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1 Introduction

While a great deal is known about the non-perturbative physics of SU(N) gauge theories

from calculations on the lattice, much less is known about SO(N) gauge theories. In this

paper we will show that SO(N) gauge theories in 2 + 1 dimensions possess a deconfining

phase transition at a finite temperature T = Tc, just like the deconfining transition in

SU(N) gauge theories. We will calculate its value and determine its nature for N =

4, 5, 6, 7, 8, 9, 12, 16. This will enable us to extrapolate to N = ∞ where we can compare to

the SU(∞) extrapolated value [1]. This is interesting to do since SO(N) and SU(N) gauge

theories have a common planar limit [2], and SO(2N) and SU(N) gauge theories are orbifold

equivalent [3–9], so we expect that dimensionless ratios of common physical quantities,

including the deconfining temperature, should be equal at N = ∞ [10, 11]. We will perform

further comparisons motivated by the fact that certain SO(N) and SU(N ′) gauge theories

share the same Lie algebras, i.e. SO(3) and SU(2), SO(4) and SU(2) × SU(2), SO(6) and

SU(4). To the extent that the difference in the global properties of the groups (such as

the centre) is not important, we would expect the deconfining transition and temperature

to be identical within each of these pairs of gauge theories, and this is something we shall

attempt to check. Moreover assuming this identity, the known value of Tc in SU(2) provides

us with a value for SO(3), which we do not calculate directly (for reasons given below). In

addition all these calculations will allow us to compare SO(2N) and SO(2N + 1) theories,

which is interesting because SO(2N +1) gauge theories have a trivial center in contrast to

the non-trivial Z2 center of SO(2N) theories.

While the calculations in this paper are primarily intended to establish the presence

of the finite T transition and to investigate its properties, we shall choose to call it a

deconfining transition, for both odd and even N , just like the one in SU(N) gauge theories.

Of course that assumes that these theories are linearly confining at low T . While we

shall provide some evidence for confinement at low T in this paper (see in particular

the discussion in section 3.3), the explicit evidence for the confinement being linear is

given in our companion paper on the glueball spectra and string tensions [12], where we

show that the energy of closed flux tubes is (roughly) proportional to their length for
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both odd and even N . Of course such numerical evidence possesses intrinsic limitations:

we cannot distinguish between confinement that is exact and confinement to a very good

approximation. However the quality of our numerical evidence is comparable to that which

establishes linear confinement in D = 2 + 1 SU(N) gauge theories.

The paper is structured as follows. In section 2, we briefly review some well-known

relations between SO(N) and SU(N) gauge theories, both at small and at large N . In

section 3 we briefly describe the lattice setup, how to differentiate confining from non-

confining phases, and we comment on what we know about confinement in SO(N) gauge

theories. In section 4, we describe how we identify the location of the finite temperature

transition and how we determine whether the transition is first or second order. Then in

section 5, we describe how to calculate on a lattice the physical quantities that we shall

use in order to express the transition temperature in physical units. The next few sections

contain our results. First, in section 6, we calculate the infinite volume limit for each of the

SO(N) gauge theories we consider, and hence the value of Tc at various lattice spacings.

Then, in section 7, we use these values to calculate the continuum limit of the deconfining

temperature for each group, briefly discussing the issues caused by the strong to weak

coupling ‘bulk’ transition in D = 2 + 1. We then proceed in section 8 to calculate the

large-N limit of Tc for SO(2N) and SO(2N + 1) separately and together and in section 9,

we compare the SO(N) and SU(N) deconfining temperatures both at N = ∞, and for

pairs of SO(N) and SU(N ′) groups that share the same Lie algebra. Section 10, contains

a summary of our conclusions. Appendix A contains our detailed tabulated results.

There are companion papers, both published [13] and in progress [12], that contain our

results for the mass spectrum and string tension of SO(N) gauge theories. The latter paper

describes the Monte Carlo algorithm in more detail, as well as providing more discussion

of the ‘bulk’ transition. An earlier paper [14] contained our first, exploratory estimates of

Tc. The values in the present paper are much more accurate and supersede those earlier

values, although they are in fact consistent within errors.

2 Relations between SO(N) and SU(N)

2.1 Lie algebra equivalences

The implications of the Lie algebra equivalence between certain SO(N) and SU(N ′) groups

are discussed in more detail in [12, 13]. Here we merely summarise some points that are

relevant to our present calculations. If we assume that the global structure of the groups

is irrelevant to the physics (an assumption which needs to be tested) then we expect that

colour singlet quantities are the same within each pair of theories. For example the mass gap

or the deconfining temperature. String tensions on the other hand are associated with a flux

that is in a certain representation, and this needs to be matched between the theories. In

the following we summarise some points that are relevant to the calculations in this paper.

The first equivalence is between the Lie algebras of SO(3) and SU(2). The SO(3)

fundamental representation is equivalent to the SU(2) adjoint representation, so that the

associated string tension should satisfy

σf |so3 = σadj |su2 . (2.1)
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Adjoint flux tubes in SU(2) are not expected to be stable and can, for example, decay into

glueballs. So one expects the same to be true for SO(3) fundamental flux tubes. Of course,

if the decay width is small enough, then just as for the mass of a narrow resonance, we can

estimate a string tension. More importantly, glueball masses and Tc should be the same

within SU(2) and SO(3), and the coupling g2 should satisfy [12, 14]

g2
∣

∣

so3
= 4g2

∣

∣

su2
. (2.2)

In this paper we do not calculate Tc for SO(3) because the strong-to-weak coupling transi-

tion in our lattice theory occurs at such a small value of the lattice spacing that we would

need to use very large lattices (in lattice units) and this would be computationally quite

expensive. Of course, if one assumes that the physics of SU(2) and SO(3) is the same, as

described above, then one can infer the value of Tc in SO(3) from the known value in SU(2),

and compare it to the values obtained in SO(N > 3). We shall do this later in this paper.

As is also well known, SO(4) and SU(2)× SU(2) share the same Lie algebra, with the

latter forming a double cover of the former. In an SU(2) × SU(2) theory the two SU(2)

groups do not interact with each other and so the physics is directly related to that of

SU(2). So if we assume that the physics of the SO(4) and SU(2)× SU(2) gauge theories is

the same, then the single particle spectrum and the value of Tc should be just as in SU(2).

Because the fundamental SO(4) flux involves fundamental flux from both SU(2) groups,

we expect

σf |so4 = 2σf |su2 . (2.3)

We also expect the couplings to be related by [12, 14]

g2
∣

∣

so4
= 2g2

∣

∣

su2
. (2.4)

Finally, we recall that SO(6) and SU(4) also share the same Lie algebra. We further

recall that in SU(4)

4⊗ 4 = 6⊕ 10 (2.5)

where the 6 corresponds to the k = 2 antisymmetric representation and this maps to the

fundamental 6 of SO(6). To convert quantities in terms of the SU(4) fundamental string

tension to the SU(4) k = 2A string tension, we shall use the known ratio of the SU(4)

k = 2A and fundamental string tensions in D = 2 + 1 [15]

σ2A
σf

∣

∣

∣

∣

su4

= 1.355(9). (2.6)

In addition the couplings are related by [12, 14]

g2
∣

∣

so6
= 2g2

∣

∣

su4
. (2.7)

Glueball masses and Tc should be the same for SO(6) and SU(4), in their common positive

charge conjugation sector.

All the above relations assume that the differing global properties of the pairs of gauge

groups do not affect the dynamics. It is not obvious that this is the case and one of our aims

in this paper is to see if it is indeed the case for the properties of the deconfining transition.
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2.2 Large-N

Just as with SU(N) gauge theories [16], SO(N) gauge theories at the diagrammatic level

possess a smooth N → ∞ limit if one keeps g2N fixed [2]. Moreover the surviving planar

diagrams are identical to those of SU(N) if one chooses [2]

g2
∣

∣

SO(N)
= 2g2

∣

∣

SU(N)
. (2.8)

However there is a difference in the approach to the planar limit. The SO(N) gauge field

propagator takes the form

〈

[Aµ(x)]
i
j [Aν(y)]

k
l

〉

∝ δilδ
k
j − δikδlj . (2.9)

The first term on the right is the leading order double line description of an SU(N) gauge

propagator. However, the second term is special to SO(N) gauge theories and corresponds

to a ‘twisted’ propagator [17]. This leads to new non-oriented surfaces in double line

graphs, which in turn means that corrections to the planar limit are O(1/N) rather than

the O(1/N2) one finds for SU(N).

