficult

to write an expression for the general Â0 qq-character Xw,ν , in terms of an infinite sum over

the w-tuples of partitions, but we feel it is not very illuminating.

Note that the expression (7.6) has apparent singularities when m and −(m + ε) are in

a positive congruence, i.e. if

m(p− q) = εq (7.8)

for some positive integers p, q > 0. In fact, the limit of the expression (7.6) is finite, but it

involves not only the ratios of shifted Y’s, but also its derivatives. The most efficient way

to study this asymptotics is to use the geometric expression to be discussed below. The

geometric expression also leads to the contour integral representation of the qq-characters.

7.2 A-type theories: linear quiver theories

Let us now present the formulas for the general Ar theories, assuming

m1 = mr = n1 = . . . = nr = N, m2 = m3 = . . . = mr−1 = 0 . (7.9)

We treat the general Ar case mi = 2ni − ni−1 − ni+1, n0 = nr+1 = 0 in the section below.

We have r observables Yi(x), and couplings qi, for i = 1, . . . , r. Define r + 1 complex

numbers zi, i = 0, 1, . . . , r by:

zi = z0 q1 . . . qi, i = 1, . . . , r (7.10)

and define r + 1 functions Λi(x), i = 0, . . . , r, by:

Λi(x) = zi
Yi+1(x+ ε)

Yi(x)
, (7.11)

where we set Y0(x) = P1(x), Yr+1(x) = Pr(x), in other words the masses m1,f , mr,f of

fundamentals are denoted as a0,f , ar+1,f , respectively. We also choose the normalization

me = −ε.
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7.2.1 The height functions

For a finite set I ⊂ R, we define the height function:

hI : I → [p], p = |I| ≡ #I , hI(i) = # { i′ | i′ ∈ I, i′ < i } (7.12)

In other words, for I = {i1, . . . , ip} with i1 < i2 < . . . < ip, hib = b− 1, 1 ≤ b ≤ p.

7.2.2 Pre-character

Define the l’th fundamental qq pre-character by (cf. (7.12)):

χl(x) =
∑

I⊂[0,r], |I|=l

∏
i∈I

Λi (x+ (hI(i) + 1− l) ε) (7.13)

7.2.3 Fundamental qq-character of type Ar

Then l’th fundamental qq-character is given by the properly normalized χl(x) :

Xl(x) = Y0 (x+ (1− l) ε) χl(x)

z0z1 . . . zl−1
= Yl(x+ ε) + ql

Yl−1(x)Yl+1(x+ ε)

Yl(x)
+ . . . (7.14)

7.2.4 Comparison to the q-characters of E. Frenkel and N. Reshetikhin

Our formula (7.13) looks similar to the formula in the section 11.1 of [37] (adapted to

the Yangian Y (slr+1) , of course). The similarity is a little bit misleading, as shows the

example of the D-type theories.

7.2.5 The main property of the qq-characters of the A-type

The relations (5.24) suffice to prove that the expectation values of the qq-characters of

the A-type theories do not have singularities as the functions of x. It suffices to check

the cancellation of residues between the poles related by adding or removing one square

in one of the Young diagrams in λ. It would take more elaborate arguments to prove the

analogous claim for all N = 2 theories.

7.3 The D-type theories

7.3.1 The D4 theory

This is the theory with four gauge groups. The quiver is the graph with Vertγ = {1, 2, 3, 4},
and Edgesγ = {1, 3, 4} with s(e) = e, t(e) = 2 for all e ∈ Edgesγ . The graph has the obvious

S3 symmetry, permuting the vertices 1, 3, 4. We present the formula for the asymptotically

conformal theory with n1 = n3 = n4 = N = m2, n2 = 2N , m1 = m3 = m4 = 0,

leaving an obvious extension to the general case to the interested reader as an exercise

in the deciphering the general formula of the next section (essentially one replaces qi 7→
qiPi(x+ aε) for i = 1, 3, 4 with some integers a).

In what follows we use the short-hand notation:

Yi,a = Yi(x+ aε), Yi = Yi(x), Pa = P2(x+ aε), P = P2(x) (7.15)

– 38 –



J
H
E
P
0
3
(
2
0
1
6
)
1
8
1

There are four fundamental qq-characters, three of which are permuted by the S3. The

qq-character X1,0 is given by the sum of 8 terms (as would be the case for the characters

of 8v,8s,8c of vector or spinor representations of Spin(8)):

X1,0 = Y1,1 + q1Y
−1

1 Y2 + q1q2P−1Y
−1

2,−1Y3Y4+

+ q1q2q3P−1Y
−1

3,−1Y4 + q1q2q4P−1Y
−1

4,−1Y3 + q1q2q3q4P−1Y
−1

3,−1Y
−1

4,−1Y2,−1+

+ q1q
2
2q3q4P−1P−2Y

−1
2,−2Y1,−1 + q2

1q
2
2q3q4P−1P−2Y

−1
1,−2 (7.16)

The formulae for X3,0,X4,0 are obtained by the cyclic permutation of the indices 1, 3, 4.

The qq-character X2,0 reveals a surprising structure,

X2,0 = X+
2 + q1q

2
2q3q4PP−1X

−
2 (7.17)

and contains the derivatives of Yi’s. Explicitly,

X+
2 = Y2,1 + q2PY

−1
2 Y1,1Y3,1Y4,1 + q1q2PY

−1
1 Y3,1Y4,1 + q3q2PY

−1
3 Y1,1Y4,1+

+ q4q2PY
−1

4 Y1,1Y3,1 + q1q2q3PY
−1

1 Y −1
3 Y2Y4,1 + q1q2q4PY

−1
1 Y −1

4 Y2Y3,1+

+ q2q3q4PY
−1

3 Y −1
4 Y2Y1,1 + q1q

2
2q3PP−1Y

−1
2,−1Y4Y4,−1 + q1q

2
2q4PP−1Y

−1
2,−1Y3Y3,−1+

+ q3q
2
2q4PP−1Y

−1
2,−1Y1Y1,−1 + q1q2q3q4PY

−1
1 Y −1

3 Y −1
4 Y 2

2 (7.18)

X−2 = X
−,0
2 + X−−2 , (7.19)

X
−,0
2 =

Y2

Y2,−1

(
2
(

1− ε1ε2

ε2

)
+
ε1ε2

ε
∂xlog

(
Y2Y2,−1

P−1Y1Y3Y4

))
+

+
(

1 +
ε1ε2

2ε2

)(
Y −1

1,−1Y1,1 + Y −1
3,−1Y3,1 + Y −1

4,−1Y4,1

)
(7.20)

X−−2 = q4Y
−1

4 Y −1
4,−1Y2 + q3Y

−1
3 Y −1

3,−1Y2 + q1Y
−1

1 Y −1
1,−1Y2 + q2P−1Y

−2
2,−1Y1Y3Y4+

q2q4P−1Y
−1

2,−1Y
−1

4,−1Y1Y3 + q2q3P−1Y
−1

2,−1Y
−1

3,−1Y1Y4 + q2q1P−1Y
−1

2,−1Y
−1

1,−1Y3Y4+

+ q1q2q4P−1Y
−1

1,−1Y
−1

4,−1Y3 + q2q3q4P−1Y
−1

3,−1Y
−1

4,−1Y1 + q1q2q3P−1Y
−1

1,−1Y
−1

3,−1Y4+

+ q1q2q3q4P−1Y
−1

1,−1Y
−1

3,−1Y
−1

4,−1Y2,−1+

+ q1q
2
2q3q4P−1P−2Y

−1
2,−2 (7.21)

8 The qq-character formula

In order to write the general formula for the qq-character we shall use an auxiliary geometric

object, the quiver variety M(w,v), which we presently define.

8.1 Nakajima quiver variety

Given a quiver γ, two dimension vectors

v = (vi)i∈Vertγ , w = (wi)i∈Vertγ ∈ ZVertγ
≥0 (8.1)

and a choice of stability parameter ζ ∈ RVertγ H. Nakajima [76] defines the quiver variety

as the hyperkahler quotient:

Mγ,ζ(w,v) = µ−1
C (0) ∩ µ−1

R (ζ)/Gv (8.2)
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where

Gv =
�

i∈Vertγ

U(Vi) , (8.3)

and µC, µR are the quadratic maps Hγ → LieG∗v ⊗ C,R, respectively, with Hγ the vector

space

Hγ = T ∗

 ⊕
i∈Vertγ

Hom(Vi,Wi)⊕
⊕

e∈Edgesγ

Hom(Vs(e), Vt(e))

 (8.4)

of linear operators (matrices) (Ĩi, J̃i, Be,±):

Ĩi : Wi → Vi, J̃i : Vi →Wi

Be,+ : Vs(e) → Vt(e), Be,− : Vt(e) → Vs(e)
(8.5)

Explicitly: µR,C = (µRi , µ
C
i )i∈Vertγ , with

µCi = ĨiJ̃i +
∑

e∈s−1(i)

Be,−Be,+ −
∑

e∈t−1(i)

Be,+Be,−

µRi = ĨiĨ
†
i − J̃

†
i J̃i +

∑
e∈s−1(i)

Be,−B
†
e,− −B

†
e,+Be,++

+
∑

e∈t−1(i)

Be,+B
†
e,+ −B

†
e,−Be,−

(8.6)

The definition (8.2) translates to the set of equations:

µRi = ζi 1Vi ,

µCi = 0, i ∈ Vertγ
(8.7)

with the identification of solutions related by the Gv transformations:

(Be,+, Be,−, Ĩi, J̃i) 7→ (ht(e)Be,+h
−1
s(e), hs(e)Be,−h

−1
t(e), hiĨi, J̃ih

−1
i ), hi ∈ U(Vi) (8.8)

8.1.1 Stability parameters

Solving the real moment map equations (the first line in the eq. (8.7)) and dividing by

Gv can be replaced by dividing the set of stable solutions to the complex moment map

equations (the second line in the eq. (8.7)) by the action of the complexified group

GC
v = ×i GL(Vi) . (8.9)

The notion of stability depends on the choice of ζ. In this paper we assume ζi > 0 for

all i ∈ Vertγ . The solution (Be,±, Ĩi, J̃i) is stable iff any collection (V ′i )i∈Vertγ of subspaces

V ′i ⊂ Vi, such that

(1) Ĩi(Wi) ⊂ V ′i for all i ∈ Vertγ and

(2) Bp(V ′s(p)) ⊂ V
′
t(p), and B̃p(V ′t(p)) ⊂ V

′
s(p) for all p ∈ Pathsγ (8.10)
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is such that V ′i = Vi for all i ∈ Vertγ . Here p ∈ Pathsγ denotes a sequence (ei, σi) ∈ Arrowsγ ,

i = 1, . . . ,m, such that s̄(e1, σ1) = s(p), t̄(e1, σ1) = s̄(e2, σ2), . . ., t̄(ei, σi) = s̄(ei+1, σi+1),

. . ., t̄(em, σm) = t(p).

