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1 Introduction

In ordinary Lorentzian spacetime a Killing vector, K, is a symmetry of the metric, i.e. a

vector field that generates an infinitesimal diffeomorphism that leaves the metric g invari-

ant, LKg = 0. With respect to an orthonormal basis related to a coordinate basis by the

vielbein em
a a Killing vector (KV) satisfies

∇aK
b = La

b , (1.1)

where Lab = −Lba and ∇ is a metric covariant derivative; for a conformal Killing vector

(CKV) we have

∇aK
b = L̃a

b , (1.2)

where L̃ab = Lab + 2ηabS, with ηab denoting the standard flat components of the metric

in an orthonormal frame. In other words a Killing vector is constant up to a Lorentz

transformation while a conformal Killing vector is constant up to a Lorentz transformation

together with a scale transformation. We note also that, in the Hamiltonian formalism for

a massless particle, a CKV is a function on phase space linear in the momentum whose

Poisson bracket with the Hamiltonian vanishes weakly.
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These relations can readily be generalised to higher-order Killing tensors (KTs). These

are symmetric tensors obeying

∇aK
b1...bn = La

(b1,b2...bn) , (1.3)

where Lab1,b2...bn is antisymmetric on the first two indices and symmetric on the rest. An

nth rank conformal Killing tensor (CKT) is symmetric, traceless and obeys

∇aK
b1...bn = L̃a

{b1,b2...bn} , (1.4)

where L̃ab1,b2...bn now includes a trace part on the first two indices and where the curly

brackets denote traceless symmetrisation. In the context of massless particles moving along

geodesics in the given spacetime, conformal Killing tensors lead to higher-order constants

of the motion defined by

K = Ka1...anpa1 . . . pan , (1.5)

where the momentum p is covariantly constant with respect to suitable time parameter.

It is straightforward to see that the (traceless) symmetrised product of two (conformal)

Killing vectors is a second-rank (conformal) Killing tensor, so that any spacetime that

admits the former will also have (conformal) Killing tensors.1

In this article we shall generalise the basic concepts discussed above to superspace,

building on earlier discussions of various aspects of superconformal symmetry in super-

space, see, for example, [1–7].2 This is not entirely straightforward due to the presence

of constraints in supergeometries. Having discussed the general case we shall apply it

to conservation laws for superparticles where we use a closed two-form on the even tan-

gent bundle to define Poisson brackets for these conserved quantities. This turns out to

be well-defined even though the two-form is itself singular. Given this Poisson bracket

structure we can derive a bracket for superconformal Killing tensors that extends the even

Schouten-Nijenhuis bracket (see below) to the super case. We then turn to a discussion of

superconformal Killing tensors in flat superspaces, specifically in dimensions 3,4,6,5 and 10.

In the first three cases there are classical superconformal groups, in D = 5 there is an ex-

ceptional superconformal group, F (4), only for the case N = 1 while in ten dimensions the

compensating scale parameter is required to be constant [9]. We also discuss the first three

cases in analytic superspaces. These are particular coset superspaces of the superconformal

group for which the local description resembles spacetime considered in a similar way.

In flat superspaces superconformal Killing tensors (SCKTs) are given by finite-

dimensional representations of the corresponding Lie superalgebras [10–13]. One feature

that is not present in the purely even case is that some representations can be reducible but

indecomposable, see [14, 15] and references therein. We discuss examples of this in super

Minkowski space, analytic superspace and also in super-twistor spaces in sections 4,5, and

1The opposite is not true, there are cases where there are (irreducible) Killing tensors but no Killing

vectors [25].
2In the mathematics literature one can find supersymmetric versions of Killing vectors defined on super-

Riemannian spaces equipped with ortho-symplectic metrics [8]. In this paper we shall focus on superspaces

as commonly understood in physics. These extend spacetime by sets of odd spinorial coordinates.
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6 respectively. In particular, it turns out that the definition of SCKTs given in (2.16) below

is not always sufficient, and furthermore, that when appropriate additional constraints are

imposed there are invariances that correspond to the presence of sub-representations that

cannot be removed due to indecomposablity. A familiar example of this is given by a SCKV

in N = 4, D = 4 supersymmetry where one has to impose super-tracelessness separately

and where one is still left with an additional one-parameter symmetry that reduces the

algebra to psl(4|4). In section 6 we also comment on the possibility of defining algebras

associated with SCKTs in a similar way to those that arise as symmetries of the Laplacian

in the purely even case [16]. Such algebras may have applications in higher-spin theory as

we briefly comment on in section 7. We end in section 8 with a few concluding remarks.

2 Killing tensors in superspace

We consider superspaces that extend D-dimensional spacetime by a number of odd coor-

dinates that transform as spinors under Spin(1, D − 1) and which, in addition, may carry

a representation of an internal R-symmetry group. Superspace was introduced in [17, 18]

and generalised to the curved case in [19–22].3 We denote the superspace coordinates by

zM = (xm, θµ). There is no super-metric but there is a super-vielbein EM
A that relates

coordinate and preferred frame bases by EA = dzMEM
A. The basic structure is a choice of

odd tangent bundle T1 ⊂ T , the tangent bundle, such that T1 generates the even tangent

bundle T0 = T/T1 by Lie brackets [22]; in other words, T1 is maximally non-integrable. In

addition, we suppose that T1 = S⊗V where S is a spinor bundle and V a bundle carrying

the fundamental representation of the internal R-symmetry group.4 This then reduces the

structure group to a triangular form but it is standard practice to reduce it further to a di-

agonal one by an appropriate choice of T0, and we shall always make such a choice in what

follows. Given such a choice, the tangent bundle splits into even and odd so that the struc-

ture group does not mix them. Thus we have EA = (Ea, Eα). The structure group is taken

to be the Lorentz group acting on even (vector) indices a, b etc and the product of the corre-

sponding spin group and any R-symmetry group acting on odd (spinorial) indices α, β etc.

We use a two-step notation for the odd indices. We let α run over all the odd indices, but

when necessary, we shall replace α by a pair αi, where now α runs over the dimension of the

appropriate spin representation and i is an R-symmetry index, corresponding to S and V

respectively. We then introduce a connection one-form ΩA
B taking its values in the Lie al-

gebra of the structure group (so that there are no mixed components), and correspondingly

define the torsion and curvature forms in the usual way: TA = DEA := dEA+EBΩB
A and

RA
B = dΩA

B + ΩA
CΩC

B. The various components of the connection can be determined

in terms of the vielbein if we impose suitable conventional constraints on the torsion. In

addition, we can impose further constraints that specify some parts of the super-vielbein.

Finally, throughout this paper, we shall assume that the dimension-zero torsion is flat,

Tαβ
c = −i(Γc)αβ , (2.1)

3See also [23] where superspace was introduced in the context of non-linear realisations of supersymmetry.
4See, for example, [24], for a more formal discussion.
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where Γc denotes a product of the appropriate gamma-matrix and an R-invariant tensor,

if needed (Γc is symmetric on the joint indices α, β). The dimension-zero torsion takes

this form in supergravity, when the equations of motion are satisfied, and sometimes

off-shell. In the presence of higher-order string or M-theory corrections it may be that

this is not the case, for example in D = 11 supergravity [26, 27], but we shall not consider

this possibility here; we shall always assume that (2.1) holds. In addition we shall impose

some conventional constraints that do not depend on the spacetime-dimension-dependent

nature of the spinors. At dimension one-half we can take

Tα[bc] = 0 and (Γc)
αβTβb

c = 0 . (2.2)

The first of these allows one to solve for the dimension one-half component of the Lorentz

connection, while the second allows one to fix the splitting of the tangent space into odd

and even. These two constraints imply that the remaining component of this torsion is

symmetric, traceless and gamma-traceless. This is an irreducible representation of the spin

group that is not present in the other dimension-one-half torsion Tαβ
γ . It then follows from

the dimension-one-half Bianchi identity that this must also be zero so that (2.2) implies

Tαb
c = 0 . (2.3)

We can also choose

Tab
c = 0 (2.4)

as a conventional constraint for the Lorentz connection at dimension one. In addition,

we shall assume that conventional constraints corresponding to the dimension one-half

and one components of the R-symmetry connection have been imposed, but it will not be

necessary to be explicit about these in this paper.

The natural generalisation of a Killing vector to superspace would seem to be a vector

field KA that satisfies5

∇AK
B +KCTCA

B = LA
B (2.5)

where LA
B denotes an element of the Lie algebra of the structure group. However, as

we shall see, the constraints that we have imposed on the geometry mean that the full

vector field is determined by its even part, Ka, from the lowest-dimensional component

(i.e. dimension minus one-half) of (2.5), namely

∇αK
b − iKγ(Γb)γα = 0 , (2.6)

when (2.1) and (2.3) are imposed. The spinorial derivative ∇α acting on Kb gives two

representations of the spin group, a gamma-traceless vector-spinor and a spinor, and (2.6)

states that the former should vanish. The spinor is then determined in terms of the

spinorial derivative of Kb. The vector field KA = (Ka,Kα), where the spinorial component

is determined in this fashion, then satisfies (2.5) with L̃A
B on the right, where the tilde

indicates the inclusion of an appropriate super-Weyl transformation [29, 30]. In other

5For other discussions of this topic in curved superspace see [7, 28].
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words, (2.6) defines a superconformal Killing vector (SCKV) when the standard constraints

given above are imposed.

To see this directly, we apply a second odd covariant derivative to both sides of (2.6),

take the graded commutator and then make use of the first Bianchi identity, DTA =

EBRB
A, to get (when (2.1) holds),

(Γa)αβ(∇aK
b +KCTCa

b) = (∇αK
γ +KDTDα

γ)(Γb)γβ + (α ↔ β) . (2.7)

This equation tells us that the dimension-zero components of (2.5) (i.e. those for which the

indices (A,B) are either both even or both odd) are satisfied if

L̃a
b = La

b + 2δa
bS L̃α

β = Lα
β + δα

βS , (2.8)

where S is a local scale parameter. Explicitly,

∇aK
b = L̃a

b = La
b + 2δa

bS (2.9)

∇αK
γ +KDTDα

γ = L̃α
β = Lα

β + δα
βS , (2.10)

where, in (2.9), we have used (2.3) and (2.4). Equation (2.9) is now formally identical

to (1.2). We can then use a similar argument to show that, at dimension one-half,

∇aK
β +KDTDa

β = iA(Γa)
βγ∇γS , (2.11)

where A is a constant. Depending on the theory (i.e. on any additional constraints that

have been imposed) it might be the case that ∇αS = 0, in which the scale parameter is a

constant.