While the above diagrammatic analysis suggests that the large-N physics of SU(N)

and SO(N) gauge theories should be the same in their common positive charge conjugation

sector of states, it does not guarantee that non-perturbative effects will not disrupt this

expectation. However there exists a more general argument based on a large-N orbifold

equivalence [3–9]. One can apply an orbifold projection on a parent SO(2N) QCD-like

theory to obtain a child SU(N) QCD theory [3–9] with the couplings related as in eq. (2.8).

Since it has been shown that the large-N physics of orbifold equivalent theories is indeed

the same [10, 11], this tells us that the physics of large-N SO(2N) and SU(N) gauge

theories should be identical within their common sector. In particular this should apply to

the N → ∞ limit of the calculations of Tc in this paper.

3 Preliminaries

3.1 Lattice variables

Our variables are N ×N SO(N) matrices Ul assigned to links l. We will often write Ul as

Uµ(x) where the link l emanates from the site x in the µ direction. Our periodic lattice

has dimensions L2
sLt, with lattice spacing a. The partition function is

Z =

∫

∏

l

dUl exp{−βS[Ul]} (3.1)

and we use a standard plaquette action βS where

βS = β
∑

p

(

1− 1

N
Tr(Up)

)

β =
2N

ag2
(3.2)
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with Up the ordered product of Ul around the boundary of the plaquette p. The relation

between β and g2 holds in the continuum limit; on the lattice it defines a lattice coupling

that will become the standard continuum coupling when a → 0. Note that different choices

of action will lead to definitions of g2 that differ by O(a) corrections (which of course vanish

in the continuum limit).

3.2 Finite temperature on the lattice

To calculate expectation values at a non-zero temperature T , we consider the Euclidean

field theory on a periodic l2s lt space-time volume and take the thermodynamic limit ls → ∞
so that we have a well-defined temperature, lt = 1/T .

For convenience we shall use T = 1/lt to define the ‘temperature’ of our system even

in a finite volume.

On a L2
sLt lattice with spacing a, we have ls = aLs and lt = aLt. The value of a is

determined by the value of the inverse bare coupling, β = 2N/ag2, that appears in the

lattice action. So for Ls → ∞ a lattice field theory will have temperature T = 1/a(β)Lt.

We can vary T at fixed Lt by varying β and hence a(β). If we find that a deconfinement

transition occurs at β = βc, then the deconfining temperature is

Tc(a) =
1

a(βc)Lt
. (3.3)

If we increase Lt, the transition will occur at a smaller value of a. So by producing a

sequence of such calculations we can extrapolate to the a = 0 continuum limit.

3.3 The ‘temporal’ Polyakov loop, the center, and confinement

A useful order parameter for identifying the deconfining transition is the ‘temporal’

Polyakov loop, lP . If the spatial starting point of the loop is x, then the loop is defined by

lP (x) = Tr (Ut(x, t = a)Ut(x, t = 2a) · · ·Ut(x, t = aLt)) . (3.4)

This operator represents the world line of a static charge in the fundamental representation

located at spatial site x. So we can obtain the free energy Fff̄ of a pair of such charges

located at x and y respectively from the correlation function of two Polyakov loops at x

and y with opposite orientations

e−
1

T
Fff̄ (x,y) = 〈lP (x)lTP (y)〉 . (3.5)

Assuming that the correlation function satisfies clustering, the correlation function decor-

relates at large spatial distances

〈lP (x)lTP (y)〉 −−−−−−→
|x−y|→∞

|〈lP 〉|2. (3.6)

Hence, if 〈lP 〉 = 0 then Fff̄ (x, y) → ∞ as the separation |x− y| → ∞ which corresponds

to confinement, although not necessarily to a linearly rising potential. (Recall that in

D = 2+1 the Coulomb interaction is already, by itself, logarithmically confining.) Similarly,
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if 〈lP 〉 6= 0, then the free energy approaches a finite value at large spatial separation, and

this will normally imply that the charges are not confined. A counterexample is when there

are particles in the fundamental representation in the theory, which can then bind with the

static charge to produce a colour singlet. This is the case in QCD where we have 〈lP 〉 6= 0,

but the theory is confining (all physical states are colour singlet) even though the potential

flattens out at large distances.

SO(2N) gauge theories have a Z2 centre symmetry under which the action and measure

are invariant. We can generate a centre symmetry transformation by taking a non-trivial

element z of the centre and multiplying all temporal links between two neighbouring time-

slices by z. Unlike a contractible loop, the temporal Polyakov loop is not invariant under

this symmetry,

lP → zlP (3.7)

so that its expectation value 〈lP 〉 = 0, and the theory is confining, unless the centre

symmetry is spontaneously broken, in which case we generically expect 〈lP 〉 6= 0 and the

theory is deconfining. So we expect that the deconfinement phase transition coincides with

the spontaneous breakdown of the centre symmetry. This, of course, just parallels the

well-known argument for SU(N) gauge theories. In addition the Lie algebra equivalences

discussed in section 2.1 strongly suggest that both SO(4) and SO(6) must be confining at

low T , just like SU(2) and SU(4) respectively. Moreover the large-N equivalences discussed

in section 2.2 strongly suggest that the SO(N → ∞) theory is linearly confining, just like

SU(N → ∞). All this (together with the numerical evidence for linear confinement in [12]),

makes a convincing case that SO(2N) gauge theories are linearly confining at low T .

By contrast SO(2N+1) gauge theories have a trivial centre and so in general we would

expect 〈lP 〉 6= 0 at all T . Even so, this does not of itself preclude confinement. As a well-

known example, recall that in QCD with a heavy enough but finite quark mass one has

〈lP 〉 6= 0, albeit very small, because of the explicit breaking of the centre symmetry by the

fermion action. Nonetheless the theory still possesses a first order deconfining transition,

which is continuously linked to that of the pure gauge theory (which is why we confidently

label it as being deconfining). In QCD in this limit a long confining flux tube is in fact

unstable, but with an extremely small decay width — the breaking is essentially a tunnelling

phenomenon. So strictly speaking the theory is not linearly confining, although it is still

believed to be physically confining in the sense that all finite-energy states are colour

singlet. (And in practice the flux-tube breaking would not be visible in a direct numerical

calculation of the potential.) Another well-known and more relevant example is provided by

the SO(3) gauge theory. The Lie algebra equivalence with SU(2) (see section 2.1) strongly

suggests that SO(3) is confining at low T with a second order deconfining transition at some

non-zero T . However the fundamental flux tube of SO(3) is the adjoint flux tube of SU(2)

which we expect to be unstable so that in SO(3) we are confident that 〈lP 〉 6= 0 at any T .

Indeed the direct physical interpretation of this is that the SO(3) fundamental source is

screened by gluons which, in SO(3), are in the same triplet as the fundamental. (Something

that is not the case for SO(N ≥ 4).) A further directly relevant example is provided by

SO(5). This has the same Lie algebra as Sp(2). (Note that there is another convention
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where this is called Sp(4).) There have been numerical investigations of D = 2 + 1 Sp(2)

demonstrating that it has a second order deconfining transition [18]. So we strongly expect

SO(5) to also possess a deconfining transition. Yet another useful example is provided

by G(2) which has a trivial center and yet has a deconfining transition [19] from a low T

confining phase [20]. (For a discussion of the centre and confinement see e.g [20].) Finally,

the diagrammatic (not orbifold) equivalence between SO(2N + 1 → ∞) and SU(N → ∞)

(see section 2.2), strongly suggests that in SO(2N + 1 → ∞) at N = ∞ we have exact

confinement at T = 0 and we also have 〈lP 〉 = 0 at any T . Now if SO(3) (not to mention

SO(5)) and SO(2N+1 → ∞) are exactly confining at low T , then it appears very plausible

that all SO(2N + 1) gauge theories are exactly confining at low T .

Even if SO(2N + 1) gauge theories are indeed confining, as we argued above, it is

still interesting to ask if there is some exact order parameter based on the Polyakov loop.

Since 〈lP 〉 6= 0 in SO(3), but 〈lP 〉 = 0 at N = ∞, it is plausible that 〈lP 〉 6= 0 for any

SO(2N +1), but → 0 as N → ∞, and perhaps does this so rapidly that the non-zero value

becomes invisible in a numerical calculation at moderate values of (odd) N . Returning

to SO(3) we observe that it is the fundamental Polyakov loop of SU(2) that is exactly

zero at low T , and since this corresponds to the spinorial of SO(3), we expect that the

corresponding spinorial Polyakov loop is exactly zero in SO(3). This suggests the following

speculation. In SO(2N +1) gauge theories it is perhaps the spinorial Polyakov loop that is

exactly zero (perhaps one can even locate a symmetry that ensures this) and this serves as

the ‘ideal’ order parameter for (de)confinement. But since the dimension of the spinorial

representation in SO(N) grows very rapidly with N , and one’s experience is that string

tensions grow very roughly with the quadratic Casimir, it will presumably only be relevant

to the low energy physics at small N . Simultaneously, we expect that the expectation value

of the fundamental loop in SO(2N + 1) decreases very rapidly, perhaps exponentially in

N if the tunnelling argument is correct, and it takes over as the ‘ideal’ order parameter at

larger N . Assessing the plausibility of such a scenario is something that we will not do here,

or in [12], since it would require explicit calculations with the spinorial representations of

SO(N) gauge theories. But it is clearly something that would be interesting to do.