The proof is simple. Let Pi be the orthogonal projection of Vi onto the orthogonal

complement (V ′i )⊥ of the “invariant” subspace V ′i ⊂ Vi. We have PiĨi = 0 and Pt(e)Be,+(1−
Ps(e)) = 0, Ps(e)Be,−(1− Pt(e)) = 0. Now compute

0 ≤
∑

i

ζidim
(
V ′i
)⊥

=
∑

i

TrPiµ
R
i Pi = −

∑
i

Tr
(
PiJ̃

†
i J̃iPi

)
+
∑
e

TrPs(e)Be,−B
†
e,−Ps(e)

+ TrPt(e)Be,+B
†
e,+Pt(e)−TrPt(e)B

†
e,−Be,−Pt(e)−TrPs(e)B

†
e,+Be,+Ps(e) =

−
∑

i

‖J̃iPi‖2 −
∑
e

(
‖(1− Ps(e))Be,−Pt(e)‖2 + ‖(1− Pt(e))Be,+Ps(e)‖2

)
≤ 0 (8.11)

which implies V ′i = Vi for all i. The stability condition is equivalent to the condition that

the path operators Bp and B̃p for p ∈ Pathsγ acting on Ĩi′(Wi′) generate Vi′′ :

Vi =
∑

p∈t−1(i)

CBp Ĩs(p)(Ws(p)) +
∑

p∈s−1(i)

CB̃p Ĩt(p)(Wt(p)) (8.12)

Conversely, in order to establish that the stability condition implies that the GC
v -orbit of

(Be,±, Ĩi, J̃i) solving the µC = 0 equations in (8.7) passes through the solution of the µR = ζ

equations in (8.7), we use the standard method: consider the Morse-Bott function

f =
∑

i∈Vertγ

‖µRi − ζi1Vi‖
2 (8.13)

The trajectory of the gradient flow

d

dt
(Be,±, Ĩi, J̃i) = −(∇

B†e,±
f,∇

Ĩ†i
f,∇

J̃†i
f) (8.14)

belongs to the GC
v -orbit. Indeed, (8.14) exponentiates to the transformation:

exp tµi ∈ GL(Vi) (8.15)

The function f decreases along the flow. In the limit t → ∞ the value of f either tends

to its absolute minimum, i.e. f = 0, which is the locus of solutions to the equations (8.7),

or it stops at another critical point with the critical value f∗ > 0. Now, the critical points

with f∗ > 0 are the configurations (Be,±, Ĩi, J̃i) for which the real moment map (µi)i∈Vertγ
viewed as an element of the Lie algebra of GC

v (more precisely, it is in i LieGv ⊂ LieGC
v), is

a non-trivial infinitesimal symmetry, i.e.:

µiĨi = ζiĨi, J̃iµi = J̃iζi (8.16)

µs(e)Be,− −Be,−µt(e) = (ζs(e) − ζt(e))Be,−, µt(e)Be,+ −Be,+µs(e) = (ζt(e) − ζs(e))Be,+

Define V ′i = ker (µi − ζi1Vi) ⊂ Vi for all i ∈ Vertγ . By (8.16) these subspaces obey all the

conditions of (8.10), therefore µi = ζi1Vi for all i ∈ Vertγ .

In what follows we omit the subscripts γ and ζ in the notations for the quiver variety:

Mγ,ζ(w,v) −→ M(w,v)
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8.1.2 Symmetries of M(w, v)

The group Hw = Gw ×U(1)b∗(γ) acts on M(w,v) by isometries. Here

Gw =
�

i∈Vertγ

U(Wi) (8.17)

acts on the Ĩ , J̃ maps:

(gi)i∈Vertγ : (Ĩi, J̃i)i∈Vertγ 7→ (Ĩigi, g
−1
i J̃i)i∈Vertγ (8.18)

The U(1)b0(γ) = U(1)-factor acts by rotating all of the Ĩi, Be,−’s while keeping J̃i, Be,+’s

intact (this definition can be extended to the disconnected quivers in a trivial fashion:

rotate Ĩi, Be,− belonging to a given connected component):

(Ĩi, J̃i, Be,+, Be,−) 7→ (uĨi, J̃i, uBe,+, Be,−) (8.19)

The group U(1)b1(γ) ≈ U(1)Edgesγ/U(1)Vertγ acts on the Gv-equivalence classes of the (Be,±)

maps:

(ue)e∈Edgesγ : (Be,+, Be,−)e∈Edgesγ 7→ (ueBe,+, u
−1
e Be,−)e∈Edgesγ (8.20)

so that the normal subgroup U(1)Vertγ acts by the Gv-transformations

(ui)i∈Vertγ : (Be,+, Be,−)e∈Edgesγ 7→ (u−1
s(e)ut(e)Be,+, us(e)u

−1
t(e)Be,−)e∈Edgesγ (8.21)

8.1.3 The canonical complexes and bundles

For each i ∈ Vertγ the vector space Vi descends to M(w,v) as a vector bundle. In addition,

there are also the canonical complexes of bundles over M(w,v):

Ci =

0→ Vi −→d2 Wi

⊕
e∈t−1(i)

Vs(e)
⊕

e∈s−1(i)

Vt(e) −→d1 Vi → 0

 (8.22)

where the first and the second maps are given by:

d2 = J̃i

⊕
e∈t−1(i)

(−Be,−)
⊕

e∈s−1(i)

Be,+ , d1 = Ĩi
⊕

e∈t−1(i)

Be,+
⊕

e∈s−1(i)

Be,− (8.23)

The moment map equation (8.7), µCi = 0, implies d1 ◦ d2 = 0, hence Ci is a complex. We

set the leftmost term Vi in (8.22) to be in degree zero.

8.2 The bi-observables

Let

Gx = eβx
∑

i∈Vertγ

(qS∗i Ci +M∗i Vi) (8.24)

denote the Chern character of the Hw-equivariant complex of vector bundles over M(n,k)×
M(w,v):

Gx = eβx Ch
⊕

i∈Vertγ

(q [Si → Ci ]⊕ [Mi → Vi ])
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We identify the equivariant parameters of the Gw group with ν, the equivariant parameters

for the U(1) factor with ε, the equivariant parameters for the U(1)Edgesγ -group with me+ ε.

Explicitly, the equivariant Chern character of the complex Ci is equal to:

Ch Ci = Wi − Vi − q−1Vi +
∑

e∈t−1(i)

q−1e−βmeVs(e) +
∑

e∈s−1(i)

eβmeVt(e) (8.25)

where Wi is a pure c-number character (the sum of exponents of ν-components), while Vj’s

are the Chern characters of Hw-equivariant bundles, i.e. may have components of positive

degrees cohomology classes.

8.3 The formula

Finally, we can present the formula for Xw,ν . There are several ways to write it.

8.3.1 Integral over the quiver variety

Xw,ν =
∑
v

qv

∫
M(w,v)

εε2(TM(w,v))εx(G) (8.26)

qv =
∏

i∈Vertγ

qvii ,

εx(G) is understood as the Hw-equivariant cohomology class of M(w,v): represent Ci as

the virtual bundle C+
i − C

−
i over M(w,v), where C+

i , C−i are the actual bundles, with the

formal Chern roots ξ±i,κ± . Then

εx(G) =
∏

i∈Vertγ


∏
κ+

Yi(x+ ξ+
i,κ+

)∏
κ−

Yi(x+ ξ−i,κ−)

vi∏
κ=1

Pi(x+ ηi,κ)

 (8.27)

where ηi,κ are the formal Chern roots of Vi.

For the A1, Â0 examples we considered so far the quiver varieties M(w,v) are the

cotangent bundle T ∗Gr(v, w) to the Grassmanian of v-planes in Cw and the Hilbert scheme

Hilb[v](C2) of v points on C2, respectively.

8.3.2 Contour integral representations

Equivalently, one can write a contour integral representation for (8.26) which has the

advantage of being explicit, albeit less concise:

Xw,ν(x) =
∑
v

∏
i∈Vertγ

1

vi!

(
ε qi

2π
√
−1 ε1ε2

)vi wi∏
j=1

Yi(x+ ε+ νi,j)

∮
Γw,ν,v

Υw,ν,v(x)

Υw,ν,v(x) =
∏

e∈Edgesγ

Υw,ν,v;e(x)
∏

i∈Vertγ

Υw,ν,v;i(x) ,

Υw,ν,v;e(x) =

vt(e)∏
κ=1

Ys(e)(x+ ε+ me + φ(t(e))
κ )

vs(e)∏
`=1

Yt(e)(x− me + φ
(s(e))
` ) ,

Υw,ν,v;i(x) =

vi∏
κ=1

 dφ
(i)
κ Pi(x+ φ

(i)
κ )

Yi(x+ ε+ φ
(i)
κ )Yi(x+ φ

(i)
κ )

∏
`6=κ

S(φ(i)
κ −φ

(i)
` )

wi∏
j=1

S(φ(i)
κ −νi,j)

 . (8.28)

– 43 –



J
H
E
P
0
3
(
2
0
1
6
)
1
8
1

The contour Γw,ν,v is chosen in such a fashion, so as to ignore the poles coming from

the zeroes of the Y-functions in the denominator of (8.28) or the poles of Y-functions in

the numerator there. Let us assume that νi,j are all real, and that ε1, ε2 have positive

imaginary part. We also assume that zeroes and poles of Y(x + z) in z are far away from

the real axis. Then the contour Γw,ν,v ≈ R|v|, i.e. all φ
(i)
κ are real. Now deform νi,j and

ε1, ε2 to whatever values we desire, all the while deforming the contour Γw,ν,v in a such a

way, that the poles of (8.28) in φ
(i)
κ ’s do not cross Γw,ν,v.