Another way of deriving this result is to consider arbitrary variations of the super-

vielbein, HA
B := EA

MδEM
B, and connection, φA,B

C := EA
MδΩM,A

B (where EA
M is the

inverse supervielbein). The induced variation of the torsion is

δTAB
C = 2∇[AHB]

C + TAB
DHD

C − 2H[A
DT|D|B]

C + 2φ[A,B]
C , (2.12)

where the square brackets denote graded antisymmetrisation.6 For a diffeomorphism ac-

companied by a local structure-algebra transformation we have

HA
B = ∇AK

B +KCTCA
B − LA

B

φA,B
C = ∇ALB

C +KDRDA,B
C

δTAB
C = KD∇DTAB

C + 2L[A
DT|D|B]

C − TAB
DLD

C . (2.13)

For a Killing symmetry the variation of the supervielbein must vanish up to a local frame

rotation so that HA
B=0. Since φA,B

C is determined in terms of HA
B (by setting appro-

priate parts of the torsion to zero), the variation of the torsion must also vanish. Now

suppose that we make a diffeomorphism but only set Hα
b = 0. The dimension-zero com-

ponent of (2.12) reduces to

0 = (Γc)αβHd
c − 2H(α

γ(Γc)β)γ . (2.14)

6By graded (anti)-symmetrisation of indices we shall mean Z2-grading throughout the paper.
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This clearly implies that the dimension-zero components of HA
B will also vanish up to a

scale transformation since a structure-algebra transformation preserves Γc. Now consider

the variation of the dimension-one-half torsion component Tαb,c. It is easy to see that setting

Tαbc = 0 allows one to solve for the Lorentz part of the dimension-one-half connection

variation φa,bc, as well as Ha
β . But since the only other non-zero terms in the equation

contributing to this component involves the derivative of S, we conclude that Ha
β indeed

has the same form as the right-hand side of (2.11) and thus that we have a superconformal

Killing vector.

This result means that we can interpret a SCKV in a simpler way: it can be defined to

be a vector field K that generates an infinitesimal diffeomorphism that preserves the odd

tangent bundle, i.e. LKX is odd if X is, or, equivalently

〈[Eα,K], Eb〉 = 0 . (2.15)

Here EA denote basis vector fields dual to the basis one-forms EA and the angle-brackets de-

note the standard pairing between forms and vectors. Writing this out explicitly gives (2.6),

and this leads to (2.9), (2.10) and (2.11), as shown above.

The above results can be extended to superconformal Killing tensors (SCKTs) straight-

forwardly. Thus a SCKT is determined by a symmetric traceless purely even tensorKb1...bn .

Its covariant spinorial derivative again contains just two irreducible spinorial representa-

tions of the Lorentz group, one with n vector indices, and one with (n− 1), both of which

are symmetric-traceless on these and gamma-traceless. To obtain a SCKT we simply have

to set the larger representation to zero. Thus we have

∇αK
b1...bn − inK{b1...bn−1γ(Γbn})γα = 0 (2.16)

when the standard constraints are satisfied. Note that we can take Kb1...bn−1γ to be irre-

ducible because any gamma-trace term it could contain drops out of (2.16). Given this one

would then expect to be able to construct all the other components of a full SCKT KA1...An

systematically by applying further spinorial covariant derivatives to (2.16) and making use

of the Ricci and Bianchi identities. One would expect that this object should satisfy

∇AK
B1...Bn + nK{B1...Bn−1CTCA

Bn} = L̃A
{B1,B2...Bn} (2.17)

for some appropriate definition of the brackets {}, although is not straightforward to

verify this explicitly in the general case. Later on, in section 4, we shall work out all of the

components of SCKTs in flat superspaces. The emphasis throughout the rest of the paper

will be on the superconformal case, but the non-conformal case can be studied when the

scale transformations are omitted.

3 Superparticles

The Lagrangian for a Brink-Schwarz superparticle in a curved background is given

by [31, 32]

L =
1

2
e−1żaża (3.1)
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Here the coordinates of the superparticle moving along a curve parametrised by t are

given by zM (t), and we set żA := żMEM
A. The equations of motion are

∇tpa + żCTCa
bpb = 0 ,

żBTBα
cpc = 0 , (3.2)

where pa = e−1ża is the derivative of the Lagrangian with respect to ża. Varying

the action with respect to the einbein e gives the mass-shell constraint p2 = 0. The

covariant derivative ∇t is the pull-back of the superspace covariant derivative onto the

worldline. From now on we suppose that the standard superspace constraints given

by (2.1), (2.2), (2.3) and (2.4), are satisfied. The equations of motion simplify to

∇tpa = 0 ,

żβ(Γ · p)βα = 0 . (3.3)

The superparticle action is invariant under the (fermionic) kappa-symmetry transforma-

tions introduced in [32]:

δzα = (Γ · p)αβκβ ,

δe = −2iηżακα , (3.4)

where η = ±1 depending on the dimension.

Now consider the function K = Ka1...anpa1 . . . pan , where K is an nth rank symmetric,

traceless tensor. We claim that this is conserved along the worldline of the superparticle

when the equations of motion are satisfied provided that this tensor satisfies (2.16). We have

dK

dt
= (żb∇bK

a1...an + żβ∇βK
a1...an)pa1 . . . pan , (3.5)

where we have used the fact that ∇tpa = 0 along the worldline. For this expression to

be zero the two terms have to vanish independently. In the second term on the right

∇βK
a1...an contains only two irreducible representations because Ka1...an is symmetric and

traceless. These are an nth rank symmetric, traceless, gamma-traceless tensor-spinor and

a similar object with (n − 1) tensor indices. Clearly the former will not give zero in the

above equation and hence must be set to zero in order for it to be true. Thus the second

term gives a zero contribution if and only if (2.16) holds. When it does then the first term

in (3.5) vanishes as well: since ża ∝ pa, the first term involves ∇{bKa1...an} on-shell, and

this vanishes for a SCKT. So we have the result that the function K is conserved if and

only if (2.16) holds, i.e. if Ka1...an defines a SCKT.

We can also show that the function K is invariant under kappa-symmetry. We have

δκK = δκz
α∇αK

b1...bnpb1 . . . pbn

= in(Γ · p)αβκβ(Γ
b1)αγK

b2...bnγpb1 . . . pbn

= iηn(Γb1Γaκ)γK
b2...bnγpapb1 . . . pbn = 0 on shell . (3.6)
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The variation of the momentum can be ignored as it vanishes on-shell,

δκpa = iηżα(ΓbpbΓaκ)α = 0 , (3.7)

by virtue of the equation of motion for żα. This is consistent as kappa-symmetry can be

thought of as extended world-line supersymmetry in the super-embedding approach [33, 34],

so that the commutator of two such transformations gives rise to a time translation.

We shall now discuss the supersymmetric extension of the even Schouten-Nijenhuis

bracket for CKTs. We briefly review the bosonic case. For a spinless zero-mass particle

the Lagrangian is L = 1
2e

−1ẋaẋa where ẋa = ẋmem
a, where em

a is the vielbein, the momen-

tum is pa = ∂L
∂ẋa = e−1ẋa while the momentum associated with the einbein, pe, is zero. The

Hamiltonian is H = 1
2ep

2. The Poisson bracket of the constraint pe ∼= 0 with the Hamilto-

nian is −H so that the Hamiltonian is weakly zero. The symplectic form on phase space is

σ = eaDpa := ea(dpa − ωa
bpb) , (3.8)

where ωa
b is the standard torsion-free connection one-form and ea = dxmem

a. The basis

of vector fields dual to (ea, Dpa) is (ẽa, ∂
a) where

ẽa := ea
m(∂m + ωm,b

cpc∂
b) ∂a :=

∂

∂pa
. (3.9)

A Hamiltonian vector field Xf , corresponding to a function f , satisfies

ιXf
σ = df (3.10)

explicitly

Xf = (ẽaf)∂
a − (∂af)ẽa . (3.11)

We define the Poisson bracket of two functions by

(f, g) = −ιXg ιXf
σ . (3.12)

With respect to a covariant basis is easily seen to be

(f, g) = ẽaf∂
ag − f ↔ g , (3.13)

A CKT can now be defined as a function on phase space whose Poisson bracket with

the Hamiltonian vanishes weakly. Writing such a function as K := Ka1...anpa1 . . . pan ,

it is easy to see that this constraint is precisely (1.4). If L is another such function,

with a rank m symmetric traceless tensor, then the fact that the Poisson bracket obeys

the Jacobi identity implies that (K,L) also has a weakly vanishing Poisson bracket with

the Hamiltonian. We can write (minus) this as a new tensor constructed from K and L

multiplied by (n + m − 1) factors of the momentum.7 This new tensor defines the even

Schouten-Nijenhuis bracket [K,L],

[K,L]a1...aq := nK{a1...an−1|b|∇bL
an...aq} −mL{a1...am−1|b|∇bK

am...aq} , (3.14)

7The minus sign is so that [K,L]a for two vectors is the Lie bracket.
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where q = m+n−1. In a coordinate basis the covariant derivative∇b can be replaced by an

ordinary partial derivative. Note that, in the literature, there are two brackets attributed

to these authors [35–37]. The one we refer to here as even involves symmetric contravariant

tensors, while the other, which could be called odd, involves anti-symmetric contravariant

tensors (or multivectors). Henceforth we shall only be interested in the even bracket which

we shall refer to as the SN bracket. This is the term used for such brackets in the physics

literature in the context of Killing tensors [38]. The even bracket, as noted above, is related

to the Poisson bracket on the contangent bundle T ∗M , while the odd bracket can be

derived in a similar way from the anti-bracket defined from the anti-symplectic two-form on

the Grassmann-flipped cotangent bundle ΠT ∗M (i.e. the fibre coordinates are taken to be

odd). Discussions of this topic and other variations can be found in, for example, [39, 40].8

The foregoing can be extended to the superparticle case although not quite straight-

forwardly. In the super case the phase space is the even cotangent bundle coordinatised

by xm, θµ and pa. There is a natural closed two-form Σ [43] given by

Σ := EaDpa + T apa . (3.15)

although it is not symplectic because it is singular on the mass-shell (p2 = 0) as will become

apparent below. However, we can still define Hamiltonian vector fields as before, with σ

replaced by Σ, and we find

Xf = (Ẽaf)∂
a − (∂af)Ẽa +

(

iη
(Γ · p)αβ

p2
Ẽβf

)

Ẽα , (3.16)

where ẼA = EA
M (∂M + ΩM,b

cpc∂
b) and where η = ±1 depending on the dimension. The

Poisson bracket is

(f, g) = (Ẽaf∂
ag − f ↔ g) + iηẼαf

(Γ · p)αβ

p2
Ẽβg. (3.17)

It is clear from these formulae that Σ is not invertible on-shell, but this singularity cancels

out when we compute the Poisson bracket of two conserved functions defined by SCFTs.