A final practical comment. Later on in this paper we shall take SO(7) as our typical

example of SO(2N +1) gauge theories, and we shall show that the value of 〈lP 〉 at low T is

extremely small, and indeed consistent with zero within our very small errors. So we can

assert that, at the very least, we have a direct numerical demonstration of something close

to exact confinement. And in [12] we shall show that, again within very small errors, this

apparent confinement is in fact linear. Together with the above arguments this provides

a justification for labelling the finite T transition that we study in this paper as being a

‘deconfining’ one.

4 Deconfining phase transitions

In an infinite spatial volume, a phase transition occurs when the free energy becomes a

non-analytic function in one of its parameters. We will see that the SO(N) deconfining

phase transition is second order for small N and first order for larger N . First order

– 7 –
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phase transitions occur when there is a discontinuity in the first derivative of the free

energy such that the second derivative is typically a delta function singularity. Second

order phase transitions occur when there is a divergence in the second derivative in the

free energy although the first derivative is continuous. This corresponds to a divergent

correlation length.

On a finite volume, the partition function is finite so all derivatives are well-defined

and analytic, so that there are no apparent non-analyticities. Finite size scaling tells us

how the results at finite volumes should converge towards the expected non-analyticity as

we increase the spatial volume size, allowing us to classify the transition.

4.1 First order transitions

Let O be an order parameter, such as the temporal Polyakov loop or plaquette averaged

over the spatial volume. Suppose that it takes a value 〈O〉 = Oc in the confined phase and

〈O〉 = Od in the deconfined phase. (For simplicity we shall assume here a single deconfined

phase.) We can define a susceptibility χO(V, T ) for a volume V and temperature T by

χO(V, T ) = NV
(

〈O(T )2〉 − 〈O(T )〉2
)

(4.1)

for some constant N . If we are in a single phase then the spatial average ensures that
(

〈O(T )2〉 − 〈O(T )〉2
)

∼ O(1/V ) so that χO(V, T ) ∼ O(V 0), as long as the correlation

length is finite, i.e. the mass gap is non-zero.

At the phase transition, T = Tc, in an infinite volume the free energies are equal. On

a finite volume the phase transition is smeared out and there is no unique way to say at

which value of T it occurs, but a sensible and standard choice is to choose Tc where the

free energy densities are equal

fc(T = Tc) = fd(T = Tc) (4.2)

where Fc/d(T ) = fc/d(T )V are the free energies for the confined and deconfined phases

respectively. At T = Tc the system is equally likely to be in the confined and deconfined

phases and so the order parameter takes values Oc and Od with equal probability. Hence,

χO(V, Tc) = NV

(

(O2
c +O2

d)

2
− (Oc +Od)

2

4

)

= NV

(

(Oc −Od)
2

4

)

(4.3)

and so the peak height of the susceptibility should grow as χmax = O(V ). Note that the

susceptibility peaks when the probability of being in the confining phase is 1/2 and that

this is independent of the number of identical deconfined phases. Note also that here we

neglect the O(1/
√
V ) fluctuations of O around its mean value in each phase.

So we conclude that a first order transition on finite volumes V is characterised by

a susceptibility that forms a peak with height χmax = O(V ) and that the whole peak is

confined to a range ∆β = O(1/V ). So as V → ∞ the peak tends towards a δ-function and

in extrapolating Tc(V ) to V = ∞ one should use a leading O(1/V ) correction term.

– 8 –
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4.2 Second order transitions

For a second order phase transition, the correlation length ξ → ∞ as T → Tc if we are

on an infinite volume. On a finite volume it will (effectively) approach the spatial lattice

length Ls [21–23]. Let us define the reduced temperature by

t = (T − Tc)/Tc = (β − βc)/βc ≡ ∆β (4.4)

using T = 1/(aLt) = βg2/(2NLt), and the critical exponents ν and γ by the standard

relations

ξ ∼ |t|−ν ∼ |∆β|−ν

χ(T, Ls → ∞) ∼ |t|−γ ∼ |∆β|−γ . (4.5)

The standard finite size scaling analysis [21–23] then tells us that at the transition the

susceptibility has a height χmax = O(L
γ
ν
s ) over a half-width of ∆β = O(1/L

1

ν
s ). Note that

the Ls → ∞ peak provides an envelope for the peaks at finite Ls, leading to a structure

quite different from the δ-function peak in a first order transition.

4.3 Scaling laws

From the above we infer that we can distinguish between first and second order transitions

by examining the structure of the susceptibility peaks over a range of different spatial

volumes. We summarise the scaling laws by the following relations. In D = 2 + 1, the

phase transition occurs at

Tc(∞)− Tc(V )

Tc(∞)
∼ 1

V
⇒ βc(V ) = βc(∞)

[

1− h

(

Lt

Ls

)2
]

1st order

Tc(∞)− Tc(V )

Tc(∞)
∼ 1

V
1

2ν

⇒ βc(V ) = βc(∞)

[

1− k

(

Lt

Ls

)
1

ν

]

2nd order (4.6)

where h, k are constants and we use T = 1/(aLt) = βg2/(2NLt). In 2 spatial dimensions,

the maximum of the susceptibility peak χmax(V ) depends on the spatial volume V as

χmax(V ) = c0V + c1 1st order

χmax(V ) = c0V
γ
2ν + c1 2nd order (4.7)

for constants c0 and c1. Hence, finite size scaling shows us how βc(V ) and χmax(V ) vary

with the spatial volume V , and how to extrapolate βc(V ) to the infinite volume limit.

4.4 Useful order parameters

An order parameter for a phase transition is a quantity that distinguishes between the

different phases and exhibits a non-analyticity at the transition, and it is this behaviour

that allows us to determine if and where the deconfinement phase transition occurs. As

remarked above, phase transitions correspond to non-analyticities in the derivatives of
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the partition function Z with respect to β. So consider the first two derivatives for our

lattice action
(

1

Np

∂

∂β

)

lnZ ∼ 〈Up〉
(

1

Np

∂

∂β

)

〈Up〉 = 〈U2
p〉 − 〈Up〉2 ≡ χUp

/V (4.8)

where Np is the number of plaquettes, Up = 1
Np

∑

p

(

1
N tr(Up)

)

is the plaquette averaged

over the lattice volume, and χO = V
(

〈O2〉 − 〈O〉2
)

is the susceptibility of the operator

O. In the case of a first order transition we expect 〈Up〉 to exhibit a finite discontinuity

at T = Tc, and χUp
to be a δ-function when V → ∞. For a second order transition 〈Up〉

will be continuous, but will have a divergent first derivative at Tc when V → ∞, so that

χUp
will display a divergence as described above. Thus Up appears to be the obvious order

parameter for locating the phase transition.

Unfortunately, our calculations indicate that the plaquette susceptibility has a weakly

varying signal over the phase transition — too weak in fact to be useful on the lattice

volumes that we are able to contemplate using. To show what happens it is convenient to

partition the plaquettes into those that are only spatial U s and those that have links in

a temporal direction U t. Figure 1 shows the spatial plaquette susceptibility χUs
and the

temporal plaquette susceptibility χU t
in the region of the phase transition for an SO(4)

3223 volume (renormalised for purposes of comparison). We need a clear peak in the

susceptibility to identify the location of the phase transition but we see instead that χUs

has no obvious peak structure while χU t
has only a very weak peak structure. For other

SO(N) groups, we also typically find that χUs,t
have no useful peak structures on the

volumes we use. Of course when Ls → ∞ the peaks should eventually appear and grow,

but it does mean that for our purposes the plaquette susceptibility is not a useful order

parameter.