The technique to arrive from (8.28) to (8.26) is well-known, see, e.g. [74]

8.4 Five dimensional theory

The gauge theories we studied so far in four dimensions canonically lift to five dimensions,

with the vector multiplets lifting to vector multiplets. The complex scalars ai,α in the

vector multiplet in four dimensions come from a real scalar in five dimensions and the fifth

component of the gauge field. Now we compactify the theory on a circle of circumfer-

ence β, and impose the twisted boundary conditions, rotating the space N by the angles

(−iβε1,−iβε2) in the two orthogonal two-planes R2 in N = R4. In addition we perform

the SU(2) R-symmetry rotation

exp
iβε

2
σ3

and the constant gauge transformation

eβai = diag(eβai,α)α=1,...,vi
.

The observables Yi(x) generalize to:

Yi(z) = zni exp

(
−
∞∑
k=1

1

kzk
ChψkSi

)
=

= Det
(
z − eβΦi|0

) (8.29)

Again, as in the four dimensional theory, the non-perturbative effects make the naive

polynomial in the right hand side of (8.29) a rational function. In particular, on the

U(1)×U(1) invariant instanton configuration λ the observable Yi(z) evaluates to:

Yi(z)[λ] =

ni∏
α=1

∏
�∈∂+λ(i,α)

(z − eβ(ai,α+c�))∏
�∈∂−λ(i,α)

(z − qeβ(ai,α+c�))
. (8.30)

The K-theoretic version of the qq-characters is defined in a similar fashion, one should use

the χq−1
2

-genus instead of the Chern polynomial and to use push forwards in equivariant

K-theory instead of the equivariant integrals. The formula (8.26) generalizes to:

Xw,ν(z) =
∑
v,j

qvq−n̂1 (−q2)n̂−j
∫
M(w,v)

TdTM(w,v) Ch

(
j∧
TM(w,v)

)
Ξz[Fv] (8.31)
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where n̂ = dimCM(w,v)

Ξz[Fv] =
∏

i∈Vertγ

∏
κ

Pi(ze
ηi,κ)

∏
κ+

Yi(ze
ξ+i,κ+ )

∏
κ−

Yi(ze
ξ−i,κ− )

 (8.32)

where

Ch(C±i ) =
∑
κ±

e
ξ±i,κ±

Ch(Vi) =
∑
κ

eηi,κ (8.33)

8.5 The symmetry. ε1 ↔ ε2, q1 ↔ q2

The formulas (8.26), (8.28), (8.31) are not obviously symmetric with respect to the exchange

ε1 ↔ ε2, q1 ↔ q2. However, the symmetry becomes clear once we recall that M(w,v) is

a holomorphic symplectic manifold. Its tangent bundle is isomorphic to the cotangent

bundle, the isomorphism being provided by the holomorphic symplectic form ωC, which

descends from the canonical symplectic form on Hγ :∑
e∈Edgesγ

Tr δBe ∧ δB̃e +
∑

i∈Vertγ

Tr δĨi ∧ δJ̃i (8.34)

Since the symplectic form ωC is scaled as ωC → q−1ωC by the action of Hw, the equivariant

Chern character

n̂∑
j=0

(−q2)−jCh

(
j∧
TM(w,v)

)
=

n̂∏
l=1

(1− exlq−1
2 ) = (q1/q2)n̂/2

n̂∏
l=1

(1− e−xlq2) (8.35)

which is equal to (q1/q2)n̂/2
∏n̂
l=1(1− exlq−1

1 ) since every equivariant virtual Chern root xl
is paired with another equivariant virtual Chern root β(ε1 + ε2)− xl. Thus,

n̂∑
j=0

q−n̂1 (−q2)n̂−j Ch

(
j∧
TM(w,v)

)
=

n̂∑
j=0

q−n̂2 (−q1)n̂−j Ch

(
j∧
TM(w,v)

)

8.6 Convergence of the integrals

The integrals (8.31) may be divergent. Indeed, the quiver varieties M(w,v) are non-

compact. We understand the integrals (8.31) as the integrals in Hw-equivariant cohomology.

Practically this means that the differential form representative for the integrand in (8.31)

contains a factor:

expD
(
g(·, V (ξ̄))

)
= e−g(V (ξ),V (ξ̄)) × (1 + . . .) (8.36)

Here,

D = d + ιV (ξ) (8.37)
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is the equivariant de Rham differential, ξ, ξ̄ ∈ Lie(HC
w), ξ is the collective notation for (ν, ε),

the equivariant parameters, V : Lie(Hw)→ Vect(M(w,v)) is the infinitesimal action of Hw

on M(w,v), and g is any Hw-invariant metric on M(w,v), in which g(V (ξ), V (ξ̄)) grows

for generic ξ and ξ̄ ≈ ξ∗ sufficiently fast at “infinity” of M(w,v).

With this convergence factor understood the integrals over M(w,v) converge. More-

over, the D-exactness of the exponential in (8.36) means that small variations of ξ̄ or g

with fixed ξ do not change the integral. The result does, however, depend on ξ. Indeed,

for special values of ξ = (ν, ε) it diverges, as we saw in the examples (7.2). Our point is

that it converges for all values of x. We shall establish this fact in full generality in [101]

and [100].

8.7 Reduction to the fixed loci

The integrals (8.31), (8.26) can be computed by localization with respect to the Hw-action

on M(w,v). The isolated fixed points contribute rational expressions in Y’s with shifted

arguments, while positive dimension components of the fixed locus contribute terms with

derivatives of Y’s.

The character of the virtual tangent bundle to the quiver variety can be transformed to

T virtMγ(w,v) P

 ∑
i∈Vertγ

(Wi − Vi)V
∗
i +

∑
e∈Edgesγ

eβmeVt(e)V
∗
s(e)

 (8.38)

Indeed, the tangent bundle to Mγ(w,v) is equal to:

TMγ(w,v) =
∑

i∈Vertγ

(
(Wi − Vi)V

∗
i + q−1(Wi − Vi)

∗Vi

)
+

∑
e∈Edgesγ

(
eβmeVt(e)V

∗
s(e) + q−1e−βmeVs(e)V

∗
t(e)

)
(8.39)

in the Gw × U(1)b∗(γ)-equivariant K-theory of Mγ(w,v). The virtual tangent bundle is

equal to

T virtMγ(w,v) = (1− q1)TMγ(w,v) . (8.40)

Now, dualize the terms in (8.39) proportional to q−1:

(1− q1)q−1T  (1− q−1
1 )qT ∗ = −(1− q1)q2T

∗ (8.41)

to arrive at (8.38).

Let Tγ,w denote the maximal torus in Gw × U(1)b∗(γ). The set of Tγ,w-fixed points

Mγ(w,v)Tγ,w is a union

Mγ(w,v)Tγ,w =
⋃
c

Mγ,c(w,v) (8.42)

of connected components. Each component is a product

Mγ,c(w,v) =
�

i∈Vertγ

wi�
β=1

�
n∈L

Mγ,i,ci,β (ei,vi,β,n) (8.43)
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for some vi,β,n ∈ ZVertγ
≥0 such that ∑

i∈Vertγ

wi∑
β=1

∑
n∈L

vi,β,n = v (8.44)

Here we used a notation

Mγ,i,c(ei,v) ⊂Mγ(ei,v), c ∈ Ci,v (8.45)

for a connected component of the set of Tγ,ei
-fixed points of Nakajima quiver variety

Mγ(w,v) with w = ei:

Mγ(ei,v)Tγ,ei =
⊔

c∈Ci,v

Mγ,i,c(ei,v) (8.46)

The vector bundles Wi, Vi, restricted onto each connected component Mγ,i,c(ei,v) of the

fixed point set split, as a sum of Tγ,w-equivariant vector bundles:

Wi =

wi⊕
β=1

eνi,β

Vi =

wi⊕
β=1

⊕
n

eνi,β ⊗ q−n Vi,β,n

(8.47)

Here n runs over the lattice of representations of U(1)b∗(γ), and qn stands for the cor-

responding character. In all cases except for the affine A-type quivers, q is literally

q = q1q2, and n runs through some lattice L ⊂ Z. In the Â-case, q−n = (q1q2e
m)−n1en2m for

(n1, n2) ∈ L ⊂ Z⊕ Z.

8.7.1 Example: the A1 case

Recall the expression (7.3) for the A1 qq-character corresponding to w = 2, ν = (0, 0).

The corresponding quiver varieties MA1(2, v), with v = 0, 1, 2 are the point, T ∗CP1, and

another point, respectively. The contribution of v = 1, i.e. the integral over T ∗CP1 reduces,

by the fixed point formula, to the integral over F = CP1.

The vector bundle V reduces to L−1 ≈ O(−1), The character-bundle (8.38) specifies to:

T virtM = P (W − V )V ∗ = P (2L− 1)

the tangent bundle to ` is equal to

TF = 2L− 1

(check: L has two sections, while TF has three), while the complex C becomes q(2−L−1)−
L−1. The contribution of F to the formula (8.26) is given by:

qY(x+ ε)2 ε

ε1ε2

∫
`

(
(ω + ε1)(ω + ε2)

ω + ε

)2 P (x− ω)

Y(x+ ε− ω)Y(x− ω)
=

− qY(x+ ε)2 ε1ε2

ε
∂x

(
P (x)

Y(x)Y(x+ ε)

)
+

+ 2qP (x)
Y(x+ ε)

Y(x)

(
1− ε1ε2

ε2

)
(8.48)

where ω = c1(L),
∫
F ω = 1. It is evident that (8.48) reproduces the q1 term in (7.3).
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8.7.2 Example: the D4 case

The D4 fundamental character X2 provides a representative example.

Let w = (0, 1, 0, 0), v = (1, 2, 1, 1), with Vertγ = {1, 2, 3, 4}. In this subsection M4 =

MD4(w,v).

The character (8.38) specifies to

T virtM4  P ((1− V2)V ∗2 − 3 + V2(V ∗1 + V ∗3 + V ∗4 )) (8.49)

Now, the three terms in the second line of (7.20) are coming from the isolated fixed

points pi, i = 1, 3, 4 in M4, with W2 = 1, V2 = 1 + q−1, Vi = q−1, Vj = 1, j 6= i,j = 1, 3, 4.