We cannot repeat the arguments given for symmetries of the bosonic particle straight-

forwardly because the phase space does not include the fermionic momenta, and, as is

well-known, the constraint structure of the superparticle does not allow a simple covari-

ant discussion. If we start with a function K of the same form as in the bosonic case,

with the difference that now Ka1...an depends on θ as well as x, then, demanding that

the Poisson bracket of K with the Hamiltonian H be weakly zero leads to the constraint

∇{a1Ka2...a(n+1)} = 0, which is formally the same as the bosonic case. This is a consequence

of (2.16) but does not imply it. We are therefore obliged to impose (2.16) as a constraint.

If we compute the Poisson bracket of two such functions, K and L, defined by symmet-

ric, traceless tensors with n and m indices respectively, the p2 in the denominator of the

8In the context of particles it is also possible to have supersymmetry on the worldline rather than the

ambient space; this is called a spinning particle. For discussions of generalised Killing tensors in this context,

see, for example, [41, 42].
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bracket cancels so we find a new function with an (n+m− 1)th-rank tensor given by the

supersymmetric (even) Schouten-Nijenhuis bracket.

[K,L]a1...aq := nK{a1...an−1|b|∇bL
an...aq} −mL{a1...am−1|b|∇bK

am...aq}

+ imnK{a1...an−1γ(Γan)γδL
an+1...aq}δ . (3.18)

We emphasise that it is not guaranteed that this tensor also satisfies (2.16), but it can

be verified directly that it does, as shown in the appendix. We therefore conclude that

the supersymmetric SN bracket defined above for SCKTs does indeed define a new SCKT.

Moreover, since the Poisson bracket obeys the Jacobi identity, so does the super-SN bracket

and thus we have a Lie algebra structure on the space of SCKTs.

4 SCKTs in flat superspaces

In this section we give the details of SCKTs in flat superspaces in D = 3, 4, 6, 5&10. In the

first three cases we shall consider arbitrary numbers (N) of supersymmetries, while inD = 5

there is only one case, N = 1, for which one can have superconformal transformations [9]. In

D = 10, where there are no conformal boosts or S-supersymmetry transformations, we shall

only considerN = 1. InD = 3, 4, 6 there are superconformal groups, SpO(2|N), SU(2, 2|N)

and OSp(8|N), and the SCKVs represent the corresponding Lie superalgebras, while inD =

5, N = 1, the superconformal group is the exceptional Lie supergroup F (4).9 In D = 10 on

the other hand, there is no corresponding superconformal group and the constraints on a

SCKV mean that it differs from a non-conformal SKV only by a constant scale transforma-

tion. In the following we shall go through each case in turn. It is straightforward to compute

all the components of a SCKT starting from the leading even term. Except for D = 10 it

is simpler to use spinor notation and the Young tableaux calculus. This was introduced for

D = 4 in [44] where the tableaux were for the internal symmetry Lie algebra (s)u(N). A

single box with a dot (cross) then represents a covariant derivativeDαi (D̄
i
α̇). For the case in

hand, however, it is more convenient to take the tableaux to represent spin representations.

Again one can place either a cross or a dot inside a tableau to represent a spinorial deriva-

tive and then one can read off the representations of the internal symmetry algebra for a

given component obtained from the top one by applying odd derivatives in a simple fashion.

D = 3. In D = 3 the spin group is SL(2,R) and the R-symmetry group is O(N). The

top component of a SCKT is a symmetric traceless tensor Ka1...an obeying the constraint

that applying an odd derivative Dαi produces a symmetric, traceless tensor-spinor which

has (n − 1) vector indices and is also gamma-traceless. In spinor notation K becomes a

symmetric spinor with 2n indices, Kα1...α2n , while its derivative has (2n − 1) symmetric

spinor indices. The tableau for K is

K ∼

2n
︷ ︸︸ ︷

(4.1)

9SpO(2|N) is the same as OSp(N |2) but we write it with the symplectic factor first inD = 3 to emphasise

that this refers to the spacetime conformal group.
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and the constraint on DK is

DK ∼ · ×

2n
︷ ︸︸ ︷

∼

2n
︷ ︸︸ ︷

·
, (4.2)

in other words, the tableau with (2n + 1) symmetrised boxes in a row must vanish. No

SL(2,R) tableau can have more than two rows, so any further D must sit in the second row.

Moreover, we are not interested in spacetime dependence at the moment, we only want to

find the independent components of K in a θ-expansion. So any pair of Ds anti-commute,

and since all of the spinor indices associated with the Ds are in the same row, it follows that

all the internal o(N) vector indices must be antisymmetrised. Thus, after m steps we get

DmK ∼

2n
︷ ︸︸ ︷

· · · · m
, (4.3)

or, in indices,

DmK ∼ (DmK)
α1...α2n−m

i1...im
, (4.4)

with symmetry on all of the spinor indices and antisymmetry on all of the internal

indices. Clearly m ≤ 2n and m ≤ N . The spacetime constraint on K, namely that the

symmetrised traceless part of ∂K vanishes, becomes

∂(α1α2Kα3...α2n+2) = 0 . (4.5)

This constraint then leads to similar constraints on the spacetime derivatives of all of the

spinorial derivatives,

∂(α1α2(DmK)
α3...α2n−m+2)
i1...im

= 0 . (4.6)

This can also be represented by Young tableaux. If we apply a spacetime derivative to

K we get three tableaux, one with (2n + 2) boxes in the first row, one with (2n + 1) in

the first row and one in the second, and one with 2n in the first two and 2 in the second.

It is ∂K in the representation corresponding to the first of these that must vanish, and

this constraint then descends to all of the other components of K. Thus ∂DmK in the

representation specified by the tableau with (2n+ 2) boxes on the first row and m dotted

boxes on the second must vanish.

As a simple example consider a SCKV [45]. The components are (Kαβ ,Kα
i ,Kij). The

first component obeys the standard constraint for a conformal Killing vector in D = 3, the

second, DK, is a conformal Killing spinor κi, say, i.e. one satisfying

γ{a∂b}κi = 0 , (4.7)

while the third, (D2K)ij , is constant in x and antisymmetric in ij. The leading compo-

nent thus has spacetime conformal parameters, the second has Q and S supersymmetry

parameters and the third is an so(N) parameter.
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D = 4. The situation in D = 4 is roughly speaking the square of D = 3. The spin group

is SL(2,C) and we use two-component spinors. A symmetric traceless SCKT Ka1...an

becomes an object with n undotted and n dotted spinor indices, symmetrised on both sets.

It can be represented by a pair of tableaux,

K ∼





n
︷ ︸︸ ︷

,

n
︷ ︸︸ ︷



 . (4.8)

The constraints are

DK ∼







n
︷ ︸︸ ︷

·
,

n
︷ ︸︸ ︷







D̄K ∼







n
︷ ︸︸ ︷

,

n
︷ ︸︸ ︷

×







. (4.9)

where the box with a dot corresponds to an undotted spinor and the box with a cross to

a dotted one. D also carries an internal U(N) index in the fundamental N -dimensional

representation, while D̄ carries an anti-fundamental index. As in the D = 3 case this means

that the larger spin representations in DK and D̄K are set to zero. Acting on K with p Ds

will then give a tensor with (n− p) symmetrised undotted indices and p antisymmetrised

u(N) fundamental indices while leaving the dotted indices untouched. Similarly if we

apply q D̄s we will get a tensor with (n− q) dotted indices and q antisymmetrised internal

indices in the anti-fundamental representation of u(N), while leaving the undotted indices

untouched. Since we take D and D̄ to anti-commute for these purposes, it follows that the

components DpD̄qK will have the form

DpD̄qK ∼ (DpD̄qK)
α1...αn−p,α̇1...α̇n−q ,j1...jq
i1...ip

, (4.10)

or, in tableaux form,

DpD̄qK ∼







n
︷ ︸︸ ︷

· · · · p
,

n
︷ ︸︸ ︷

× × × q







. (4.11)

Clearly p and q must both be less or equal to the smaller of n or N . The reality of K

implies that DpD̄qK ∼ (DqD̄pK). The spacetime constraint on K is

∂(α1(α̇1Kα2...αn+1)α̇2...α̇n+1) = 0 . (4.12)

Similar constraints hold for all the descendants,

∂(α1(α̇1(DpD̄qK)α2...αn−p+1)α̇2...α̇n−q+1) = 0 , (4.13)

where the internal indices have been suppressed.

– 12 –



J
H
E
P
0
3
(
2
0
1
6
)
0
7
8

D = 6. The situation in D = 6 is a little more complicated. The spin group Spin(1, 5)

is isomorphic to SU∗(4), a non-compact form of SU(4), for which the Young tableaux are

similar, while the R-symmetry group in the N -extended case is Sp(N) (i.e. Sp(1) ∼= SU(2)

in the minimal (N = 1) case). A vector may be written as an antisymmetric bi-spinor

(note that pairs of anti-symmetrised spinor indices can be raised or lowered using the ε

tensor), so that an nth rank symmetric traceless tensor corresponds to the su∗(4) Young

tableau with n columns and 2 rows,

K ∼

n
︷ ︸︸ ︷

. (4.14)

The spinorial derivative Dαi corresponds to a single box with a dot in it to represent the

sp(N) index i = 1 . . . 2N . Applying D to K we get two su∗(4) representations, but the

larger one with the extra box in the first row vanishes by the SCKT constraint. This

implies that when we act with Dm, again ignoring spacetime derivatives for the moment,

the resulting Young tableaux will have extra dotted boxes siting below those of the original

tableau, but of course there cannot be more than 4 rows overall. Thus we have

DmK ∼
∑

n
︷ ︸︸ ︷

· · · · p
· · · q

, (4.15)

where p+q = m, q ≤ p ≤ min(n, 2N), and the sum is over all possible tableaux compatible

with these rules. These tableaux give the su∗(4) representations but they also give the

internal symmetry ones, although not immediately as irreducible representations of sp(N).

Instead they are representations of su(2N) that can be further decomposed into irreducibles

under sp(N). The su(2N) tableaux are obtained by rotating the bottom two rows clockwise

through ninety degrees and then reflecting about the vertical axis. Thus we get su(2N)

diagrams of the form
· ·
· ·
· ·
· q
p

. (4.16)

which can be decomposed into irreducible sp(N) representations by removing the sym-

plectic traces. The spacetime constraint on K is ∂{a1Ka2...an+1} = 0. In terms of Young

tableaux this means that the one in ∂K with (n+ 1) columns and two rows must vanish.

This constraint implies similar constraints for all of the descendants: the component of

∂DmK in the representation corresponding to the tableaux for ∂DmK obtained from that

of DmK by appending one extra box in each of the first two rows must vanish.