An alternative order parameter is provided by the temporal Polyakov loop lP . As

described earlier, its expectation value has a direct relation to the free energy of an isolated

charge, and it is therefore a natural order parameter for the deconfining transition. We

shall shortly see that the Polyakov loop operator lP has a much clearer signal in the region

of the phase transition, compared to the plaquette operators. Around the transition it

tunnels between confined and deconfined phases so that lP takes discrete values with very

small fluctuations around these. There is however a problem at finite V . If there is a

non-trivial centre symmetry then tunnelling between the corresponding deconfined phases

will cause lP to average to zero for T > Tc. This is not an issue for SO(2N + 1) gauge

theories since these have a trivial center symmetry, but it is a problem for SO(2N) with its

Z2 center symmetry. The same problem arises, of course, for SU(N) gauge theories. The

standard (if theoretically ugly) fix is to take the absolute value of the Polyakov loop after

averaging it over the spatial volume

∣

∣lP
∣

∣ =

∣

∣

∣

∣

∣

1

L2
s

∑

x

lP (x)

∣

∣

∣

∣

∣

(4.9)
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and to use
∣

∣lP
∣

∣ as an order parameter and to construct an associated susceptibility

from that,

χ|lP |
L2
sLt

=
〈

∣

∣lP
∣

∣

2
〉

−
〈∣

∣lP
∣

∣

〉2
. (4.10)

This has the disadvantage that
〈∣

∣lP
∣

∣

〉

6= 0 in the confined phase as well as in the deconfined

phase, but the values are very different and it has a very good signal in the region of the

phase transition. We return to our SO(4) 3223 lattice in figure 1, and plot the Polyakov

loop susceptibility. We see that χ|lP | has a much clearer peak structure than the plaquette

susceptibilities shown in the same figure.

So, in a plot of
〈∣

∣lP
∣

∣

〉

against β in the neighbourhood of βc, we would expect to see

the value of
〈∣

∣lP
∣

∣

〉

increase from near-zero to some non-zero value over a narrow range of

β. For a first order transition this range shrinks to zero as the volume increases, becoming

a discontinuity at V = ∞, while for a second order transition this range remains finite and

there is no discontinuity, but the slope at βc tends to ∞. We show an example, obtained

on a 2023 lattice in SO(6), in figure 2. We expect to see a corresponding peak in χ|lP | at
βc, as in figure 1. For a first order transition, we expect the susceptibility χ|lP | to approach

a delta function singularity as V → ∞. For a second order phase transition, we expect

that the susceptibility χ|lP | has a peak over a finite range of β around βc, with a cusp-like

divergence at βc.

For odd N there is no Z2 symmetry to be spontaneously broken, so we can use our

cleaner original variable,
〈

lP
〉

, to characterise the transition. In figure 3 we plot this

quantity against β for a 4824 lattice in SO(7) with a sharp transition visible near the

middle of the range. (Since the lattice spacing varies roughly as 1/β, the range β ∈
[20, 40] corresponds roughly to the range T/Tc ∈ [0.66, 1.5].) Despite the lack of a centre

symmetry, we find that for β ≤ 26.0 our values are all consistent with
〈

lP
〉

being zero within

errors, with values ∼ ±10−5. This behaviour motivates describing the transition as being

‘deconfining’ even if the low-T vacuum eventually turns out not to be exactly confining.

4.5 Tunnelling

We can represent the values of lP obtained from the sequence of field configurations gen-

erated at a given β in a Monte Carlo run as either a histogram over the entire run, or as

a history plot along the run. For β < βc, we expect the theory to be confining so that
〈

lP
〉

≈ 0. On the histogram, we would expect that the values of lP form a narrow peak

around zero while, on the history plot, we would expect the values to fluctuate around

zero. For β > βc, the system would be in a deconfined phase so that
〈

lP
〉

6= 0, and we

would expect to see deconfined peaks at non-zero values on the histogram. For SO(2N)

gauge theories, we would expect to see two deconfined peaks at non-zero values, reflecting

the spontaneous breaking of the Z2 center symmetry, while, for SO(2N + 1) gauge theo-

ries, where the center symmetry is trivial, we would only expect one deconfined peak at a

non-zero value.

For a first order transition we would expect that as we increase β towards β ≈ βc, and

beyond, we should see deconfined peaks appear at non-zero values while the confined peak
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at zero decreases. And in a history plot we would see jumps that reflect tunnelling between

the confined and deconfined phases. Beyond β ≈ βc any tunnelling should be only between

the two deconfined phases for even N , and no tunnelling for odd N . The behaviour for

even N is illustrated for SO(6) on a 2023 lattice in the histograms in figure 4 and the

history plots in figure 5. For odd N we illustrate the expected behaviour in SO(7) on a

4824 lattice in the history plot in figure 6 and the histograms in figure 7. The coexistence

of both confining and deconfining peaks at a given β establishes that we have a first order

transition in both SO(6) and SO(7).

For a second order transition, there is no phase coexistence. As we increase β, we

would expect the confined peak around zero to spread out and, once it disappears, the

deconfined peaks emerge at β = βc. On the history plot, we would expect to see significant

fluctuations around zero for β < βc before the onset of tunnelling between the deconfined

phases for β > βc. This is illustrated for the case of a 2822 lattice in SO(4) in figure 8.

Hence, we can use both the histograms and history plots of lP to distinguish between

first and second order transitions.

4.6 Identifying βc

To calculate βc on a given volume V we need to locate the maximum of the susceptibility.

We do so by first performing separate runs at different β values, and then doing more

runs at values of β near the peak. We use the standard density of states reweighting

method [24–26] to construct a smooth interpolating function through the measured values,

whose maximum provides our estimate of βvc on the given volume V . For some very large

spatial volumes, the values that arise in the reweighting algorithm exceed the machine

precision. In principle this obstacle should be surmountable by some judicious alteration

of the algorithm, but in these cases we choose instead to use curve fitting to find βc, based on

a logistic function for the Polyakov loop, which in practice turns out to have a comparable

performance to that of our reweighting algorithm, as we see from figure 9 and table 1.

5 SO(N) lattice calculations in D = 2 + 1

We generate sequences of lattice field configurations using an SO(N) adaptation of the

SU(N) Cabbibo-Marinari heat bath algorithm [27], which we describe in our companion

paper on the SO(N) spectrum, [12]. We use the plaquette action in eq. (3.2).

We express the deconfining temperature in physical units by calculating suitable mass

scales µ of the gauge theories at T = 0 and then taking ratios aTc/aµ = Tc/µ, which we

can then extrapolate to the continuum limit in a standard way. Three such quantities are

the string tension, coupling, and lightest scalar glueball mass (the mass gap). We now

briefly describe how we calculate these on the lattice. We provide fuller details in [12].

5.1 String tensions

To obtain the string tension, we calculate the energy E(l) of the lightest flux tube that

winds around the spatial torus of size l on a lattice that corresponds to T ∼ 0. To do this,

we use correlators of zero-momentum sums of Polyakov loop operators, that have been
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‘blocked’ to obtain a very good overlap onto the ground state [28, 29] supplemented by a

standard variational calculation [30]. We expect that E(l) → σl for l large [12]. For finite

l, we expect E(l) to be well-approximated by [31–34]

E(l) = σl
(

1− π

3σl2

)
1

2

. (5.1)

By evaluating the string tension at βc, we can then express the deconfining temperature in

the dimensionless ratio Tc/
√
σ.

5.2 Couplings

In D = 2 + 1 the coupling g2 provides a mass scale for the theory. In the continuum limit

lim
β→∞

β

2N2
=

1

ag2N
(5.2)

where g2N is the ’t Hooft coupling which one keeps constant as N increases in order to have

a smooth large-N limit. At finite lattice spacing the coupling is scheme dependent, and in

that sense not a physical quantity, but different choices of coupling differ at O(ag2) and so

converge to the same continuum limit. It makes sense to try and choose a coupling scheme

within which that convergence is rapid. Previous calculations in D = 2 + 1 SU(N) [30]

have found it useful to employ the mean field improved coupling [35, 36]

βI = β

〈

1

N
tr(Up)

〉

. (5.3)

We will choose to use this improved coupling to calculate the continuum value of Tc/g
2N .

5.3 Scalar glueball masses

SO(N) gauge theories have a glueball mass spectrum similar to that in SU(N) gauge

theories, except that all glueballs have charge conjugation C = +. The lightest glueball

has spin J = 0 and parity P = + and it is the glueball mass that we can calculate

most accurately. We evaluate the continuum glueball masses M0+/
√
σ in [12, 13] and use

these values as another way of expressing the deconfining temperature in physical units

Tc/M0+ = Tc/
√
σ ×√

σ/M0+ .