This gives T virt
pi M4  Pq = q + q2 − qq1 − qq2, which translates to the factor

(ε+ ε1)(ε+ ε2)

ε · 2ε
= 1 +

ε1ε2

2ε2

in the second line of (7.20).

The first line in (7.20) is the contribution of the non-isolated component of the fixed

point set, the fixed projective line line F = P1 ⊂ M4, with W2 = V1 = V3 = V4 = 1,

V2 = 1 + q−1L, where L ≈ O(−1) is a non-trivial line bundle over F .

The corresponding complexes Ci are given by:

Ci = V2 − (1 + q−1)Vi, i = 1, 3, 4

C2 = W2 ⊕ q−1 (V1 + V3 + V4)−
(
1 + q−1

)
V2

(8.50)

For F this gives:

T virtM4|F = P
(
2q−1L− 1

)
= 2(q−1 + 1− q−1

1 − q
−1
2 )L− 1 + q1 + q2 − q (8.51)

The restriction of Ci onto F is given by:

Ci = L− 1, i = 1, 3, 4

C2 = 2− (1 + q−1)L
(8.52)

The tangent bundle to F is given by

TF = 2L− 1 (8.53)

The corresponding contribution to X2,0 is the integral over F of the equivariant Euler class

of TM4|F with the equivariant parameter ε1, divided by the equivariant Euler class of the

virtual normal bundle Nvirt
F⊂M4

= T virtM4|F − TF , which is equal to

Nvirt
F⊂M4

 (1− q1)TM4 − TF  2(q−1 − q−1
1 − q

−1
2 )L+ q1 + q2 − q (8.54)

times the product of Y-observables:∫
F

ε

ε1ε2

(
(ω + ε1)(ω + ε2)

ω + ε

)2 P (x)P (x− ε− ω)Y2(x)2

Y2(x− ω)Y2(x− ω − ε)
∏

i=1,3,4

Yi(x− ω)

Yi(x)
=

PP−1
Y2

Y2,−1

(
2
(

1− ε1ε2

ε2

)
+
ε1ε2

ε
∂xlog

(
Y2Y2,−1

P−1Y1Y3Y4

)) (8.55)
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9 More on the Physics of q-characters

Let G be a Lie group, and (R, π) its representation, i.e. π is a group homomorphism

π : G→ End(R). The character χR(g) is a (generalized) function on G, given by the trace

of the matrix π(g) in the representation R:

χR(g) = TraceR π(g) (9.1)

By definition χR is an adjoint-invariant function, i.e. the function on the space of conjugacy

classes:

χR(g) = χR(h−1gh), for any h ∈ G (9.2)

For the compact Lie group G the space of conjugacy classes G/Ad(G) = T/W is the

quotient of the maximal torus T ⊂ G by the action of discrete group, the Weyl group.

9.1 Characters from supersymmetric quantum mechanics

A familiar realization of a character χR(eh) in quantum mechanics as the partition func-

tions of a quantum mechanical system with G-symmetry, whose space of states is the

representation R and the Hamiltonian is a realization π(h) of an element h ∈ t of the Lie

algebra t = LieT of the maximal torus T .

For example, if G is a compact Lie group, and R is a unitary representation, corre-

sponding to the highest weight λ ∈ t∗, then the geometric quantization program associates

R to the symplectic manifold X = G/Kλ ⊂ g∗, the coadjoint orbit of λ, with the canonical

Kirillov-Kostant symplectic form ωX/~. The geometric quantization realizes R as the space

of holomorphic sections of the pre-quantization line bundle L over X (which is a Kähler

manifold), such that c1(L) = [ ωX
2π~ ] ∈ H2(X,Z).

R = H0(X, L) (9.3)

This correspondence extends, with some friction, to a wider class of groups and represen-

tations [59].

There are various explicit formulas for the character χR, due to Harish-Chandra, Weyl,

Kirillov, and Kac [55, 104]. For the dominant weight λ the line bundle L has vanishing

higher degree cohomology, so that

TraceR =
∑
i

(−1)iTraceHi(X,L) (9.4)

One interpretation of the Kac-Weyl character formula is the equivariant Riemann-Roch-

Grothendieck formula applied to (9.4).

Physically, one takes (X, ωX) as the phase space of the mechanical system. For the

Hamiltonian one takes the function h defined as: for x ∈ X, h(x) = 〈i(x), t〉, where

i : X→ g∗ is the embedding, and t is some fixed element of t ⊂ g. Then the character can

be realized as the path integral [4, 5]:

χR(g) =

∫
DX exp

i

~

∮ (
d−1ωX − h(x(t))dt

)
(9.5)
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where the integral is taken over the space LX of parametrized loops x : S1 → X. The loop

space LX is acted upon by the torus T ×U(1), where T acts pointwise on X, and U(1) acts

by the loop rotations: e2πis · x(t) = x(t+ s).

The integral (9.5) can be evaluated exactly by the infinite-dimensional version of the

Duistermaat-Heckman formula. The loop space LX is viewed as the symplectic manifold

with the symplectic form being the integral (“a point-wise sum”)

Ω =
1

2

∫
S1

dt ωµνψ
µψν (9.6)

Then the action
∮ (
d−1ωX − h(x(t))dt

)
is interpreted as the Hamiltonian, generating a

one-parametric subgroup in T ×U(1).

The character formula can be also interpreted with the help of the supersymmetric

quantum mechanics on X, [6, 50]. Instead of X one takes the supermanifold Y = ΠTX ⊗
T ∗X (the total space of the sum of the cotangent bundle and the tangent bundle with

fermionic fibers over X). Y is endowed with the even symplectic form (as opposed to the

BV formalism, where the symplectic form is odd):

ωY = dpµ ∧ dxµ + gµνdψ
µ ∧ dψν (9.7)

where gµν is a metric on X. We study the quantum mechanics on Y with the Hamiltonian

HY =
1

2
gµν

(
pµ − Γκ̃µν̃gκ̃λ̃ψ

ν̃ψλ̃
)(

pν − Γκ̂νν̂gκ̂λ̂ψ
ν̂ψλ̂

)
(9.8)

The supersymmetry is generated by the odd function

Q = ψµ
(
pµ − Γκ̃µν̃gκ̃λ̃ψ

ν̃ψλ̃
)

(9.9)

If the target space X itself is a moduli space of solutions to some partial differential equa-

tions involving gauge fields on a d-dimensional space Bd, e.g. vortices in d = 2, monopoles

in d = 3, or instantons in d = 4, then the quantum mechanics on X is a low energy approx-

imation to the d+1-dimensional gauge theory. The character (9.5) would be then given by

the path integral in the theory on S1 ×Bd. The parameters t ∈ g in the limit of shrinking

S1 would be interpreted as the (twisted) mass parameters for the flavor symmetry G acting

on the moduli space X. If d = 3, then using the three dimensional mirror symmetry we can

exchange these parameters for the Fayet-Illiopoulos parameters for the dual target space

X∨. Then, the weight subspaces would identify with the contribution of components of

fixed topology. This is almost as good as the statement of our theorem.

9.2 Gauge theory realization of the qq-characters

In this section we expand on the interpretation of qq-characters we sketched in the sec-

tion 2.4 using the intersecting branes, or its string dual.

We shall mainly consider the case of affine γ. The theories corresponding to the finite

dimensional A,D,E-type quivers can be viewed as limits of the affine ones, by sending

some of the gauge couplings to zero. For example, the A1 theory is a limit of Â2 theory

with two out of three gauge couplings sent to zero.
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As we recalled above the N = 2 quiver gauge theories with affine A,D,E quivers can

be realized as the low energy limit of the theory on a stack of n D3-branes placed at the

tip of the C2/Γ singularity, with Γ ⊂ SU(2) the McKay dual finite group.

For definiteness, let N ≈ R4 denote the worldvolume of the stack of the ‘physical’ D3

branes. The six dimensional transversal slice splits as a product W/Γ×R2
φ. Here W ≈ R4

is the Euclidean cover of the singularity. The fluctuations along R2
φ are represented, in the

D3 theory, by the adjoint complex scalar in the vector multiplet.

We want to subject the theory to the Ω-deformation. To this purpose we choose a

point 0 ∈ N, and use the symmetry of rotations about 0.

The superconformal vacuum of the theory on D3-branes corresponds to the branes

located at the origin in W, fixed by the Γ action and at some point p in Σ. Let us identify

Σ ≈ C and p with 0 ∈ C.

Let us now add a stack of w D3-branes located at 0×x ∈ N×Σ, with the worldvolume

being a copy of W/Γ. Here x ∈ C is a complex number.

The low energy configurations in the combined system of n + w D3 branes split into

two orthogonal stacks are labelled by some continuous and discrete parameters, such as

the separation of branes along Σ and the choice of flat U(w) connection at infinity S3/Γ of

W/Γ, i.e. a homomorphism ρ : Γ→ U(w).

When Γ = 1 is trivial, the supersymmetry of the combined system of branes is con-

sistent with Ω-deformation, which uses the subgroup SU(2)N,L × SU(2)∆ × SU(2)W,L of

the group

Spin(4)N × Spin(4)W = SU(2)N,L × SU(2)N,R × SU(2)W,L × SU(2)W,R

of rotations of the two orthogonal R4’s.

The open string Hilbert space splits as a sum of the spaces corresponding to the strings

stretched between different types of D-branes. We have the (−1)− (−1) strings connecting

the D(-1)-instantons, we have the (−1)− 3 strings connecting the D(-1)-instantons to the

stack of n D3-branes, we have the (−1)− 3′ strings connecting the D(-1)-instantons to the

stack of w D3 branes. There are also the 3− 3′ open strings. In [101] we define the moduli

space using the low-energy modes of these open strings.

The qq-character Xw,ν(x) is simply the observable in the original theory on the stack

of n D3-branes living along N, which is obtained by integrating out the degrees of freedom

on the transversal w D3-branes, in the vacuum corresponding to the particular w and the

vacuum expectation values ν of the scalars in the vector multiplets living on W/Γ.

The integral (8.31) can be interpreted (cf. [82]) as the partition function of the super-

symmetric quantum mechanics on the moduli space of Yang-Mills instantons on the ALE

gravitational instantons R̃4/Γγ , constructed in [64]. Here Γγ ⊂ SU(2) is the MacKay dual

to γ discrete group, whose representation theory is encoded in the quiver γ: Vertγ = Γ∨γ .