Remarks on D = 3, 4, 6. In the preceding subsections we have computed the com-

ponents of a SCKT in a θ-expansion when the top component satisfies the standard con-

straint (2.16). One might ask whether this leads to an irreducible object or whether
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higher-order constraints (in fermionic derivatives) could be imposed. It is well-known that

this is the case for a D = 4, N = 4 SCKV because the superconformal algebra is psl(4|4)

rather than sl(4|4). Consider the quantity (DαiD̄
i
α̇ − D̄i

α̇Dαi)K
αα̇ := k; differentiating this

with respect to D we get

Dαik ∝ (N − 4)∂αβ̇DβiK
ββ̇ . (4.17)

On the right-hand side the object ∂αβ̇DβiK
ββ̇ is the S-supersymmetry parameter, so that

it is possible to set k = 0 only when N = 4. In this case k is actually the parameter of

the so-called u(1)Y algebra [47] which does not form a part of the superconformal algebra.

Notice that this additional constraint is not implied by the standard SCKV constraint for

D = 4, N = 4; it must be imposed separately.

It is possible that similar additional constraints could arise for higher-order SCKTs. In

general we can arrange the θ-components of a general D = 4 SCKT in a diamond-shaped

array with each vertex labelled by a pair of integers, (p, q); p, q ≤ n, connected by arrows

representing the action of D̄ or D acting respectively to the left or right down the diagram,

and ending at (0, 0). The vertex (p, q) therefore represents a tensor with p (q) symmetrised

undotted (dotted) spinor indices, and (n − p) ((n − q)) antisymmetrised lower (upper)

internal indices. For example, for n = 2, we have the diagram:

(2,2)

�
�✠

❅
❅❘

(2,1) (1,2)

�
�✠

❅
❅❘

�
�✠

❅
❅❘

(2,0) (1,1) (0,2)

�
�✠

❅
❅❘

(1,0)

�
�✠

❅
❅❘

(0,1)

❅
❅❘

�
�✠

(0,0)

(4.18)

Consider the vertex (1, 1); it represents a tensor of the form Kαβ̇j
i , so that its trace

over the internal symmetry indices gives a vector kαα̇. Now this could be the leading

component of a SCKV in the case that its supersymmetry variation does not contain

any terms involving spacetime derivatives of components higher-up in the diagram. A

simple computation shows that this can happen only for N = 6. This result is related

to the fact that some tensor representations of Lie superalgebras can be reducible but

indecomposable even though the corresponding symmetry types are not in the non-super

case [14]. We shall come back to this point in section 6.

The second comment we wish to make is that the definitions given above can clearly

be generalised to the case where the leading components are spinorial; we might refer to
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such objects as superconformal Killing spinors (not to be confused with Killing spinors in

supergravity). Thus for D = 3 we could consider objects with an odd number of indices

with similar tableaux to (4.1), and subject to similar constraints, while in D = 4 one

could have tensors with (m,n),m 6= n (undotted,dotted) indices again subject to similar

constraints to (4.10). In D = 6 one could have objects with n boxes in the first row and

(n − 1) in the second again with the derivatives required to sit underneath the first two

rows. It is not clear what the geometrical meaning of such objects is, but clearly they exist

and should give rise to representations of superconformal algebras.

D = 5. In five dimensions, superconformal symmetry only exists for N = 1 [9]. One

can understand this from the fact that there is only one possible superconformal group,

the exceptional Lie supergroup F (4). It is easy to confirm this by a direct calculation. A

putative SCKV Ka satisfies the standard constraint10

DαiK
a = i(γa)αβηijK

βj = −i(γa)αβK
β
i , α, β = 1, . . . 4 : i, j = 1 . . . 2N , (4.19)

where ηij is the symplectic “metric” for the R-symmetry group Sp(N). Differentiating this

with respect to another odd derivative and taking the anti-commutator we find

∂aK
b = La

b + 2δa
bS; DαiK

βj = δα
βLi

j + δi
j(Lα

β + δα
βS) , (4.20)

where S is the scale parameter, La
b the Lorentz parameter, Lα

β its spinorial counterpart,

and where Lij = Lji is the sp(N) parameter. Differentiating the second of these equations

and using the supersymmetry algebra again we find

iηij(γ
a)αβ∂aK

γ
k = (δα

γ(DβjLik + ηikDβjS) + ηjkDαLβ
γ) + (αi ↔ βj) . (4.21)

There are three possible spinor representations in this equations, spinor, gamma-traceless

vector-spinor and gamma-traceless tensor-spinor. It is not difficult to verify that the last

two must be zero so we are left with just simple spinors. We set

DαiLjk = 2ηi(jλαk)

DαiS = σαi

DαiLβγ = 2ηα(βζγ)i , (4.22)

while we can write the left-hand-side of (4.21) as

iηij(γ
a)αβ∂aKγk = (γa)αβ(γa)γ

δρδk = −ηij
(
2ηγ(αρβ)k + ηαβργk

)
, (4.23)

where ηαβ denotes the symplectic “metric” on spinor space. The terms with ηαβ , ηγα and

ηβγ must vanish separately, from which we find, from the terms with ηαβ ,

ηijργk + ηjkζγi + ηkiζγj = 0 . (4.24)

If N > 1 this equation has no non-trivial solution and one can use the ηβγ equation to

show that all of the spinors must vanish. On the other hand, if N = 1, (4.24) implies that

10D = 5, N = 1 SCKVs were discussed previously in [46].
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ρ = ζ, and the ηβγ equation then gives λ = −3
2ρ, σ = 1

2ρ. So in this case there is one spinor

which can be identified with the S-supersymmetry parameter. For N > 1, this analysis

shows that S is constant which in turn implies that there is no conformal boost. Hence we

conclude that one can only have SCKVs for N = 1 as anticipated.

For N = 1 we can also have SCKTs obeying the usual constraint

DαiK
a1...an = −in(γ{a1)αβK

a2...an}
i . (4.25)

where Ka1...an is traceless, and the tensor-spinor on the right is gamma-traceless. We can

analyse the components of such an object by making use of the tableau calculus. For the

case of N = 1 we have

Ka ∼ , (4.26)

as a tableeau of the spin algebra sp(2). In spinor indices Kαβ is symplectic-traceless, so

that the tableau has the trace removed. Applying a derivative represented by a single-box

tableau with a dot, we find

DK ∼
·
+ · (4.27)

The second diagram decomposes into the 4 + 16 in sp(2), and the constraint implies that

the larger representation must be absent. We therefore have two spinor representations

but in fact they are the same, as one can easily check. Because we can raise and lower

spinor indices with the symplectic “metric” we only need one tableau, with a single box,

as far as the spin group is concerned. We therefore write

DK ∼
∗

(4.28)

where the box with an asterisk does not carry an sp(2) index, but does represent the

sp(1) internal symmetry doublet carried by Dαi. In other words, the derivative removes

a box from the original diagram (4.26) and replaces it with an asterisked box which only

represents the sp(1) content. Applying a second D we get

D2K ∼ ∗
∗
, (4.29)

which represents a Lorentz scalar in the triplet representation of sp(2), because the internal

indices have the opposite symmetrisation properties to the spinors in the tableau.

This can be generalised very easily to SCKTs of arbitrary rank n. We have

K ∼

n
︷ ︸︸ ︷

, (4.30)

which implies

DK ∼

n
︷ ︸︸ ︷

∗
, (4.31)
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D2K ∼

n
︷ ︸︸ ︷

∗
∗

+

n
︷ ︸︸ ︷

∗ ∗
, (4.32)

D3K ∼

n
︷ ︸︸ ︷

∗
∗ ∗

, (4.33)

and, finally,

D4K ∼

n
︷ ︸︸ ︷

∗ ∗
∗ ∗

. (4.34)

The diagram for K is understood to be totally symplectic-traceless, and this property is

inherited by the descendants. Since the internal indices on the same row are antisym-

metrised there cannot be more than two of them, and hence the descent must stop at level

four for n > 1. Each component in the θ-expansion depends on x, and there are space-time

constraints that follow from the usual CKT constraint on K itself. The expansion in x for

DmK will therefore go up to x2n−m.

D = 10. In N = 1, D = 10 supersymmetry the spinors are Majorana-Weyl with sixteen

components. We denote the gamma-matrices by (γa)αβ ; they are symmetric on their spinor

indices. Spinor indices cannot be raised or lowered so there is a corresponding set of gamma

matrices with upper indices. It is no longer useful to think about the representations in a

SCKT using Young tableaux, but instead we can work them out easily enough using Dynkin

labels.11 The basic representations have a 1 in the kth slot, where k ∈ {1, 2, 3, 4, 5}, with the

other four labels being zero. They give k-forms for k = 1, 2, 3 while the two 16-component

spinor representations are given by k = 4, 5. If we take θα ∼ (0, 0, 0, 0, 1) then Dα ∼

(0, 0, 0, 1, 0). A symmetric, traceless nth rank tensor K has Dynkin labels (n, 0, 0, 0, 0). So

DK = (n, 0, 0, 1, 0) + ((n− 1), 0, 0, 0, 1). The constraint on an nth rank SCKT K is

DαK
a1...an = in(γ{a1)αβK

a2...an}β , (4.35)

which in terms of Dynkin labels means that the larger (n, 0, 0, 1, 0) representation is set

to zero. We can iterate this to obtain the mth descendant of K,

Dα1...αmK
a1...an ∼ (γ{a1)[α1β1

. . . (γam)αm]βm
Kam+1...an}β1...βm . (4.36)

Here Dα1...αm := D[α1
Dα2 . . . Dαn], and the antisymmetrisation on the right-hand side

is over the α-indices only. It implies that the β-indices must also be antisymmetrised

and hence Ka1...an−mβ1...βm is symmetric traceless on its even indices and antisymmetric

on its odd indices. The descendants will be non-zero provided that m ≤ min(n, 16).

The representations at each level need not be reducible but can be computed in terms of

Dynkin labels fairly easily.

We give an example of such a SCKT for n = 6. There are seven levels. The represen-

tations are, starting from the top: (60000); (50001); (40100); (31010); (30020)+(22000);

11We use the term SCKT here even though there are no S-supersymmetry transformations or conformal

boosts. This is because we still use the same basic constraint (2.16).
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(21010); (20100). So there are two representations at level D4K but otherwise only one.

This seems to be the case for all n although we do not have a complete proof.

For an SCKV the derivative constraint on Ka is the standard conformal one, but

if one differentiates this with Dα and uses the defining constraint one easily finds that

both the scale and Lorentz parameters are constant and that Kα is also constant. This

confirms that there are no conformal boosts or S-supersymmetry transformations in Ka.