6 Results: infinite volume limits

6.1 Methodology

We need to calculate βc(V → ∞) on our L2
sLt lattices, to obtain the lattice deconfining

temperature Tc = 1/a(βc(V = ∞))Lt. Using
∣

∣lP
∣

∣ as our order parameter, for a given finite

spatial volume V , we calculate βc(V ) by calculating the susceptibility χ|lP | for a range of

β values, reweighting the data from those β values where we observe there to be tunnelling

between the confined and deconfined phases, and then locating the maximum. If the lattice

volume is too large for our reweighting algorithm, we follow the curve fitting procedure
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mentioned above. Then βc(V ) is the β value that corresponds to a maximum in χ|lP |.
This is illustrated in figure 10 on a 202.3 lattice in SO(6) where we see that the reweighted

curve agrees well with our original data and that the estimates for βc and χ|lP |(βc) have

very small errors.

Repeating this calculation for a range of V we can extrapolate to V = ∞ using the

finite size scaling formulae in eq. (4.6). In figure 11 we display such an infinite volume

extrapolation for a second order transition in SO(4) with Lt = 2, and in figure 12 for a

first order transition, in SO(16) with Lt = 3. In both cases we see that the extrapolation is

precise and well-defined. As will be apparent when we list the results of our extrapolations,

this is mostly the case, albeit with a significant number of exceptions where the fits are

statistically poor.

Since the tunnelling in a first order transition is important to both identifying and

locating the transition, it is useful to consider how this tunnelling varies with V and

N . Using a standard argument, the tunnelling must proceed through an intermediate

configuration where the two phases are separated by two spatial domain walls of length

ls = aLs, with a probability of

PW (T ) ∝ exp

(

−2σW ls
T

)

= exp
(

−2a2σWLsLt

)

(6.1)

relative to the probability of a single phase at the same temperature. Here σW is the

surface tension per unit length of the domain wall. (All this assumes that our Monte Carlo

is a local process. If we have global updates, which are trivial to construct between the

two deconfined phases, then this discussion will need changing.) Now just as in SU(N) we

expect the surface tension to grow with N as σW ∝ N2 [37, 38]. Hence, the probability

of the domain walls and the probability of tunnelling decreases exponentially as either the

volume V or as N increase. Thus transitions between the two states are increasingly rare

at large V , especially at large N , and this provides an effective upper bound on the volumes

we can consider at a given N . In addition to this, critical slowing down will also suppress

the frequency of tunnelling as a(βc) decreases.

Since the accuracy of our calculation of βc(V ) depends primarily on the number of

tunnelling fluctuations, rather than the fluctuations within a given phase, we should, ide-

ally, use errors in our reweighting procedure derived solely from the number of tunnellings.

Since this is not straightforward to do, we instead used only data points from runs that

clearly have tunnellings, but then used ‘naive’ errors, albeit based on large bin-sizes each

of which would usually contain some tunnellings. While we believe this ‘fix’ is usually

reliable, it nonetheless leaves a systematic error in our calculations which we only partially

control, and this may be the reason for the very poor goodness of fit of a few of our V → ∞
extrapolations.

6.2 SO(4) and SO(5)

The SO(4) and SO(5) deconfining phase transitions are second order. We can see this

from the lP histograms, such as figure 8, which show a continuous transition from confined

to deconfined phases as we increase β. We can also see this in susceptibility plots for
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different spatial volumes at fixed Lt, such as figure 13, which show that, as the spatial vol-

ume increases, the susceptibility peak height increases, and the large volume susceptibility

provides an envelope for the ones at smaller V .

For SO(4), we can use reweighting for 2 ≤ Lt ≤ 4 to calculate βc. For Lt = 5, the

susceptibility peak is at β ∈ [9.0, 10.0]. This is in the region of the ‘bulk’ transition which

separates weak and strong coupling and which we will discuss later, and which affects the

data so greatly that reweighting does not work. For Lt ≥ 6, the spatial volumes become

so large that we cannot reweight the data using our standard algorithm and so we curve

fit instead. For smaller Lt, the values lie on a smooth curve with small errors and the

reweighted values fit well with the original data. At larger Lt, the data is more scattered

than at smaller Lt, although we can still estimate βc with usefully small errors. We present

the SO(4) values of βc(V ) for volumes V with Lt = 2, 3, 4, 6, 7, 8, 10, 12 in tables 2 and 3.

To extrapolate βc(V → ∞) to the infinite volume limit using eq. (4.6), we need a value

for the critical exponent ν. We recall that the Svetitsky-Yaffe conjecture [39] puts the

deconfining phase transition in the same universality class as the order/disorder transition

of the spin system which is in the same spatial dimensions and which is invariant under

the group that corresponds to the centre of the gauge group. For SO(2N) gauge groups,

which have a Z2 centre symmetry, this puts the deconfining phase transition in the same

universality class as the D = 2 Ising model. In the case of SO(4) ∼ SU(2) × SU(2)

we would expect the deconfining phase transition to be in the universality class of two

decoupled D = 2 Ising models. In the case of SO(5), we know that Sp(2) forms the vector

representation of SO(5), which also has a Z2 centre symmetry so we would expect that

its deconfining phase transition should also be in the universality class of the D = 2 Ising

model [18]. Since the order/disorder transition for the D = 2 Ising model has critical

exponents

γ = 1.75 ; ν = 1 (6.2)

we expect these to be the critical exponents of the SO(4) and SO(5) deconfining phase

transitions. One can try to support this choice by fitting ν to our actual data, but because

the variation of βc(V ) is weak one needs a large lever arm in V , and very accurate data,

to get a useful result. With our data the only useful fit for ν is to the SO(4) Lt = 2 data

from which we obtain the estimate ν = 0.88(19), which provides some support for the

universality based value, which we shall employ from now on.

We list the resulting SO(4) βc(V = ∞) values in table 4 showing in each case the

goodness of fit as measured by the value of χ̄2
dof (chi-squared divided by the number of

degrees of freedom). We see that the extrapolated values have small errors and most of

the χ̄2
dof values are reasonable. (One χ̄2

dof value is very large, and this is due to a scatter

among values with very small errors, which cannot be remedied by dropping values at the

smallest V .)

For SO(5), we can use reweighting for 2 ≤ Lt ≤ 6 and curve fitting for Lt ≥ 7

to calculate βc. Since the centre symmetry is trivial we cannot use that to argue that
〈

lP
〉

≈ 0 in the low T confined phase. However, our calculations show that this is indeed

the case. We list the βc(V ) values for SO(5) with Lt = 2, 3, 4, 5, 6, 7, 8, 10 in table 5 and for
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the infinite volume limits in table 6. We see that the extrapolated values again have small

errors and that the χ̄2
dof values are mostly reasonable.

6.3 SO(6)

The SO(6) deconfining phase transition is (weakly) first order: the coexisting phases are

apparent, as in figure 4, but are less well defined than for SO(N ≥ 7). While susceptibility

plots indicate that the transition has features from both first and second order transitions,

the lP histograms (such as figure 4) show a clear first order phase coexistence. We extrap-

olate to the infinite volume limit using eq. (4.6). We list the βc(V ) values in table 7 and

the infinite volume limits in table 8.

6.4 SO(7), SO(8), SO(9), SO(12), and SO(16)

The SO(N ≥ 7) deconfining phase transitions are all first order, as is clear from the phase

coexistence in the
〈

lP
〉

histograms and from the susceptibility plots (such as figure 14)

which show the whole peak shrinking and its height growing as V increases. For SO(7) and

SO(9) our calculations show that, just as for SO(5), we have
〈

lP
〉

≈ 0 despite the absence

of a non-trivial center symmetry.

We list the βc(V ) values in tables 9, 11, 13, 15, and 17 and the infinite volume limits,

obtained using eq. (4.6), in tables 10, 12, 14, 16, and 18.

7 Results: continuum limits

7.1 Methodology

To extrapolate Tc to the continuum limit, i.e. a → 0 or equivalently β → ∞, we express Tc

in units of some other energy scale µ, calculated at the same value of β, and extrapolate

the resulting dimensionless ratio limβ→∞ Tc/µ. For the scale µ we will use either the string

tension, µ =
√
σ, calculated at βc and at T ≈ 0, or the ’t Hooft coupling, µ = g2N .

Let us express the critical temperature in units of the string tension evaluated at the

critical coupling βc on a lattice corresponding to T ≃ 0,

Tc√
σ
(a) =

1

a(βc)
√
σLt

. (7.1)

Once we have Tc/
√
σ for each of our values of Lt, we take the continuum limit a → 0.

Since this is the ratio of two physical mass scales, we expect the leading correction to be

O(a2) [40],

Tc√
σ
(a) =

Tc√
σ
(a = 0) + ca2σ(a) + · · · (7.2)

for some constant c.

We can similarly express the critical temperature in terms of the ’t Hooft coupling,

Tc

g2N
≡ aTc

ag2N
=

βc
2N2

1

Lt
. (7.3)
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As remarked earlier, at finite β the lattice coupling is scheme dependent, and we will choose

to use the mean field improved coupling, replacing β by βI = β
〈

1
N tr(Up)

〉

in the above.