The gauge group U(w), with

w =
∑
i∈Γ∨γ

widimRi
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is broken at infinity, by the choice of flat connection Γγ → U(w), to a subgroup

U(w) −→
�

i∈Vertγ

U(wi)

The dimensions v encode the magnetic fluxes through the exceptional two-spheres in the

resolved orbifold R̃4/Γγ , and the ordinary instanton charge

vtot =
∑
i∈Γ∨γ

vidimRi

In the supersymmetric quantum mechanics the sum over v is not natural, as it adds the

partition functions of different Hilbert spaces. However, in the 4 + 1 dimensional gauge

theory on R̃4/Γγ×S1 the sum over v is just the sum over various topological sectors which

is enforced anyway by the cluster decomposition. A more careful look at (8.31) reveals

that we are dealing with the maximally supersymmetric Yang-Mills theory subject to the

Ω-deformation (more on it below) and coupled to a point-like source localized along the

circle S1× 0̃, where 0̃ is the exceptional variety, the joint of the exceptional spheres, which

arose in the resolution of singularities.

The coupling qv comes naturally from the usual Chern-Simons couplings on the D4-

branes ∫
C1 ∧ Tr (F −BNS) ∧ (F −BNS) +

∫
C3 ∧ Tr (F −BNS) (9.10)

In the IIB picture these would translate to the couplings to∫
S2i
BNS + τBRR = τi

as described, e.g. in [65].

Here is the general construction (the reader is invited to consult [91, 95] for details).

Consider the maximal supersymmetric super-Yang-Mills theory in eight dimensions, on a

noncommutative R8 ≈ C4. One can view this theory as a particular background in the

IKKT matrix model [52] with an dimensional theory with an infinite dimensional gauge

group, the group of unitary operators in the Hilbert space. This theory can also be lifted

to 8 + 1 and 9 + 1 dimensions, (also known as the Matrix theory [9] and the matrix string

theory [26], respectively).

Recall that the gauge fields on the noncommutative Euclidean space Rnθ with the

coordinates x̂µ, µ = 1, . . . , n, obeying

[x̂µ, x̂ν ] = iθµν ·1

can be described, more conveniently, as operators

X̂µ = x̂µ + θµνAν(x̂)

In the vacuum, Aν = 0 and X̂µ = x̂µ. The equations of motion of Yang-Mills theory on

Rnθ translate to the relations on the commutators of X̂µ’s:

Gµ′µ′′ [X̂
µ′ , [X̂µ′′ , X̂µ]] = 0 (9.11)
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In the form (9.11) the equations of motion do not distinguish between the gauge fields

and adjoint scalars, and are equally applicable both to the n-dimensional theory and to

its dimensional reductions to lower dimensions. Everything is hidden in the nature of the

operators X̂µ.

Let us now take n = 10, choose an identification R10 ≈ C4 × C, assume the metric to

be Euclidean, Gµν = δµν , and the Poisson tensor θµν to be of the (1, 1)-type. We assume

it vanishes on the last C factor. Define Zi = X̂2i−1 + iX̂2i, i = 1, 2, 3, 4, Φ = X̂9 + iX̂10.

We are interested in the supersymmetric field configurations, the generalized instantons.

In the present case the relevant equations are (cf. [73]):

[Zi, Zj ] + εijkl[Zk, Z l]† = 0, i, j = 1, 2, 3, 4 (9.12)

4∑
i=1

[Zi, Zi†] = −2θ · 1H (9.13)

and

[Φ, Zi] = [Φ, Zi†] = 0 (9.14)

The equations (9.12), (9.13), (9.14) imply (9.11). The Ω-deformation modifies the equa-

tions (9.14) to:

[Φ, Zi] + εiZ
i = 0, [Φ, Zi†]− εiZi† = 0 (9.15)

The equation (9.12) involves the (4, 0)-form 1
4!εijkldz

i∧dzj∧dzk∧dzl which is only invariant

under the SU(4) rotations, forcing the constraint (2.10).

Let us denote by H a copy of the two-oscillator Fock space:

H =
∞⊕

n1,n2=0

C|~n〉, (9.16)

acted upon by the creation and the annihilation operators:

A†i |~n〉 =
√
ni + 1|~n+ ei〉, Ai|~n〉 =

√
ni|~n− ei〉, i = 1, 2 (9.17)

with ~n = n1e1 + n2e2, e1 = (1, 0), e2 = (0, 1). The Hilbert space H is the irreducible

representation of the 2-oscillators Heisenberg algebra

[Ai,A
†
j ] = δij , [A1,A2] = 0, i, j = 1, 2

A simple solution to the eqs. (9.12), (9.13), (9.14) describing a stack of n parallel D3-

branes stretched in the R4
1234 direction is given by: identify H = H⊗N , with N the fintie

dimensional complex vector space of dimension n:

Z1 =
√
θA†1 ⊗ 1N , Z2 =

√
θA†2 ⊗ 1N (9.18)

while for i = 3, 4, Zi = 1H ⊗ diag(zi(1), . . . , z
i
(n)), where zi(a), aa ∈ C, a = 1, . . . , n, i = 3, 4.

The scalar Φ is equal to 1H ⊗ diag(a1, . . . , an) in the absence of Ω-deformation, and to

Φ =
(
ε1A

†
1A1 + ε2A

†
2A2

)
⊗ 1N + 1H ⊗ diag(a1, . . . , an) (9.19)

when the Ω-deformation is turned on.

– 53 –



J
H
E
P
0
3
(
2
0
1
6
)
1
8
1

Figure 12. Charge one abelian crossed instanton moduli space.

The solution which preserves less supersymmetry has H = H12 ⊕H34, H12 = H ⊗N ,

H34 = H⊗W , with two vector spaces N and W , of dimensions n and w, respectively and:

Zi =
√
θ P12A

†
i ⊗ 1NP12 , i = 1, 2

Zi =
√
θ P34A

†
i−2 ⊗ 1WP34 , i = 3, 4

(9.20)

where Pij : H → Hij is the orthogonal projection, P 2
ij = Pij = P †ij , P12P34 = P34P12 = 0,

1H = P12 + P34. The scalar Φ is given by

Φ = P121H ⊗ diag(a1, . . . , an)P12 + P341H ⊗ diag(ν1, . . . , νw)P34

without Ω-deformation, and by

Φ = P12

((
ε1A

†
1A1 + ε2A

†
2A2

)
⊗ 1N + 1H ⊗ diag (a1, . . . , an)

)
P12+

P34

((
ε3A

†
1A1 + ε4A

†
2A2

)
⊗ 1W + 1H ⊗ diag (ν1, . . . , νw)

)
P34

(9.21)

with the Ω-deformation corresponding to the generic SU(4) rotation.

We are mostly interested in the solutions, which asymptotically tend to the 4 + 4-

dimensional background, corresponding to the intersecting branes solution (the asymptotics

does not allow shifting Zi by a constant). Let us describe the so-called 1-instanton solutions

in the “abelian” case n = w = 1. Let eN and eW denote the orthonormal bases in N and

W , respectively. The space of solutions has three components: MN ∪MNW ∪MW .

The componentsMN ,MW are both isomorphic to C2, while the componentMNW ≈
CP1 is compact. Moreover these components intersect, at two points: MN ∩MNW = pN ,

MW ∩MNW = pW (it is tempting to call pN the North pole, and pW the Western pole,

unfortunately we couldn’t place the latter on the map, even on the Google map).

Explicitly,MN parametrizes the solutions where the pair (Z1, Z2) in (9.20) is replaced

by the one-instanton solution of [88] (see also [93] for more details), while (Z3, Z4,Φ) are

intact. Likewise, MW parametrizes the solutions where the pair (Z3, Z4) in (9.20) is

replaced by the one-instanton solution. Recall [40, 93, 99] that these solutions make use of

Murray-von Neumann partial isometries S : H → H, which obey:

SS† = 1H, S†S = 1H − PK (9.22)
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with PK an orthogonal projection onto a finite-dimensional subspace K ⊂ H. For the

one-instanton solutions in the componentsMN,W the subspace K is one-dimensional, K =

CeuA†1+vA†2 |0, 0〉 ⊗ eN,W , with (u, v) ∈ MN,W ≈ C2 being the instanton modulus. The

solutions corresponding to the component MNW have K = Ce⊥, where

e⊥ = ᾱ|0, 0〉 ⊗ eN + β̄|0, 0〉 ⊗ eW , (9.23)

with some α, β ∈ C,

|α|2 + |β|2 = 1 (9.24)

Define

e = β|0, 0〉 ⊗ eN − α|0, 0〉 ⊗ eW , e†K = 0 (9.25)

and

H′ =
⊕

n1+n2>0

C |~n〉 ⊂ H (9.26)

and

H′ = Ce⊕
(
H′ ⊗N

)
⊕
(
H′ ⊗W

)
(9.27)

the orthogonal complement to K. Define:

Z̃i |~n〉 ⊗ eN =
√
θ g−1

n+1gn
√
ni + 1 |~n+ ei〉 ⊗ eN , i = 1, 2

Z̃i |~n〉 ⊗ eW =
√
θ g̃−1

n+1g̃n
√
ni−2 + 1 |~n+ ei−2〉 ⊗ eW , i = 3, 4

Z̃1,2 |~n〉 ⊗ eW = 0, Z̃3,4 |~n〉 ⊗ eN = 0

n = n1 + n2 > 0, gn, g̃n ∈ C

Z̃1e =
√
θ γ12 |1, 0〉 ⊗ eN , Z̃2e =

√
θ γ12 |0, 1〉 ⊗ eN ,

Z̃3e =
√
θ γ34 |1, 0〉 ⊗ eW , Z̃4e =

√
θ γ34 |0, 1〉 ⊗ eW ,

Z̃i†e = 0, i = 1, 2, 3, 4

(9.28)

with

γ12, γ34 ∈ C, |γ12|2 + |γ34|2 = 1, (γ12 : γ34) ∈MNW (9.29)

Now define:

Zi = SZiS† (9.30)

where S† maps H onto H′ isometrically (use the Hilbert hotel construction) obeying (9.22).

The diagonal matrices gn, g̃n are fixed, up to the unitary gauge transformations, by

the equation (9.13),

|gn|2 =
(n+ 1)!n!