For the higher rank SCKTs the generalised scale and Lorentz parameters are no longer

constant but obey stronger constraints than in the case where there are conformal boosts

and S-supersymmetry. For example, for a second-rank tensor, the expansion of the leading

component goes up to x2 whereas for the true conformal case it would extend to x4. Thus

the only difference between these objects and SKTs is that the Lorentz group is extended

by a scale transformation.

5 Analytic superspace

In this section we shall discuss SCKTs in D = 3, 4 and 6 in the context of analytic su-

perspaces. These are superspaces with fewer odd coordinates than the associated conven-

tional (Minkowski) superspaces, such that superfields on these spaces correspond to fields

on Minkowski superspace satisfying constraints with respect to the odd derivatives. These

so-called Grassmann- (or G-) analytic superfields generalise the notion of chiral superfields.

Typically they also depend on additional internal even coordinates. They were first intro-

duced in the physics literature as harmonic [48–51] or projective superspaces [52, 53] in four

dimensions. More general treatments were later developed in [6, 54, 55] where it was found

convenient to work in complexified superspaces defined as cosets of the superconformal

groups with parabolic isotropy groups: these are flag supermanifolds [24, 56, 57]. All the

fields are taken to be holomorphic, and we shall usually work on some open subset in the

spacetime sector as the cosets themselves are compact (in the even directions). The spaces

we shall consider all contain standard complexified Minkowski space as a component of the

purely even part, and indeed there is a formal resemblance to Minkowski spaces consid-

ered as cosets of the conformal groups.12 They have additional even sectors, cosets of the

R-symmetry groups, and reduced number of odd coordinates compared to Minkowski su-

perspace. The analytic superspace formalism we shall use is one in which local coordinates

are employed for all of the coordinates including the internal and odd ones. We shall be in-

terested in those for which the reduction in the number of odd coordinates is maximal, and

we shall also restrict our attention to the simpler cases of N even, for D = 3, 4. For exam-

ples of this formalism applied to N = 4 superconformal field theory see, for example, [61].

D = 3 harmonic superspace was introduced in [62] and later developed in [63], while

D = 6 was first discussed as projective superspace in [64] and as harmonic superspace

in [65]. A detailed study of D = 6 superconformal field theory in an analytic superspace

setting can be found in [66].

Let us recall that D = 4 complex Minkowski space can be regarded as the Grass-

mannian of two-planes in C
4. It is a quotient of the complexified conformal group by the

12One can consider these spaces as supersymmetric versions of twistor geometry, see, for example, [58–60].
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isotropy group that preserves a two-plane; this is the group of 4× 4 matrices that consists

of 2×2 blocks with a zero block in the top right-hand corner. The map between Minkowski

space M and the conformal group can be represented by

M ∋ x →

(

1 x

0 1

)

, (5.1)

where x is the 2× 2 matrix xαα
′

in two-component spinor notation. A conformal Killing

vector Kαα′

satisfies

∂αα′Kββ′

= a1(δα
β∂γα′Kγβ′

+ δα′
β′

∂αγ′Kβγ′

) + b1 δα
βδα′

β′

∂ ·K , (5.2)

where a1, b1 are constants that can be computed by consistency (see below). This can be

generalised to a CKT Kα1...αn,α
′

1...α
′

n as follows,

∂αα′Kβ1...βn,β
′

1...β
′

n = an(δ
(β1
α ∂γα′Kβ2...βn)γ,β′

1...β
′

n + δ
(β′

1
α′ ∂αγ′Kβ1β2...βn,β

′

2...β
′

n)γ
′

)

+ bn δα
(β1δα′

(β′

1∂γγ′Kβ2...βn)γ,β′

2...β
′

n)γ
′

(5.3)

where the parentheses apply separately to the β and β′ indices.

One has similar constructions for D = 3 where x is a 2× 2 symmetric matrix xαβ and

in D = 6 where x is a 4× 4 antisymmetric matrix.

The above constructions generalise rather easily to the super case.

D = 4. For even N = 2M in D = 4, analytic superspace is the super Grassmannian

of (2|M)-planes in C
4|2M , complex flat superspace with 4 even and 2M odd directions.

It is actually more convenient to change the ordering of even and odd to C
2|M |2|M , i.e. 2

even, M odd, 2 even and M odd. Analytic superspace is the coset space of the complex

superconformal group SL(4|2M) with isotropy subgroup consisting of matrices of the form

(

L 0

L L

)

, (5.4)

where each L denotes a (2|M)× (2|M) matrix, and such that the full matrix is an element

of the superconformal group. A point in analytic superspace can then be represented by

an element of the group of the form

M ∋ X →

(

1 X

0 1

)

, (5.5)

so xαα
′

in (5.1) is replaced by XAA′

. Here A = (α, a), A′ = (α′, a′) are super-indices

with α, α′ = 1, 2 while A,A′ run form 1 to M .13 The super-coordinates XAA′

=

(xαα
′

, ξαa
′

, ξaα
′

, yaa
′

), where xαα
′

are the even spacetime coordinates, ξαa and ξaα
′

are

odd coordinates and yaa
′

are internal coordinates representing (a patch of) the internal

13In section 5 only we use α′ instead of α̇ for D = 4 dotted spinor indices, while a, a′ are internal indices.

We take α, α′ to be even indices while a, a′ are odd.
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Grassmannian of M -planes in C
2M . Since analytic superspace is defined as a coset, we can

straightforwardly work out the effect of infinitesimal superconformal transformation on the

local coordinates; it is given by

δXAA′

= bAA′

+ aABX
BA′

+XAB′

dB′
A′

+XAB′

cB′BX
BA′

, (5.6)

corresponding to the element

z =

(

−a b

−c d

)

(5.7)

of the Lie superalgebra which we could take to be gl(4|2M). For M 6= 2, i.e. N 6= 4, one

can take out the supertraces from both a and d leading to the observation that str(z) does

not act on the coordinates. So in these cases we can take the superalgebra to be sl(4|2M).

For N = 4, however, str(z) does act and defines the u(1)Y parameter. We shall therefore

have to impose str(z) = 0 as an additional constraint in this case. We shall discuss this

further below in the context of reducibility problems. The right-hand side of (5.6) can be

identified as a SCKV KAA′

and satisfies the differential equation

∂AA′KBB′

= a1(δA
B∂CA′KCB′

+ δA′
B′

∂AC′KBC′

) + b1 δA
BδA′

B′

∂CC′KCC′

. (5.8)

As in the bosonic case this can be generalised to higher-rank tensors. A SCKT is a tensor

on N -extended D = 4 analytic superspace of the form KA1...An,A
′

1...A
′

n , graded symmetric

on primed and unprimed indices, obeying the constraint

∂AA′KB1...Bn,B
′

1...B
′

n = an(δA
(B1∂CA′KB2...Bn)C,B′

1...B
′

n + δA′
(B′

1∂AC′KB1...Bn,B
′

2...B
′

n)C
′

)

+ bn δA
(B1δA′

(B′

1∂CC′KB2...Bn)C,B′

2...B
′

n)C
′

, (5.9)

where the bracket refer to the sets of B and B′ indices. As well as the constants a, b that

appear in the above equations there are also sign factors which are necessary to maintain

covariance.14 The constants are given by

an =
1

tn
bn = −

1

(tn)2
, (5.10)

where

tn =
n− 1 + t

n
, (5.11)

t being the super-trace over the primed or unprimed indices, i.e. t = 2 − M . (These are

also valid in the bosonic case when M = 0.) It is evident from these formulae that the

coefficients are singular whenever tn = 0. This is not a real problem because the partial

divergences themselves contain factors involving the super-traces, so that the zeroes cancel

out. An example is given by N = 4, n = 1. In this case a super-conformal Killing vector is

given by the right-hand side of (5.6). Differentiating with respect to X is then consistent

with (5.8) because the partial divergences in the a1 term give factors of t while the full di-

vergence in the b1 term gives a factor of t2. Similar remarks apply in the D = 3 and 6 cases.

14Throughout the paper all tensorial equations are understood to be covariant and we do not include

Grassmann sign factors explicitly; it is always possible to do this.

– 20 –



J
H
E
P
0
3
(
2
0
1
6
)
0
7
8

It is rather easy to solve the SCKT equation (5.9). The solution can be represented

by a diamond structure of the type (4.18), but where now the kth row corresponds

to the terms with Xk, while the vertex (p, q) indicates (for an nth rank SCKT) that

the parameter has p(q) free, symmetrised contravariant unprimed (primed) indices and,

correspondingly, (n − p) ((n − q)) covariant indices that are contracted with the Xs. As

an example, consider n = 2:

KAB,A′B′

= bAB,A′B′

+
(

aAB
C
A′

XCB′

+XAC′

dBC′
A′B′

)

+
(

aAB
CDX

CA′

XDB′

+XAC′

bC′
BA′

CX
CB′

+XAC′

XBD′

dC′D′
A′B′

)

+
(

aACDD′XBD′

XCA′

XDB′

+XAC′

XBD′

XDA′

dDC′D′
B′

)

+XAC′

XBD′

bC′D′CDX
CA′

XDB′

, (5.12)

where the indices AB and A′B′ are understood to be symmetrised. For each power of X

except the zeroth and fourth, there are redundant parameters. For example, in the X1

terms, there can be traces in both a and d only one of which is independent.

D = 3. In D = 3 the spacetime conformal group is symplectic (Sp(2)), the R-symmetry

group is O(N) and the superconformal groups are orthosymplectic, SpO(2|N) (as men-

tioned above, this is the same as OSp(N |2) but we have written it in the reverse order to

indicate that Sp(2) is the spacetime part). When N = 2M we can define (complex) ana-

lytic superspace as follows: it is the space of isotropic (2|M)-planes in C
4|2M . By isotropic

we mean that any pair of vectors belonging to such a plane have vanishing scalar product

with respect to the super-symplectic tensor J which we can take to have the form

J =

(

0 I

J 0

)

, (5.13)

where we have split the full space C
4|2M into two halves each with dimension (2|M), and

where

I =

(

12 0

0 1M

)

J =

(

−12 0

0 1M

)

(5.14)

where the non-zero entries are the identity matrices with the indicated dimensions. Al-

ternatively, we can say that the (4|M) × (4|M)-matrix with only non-zero element X in

the top right (as in (5.5)) belongs to the super Lie algebra spo(2|2M). This consists of

matrices L of the form (5.7) satisfying

LJ + JLst = 0 , (5.15)

where the super-transpose is the matrix transpose with an additional minus sign when the

first index is odd and the second even. This then implies that the local coordinates for
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analytic superspace, for N = 2M , are XAB = XBA, where the symmetry is graded. We

have XAB = (xαβ , ξαb, yab), where xαβ are the complex spacetime coordinates, ξαb the odd

co-ordinates and yab the internal coordinates, with the internal indices running from 1 to

M .. A SCKT KA1...A2N is a totally graded-symmetric 2nth rank tensor satisfying

∂A1A2K
B1...B2n = an δ(A1

(B1∂A2)CK
B2...B2n)C + bn δA1

(B1δA2
B2∂CDK

B3...B2n)CD , (5.16)

where the brackets denote graded symmetrisation. The constants a, b are given by

an =
4n

t+ 2n
bn = −

2n(2n− 1)

(t+ 2n)(t+ 2n− 1)
, (5.17)

where t = 2−M is again the supertrace.