Once we have Tc/(g
2N) for each of our Lt values, we can take the continuum limit

Tc

g2N
(a) =

Tc

g2N
(a = 0) + cag2N + · · · (7.4)

where the leading order correction is O(a) rather than O(a2) since, unlike the string tension

or glueball mass, the lattice coupling is not a physical quantity.

We note that the errors on the values of βc and βI,c are typically much smaller than on

the a
√
σ lattice values. However this greater accuracy is offset by the fact that these values

are ‘further away’ from the continuum limit in that the leading correction is O(a) rather

than O(a2). Moreover one would naively expect Tc and σ to be more closely correlated

than Tc and some lattice g2, and so their ratio to be closer to its continuum value. For this

reason we will place more stress on our continuum extrapolation of Tc/
√
σ than on Tc/g

2N .

Finally we remark that we could equally well express the critical temperature in units

of the lightest scalar glueball mass m0+ , by calculating this mass at each βc in the T ≃ 0

theory, and extrapolating the resulting dimensionless ratio to the continuum limit. However

we do not do this here. Rather we simply obtain the continuum ratio Tc/m0+ from the

continuum limit of m0+/
√
σ calculated in [12] and our extrapolated value of Tc/

√
σ,

Tc

m0+
=

Tc/
√
σ

m0+/
√
σ
. (7.5)

7.2 Bulk transition

Lattice gauge theories generally have some kind of ‘bulk’ transition between the regions

of strong and weak coupling, where the coupling expansion changes from powers of β ∝
1/(ag2) to powers of 1/β ∝ ag2. Since an extrapolation to the continuum limit, β → ∞,

is only plausible, a priori, if made using values obtained in the weak coupling region, it is

important to know where this bulk transition occurs.

With the SO(N) plaquette action, we find that the bulk transition seems to be char-

acterised by the appearance of a very light excitation in the scalar glueball sector, with

the rest of the glueball spectrum being essentially unaffected. Moreover we find that the

visibility of this light excitation is sensitive to the lattice volume and that as N increases,

we can use smaller volumes to identify the bulk transition in this way. This is an interesting

and unusual transition, which we will describe in greater detail in our companion paper on

the glueball spectrum [12]. For our present purposes, we only need to note that it provides

an unambiguous way to identify the location of the bulk transition. We show the β values

corresponding to this bulk transition in table 19 together with the range of Lt values for

which the corresponding βc lie in the weak coupling region. We note that the transition

moves to weaker coupling as N decreases, making the weak coupling calculations more

expensive at small N . This is why we have not performed SO(3) calculations, which one

can estimate would necessitate using Lt > 10 (and up to Lt ∼ 20 to have a useful lever

arm for a continuum extrapolation).
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To calculate the continuum limit of the deconfinement temperature, we shall use data

corresponding to values in the weak coupling region, ignoring the data from Lt values that

have βc values in the strong coupling region. Occasionally, where the would-be suscepti-

bility peak around βc overlaps with this bulk transition, it may be grossly distorted by the

very light scalar excitation (which can also affect the winding flux tube spectrum) and we

are then unable to obtain a usefully precise value of βc.

7.3 SO(4)

For SO(4), the βc values for Lt < 5 are in the strong coupling region whereas the βc values

for Lt > 5 are in the weak coupling region. The deconfining transition for Lt = 5 mixes

with the bulk transition and we do not attempt to extract corresponding values of βc. We

give the corresponding values of Tc/
√
σ in table 20.

We extrapolate the values of Tc/
√
σ to the continuum limit using eq. (7.2). We display

the data and the fits in figure 15. There are two separate fits on display. The first is

to the weak-coupling data, obtained on lattices with Lt ≥ 6. This data shows very little

dependence on a and the fit with just the leading O(a2) correction works well. This is no

surprise because a2σ ≪ 1 for all the weak coupling data. We obtain a continuum limit

Tc√
σ
(a = 0) = 0.7702(88) χ̄2

dof = 0.12 SO(4) (weak coupling). (7.6)

The second fit is motivated by the fact that the three strong coupling values obtained on

lattices with Lt ≤ 4, appear to lie on a straight line. A linear fit as in eq. (7.2) works well

and provides us with what we dub a ‘strong coupling’ continuum limit

Tc√
σ
(a = 0) = 0.8638(21) χ̄2

dof = 0.09 SO(4) (strong coupling). (7.7)

This linearity of the strong coupling data is unexpected and indeed bizarre. It may just

be an accident, in which case our exercise is meaningless. However it may be that a2 is

small enough that the operator expansion of the lattice action in powers of a2 is viable

even if the coupling expansion in powers of 1/β is not. If so one might speculate that this

provides some kind of strong coupling continuum limit. In any case, the true continuum

limit of the SO(4) theory is the one extracted from the weak coupling values in eq. (7.6).

Similarly, we can calculate the critical temperatures in units of the ’t Hooft coupling.

The values of Tc/(g
2N) are listed in table 20. We can plot Tc/(g

2N) against ag2N and

extrapolate to the continuum limit using eq. (7.4). The continuum limit is

Tc

g2N
(a = 0) = 0.04567(43) χ̄2

dof = 2.17 SO(4) (weak coupling) (7.8)

where we need to drop the Lt = 6 point from the fit in order to obtain a reasonable χ̄2
dof

with just a leading order weak coupling correction. (Note that the strong coupling values

do not fit onto a linear extrapolation in 1/βI , which is of course as expected.)

Finally, we express the critical temperature in units of the lightest scalar glueball mass

M0+ . We use the continuum value of M0+/
√
σ calculated in [12] with our above continuum
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value of Tc/
√
σ to obtain

Tc

M0+
(a = 0) = 0.2293(30) SO(4) (weak coupling). (7.9)

7.4 SO(5) and SO(6)

For both SO(5) and SO(6), the βc values for Lt ≥ 5 are in the weak coupling region and

so can be used for a continuum extrapolation. To obtain the critical temperature in string

tension units Tc/
√
σ, we calculate the string tension at each βc as in SO(4). We list the

resulting values for SO(5) in table 21 and for SO(6) in table 22. We display the continuum

extrapolation for SO(6) in figure 16.

In the case of SO(5), unlike SO(4), there were difficulties in using a linear extrapolation

in the weak coupling region due to peculiar variation in the value of Tc/
√
σ. To obtain a

good fit we had to drop the two smallest Lt points in the weak coupling region. (Context:

for no other N did we need to drop any weak coupling points.) SO(5) is the largest SO(N)

group for which the transition is second order and it might be that this is behind this

atypical behaviour. The continuum limit from within the weak coupling region is

Tc√
σ
(a = 0) = 0.7963(114), χ̄2

dof = 0.003 SO(5). (7.10)

We also note that the strong coupling values fit less well with a linear extrapolation than

they did for SO(4), giving a strong coupling ‘continuum’ extrapolation of Tc/
√
σ = 0.783(4)

with a mediocre χ̄2
dof = 2.78.

SO(6) is the smallest group for which the transition is first order. The continuum limit

taken from data within the weak coupling region is

Tc√
σ
(a = 0) = 0.8105(42), χ̄2

dof = 0.16 SO(6). (7.11)

There is also a good linear extrapolation using the strong coupling values that gives

Tc/
√
σ = 0.8144(20) with χ̄2

dof = 0.59. We note that here the strong coupling extrapo-

lation is consistent with the true weak-coupling continuum limit.

We can also calculate the critical temperatures in units of the coupling. Tc/(g
2N).

The values are listed in table 21 and table 22. We can then plot Tc/(g
2N) against ag2N

and extrapolate to the continuum limit using eq. (7.4). The continuum limits, from within

the weak coupling regions, are

Tc

g2N

∣

∣

∣

∣

a=0

=

{

0.05544(92) χ̄2
dof = 0.05 SO(5)

0.05996(19) χ̄2
dof = 0.53 SO(6)

. (7.12)

In the case of the SO(5) data, the points seem to lie on a smooth curve and do not exhibit

the peculiar variation seen in the corresponding Tc/
√
σ values.

Finally, we can calculate the critical temperatures in units of the lightest scalar glueball.

Using the values of M0+/
√
σ from [12] we obtain

Tc

M0+

∣

∣

∣

∣

a=0

=

{

0.2244(33) SO(5)

0.2232(14) SO(6)
. (7.13)
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7.5 SO(7), SO(8), SO(9), SO(12), and SO(16)

For SO(7) and SO(8) the βc values are in the weak coupling region for Lt ≥ 4, and for

SO(9), SO(12), and SO(16) they are in the weak coupling region for Lt ≥ 3.