(n+ κ12)!(n+ 1− κ12)!
, |g̃n|2 =

(n+ 1)!n!

(n+ κ34)!(n+ 1− κ34)!
(9.31)

where

κij(1− κij) = 2(|γij |2 − 1) (9.32)

In the limiting cases (γ12 : γ34) → (1 : 0) = pW or (γ12 : γ34) → (0 : 1) = pN the

solution (9.28) approaches the direct sum of the vacuum solution for H34 and one-instanton
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solution on H12 or the direct sum of the one-instanton solution for H34 and the vacuum

solution on H12, respectively.

In [100] we shall consider more general intersecting brane solutions. Let 6 =

(
4

2

)
, the

set of 2-element subsets of 4. Fix 6 vector spaces NA. We take the Hilbert space to be

the sum

H =
⊕
A∈6

HA, HA = H⊗NA (9.33)

Define

Za0 =
∑
A,a∈A

A†hA(a)+1 ⊗ 1NA (9.34)

so that Za0 |HB = 0 whenever a /∈ B. This is the reference solution for the generalized

instantons in the theory we call the gauge origami in [100, 101].

9.3 Other realizations of X-observables

A natural question is what is the meaning of the Xi(x) observables on the CFT side of the

BPS/CFT-correspondence?

It might seem natural, e.g. in the AGT setup [1, 2] to assign the Xi(x)-observables to

the non-intersecting loops on the curve C on which one compactifies the A1 (0, 2)-theory,

which define the α-coordinates in the system of Darboux coordinates on the moduli space

of SL2 local systems [87].

One systematic way to derive such a representation would be to start with the type

IIB ten-dimensional background whose geometry is a rank 4 complex vector bundle E over

a flat two-torus with an SU(4)-flat connection. One can add up to six stacks of D5 branes,

wrapping the base torus and one of the complex rank two sub-bundles of E, invariant under

the action of the product of the maximal torus T ⊂ SU(4) and the two-torus translating

the base. This symmetry can be used to T -dualize the configuration of branes leading to

various equivalent realizations. This direction will be explored elsewhere.

However, one may try to address the question directly within the realm of the two-

dimensional conformal field theory. We know the N = 2∗ SU(n) theory corresponds to

the An−1 Toda theory [120] on a two-torus C×/qZ with an insertion of a special vertex

operator. The coupling constant b2 of the Toda theory is determined by the ratio ε2/ε1 of

two equivariant parameters. The qq-character Xw,ν of the Â0-theory is generated by the

auxiliary N = 2∗ theory on the transverse R4 with the equivariant parameters ε3, ε4. It

corresponds to its own Aw−1 Toda theory with the coupling constant b̃2 = ε4/ε3. It would

be interesting to work out the coupling between these theories generating the x-dependent

contributions to the qq-character.
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10 The first applications

10.1 Expansion coefficients

For the formal Laurent series f(z−1) near z =∞ we denote by [zn]f(z) the zn coefficient:

[zn]f(z) ≡ Coeffznf(z) =
1

2πi

∮
∞
f(z)

dz

zn+1
, (10.1)

the latter equality holding for actual functions f(z).

10.2 Effective prepotentials and superpotentials

One obvious application of our formalism is the solution of the low-energy theories. Indeed,

in the limit ε2 → 0 the integrals (8.26) simplify (the Chern polynomial of the tangent bundle

drops out). In addition, the sum over all quiver n-colored partitions (6.3) is dominated

by a single limit shape [86] which maps (8.26) to a system of difference equations for the

Yi-functions. These equations were studied in [86]. In this case it suffices to study the

equations for the dimension vectors w corresponding to the fundamental weights of gγ .

10.3 Instanton fusion

In the quantum case where ε1, ε2 are finite we need all w. The equations (8.26) can be

viewed as a system of Hirota difference equations, which should fix Z uniquely. This direc-

tion is currently investigated. Note that for the finite A-type quivers with the special choice

of n the related equations were found in [56] by somewhat different methods, although we

couldn’t match them with our equations for specific w. It would be very interesting to

relate the algebraic structure found in [56] to the one we exhibited here.

10.4 Undressing the U(1) legs

Another application of our formalism is the reduction formula, which allows to relate the

partition functions of the gauge theories with U(1) gauge factors to the partition functions

of the gauge theories with these U(1)’s being treated as global symmetries. We assume the

asymptotic freedom condition βi ≤ 0 (3.13) is obeyed.

Let i ∈ Vertγ be the node with ni = 1. Shift the argument of Yi(x) so as to set ai = 0.

Then, we have the expansion (cf. (5.20)):

Yi(x) = x+
ε1ε2

x
ki + . . . , x→∞ (10.2)

There are two possibilities: either the node i is connected to itself by an edge e ∈ s−1(i) ∩
t−1(i), or s−1(i) ∩ t−1(i) is empty.

10.4.1 The Â0 theory

In the first case the theory is the N = 2∗ theory. In the U(1) case it is characterized by the

mass m of the adjoint hypermultiplet, the complexified coupling q and the Ω-background
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parameters (ε1, ε2). The partition function Z
Â0

is a homogeneous function of m, ε1, ε2,

symmetric in ε1, ε2 and invariant under m→ −m− ε:

Z(q; m : ε1 : ε2) =
∑
λ

q|λ|
∏
�∈λ

(
1 +

m(m + ε)

c∨�(ε− c∨�)

)
, (10.3)

where c∨� = ε1(l�+ 1)− ε2a�. Since for λ 6= ∅ there always exists a locally most south-east

box � for which l� = a� = 0, the partition function Z(q; m : ε1 : ε2) = 1 for m = −ε1 or

m = −ε2:

Z(q; m : ε1 : ε2) = 1 +
(m + ε1)(m + ε2)

ε1ε2
Z̃(q; m : ε1 : ε2) (10.4)

The normalization

Z(q; 0 : ε1 : ε2) = Z(q;−ε : ε1 : ε2) = φ(q)−1 (10.5)

follows trivially from (10.3). Let us expand the character X1,0(x) (7.6) in x near x =∞:

X1,0(x) =
∑
λ

q|λ|
∏
�∈λ

S(mh� + εa�)
(
x+ ε+

ε1ε2

x
k + . . .

)(
1− m(m + ε)

x2
|λ|+ . . .

)
(10.6)

Recall that the formula above gives the x-expansion of an observable. It has the form

X1,0(x) = X
(0)
1,0(x) + X

(1)
1,0(x)k + . . ., where k is our familiar observable (5.4).

Thus

[x−1]X1,0(x) = ε1ε2Z(q; ε1 : −m− ε : m)k − m(m + ε)q
d

dq
Z(q; ε1 : −m− ε : m) (10.7)

and the consequence of our equations (6.3) reads

0 =
〈 〈

[x−1] X1,0(x)
〉 〉

q;m,ε1,ε2
=

ε1ε2Z(q; ε1 : −m− ε : m)q
d

dq
Z(q; m : ε1 : ε2)−

m(m + ε)Z(q; m : ε1 : ε2)q
d

dq
Z(q; ε1 : −m− ε : m) (10.8)

Introduce:

Φ(q; m : ε1 : ε2) =
ε1ε2

(m + ε1)(m + ε2)
logZ(q; m : ε1 : ε2) (10.9)

For fixed q it is a priori a meromorphic function on CP2, with possible singularities at

ε2/ε1 ∈ Q≥0 (but not at m = −ε1, m = −ε2, cf. (10.4)). For q = 0, Φ = 0. Then (10.8)

implies:

Φ(q; m : ε1 : ε2) = Φ(q; ε1 : −m− ε : m) (10.10)

which shows that Φ has no singularities in (m : ε1 : ε2) for fixed q, i.e. it is a constant. The

normalization (10.5) then implies that Φ(q; m : ε1 : ε2) = logφ(q), i.e.

Z(q; m : ε1 : ε2) = φ(q)
− (m+ε1)(m+ε2)

ε1ε2 (10.11)
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10.4.2 Other theories

In this case the node i is such that s−1(i)∩ t−1(i) is empty. The fundamental qq-character

Xi(x) has the following structure:

Xi(x) = Yi(x+ ε) + qiΓ2(x)Y−1
i (x) + qiΓ1(x) (10.12)

where Γ1(x),Γ2(x) are built out of Yj, qj with j 6= i. For large x the functions Γa(x) behave

as xa(1 +O(1/x)), for a = 1, 2. The expansion in x near x =∞ gives:

0 = [x−1] 〈 Xi(x) 〉 = ε1ε2(1− qi)qi
d

dqi
Z inst + qiDZ inst (10.13)

where D is the first order differential operator in qj, with j 6= i. The equation (10.13) is

the quasilinear partial differential equation of the first order, which can be solved using the

method of characteristics. The solution is unique given the initial condition, which can be

set at qi = 0, where the U(1)i gauge factor becomes a flavor group.

10.4.3 The linear quiver abelian theories

As an example of the application of this technique, consider the Type I theories with the

Ar-type quiver, with m1 = n1 = n2 = . . . = nr = mr = 1, mj = 0, 1 < j < r. The theory is

characterized by the masses m1, mr of the fundamental hypermultiplets, the Coulomb moduli

a = (ai)
r
i=1 (which could be traded for the masses of the bi-fundamental hypermultiplets,

cf. [85]) and the couplings q = (qj)
r
j=1. Let us introduce the “momenta” p±i , i = 0, . . . , r:

p+
i = ε+ ai − ai+1, p−i = ai − ai+1, (10.14)

Using (7.14), (7.13), we derive:

0 = −[x−1] 〈 Xl(x) 〉 =

=
∑

I⊂[0,r], |I|=l

zI

ε1ε2

∑
i∈I
∇zi logZ inst

Ar +
∑

i∈I,j∈[0,r]\I,j<i

p+
i p
−
j

 . (10.15)

The solution to (10.15) is given by the simple “free-field formula”:

Z inst
Ar (a, q) =

∏
0≤j<i≤r

(1− zi/zj)
−
p+
i
p−
j

ε1ε2 (10.16)

Thus, we have derived the formulas conjectured in the sections C.1 and C.2 of [2]. Our

derivation here differs from that in [18].