The solution to equation (5.16) is

KA1...A2n =
m=2n∑

m=0

XA1B1 . . . XAmBmaB1...Bm

Am+1...A2n , (5.18)

where it is understood that the A-indices are totally graded-symmetrised. Note that in this

case, there are no redundant parameters so that it is not necessary to subtract out super-

traces. Thus, although there could be values of n and N = 2M for which there are indecom-

posable representations of gl(2|M) this does not cause any difficulties for SCKTs in D = 3.

D = 6. D = 6 is similar in some ways to D = 3 with the difference that the roles of

the symplectic and orthogonal groups are interchanged. The superconformal groups are

OSp(8|N), where the symplectic groups are now the R-symmetry groups. Analytic super-

space is the space of isotropic (4|N) planes in C
8|2N , but now the internal and spacetime

sectors are interchanged compared with the D = 3 case. The ortho-symplectic metric G is

G =

(

0 I

J 0

)

, (5.19)

where we have split the full space C
8|2N into two halves each with dimension (4|N), and

where

I =

(

14 0

0 1N

)

J =

(

14 0

0 −1N

)

(5.20)

where the non-zero entries are the identity matrices with the indicated dimensions. The

super Lie algebra osp(8|N) consists of matrices L of the form (5.7) satisfying

LG + GLst = 0 , (5.21)

and the coordinate matrix X is an element of this super-algebra with non-zero upper right

elements only. This is similar to the D = 3 case but with the internal and spacetime even
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dimensions interchanged. Thus, in this case, the local coordinates XAB = (xαβ , ξαb, yab),

α = 1, . . . 4, a = 1, . . . N , are graded antisymmetric, so that we indeed have six even

spacetime coordinates.

A SCKT now has the form KA1A2,B1B2,C1C2,..., with graded antisymmetry on each

pair and symmetry under the interchange of pairs. Moreover, K vanishes if it is graded-

antisymmetrised on any three indices (e.g. K [A1A2,B1]B2,C1C2,... = 0). In other words the

symmetry structure corresponds to the tableaux (4.14), but where the symmetrisations are

understood to be graded. A SCKT K satisfies the constraint

∂A1A2K
B1B2,C1,C2,... = (an δ[A1

[B1∂A2]DK
B2]D,C1C2,... + (n− 1) terms)

+ bn (δ[A1

[B1δA2]
B2]∂ ·KC1C2,... + cyclic)

−
6bn
n+ 1

(
∑

δ[A1

[B1δA2]
B2∂ ·KC1C2],D1D2,...

)

, (5.22)

where in the second line the cyclic sum is over the n pairs, and where the sum in the third

line is over all distinct pairs of pairs, i.e. 1
2n(n− 1) terms altogether. In the expression on

the third line for each selected pair of pairs there is total graded antisymmetrisation. It can

be checked that these terms are necessary to ensure that the (graded) symmetry structure

of the tableau (4.14) holds for the b terms, while the a terms take care of themselves. We

have used the dot notation to denote the divergence with respect to a given pair of indices.

The coefficients are given by

an =
4

t+ n− 3

bn =
−(n+ 1)

(t+ n− 2)(t+ n− 3)
. (5.23)

Reducibility problems in ASS. In D = 4 Minkowski superspace we saw that there

can be cases where the standard SCKT constraint (2.16) does not lead to an irreducible

system and that further constraints can be imposed. Here we briefly discuss this problem

in ASS. In all cases the Lie superalgebra that acts on the ASS indices (A,A′) is gl(P |Q).

We can study reducibility problems for finite-dimensional tensor representations with r

contravariant and s covariant indices, taken to be totally symmetric on both sets, and

totally super-traceless, by looking for tensors of this type which have p factors of the unit

matrix, p ≤ min(r, s), but which remain super-traceless. It is straightforward to derive the

following formula for when this can happen:

r + s− p = 1− t (5.24)

where t is the relevant super-trace, t = P −Q. When this equation is satisfied one can in

principle have indecomposability problems.

Let us consider first the case D = 4. Here t = 2 − M , M = N/2, because both the

primed and unprimed indices are acted on by gl(2|M) Lie superalgebras. The formula

becomes

N = 2((r + s) + 1− p) (5.25)
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For n = 1, i.e. SCKVs, we must also have r = s = p = 1 to get a solution to (5.25), and

this implies N = 4. This stems from the fact that the matrix parameters in (5.6) cannot be

made super-traceless for M = 2. However, we can impose the constraint that str(z) = 0,

where z is given by (5.7), so that the full superalgebra is sl(4|4). This additional constraint

is equivalent to the extra condition that was imposed in super Minkowski space to get rid

of the u(1)Y transformation. Once this has been done, the unit matrix in z, which has

vanishing super-trace, does not act on X, and this implies that the algebra is psl(4|4). For

all other values of N the super-traces can be removed from a and d, so that there are two

“scale” transformations of X only one of which is independent. Since the unit matrix in z

does not act, we can simply set it equal to zero, so that the algebra is sl(4|N).

Now consider n = 2. In equation (5.12), the a and d parameters have (r, s) =

(2, 1), (2, 2), (1, 2) with respect to the unprimed (primed) indices respectively. For the (1, 2)

and (2, 1) cases we have p = 1 so that there is a problem for N = 6, while for (r, s) = (2, 2)

we can choose p = 2 and still have N = 6. These reducibility problems correspond to

the n = 2 case discussed previously in super Minkowski space where we found a problem

of this sort precisely for N = 6. The problem can be resolved in a similar fashion to the

N = 4 case we have just discussed. We can impose further constraints to get rid of half of

the super-traces in the a and d parameters, but we are then left with a residual invariance

similar to the projective symmetry in N = 4.

In the following section we shall address the issue of indecomposable representations

for SCKTs in super-twistor spaces where the superconformal algebras act linearly.

6 Components of superconformal Killing tensors

In the purely even case an nth rank conformal Killing tensor on flat spacetime satisfies

∂{a1Ka2...an+1} = 0 . (6.1)

This equation can be solved as a finite power series in x with constant coefficients which can

be assembled into a representation of the conformal group, O(2, D). For example, when

n = 1, the components of a CKV together form the adjoint representation of o(2, D). In

the general case one can use the representation of D-dimensional spacetime as a surface in

flat (D + 2)-dimensional space with two timelike directions. One can then explicitly show

that an nth rank CKT has components that fall into the representation of the conformal

group given by the Young tableau [16]

n
︷ ︸︸ ︷

, (6.2)

where the representation is taken to be irreducible, i.e. all traces are removed. Thus

the original (irreducible) one-row n-box tableau that represents the CKT in spacetime

determines the two-row tableau (6.2) as a representation of the conformal group.

This picture does not generalise to the super case because one does not have an anal-

ogous superconformal embedding of super Minkowski space. This is not surprising given
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that there are only superconformal groups in D = 3, 4&6 (apart from the exceptional

N = 1, D = 5 case). However, the components of a SCKT can still be assembled into a rep-

resentation of the appropriate superconformal algebra. If we complexify the (super)spaces

involved, we can represent the components of a SCKT as a tensor on the appropriate

super-twistor spaces which are C
4|N for D = 3, 4 and C

8|2N for D = 6. These are the

fundamental representation spaces for the supergroups SpO(2|N), SL(4|N) and OSp(8|N)

respectively.15

6.1 D = 3

The simplest case is D = 3. Let us start with the purely even case again. An nth rank

CKT is given by the one-row 2n-box tableau in sl(2):

K ∼

2n
︷ ︸︸ ︷

, (6.3)

satisfying the constraint (4.5). Solving this we find that the components of K can be

represented by the same diagram, but this time for the conformal algebra sp(2). We know

that sp(2) ∼= o(5) and it is easy to check that this representation in sp(2) is indeed the

same as the irreducible two-row Young tableau in o(5).

Now consider the supersymmetric D = 3 case for arbitrary N . Again the SCKT is

given by (4.1) as a diagram in sl(2), and we know the supersymmetric descendants from

the discussion given in section 4. All of these satisfy conformal spacetime constraints and

can be computed as representations of sp(2); in fact the mth descendant will correspond to

the representation of sp(2) with (2n−m) boxes. In addition this descendant will transform

as an mth rank totally antisymmetric tensor under o(N). Putting all this together, we

can see that all of the components of the SCKT determined by K can be assembled into a

tensor of spo(2|N) given by exactly the same tableau but now considered as a super Young

tableau for the D = 3 N -extended superconformal algebra. Super Young tableaux [14] are

interpreted in a similar way to non-super ones except for the fact that (anti-)symmetrisation

is replaced by super-(anti-)symmetrisation. For example, a tableau with one row and n

columns represents a graded symmetric tensor; when expanded out into even and odd

components, the even indices are symmetrised while the odd ones are antisymmetrised.

In the D = 3 case no reducibility problems arise; the super-tensors defined by (4.1)

are all irreducible.

It is straightforward to relate this discussion to the ASS one. We can split a super-

twistor index for C(4|N) into a pair of C(2|M) indices (when N = 2M) as follows:

ZA = (ZA, Z
A) , (6.4)

then

KA1...A2n →
(
KA1A2...A2n , . . . ,KA1...Am

Am+1...A2n , . . . ,KA1...A2m
)
. (6.5)

Clearly there is a one-to-one correspondence between these components of K and the a-

parameters in (5.22).