We list the critical temperature values in string tension units Tc/
√
σ for these groups

in tables 23, 24, 25, 26, and 27. The continuum limits are

Tc√
σ

∣

∣

∣

∣

a=0

=



































0.8351(38) χ̄2
dof = 0.98 SO(7)

0.8418(39) χ̄2
dof = 0.05 SO(8)

0.8515(14) χ̄2
dof = 0.30 SO(9)

0.8642(38) χ̄2
dof = 0.02 SO(12)

0.8780(38) χ̄2
dof = 0.15 SO(16)

. (7.14)

We note that all these fits are very good.

Similarly, we can calculate the critical temperature in units of the coupling, as listed

in tables 23, 24, 25, 26, and 27. We can then plot Tc/(g
2N) against ag2N and extrap-

olate to the continuum limit using eq. (7.4). These plots have very similar forms to the

corresponding Tc/
√
σ plots. The continuum limits are

Tc

g2N

∣

∣

∣

∣

a=0

=



































0.06478(18) χ̄2
dof = 4.01 SO(7)

0.06809(16) χ̄2
dof = 0.00 SO(8)

0.07043(7) χ̄2
dof = 0.10 SO(9)

0.07552(14) χ̄2
dof = 0.63 SO(12)

0.07947(17) χ̄2
dof = 0.85 SO(16)

. (7.15)

We can see that these continuum extrapolations are mostly good. (Given there is only one

degree of freedom, the SO(7) fit is not unacceptable.)

Finally, we can calculate the critical temperatures in units of the lightest scalar glueball

mass M0+ . Using the values for N = 7, 8, 12, 16 calculated in [12] (there is no calculation

for N = 9) we find

Tc

M0+

∣

∣

∣

∣

a=0

=



























0.2234(12) SO(7)

0.2224(15) SO(8)

0.2217(18) SO(12)

0.2220(22) SO(16)

. (7.16)

8 Results: large-N limits

8.1 Deconfining temperature

In contrast to SU(N), the leading large-N correction for SO(N) gauge theories is expected

to be O(1/N). So we expect

Tc

µ

∣

∣

∣

∣

SO(N)

N→∞
=

Tc

µ

∣

∣

∣

∣

SO(∞)

+
c

N
+ · · · (8.1)

with µ a physical mass scale such as
√
σ, m0+ or g2N .

– 20 –



J
H
E
P
0
3
(
2
0
1
6
)
0
7
2

Since one of our aims is to compare the values of Tc for SO(2N) and SO(2N + 1)

gauge theories, it would be useful to have an estimate of Tc in SO(3). Since the SO(3)

and SU(2) groups have the same Lie algebra, it is plausible to assume that they share the

same value of Tc/M0+ , where M0+ is the mass of the lightest scalar glueball. We have to

be more careful with Tc/
√
σ because the fundamental string tension in SO(3) corresponds

to the adjoint in SU(2). Now, we know that in SU(2) Tc/
√
σ = 1.1238(88) [1] We also

know that in SU(2) M0+/
√
σ = 4.7367(55) [41] and in SO(3) M0+/

√
σ = 2.980(24) [12].

From the ratio of these two numbers we extract an estimate of the ratio of fundamental

string tensions in SU(2) and SO(3). All this implies that the SO(3) continuum deconfining

temperature in units of the string tension is

Tc√
σ
= 0.7072(80) SO(3). (8.2)

We also know the SO(3) string tension
√
σ/(g2N) = 0.04576(36) [12], which tells us that

Tc

g2N
= 0.03236(45) SO(3). (8.3)

Finally, we can also infer from the above that the SO(3) continuum deconfining temperature

in units of the lightest scalar glueball mass is

Tc

M0+
= 0.2373(33) SO(3). (8.4)

We list the SO(N) deconfining temperatures in string tension units in table 28. We

begin by applying a linear fit in 1/N to just the SO(2N) values. We do so for two reasons.

Firstly, we intend to compare this limit to the SU(N) large-N limit motivated by the

large-N orbifold equivalence. Secondly, SO(2N + 1) has a different centre to SO(2N), so

the deconfinement properties might differ between the two sets of gauge theories and it is

interesting to see if this is the case. In figure 17 we plot all our values of Tc/
√
σ, including

that inferred for SO(3), against 1/N , and we also show the best leading-order fit to just

the SO(2N) values. We see that the linear fit is very good. We also see that values for the

SO(2N + 1) groups are consistent with lying on this fit. Indeed if we take all the values,

including SO(3), we obtain a very similar best fit:

Tc√
σ

∣

∣

∣

∣

N→∞

=















0.9152(48) χ̄2
dof = 0.58 SO(2N ≥ 4)

0.9231(45) χ̄2
dof = 0.52 SO(2N + 1 ≥ 3)

0.9194(33) χ̄2
dof = 0.82 SO(N ≥ 3)

. (8.5)

We conclude that at our level of accuracy there is no evidence for any difference in the

way Tc/
√
σ varies with N in SO(2N) and SO(2N + 1) gauge theories: the lack of a center

symmetry in the latter appears to play no role. We also observe that the groups with a

second order transition, SO(N ≤ 5), fall nicely on the smooth curve that describes the

N -dependence of the first-order transitions, SO(N ≥ 6).

We can repeat the above, replacing
√
σ by the ’t Hooft coupling g2N . We list the

SO(N) deconfining temperatures in units of g2N in table 28. To fit to all the values of N ,
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we need to include an additional O(1/N2) correction and, to avoid a systematic bias, we

do the same for our separate fits to odd and even N . We find:

Tc

g2N

∣

∣

∣

∣

N→∞

=















0.09139(49) χ̄2
dof = 2.53 SO(2N ≥ 4)

0.09039(63) χ̄2
dof = 0.43 SO(2N + 1 ≥ 3)

0.09160(35) χ̄2
dof = 1.45 SO(N ≥ 3)

. (8.6)

We see that values of Tc/(g
2N) obtained for the SO(2N + 1) groups are consistent with

those for SO(2N).

Finally, we list the SO(N) deconfining temperatures in units of the lightest scalar

glueball mass in table 28 and plot these values in figure 18. We show a leading-order fit to

SO(2N) for 2N ≥ 6 since the data (if one pays attention to the SO(3) value) indicates the

need for a higher order correction at the lower values of N . We do not fit odd N separately

because we do not have available a glueball mass for SO(9), and so the number of odd N

values is too small to fit. We also perform fits with an additional O(1/N2) correction to

both SO(2N ≥ 4) and to all our values, SO(N ≥ 3). Altogether, these fits give:

Tc

M0+

∣

∣

∣

∣

N→∞

=















0.2209(28) χ̄2
dof = 0.03 SO(2N ≥ 6)

0.2189(23) χ̄2
dof = 0.51 SO(2N ≥ 4)

0.2230(39) χ̄2
dof = 0.10 SO(N ≥ 3)

. (8.7)

We note that the linear fit is particularly flat compared to the linear fit in figure 17 and

the one to Tc/g
2N . Finally, we again see evidence that the SO(2N) and SO(2N +1) values

form a single smooth series.

8.2 Large-N scaling

We have assumed throughout that the large-N limit requires keeping g2N fixed and that the

leading correction is O(1/N), guided by the all-orders analysis of diagrams [2]. Certainly,

keeping g2N fixed is necessary if one wants to obtain an SO(∞) theory that is perturbative

(and asymptotically free) at short distances. Here we ask whether our non-perturbative

calculations support these assumptions.

Without assuming g2N scaling, we can test for the power of the leading correction by

fitting

Tc√
σ

∣

∣

∣

∣

SO(N→∞)

= c0 +
c1
Nα

SO(N ≥ 3). (8.8)

We find that α = 1.13±0.14. If we assume g2N scaling then a similar analysis for Tc/g
2N ,

over the range N ≥ 7 where we can get a good fit, gives α = 0.88± 0.16. So if the power

of the correction is an integer, then this confirms that it must be O(1/N).