For r = 1 we get:

Z inst
A1

= (1− q)
(ε+a0−a1)(a2−a1)

ε1ε2
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10.4.4 The D-type theories

Let us present now an example of the D4-type theory. This is the theory with four gauge

group factors, which we shall label by i = 0, 1, 2, 3, with the assignments: n0 = 2, n1 =

n2 = n3 = m0 = 1. The theory is characterized by four couplings q = (q0, q1, q2, q3), and

six Coulomb and mass parameters: the Coulomb parameters

a = (a0,1 = a1, a0,2 = a2, a1,1 = m1, a2,1 = m2, a3,1 = m3)

two for the U(2) gauge group factor, and three for three U(1) factors, and the mass m4.

By computing [x−1]Xi,0(x) in (7.16) using (5.20) for i = 1, 3, 4 we derive three first

order differential equations, whose solution give:

ZD4

(
a; m4; q

)
= ZA1 (a1, a2; m1, m2, m3, m4; q)×

(1− q1)µ1(1− q2)µ2(1− q3)µ3(1− q2
0q1q2q3)µ4×

(1− q0q1)ν1(1− q0q2)ν2(1− q0q3)ν3(1− q0q1q2q3)ν4×
(1− q0q1q2)κ3(1− q0q1q3)κ2(1− q0q2q3)κ1 (10.17)

where

ε1ε2µj = (mj − a1)(mj − a2) ,

ε1ε2νj = (a1 + a2 + ε)(a1 + a2 + ε+ mj − m)− a1a2 − εm4 + mj(mj − m) +
∑

1≤i<k≤4

mimk ,

ε1ε2κj = (a1 + a2 + ε− mj − m4) (a1 + a2 + ε+ mj − m)

j = 1, . . . , 4 , m = m1 + m2 + m3 (10.18)

and

q = q0
(1− q1)(1− q2)(1− q3)(1− q2

0q1q2q3)

(1− q0q1)(1− q0q2)(1− q0q3)(1− q0q1q2q3)
(10.19)

10.5 Fractional instantons and quantum differential equations

The equations of the schematic form:

κ
∂

∂τa
Ψ = Ĥa(τ) ·Ψ (10.20)

where a label the set of couplings and the operators Ĥa on the right hand side are κ-inde-

pendent, show up in mathematical physics on several occasions (Knizhnik-Zamolodchikov

connection [61, 105], t-part of tt∗-connection [19], Gauss-Manin connection for exponential

periods [66, 68], λ-connection associated to the solution of the WDVV equations [45, 62],

and more recently, e.g. [15]). The consistency of (10.20), i.e. the flatness of the correspond-

ing connection for any value of κ, is equivalent to two sets of equations:

[Ĥa, Ĥb] = 0,

∂

∂τa
Ĥb −

∂

∂τ b
Ĥa = 0

(10.21)
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The first set of equations imply that at each value of τ one has a quantum integrable system

(if the number of the operators Ĥa is maximal in the appropriate sense).

In the present case the meaning of these equations is the following. We have a quantum

field theory with some set of couplings τa in which we study a codimension two defect, which

has its own couplings τ̃a,ω. Differentiating the partition function of the theory with defect

brings down the corresponding observable Oa, deforming the Lagrangian. Integration over

the positions of Oa’s has a contribution of the region where Oa approaches the defect.

When Oa hits the defect, it fractionalizes, and splits into the observables of the defect

theory:

Oa ∼
∑
ω

f (1)
a,ω(τ, τ̃)Õa,ω +

∑
ω′,ω′′

f
(2)
a,ω′,ω′′(τ, τ̃)Õa,ω′Õa,ω′′ + . . . (10.22)

The equation we derive in [102] is an example of such a relation, where the bulk operator

Oa is, in fact, the familiar TrΦ2, and its supersymmetric descendents (which are all equal

up to the powers of ε2 in cohomology of the Ω-deformed supersymmetry). What about

other operators, such as TrΦk for k > 2?

The operators deforming the gauge Lagrangian by

δτL =
∑
k>2

τk
k!

∫
d4xd4ϑTrΦk ∼ 1

(k − 2)!

∫
TrΦk−2F 2 + . . . (10.23)

are irrelevant and lead to non-renormalizable theories. We can, nevertheless, study them

by treating τk as formal variables (i.e. assuming some power τnkk of τk to vanish). The

qq-characters are modified by the introduction of the higher times. In the A1 case, for

example, the qq-character modifies to

Y(x+ ε) + Y(x)−1qP (x) exp

∞∑
l=1

1

l!
τlx

l (10.24)

In this way we get the realization of the W -algebra and its qq-deformation in gauge theory.

We also get a new perspective on the rôle of Whitham hierarchies [46, 63] and their quantum

and qq-deformations in gauge theory.

See also [13] for more applications of qq-characters in the U(1) case.

11 Discussion and open questions

Of course, the most interesting question is to extend our formalism of non-perturbative

Dyson-Schwinger equations beyond the BPS limit, even beyond the realm of supersym-

metric theories.

However, even in the world of moderately supersymmetric theories our approach seems

to be useful. It appears that the exact computations of [24, 25] of effective superpotentials

of N = 1 theories and their gravitational descendands can be cast in the form of the

non-perturbative Dyson-Schwinger identities. The precise definition of the qq-characters

in N = 1 theories will be discussed elsewhere.
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Another exciting problem is to find the string theory analogue of our qq-characters

and the stringy version of the large field redefinitions (see [42] for a discussion of stringy

symmetries).

The considerations of this paper and its companions are local, they describe gauge

theories in the vicinity of a fixed point of rotational symmetry. In [92] four dimensional

N = 2 gauge theories on the smooth toric surfaces were studied. It was found that

the partition function of the gauge theory on a toric surface S has the topological vertex

structure:

ZS ∼
∑

lattice

∏
v∈S
ZR4(local Coulomb parameters, local Ω− parameters) (11.1)

where the sum goes over the lattice of magnetic fluxes H2(S,Λw), the product is over

the fixed points of the two-torus action on S (see [12] for the recent progress in this

direction). Our generalized gauge theories involving intersecting four dimensional space-

times naturally live on Calabi-Yau fourfolds. They describe generalized complex surfaces

which may have several components with different multiplicities. It would be interesting

to apply these ideas to topological strings and to topological gravity.

On a more mathematical note, let us discuss the relation of our qq-characters to the t-

deformation of q-characters of [38], introduced by H. Nakajima in [75, 78–80]. His definition

is basically the weighted sum of the Poincare polynomials of the Hw,γ-fixed loci on M(w,v).

Let us observe that if in the formula (8.31) we pull the Yi’s and Pi’s out of the integral,

with some clever choice of the arguments replacing those in (8.32), the remaining integral,

for each v would compute ∑
j

(−q2)−jχ(M(w,v),Ωj
M(w,v)) (11.2)

i.e. the holomorphic Poincare polynomial. In other words, if the qq-operator is viewed as the

difference-differential operator on the functions Yi, then the t-deformed q-character looks

like its symbol. It would be interesting to develop some kind of deformation quantization

scheme, allowing to compute our qq-characters using the knowledge of the t-deformed q-

characters [80], and to apply them to rederive the results of [17]. The paper [58] is a step

in this direction.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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XXII, Birkhäuser Basel (2003), Prog. Math. 244 (2006) 525.

[85] N.A. Nekrasov and V. Pestun, Seiberg-Witten geometry of four dimensional N = 2 quiver

gauge theories, arXiv:1211.2240 [INSPIRE].

[86] N.A. Nekrasov, V. Pestun and S. Shatashvili, Quantum geometry and quiver gauge theories,

arXiv:1312.6689 [INSPIRE].

[87] N.A. Nekrasov, A. Rosly and S. Shatashvili, Darboux coordinates, Yang-Yang functional

and gauge theory, Nucl. Phys. Proc. Suppl. 216 (2011) 69 [arXiv:1103.3919] [INSPIRE].

[88] N.A. Nekrasov and A.S. Schwarz, Instantons on noncommutative R4 and

(2, 0)-superconformal six-dimensional theory, Commun. Math. Phys. 198 (1998) 689

[hep-th/9802068] [INSPIRE].

[89] N.A. Nekrasov and S. Shatashvili, Bethe Ansatz and supersymmetric vacua, AIP Conf.

Proc. 1134 (2009) 154 [INSPIRE].

[90] N.A. Nekrasov and E. Witten, The Omega Deformation, Branes, Integrability and Liouville

Theory, JHEP 09 (2010) 092 [arXiv:1002.0888] [INSPIRE].

[91] N.A. Nekrasov, Lectures on open strings and noncommutative gauge fields, hep-th/0203109

[INSPIRE].

[92] N.A. Nekrasov, Localizing gauge theories, prepared for 14th International Congress on

Mathematical Physics (ICMP 2003), Lisbon, Portugal, 28 July – 2 August 2003.

[93] N.A. Nekrasov, Noncommutative instantons revisited, Commun. Math. Phys. 241 (2003)

143 [hep-th/0010017] [INSPIRE].

[94] N.A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math.

Phys. 7 (2003) 831 [hep-th/0206161] [INSPIRE].

[95] N.A. Nekrasov, Lectures on nonperturbative aspects of supersymmetric gauge theories,

Class. Quant. Grav. 22 (2005) S77 [INSPIRE].

[96] N.A. Nekrasov and S.L. Shatashvili, Quantization of Integrable Systems and Four

Dimensional Gauge Theories, arXiv:0908.4052 [INSPIRE].

[97] N.A. Nekrasov and S.L. Shatashvili, Quantum integrability and supersymmetric vacua,

Prog. Theor. Phys. Suppl. 177 (2009) 105 [arXiv:0901.4748] [INSPIRE].

[98] N.A. Nekrasov and S.L. Shatashvili, Supersymmetric vacua and Bethe ansatz, Nucl. Phys.

Proc. Suppl. 192-193 (2009) 91 [arXiv:0901.4744] [INSPIRE].

[99] N.A. Nekrasov, Trieste lectures on solitons in noncommutative gauge theories,

hep-th/0011095 [INSPIRE].

[100] N.A. Nekrasov, BPS/CFT correspondence: Gauge origami and qq-characters, to appear.

[101] N.A. Nekrasov, BPS/CFT correspondence: Instantons at crossroads and Gauge origami,

to appear.