15Super-twistors were introduced in [2] and have been used in the discussion of superparticles in a mani-

festly superconformal context [67, 68].
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6.2 D = 4

The super-conformal algebras for D = 4 are sl(4|N) (except for the special case N = 4

where it is psl(4|4)). Because there is no straightforward generalisation of the epsilon

tensor in the super case a single type of tableau box does not suffice to describe all rep-

resentations [14]. Instead it is necessary to introduce two basic single-box tableaux to

denote fundamental and anti-fundamental representations, corresponding to contravariant

and covariant indices for the vector space C
4|N . (So for N = 0 the latter would be a one-

column three-column tableau). We distinguish a covariant box by placing a bullet in it,

• , while a general tableau will have left and right sections with former corresponding to

covariant indices and the latter to contravariant ones. In order to describe irreducible rep-

resentations it is necessary to impose the requirement that all super-traces between contra-

and co-variant indices are removed. An element of the sl(4|N) super-algebra is given by a

super-traceless tensor in C
4|N with one upper and one lower index and so has the tableau

• . (6.6)

This can be immediately generalised to an nth rank SKCT: such an object is given by a

tableau of the form
n

︷ ︸︸ ︷

• • • • • •

n
︷ ︸︸ ︷

(6.7)

A superconformal Killing vector, for the case n = 1, has one index of each type and can

be written KA′B, or KA
B, where an upper A is a contravariant C4|N super-index, and A′

a covariant one which can also be written as a lower unprimed index. The super-trace of

KA
B is taken to vanish. An nth-rank SCKT is a tensor of the form

KA′

1...A
′

n,B1...Bn ∼= KA1...An

B1...Bn , (6.8)

totally graded-symmetric on each set of indices and totally super-traceless.

The above discussion is not complete because there can be reducibility problems [14].

This means that in some cases there are super-traceless tensors that are reducible but

indecomposable because of the existence of sub-representations that cannot be removed in

a manifestly covariant way. The simplest example is N = 4, n = 1. In this case the unit

tensor, δA
B, has vanishing super-trace but cannot be subtracted from KA

B. This example

just corresponds to the N = 4 Lie superalgebra, so that the unit tensor has to be modded

out to obtain psl(4|4).

Reducibility problems can occur for higher values of n according to the formula

N = 2n+ 3− p , (6.9)

where p ≤ n denotes the number of unit tensor factors.16 In more detail, this means that

one can have nth-rank tensors of the type of (6.8) which contain p factors of the unit

tensor but which remain super-traceless. From (6.9) it can be seen that problems of this

type only arise for N ≥ 4 and that for the N = 4 case the only problem is the one just

16This is a special case of (5.24) for r = s = n, t = 4−N .
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discussed with n = 1. In particular, this implies that higher-order super-traceless tensors

in N = 4 are projectively invariant and so correspond to representations of psl(4|4). Note,

however, that when one attempts to decompose tensors of the above type that are not

super-traceless into their irreducible super-traceless parts one can run into these problems

more than once. For example, for N = 4, n = 2 one can extract the traceless part leaving

the unit tensor times an n = 1 object which is itself indecomposable, although this turns

out not to be a problem in the algebraic context discussed in 6.4.

In the D = 4 case it is also possible to make contact with the ASS discussion. We set

ZA = (ZA, Z
A′

) , ZA = (ZA, ZA′) , (6.10)

which allows us to decompose any tensor in terms of gl(2|M) ⊕ gl(2|M) representations.

For example, for n = 2, the components of KAB
CD are

KABC′D′

KAB D′

C KA
B′

C′D′

KAB
CD KA′

B′
C′

D KA′B
C
D′

KA′B′
C′D′

KA′
B
CD KA′B′

C′

D

KA′B′CD . (6.11)

These components can be matched to the a, b and d parameters in (5.12), with those in

the kth row corresponding to the terms with Xk. For example, at X1, we have KAB
C
D′

∼

−aAB
C
D′

and KA
B′

C′D′

∼ dAB′
C′D′

(the minus sign orginates from the conventions for z

in (5.7)). If we can remove the super-traces from over the central indices from a, d then we

can see that the combination

(str(a)− str(d))AD′

(6.12)

does not contribute to the ASS SCKT KAB,A′B′

in (5.12) and so can be set to zero. This

corresponds to setting (strK)AD′

= 0 in super-twistor space. If it is not possible to remove

the super-traces then one can impose the this super-traceless condition on K, but then one

will still be free to adjust (a, d) by opposite supertrace terms because this will not change

the super-trace free condition. In super-twistor space this mean that we can add a p = 1

term to the n = 2 SCKT without losing super-tracelessness.

6.3 D = 6

For D = 6 the super-conformal groups are OSp(8|N), for various numbers of supersymme-

tries N . This acts linearly on the super-twistor space C
8|2N , but although this space does

have an orthosymplectic invariant under the super-conformal group, it is not a straightfor-

ward extension of super-Minkowski space, so that the situation it is not a straightforward

super-version of the N = 0 case. Nevertheless the generalisation is not that difficult. An

nth-rank super-conformal tensor is given by a super-tableau of the form (6.2), but where

now each box corresponds to a super-index A for a vector in C
8|2N , and such that the tensor
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represented by such a tableau is traceless with respect to the orthosymplectic metric on

this space. Thus the components of an nth-rank SKCT are given by a tensor K of the form

KA1A2,B1B2,... , (6.13)

having n pairs of graded-antisymmetric indices, graded-symmetric under the interchange

of pairs, and such that graded-antisymmetrisation over any three indices vanishes.

Furthermore, the trace with respect to the orthosymplectic metric on any pair of indices

vanishes. Such a tensor can be expanded out into tensors under o(8) ⊕ sp(N), where the

o(8) factor corresponds to the spacetime conformal algebra and the sp(N) factor to the

internal symmetry algebra, the index i = 1, . . . 2N being considered as an odd index.

Reducibilty problems can also arise in D = 6, starting at n = 2. This tensor represen-

tation has the graded symmetries of the Riemann tensor, so that, when the super-traces

are removed, one would expect to find a tensor with the graded symmetry properties of the

Weyl tensor. However, one can show that it is not possible to remove the super-traceless

Ricci tensor in N = 3, so that we again have a reducibility problem.

Note that the only problems of this type that occur have N > 2 in D = 6 and

N > 4 in D=4 (except for the algebra itself as we have discussed above), and are are

therefore of limited interest in a physical context. This is because there are no non-trivial

superconformal field theories that exceed these bounds.

6.4 Algebras

In the purely even case conformal Killing tensors define symmetries of the Laplacian [16],

that is, linear differential operators D that preserve the Laplacian in the sense that

∆D = δ∆ (6.14)

where δ is another linear differential operator. Clearly, D maps solutions to Laplace’s

equation to other solutions. Each such D has a leading term given by a CKT, and this

can be extended in a natural way to lower-order terms. Moreover, the product of two such

symmetries defines a third (modulo the Laplacian) and so we get an algebra, known as the

Eastwood algebra. In flat space, as we have seen, the components of any CKT are given

by representations of the conformal algebra, so that this product can be described in Lie

algebraic terms. Denoting the conformal Lie algebra by g, we can describe the Eastwood

algebra as the tensor algebra of g modulo its Joseph ideal [69] which is generated by

X ⊗ Y −X ⊚ Y −
1

2
[X,Y ]− c〈X,Y 〉 (6.15)

where X,Y ∈ g, 〈X,Y 〉 is the Killing form on g with c a constant and X ⊚ Y denotes the

Cartan product which is the highest weight representation contained in the product. In

the conformal case with g = o(2, D− 2) it is just given by the two-row two-column tableau

which is also traceless. The Cartan product extends to arbitrary CKT representations:

for an nth rank and mth rank tensors we simply get the traceless two-row tableau with

n+m columns. In other words, the antisymmetric terms in the product are determined by
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the Lie bracket in g while the symmetric terms are determined by the trace in g and the

symmetrised traceless product. The leading (symmetric) term in this product is just given

by the highest weight in the decomposition of the representations involved, while the first

(antisymmetric) term coincides with the Schouten-Nijenhuis bracket [16].

Alternatively [16], the algebra can be viewed as the the universal enveloping algebra,

Ug, of g := o(2, D − 2), modulo the two-sided ideal generated by

XY + Y X − 2X ⊚ Y − 2c〈X,Y 〉 . (6.16)

The constant c in the conformal case in D dimensions is D−2
4(D+1) . This algebraic definition

extends to simple complex Lie algebras, see [70, 71]. For the classical cases, bar sl(2), there

is a unique value of the constant c such that the quotient algebras are infinite-dimensional.

In the supersymmetric case, as we have mentioned, super Minkowski spaces cannot

be presented in terms of higher-dimensional superspaces of a similar type carrying a linear

action of the appropriate superconformal group, but it should be feasible to generalise the

purely Lie algebraic approach, provided that due care is taken with reducibility. However, in

the context of super-Euclidean spaces equipped with ortho-symplectic metrics, Eastwood’s

Laplacian symmetry formalism can be extended to a natural super-Laplacian more or

less straightforwardly [8]. Although this is not what we are directly interested in, it is

nevertheless the case that the algebraic structures that arise in this situation (and studied

in [8]) should be related to superconformal symmetry for D = 3, 6. In the context of super

Minkowski space a different notion of a super-Laplacian as a set of differential operators is

more natural. We shall postpone a discussion of this and the related algebraic structures

to a follow-up paper [72].

In addition, super Joseph ideals have featured in a series of papers on quasi-conformal

methods [73–75], although from a somehwat different point of view to ours. This work also

has applications to higher spin and AdS/CFT, which we briefly discuss in the next section.

7 Comments on higher spin

Higher-spin fields were originally introduced by Fronsdal [76] and the theory of them was

subsequently developed in a series of papers by Vasiliev, see, for example, [77, 78]. Further

developments have included the incorporation of supersymmetry, see e.g. [79–81, 92]. The

natural setting for higher-spin gauge theories is anti-de Sitter spacetime and the algebraic

structures that arise reflect this; in particular, the fact that the symmetry algebra of

AdS spacetime is isomorphic to the conformal symmetry algebra of Minkowski space in

one dimension lower implies that the AdS/CFT correspondence [82–84] is relevant in this

higher-spin context [85, 86].

The AdS/CFT correspondence can be used to make the connection with CKTs. A

Fronsdal higher-spin gauge field in the bulk gives rise to a related field on the boundary

which couples naturally to a conserved, symmetric, traceless tensor current of rank (n+1),

say. Such a current can be contracted on n of its indices with an nth rank conformal Killing

tensor, so that for each such current there is a conserved vector [87]. These in turn can

couple to fields in the bulk so that we arrive at a set of one-form gauge fields, parametrised
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by the CKTs, in AdS. In this picture the underlying boundary fields are free, but one can

attempt to introduce interactions in the bulk by including non-abelian terms in the field

strengths. In order to do this one has to introduce algebraic structures. The question

of the uniqueness of higher-spin theories in AdS and boundary CFTs has been clarified

for the case of three-dimensional boundaries in [88], and a more recent general study was

presented in [89] where it was shown that in most dimensions of the bulk this algebra is

unique and determined by the Eastwood algebra discussed above. (In this context it is

known as the Eastwood-Vasiliev algebra).

In [90] it was argued that the massless limit of IIB string theory on AdS5 × S5 would

correspond, via the AdS/CFT correspondence, to a free N = 4 super Yang-Mills theory

on the boundary, in the sense that massless string gauge fields should couple to currents

in the free N = 4 theory on the boundary in the way described above. In addition, it

was shown in [91] that the currents on the boundary can be explicitly constructed rather

straightforwardly in D = 4, N = 4 analytic superspace. These currents are constructed in

terms of two free field-strength superfields with linear combinations of analytic superspace

derivatives acting on them in a similar manner to the construction of currents in terms of

free scalar fields given in [87].17

8 Concluding remarks

In this paper we have given a general definition of a superconformal Killing tensor in curved

superspace subject to the constraint (2.1) (as well as some conventional ones). Since (2.1) is

invariant under local scale transformations this leads naturally to placing the emphasis on

superconformal Killing tensors. The most significant point of the general discussion is that

SCKTs can be defined as purely even traceless symmetric tensors subject to the constraint

that the smaller of the two spin representations that arise when one differentiates with

respect to the spinorial covariant derivative should be set to zero. We then discussed these

objects in the context of superparticles and in various flat superspaces as well as analytic

superspaces and super twistor spaces. In the last case we were able to exhibit SCKTs

explicitly as tensors carrying irreducible representations of the appropriate superconformal

groups. We also indicated how this should lead to algebraic structures on the space of all

SCKTs for a given dimension and number of supersymmetries. These symmetry algebras

can then be related, via the AdS/CFT correspondence, to higher-spin structures in the

bulk. As we mentioned in the text, we shall develop some of these ideas further in [72]; in

particular, we shall study super-Laplacians and their symmetries.

Although we define SCKTs in curved superspace, the detailed discussion of compo-

nents, etc, we have given here is limited to flat superspaces. It should be mentioned that

ordinary KTs in spaces of constant curvature are all reducible, i.e. generated by KVs, as

detailed in [87, 93–95]. It seems likely, but remains to be proven, that a similar theorem

holds for superspaces of this type.

17A study of higher spin superfields and N = 2 supersymmetry in N = 1, D = 4 superspaces was given

in [92], where a connection to superstrings was also conjectured.
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Apart from the higher-spin connection, the other main application of (C)KTs is to

situations where a given spacetime admits an irreducible KT. Some examples of this include

the case of a fourth-order tensor found in the context of two-particle mechanics [96], a

particle with worldline supersymmetry [97] and the Perry-Myers black hole [98]. When

irreducible KTs exist, they may be used to separate coordinates in the Hamilton Jacobi

equation. See [99] for a recent discussion of this in the context of string theory.

It would be an interesting challenge to see if one could find any non-trivial higher-rank

SKTs in non-trivial supergravity solutions formulated in superspace.
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A Supersymmetric SN bracket

Here we demonstrate that the function on the left-hand side of (3.18) does indeed sat-

isfy (2.16). We do this for the case n = 1,m = 2, but it would be easy to extend the proof

to the general case. We want to show that

Mab := −[K,L]ab = 2L{a|c|∇cK
b} −Kc∇cL

ab − 2iKγ(Γ{a)γδL
b}δ (A.1)

satisfies

∇αM
ab = 2i(Γ{a)αβM

b}β (A.2)

for some (gamma-traceless) Maβ. Since K and L are respectively a SCKV and a second-

rank SCKT, we have

∇αK
a = i(Γa)αβK

β

∇αK
β +KDTDα

β = S̃(K)α
β

∇αL
ab = 2i(Γ{a)αβL

b}β

∇αL
aβ + LaDTDα

β + LβDTDα
a = S̃(L)α

β,a (A.3)

where the S̃ functions are the generalised Lorentz and scale functions associated with K

and L (called L̃ in section 2).

When we apply ∇α to (A.2) some terms are in the required form straight away, but

others need some work. For example, applying ∇α to Lac in the first term and using the

third of (A.3) we get a term 2i(Γa)αβL
cβ∇cK

b, which is fine, and there are two other terms

like this. When the odd derivative hits the second factor in each of the first two terms

it has to be taken past the even derivative so that it can act on K or L. This gives rise

to torsion and curvature terms. The torsion terms involve Tdα
β , but there are also terms

like this coming from differentiating the third term in Mab. These come from the torsion

terms in (A.3). It turns out that the sum of all such terms vanish. There are also two
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dimension one-half torsion terms coming from differentiating the third term in M , which

are contracted with the dimension-zero torsion. On using the dimension one-half Bianchi

identity, we find that these give a term 2i(Γ)αβTγδ
βKγLbδ, which is of the required form.

The curvature terms, coming from the first two terms in M , sum up to

4L{a|cKd|Rα[c,d]
b} = −2i(Γ{a)αβL

b}cKdTcd
β , (A.4)

where use was made of a dimension-three-halves Bianchi identity. In order to show that

the final terms can be written in the desired form we have to make use of the identities

that relate S̃(K)α
β and S̃(L)α

β,c (which arise from differentiating the third term and

using (A.3)) to S̃(K)c
d and S̃(L)c

d,e, which arise from the other terms with even derivatives

on K,L. The final result is

Maβ = Lbβ∇bK
a + Lbc∇cK

β −Kb∇bL
aβ − LacKdTcd

β −KγLaδTγδ
β

+ LaγS̃(K)γ
β −KγS̃(L)γ

β,a , (A.5)

where we assume that the gamma-trace has been removed.

An alternative way of proving this result is to differentiate the Poisson bracket of two

functions K,L of the type discussed in (3.5) with respect to time, and then make careful

use of the equations of motion to show that (K,L) is itself conserved. This method can be

applied to SCKTs of arbitrary rank and therefore establishes the general result.
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bracket and the Schouten bracket for symmetric multivector fields, alg-geom/9401006

[INSPIRE].

[41] G.W. Gibbons, R.H. Rietdijk and J.W. van Holten, SUSY in the sky,

Nucl. Phys. B 404 (1993) 42 [hep-th/9303112] [INSPIRE].

[42] O.P. Santillan, Hidden symmetries and supergravity solutions,

J. Math. Phys. 53 (2012) 043509 [arXiv:1108.0149] [INSPIRE].

[43] P.S. Howe and P.K. Townsend, The massless superparticle as Chern-Simons mechanics,

Phys. Lett. B 259 (1991) 285 [INSPIRE].

[44] P.S. Howe, K.S. Stelle and P.K. Townsend, Superactions, Nucl. Phys. B 191 (1981) 445

[INSPIRE].

[45] S.M. Kuzenko, J.-H. Park, G. Tartaglino-Mazzucchelli and R. Unge, Off-shell superconformal

nonlinear σ-models in three dimensions, JHEP 01 (2011) 146 [arXiv:1011.5727] [INSPIRE].

[46] S.M. Kuzenko, On compactified harmonic/projective superspace, 5D superconformal theories

and all that, Nucl. Phys. B 745 (2006) 176 [hep-th/0601177] [INSPIRE].

[47] K.A. Intriligator and W. Skiba, Bonus symmetry and the operator product expansion of

N = 4 super Yang-Mills, Nucl. Phys. B 559 (1999) 165 [hep-th/9905020] [INSPIRE].

[48] A.A. Rosly, Super Yang-Mills constraints as integrability conditions, in Group theoretical

methods in physics, M.A. Markov ed., Nauka, Moscow Russia (1983), pg. 263.

– 34 –

http://dx.doi.org/10.1016/0550-3213(78)90205-5
http://inspirehep.net/search?p=find+J+"Nucl.Phys.,B142,301"
http://dx.doi.org/10.1016/0370-2693(78)90327-1
http://inspirehep.net/search?p=find+J+"Phys.Lett.,B80,138"
http://dx.doi.org/10.1016/0370-2693(81)90093-9
http://inspirehep.net/search?p=find+J+"Phys.Lett.,B100,310"
http://dx.doi.org/10.1016/0370-2693(83)90924-3
http://inspirehep.net/search?p=find+J+"Phys.Lett.,B128,397"
http://dx.doi.org/10.1016/0370-2693(89)91119-2
http://inspirehep.net/search?p=find+J+"Phys.Lett.,B216,302"
http://dx.doi.org/10.1142/S0217732389001064
http://inspirehep.net/search?p=find+J+"Mod.Phys.Lett.,A4,901"
http://oai.cwi.nl/oai/asset/7138/7138A.pdf
http://dx.doi.org/10.1007/BF00760441
http://arxiv.org/abs/hep-th/0401088
http://inspirehep.net/search?p=find+EPRINT+hep-th/0401088
http://arxiv.org/abs/alg-geom/9401006
http://inspirehep.net/search?p=find+EPRINT+alg-geom/9401006
http://dx.doi.org/10.1016/0550-3213(93)90472-2
http://arxiv.org/abs/hep-th/9303112
http://inspirehep.net/search?p=find+EPRINT+hep-th/9303112
http://dx.doi.org/10.1063/1.3698087
http://arxiv.org/abs/1108.0149
http://inspirehep.net/search?p=find+EPRINT+arXiv:1108.0149
http://dx.doi.org/10.1016/0370-2693(91)90830-J
http://inspirehep.net/search?p=find+J+"Phys.Lett.,B259,285"
http://dx.doi.org/10.1016/0550-3213(81)90308-4
http://inspirehep.net/search?p=find+J+"Nucl.Phys.,B191,445"
http://dx.doi.org/10.1007/JHEP01(2011)146
http://arxiv.org/abs/1011.5727
http://inspirehep.net/search?p=find+EPRINT+arXiv:1011.5727
http://dx.doi.org/10.1016/j.nuclphysb.2006.03.019
http://arxiv.org/abs/hep-th/0601177
http://inspirehep.net/search?p=find+EPRINT+hep-th/0601177
http://dx.doi.org/10.1016/S0550-3213(99)00430-7
http://arxiv.org/abs/hep-th/9905020
http://inspirehep.net/search?p=find+EPRINT+hep-th/9905020


J
H
E
P
0
3
(
2
0
1
6
)
0
7
8

[49] A.A. Roslyi and A.S. Schwarz, Supersymmetry in a space with auxiliary dimensions,

Commun. Math. Phys. 105 (1986) 645 [INSPIRE].

[50] A. Galperin, E. Ivanov, S. Kalitsyn, V. Ogievetsky and E. Sokatchev, Unconstrained N = 2

matter, Yang-Mills and supergravity theories in harmonic superspace,

Class. Quant. Grav. 1 (1984) 469 [Erratum ibid. 2 (1985) 127] [INSPIRE].

[51] A. Galperin, E. Ivanov, S. Kalitsyn, V. Ogievetsky and E. Sokatchev, Unconstrained off-shell

N = 3 supersymmetric Yang-Mills theory, Class. Quant. Grav. 2 (1985) 155 [INSPIRE].
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