– 67 –

http://dx.doi.org/10.1016/S0550-3213(98)00436-2
http://dx.doi.org/10.1016/S0550-3213(98)00436-2
http://arxiv.org/abs/hep-th/9609219
http://inspirehep.net/search?p=find+J+"Nucl.Phys.,B531,323"
http://dx.doi.org/10.1007/0-8176-4467-9_15
http://arxiv.org/abs/1211.2240
http://inspirehep.net/search?p=find+EPRINT+arXiv:1211.2240
http://arxiv.org/abs/1312.6689
http://inspirehep.net/search?p=find+EPRINT+arXiv:1312.6689
http://dx.doi.org/10.1016/j.nuclphysBPS.2011.04.150
http://arxiv.org/abs/1103.3919
http://inspirehep.net/search?p=find+J+"Nucl.Phys.Proc.Suppl.,216,69"
http://dx.doi.org/10.1007/s002200050490
http://arxiv.org/abs/hep-th/9802068
http://inspirehep.net/search?p=find+J+"Comm.Math.Phys.,198,689"
http://dx.doi.org/10.1063/1.3149487
http://dx.doi.org/10.1063/1.3149487
http://inspirehep.net/search?p=find+"AIP.Conf.Proc.,1134,154"
http://dx.doi.org/10.1007/JHEP09(2010)092
http://arxiv.org/abs/1002.0888
http://inspirehep.net/search?p=find+J+"JHEP,1009,092"
http://arxiv.org/abs/hep-th/0203109
http://inspirehep.net/search?p=find+EPRINT+hep-th/0203109
http://arxiv.org/abs/hep-th/0010017
http://inspirehep.net/search?p=find+J+"Comm.Math.Phys.,241,143"
http://dx.doi.org/10.4310/ATMP.2003.v7.n5.a4
http://dx.doi.org/10.4310/ATMP.2003.v7.n5.a4
http://arxiv.org/abs/hep-th/0206161
http://inspirehep.net/search?p=find+J+"Adv.Theor.Math.Phys.,7,831"
http://dx.doi.org/10.1088/0264-9381/22/8/003
http://inspirehep.net/search?p=find+J+"Class.Quant.Grav.,22,S77"
http://arxiv.org/abs/0908.4052
http://inspirehep.net/search?p=find+EPRINT+arXiv:0908.4052
http://dx.doi.org/10.1143/PTPS.177.105
http://arxiv.org/abs/0901.4748
http://inspirehep.net/search?p=find+J+"Prog.Theor.Phys.Suppl.,177,105"
http://dx.doi.org/10.1016/j.nuclphysBPS.2009.07.047
http://dx.doi.org/10.1016/j.nuclphysBPS.2009.07.047
http://arxiv.org/abs/0901.4744
http://inspirehep.net/search?p=find+J+"Nucl.Phys.Proc.Suppl.,192-193,91"
http://arxiv.org/abs/hep-th/0011095
http://inspirehep.net/search?p=find+EPRINT+hep-th/0011095


J
H
E
P
0
3
(
2
0
1
6
)
1
8
1

[102] N.A. Nekrasov, BPS/CFT correspondence: KZ and BPZ equations from Non-perturbative

Dyson-Schwinger equations, to appear.

[103] N.A. Nekrasov, BPS/CFT correspondence: Non-perturbative Dyson-Schwinger equations

and surface operators, to appear.

[104] A. Pressley and G. Segal, Loop groups, Oxford University Press (1986).

[105] V.V. Schechtman and A.N. Varchenko, Arrangements of hyperplanes and Lie algebra

homology, Invent. Math. 106 (1991) 139.

[106] N. Seiberg and E. Witten, Electric-magnetic duality, monopole condensation and

confinement in N = 2 supersymmetric Yang-Mills theory, Nucl. Phys. B 426 (1994) 19

[Erratum ibid. B 430 (1994) 485] [hep-th/9407087] [INSPIRE].

[107] N. Seiberg and E. Witten, Monopoles, duality and chiral symmetry breaking in N = 2

supersymmetric QCD, Nucl. Phys. B 431 (1994) 484 [hep-th/9408099] [INSPIRE].

[108] N. Seiberg and E. Witten, Gauge dynamics and compactification to three-dimensions,

hep-th/9607163 [INSPIRE].

[109] E.K. Sklyanin, Quantum version of the method of inverse scattering problem, J. Sov. Math.

19 (1982) 1546 [INSPIRE].

[110] E.K. Sklyanin, Some algebraic structures connected with the Yang-Baxter equation, Funct.

Anal. Appl. 16 (1982) 263 [INSPIRE].

[111] E.K. Sklyanin and L.D. Faddeev, Quantum Mechanical Approach to Completely Integrable

Field Theory Models, Sov. Phys. Dokl. 23 (1978) 902 [INSPIRE].

[112] L.D. Faddeev, E.K. Sklyanin and L.A. Takhtajan, The Quantum Inverse Problem Method.

1, Theor. Math. Phys. 40 (1980) 688 [INSPIRE].

[113] F. Smirnov, Form-factors in completely integrable models of quantum field theory Adv. Ser.

Math. Phys. 14 (1992) 1 [INSPIRE].

[114] F.A. Smirnov, Dynamical symmetries of massive integrable models, 1. Form-factor bootstrap

equations as a special case of deformed Knizhnik- Zamolodchikov equations, Int. J. Mod.

Phys. A 71B (1992) 813 [INSPIRE].

[115] L. Takhtajan and L. Faddeev, The Quantum method of the inverse problem and the

Heisenberg XYZ model, Russ. Math. Surveys 34 (1979) 11 [INSPIRE].

[116] D. Tong, The holographic dual of AdS3 × S3 × S3 × S1, JHEP 04 (2014) 193

[arXiv:1402.5135] [INSPIRE].

[117] D. Tong and K. Wong, Instantons, Wilson lines and D-branes, Phys. Rev. D 91 (2015)

026007 [arXiv:1410.8523] [INSPIRE].

[118] C. Vafa and E. Witten, A strong coupling test of S duality, Nucl. Phys. B 431 (1994) 3

[hep-th/9408074] [INSPIRE].

[119] E. Witten, Some comments on string dynamics, hep-th/9507121 [INSPIRE].

[120] N. Wyllard, A(N-1) conformal Toda field theory correlation functions from conformal

N = 2 SU(N) quiver gauge theories, JHEP 11 (2009) 002 [arXiv:0907.2189] [INSPIRE].

– 68 –

http://dx.doi.org/10.1007/BF01243909
http://dx.doi.org/10.1016/0550-3213(94)90124-4
http://arxiv.org/abs/hep-th/9407087
http://inspirehep.net/search?p=find+J+"Nucl.Phys.,B426,19"
http://dx.doi.org/10.1016/0550-3213(94)90214-3
http://arxiv.org/abs/hep-th/9408099
http://inspirehep.net/search?p=find+J+"Nucl.Phys.,B431,484"
http://arxiv.org/abs/hep-th/9607163
http://inspirehep.net/search?p=find+EPRINT+hep-th/9607163
http://dx.doi.org/10.1007/BF01091462
http://dx.doi.org/10.1007/BF01091462
http://inspirehep.net/search?p=find+J+"J.Sov.Math.,19,1546"
http://dx.doi.org/10.1007/BF01077848
http://dx.doi.org/10.1007/BF01077848
http://inspirehep.net/search?p=find+J+"Funct.Anal.Appl.,16,263"
http://inspirehep.net/search?p=find+J+"Sov.Phys.Dokl.,23,902"
http://inspirehep.net/search?p=find+J+"Teoret.Mat.Fiz.,40,194"
http://inspirehep.net/search?p=find+IRN+2717760
http://dx.doi.org/10.1142/S0217751X92004063
http://dx.doi.org/10.1142/S0217751X92004063
http://inspirehep.net/search?p=find+J+"Int.J.Mod.Phys.,A71B,813"
http://inspirehep.net/search?p=find+IRN+589640
http://dx.doi.org/10.1007/JHEP04(2014)193
http://arxiv.org/abs/1402.5135
http://inspirehep.net/search?p=find+J+"JHEP,1404,193"
http://dx.doi.org/10.1103/PhysRevD.91.026007
http://dx.doi.org/10.1103/PhysRevD.91.026007
http://arxiv.org/abs/1410.8523
http://inspirehep.net/search?p=find+EPRINT+arXiv:1410.8523
http://dx.doi.org/10.1016/0550-3213(94)90097-3
http://arxiv.org/abs/hep-th/9408074
http://inspirehep.net/search?p=find+J+"Nucl.Phys.,B431,3"
http://arxiv.org/abs/hep-th/9507121
http://inspirehep.net/search?p=find+EPRINT+hep-th/9507121
http://dx.doi.org/10.1088/1126-6708/2009/11/002
http://arxiv.org/abs/0907.2189
http://inspirehep.net/search?p=find+J+"JHEP,0911,002"

	Introduction
	Dyson-Schwinger equations
	Non-perturbative Dyson-Schwinger identities
	Organization of the presentation

	The BPS/CFT correspondence
	N=2 partition functions
	Defect operators and lower-dimensional theories
	The y- and x-observables
	The physics of x-observables
	Hidden symmetries
	Some notations
	Equivariant virtual Chern polynomials

	Supersymmetric gauge theories
	Quivers
	Quivers with colors
	The symmetry groups
	The parameters of Lagrangian
	The group H
	Perturbative theory
	Realizations of quiver theories

	Integration over instanton moduli spaces
	Instanton partition function
	Characters, tangent spaces
	Integral representation
	Full partition functions

	The y-observables
	The bulk y-observables
	q-observables

	Enter the qq-characters
	The main theorem

	Examples of qq-characters
	A-type theories: one factor gauge group
	A-type theories: linear quiver theories
	The D-type theories

	The qq-character formula
	Nakajima quiver variety
	The bi-observables
	The formula
	Five dimensional theory
	The symmetry. epsilon(1) –> epsilon(2), q(1) –> q(2)
	Convergence of the integrals
	Reduction to the fixed loci

	More on the Physics of q-characters
	Characters from supersymmetric quantum mechanics
	Gauge theory realization of the qq-characters
	Other realizations of x-observables

	The first applications
	Expansion coefficients
	Effective prepotentials and superpotentials
	Instanton fusion
	Undressing the U(1) legs
	Fractional instantons and quantum differential equations

	Discussion and open questions