It is amusing to see if our results also demand that g2N should be kept constant. We

can fit

Tc

g2Nγ

∣

∣

∣

∣

SO(N→∞)

= c0 +
c1
N

SO(N ≥ 7) (8.9)

and doing so we find a tight constraint γ = 1.020± 0.024, just as expected.
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9 Comparison of SO(N) and SU(N) deconfining temperatures

9.1 SO(4) ∼ SU(2) × SU(2)

We know that SO(4) and SU(2)× SU(2) share a common Lie algebra so it is interesting to

see if they have the same deconfining temperatures and transitions. We have seen that the

SO(4) deconfining phase transition is second order, just like SU(2), and (within large errors)

they appear to share the same critical exponents. Now, we expect that the fundamental

flux of SO(4) contains the fundamental flux of both SU(2) groups from the product group

SU(2)× SU(2), so that

σ|su2×su2 = 2 σ|su2 . (9.1)

Hence, we expect that

Tc√
σ

∣

∣

∣

∣

so4

=
Tc√
σ

∣

∣

∣

∣

su2×su2

=
1√
2

Tc√
σ

∣

∣

∣

∣

su2

. (9.2)

We know that the SU(2) deconfining temperature is Tc/
√
σ = 1.1238(88) [1] so that we

can compare this to our value for SO(4):

Tc√
σ
= 0.7702(88) SO(4)

1√
2

Tc√
σ
= 0.7946(62) SU(2). (9.3)

We see that these values are within about 2.25σ of each other which we consider to be

reasonable agreement.

9.2 SO(6) ∼ SU(4)

SO(6) and SU(4) also share a common Lie algebra so it is also interesting to compare their

deconfining transitions. We have seen that SO(6) is first order, but weakly so, and this

is also the case for SU(4) [1, 42]. As we discussed earlier, the SO(6) fundamental string

tension is equivalent to the SU(4) k = 2 anti-symmetric string tension so what we may

expect is

Tc√
σf

∣

∣

∣

∣

so6

=
Tc√
σ2A

∣

∣

∣

∣

su4

. (9.4)

Hence, to compare between the SO(6) and SU(4) deconfining temperatures measured in

units of the fundamental string tension, we need the ratio of the k = 2A and fundamental

string tensions in SU(4), and this has been calculated to be σ2A/σf |su4 = 1.355(9) in [15].

We also know from [1], that the SU(4) deconfining temperature is Tc/
√
σf = 0.9572(39)

so that

Tc√
σf

= 0.8105(42) SO(6)

Tc√
σ2A

= 0.8223(61) SU(4). (9.5)

We see that these values are in agreement, being within 1.5σ of each other.
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9.3 Large-N (orbifold) equivalence

As remarked earlier, the existence of an orbifold projection from SO(2N) to SU(N) gauge

theories means that they should have the same large-N limit and in particular the same

deconfining temperature in that limit when expressed in physical units. In addition we

have the diagrammatic planar equivalence of SO(N) and SU(N).

We list the SO(2N) and SU(N) [1] continuum values of Tc/
√
σ in table 29. We display

the corresponding large-N extrapolations in figure 19. The two large-N limits are

Tc√
σ
=

{

0.9152(48) SO(2N → ∞)

0.9030(29) SU(N → ∞)
. (9.6)

We see that these two values are within 2σ of each other, which is consistent with the hy-

pothesis that they are equal. As for the planar equivalence, we recall that fitting SO(N ≥ 3)

with a fit that is linear in 1/N gives Tc/
√
σ = 0.9194(33) at N = ∞, and this is a less

comfortable ∼ 4σ from the SU(∞) value.

Similarly, we list the SO(2N) and SU(N) [43] continuum values of Tc/(g
2N) in table 29.

To compare the SO(2N) and SU(N) values, we need to rescale the SO(N) values to SO(2N)

values by doubling them (as we did in some earlier figures). This is due to the large-N

coupling matching g2SU(N)N = g2SO(2N)N , so that the large-N limit is

lim
N→∞

Tc

g2SU(N)N
= lim

N→∞

Tc

g2SO(2N)N
= lim

N→∞
2

Tc

g2SO(2N)2N
. (9.7)

The two large-N limits are

Tc

g2N
=

{

0.1828(10) SO(2N → ∞)

0.1852(8) SU(N → ∞)
(9.8)

while a fit to SO(N ≥ 3) gives Tc/g
2N = 0.1832(7). We see that these two values are no

more than ∼ 2σ from each other.

Finally, we list the SO(2N) and SU(N) [1, 41, 44] values of Tc/M0+ table 29. We

display the two large-N extrapolations in figure 20. The two large-N limits obtained from

these leading order fits are

Tc

M0+
=

{

0.2209(28) SO(2N → ∞)

0.2207(6) SU(N → ∞)
. (9.9)

and a higher order fit to all SO(N ≥ 3) gives a value 0.2230(39). We see that all these

values agree very well.

10 Conclusions

In this paper we identified a finite temperature transition in D = 2 + 1 SO(N) gauge

theories for N = 4, 5, 6, 7, 8, 9, 12, 16. For N = 4, 5 the transition appears to be second

order, while for N ≥ 6 it appears to be first order. We did not attempt to calculate Tc

for SO(3) because the inconvenient location of the ‘bulk’ transition would have made it

computationally expensive. However, the close connection between SO(3) and SU(2) makes

one confident that there is a deconfining transition in SO(3), and we have used the SU(2)

value of Tc to provide an estimate for the SO(3) value.
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This transition appears to have all the characteristics of a deconfining transition for

both even and odd N , and appears to be a phase transition rather than a cross-over. We

gave some arguments, and provided some evidence, that SO(N) gauge theories are indeed

confining at low T , and that this is the case not just for even N but also for odd N where

the centre is trivial.

Our calculations were performed on a lattice in a finite volume, but our final results

for the deconfining temperature, Tc, are for the continuum theory in an infinite volume.

(Achieved through extrapolation, of course.) We find that dimensionless ratios such as

Tc/
√
σ, where σ is the zero-temperature confining string tension, fall on a single sequence

that can be interpolated by a smooth function of N for N ≥ 3 (with the value for SO(3)

being inferred from the value in SU(2)). That is to say, we can think of the N -dependence

of non-Abelian SO(N) gauge theories as a continuous function of N for all N . In particular

there is no evidence that even and odd N fall on two separate (even if converging) branches.

Somewhat remarkably we find that a simple leading-order large-N expression suffices

to fit all our calculated values of Tc/
√
σ:

Tc√
σ
= 0.9194(33)− 0.620(28)

N
; N ≥ 3. (10.1)

Such a ‘precocious’ large-N scaling seems the norm for physical mass ratios in both

SO(N) [12, 14] and SU(N) [30, 41, 44] gauge theories. Even more striking is how weakly

the ratio Tc/M0+ depends on N , as we see in figure 20 and as highlighted by the smallness

of the leading correction in our higher order fit

Tc

M0+
= 0.2230(39)− 0.033(45)

N
+

0.23(12)

N2
; N ≥ 3. (10.2)

A possible explanation for this weak N -dependence is discussed in [13].

As an aside, we remark that our results, as described in section 8.2, provide a non-

perturbative confirmation of the expected large-N scaling: g2N fixed, and O(1/N) leading

corrections as N → ∞.

As another (much less expected) aside, we recall that our values of Tc/
√
σ on the strong

coupling side of the ‘bulk’ transition also appeared to extrapolate to a = 0 with a simple

O(a2) correction. At small N this ‘strong coupling continuum limit’ was very different

from the true weak coupling continuum limit, but at larger N they became consistent.

This unexpected and bizarre behaviour strongly suggests that our interpretation of the

‘bulk’ transition as a simple strong-to-weak coupling transition is too naive.

Since SU(N) gauge theories can be orbifold projected from SO(2N), we expect them

to have the same physics at large N [10, 11], and indeed we find that the values of Tc

extrapolated to N = ∞ are consistent with being equal, at the ∼ 1% level. We obtain a

similar confirmation of the large-N planar equivalence between SO(N) and SU(N) gauge

theories. In addition we find that the values of Tc in SO(4) and SO(6) are consistent with

those in SU(2)× SU(2) and SU(4) respectively, indicating that for this physics at least the

differences in group global structure are not important: theories with the same Lie algebra

appear to possess the same value of Tc.
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A Tables

Data Fit βc χ(βc) χ̄2
dof

Reweighting 8.493(10) 25.40(30) n/a

Gaussian 8.500(11) 25.66(40) 0.62

Logistic 8.500(6) 25.71(41) 0.64

Table 1. Comparisons between reweighting, Gaussian fits, and logistic fits to obtain βc and χ(βc)

on a 4024 volume in SO(4).

L2
sLt βc χ|lP |
2022 6.4748(4) 10.77(4)

2422 6.4771(4) 13.64(5)

2822 6.4788(3) 16.80(9)

3222 6.4797(3) 20.16(8)

3622 6.4813(4) 23.65(12)

4022 6.4819(3) 27.58(14)

4822 6.4822(4) 35.15(43)

5622 6.4840(4) 44.42(63)

6022 6.4850(4) 49.92(89)

8022 6.4853(4) 78.57(132)

L2
sLt βc χ|lP |
3223 7.534(3) 19.60(14)

3623 7.538(3) 23.22(16)

4023 7.539(1) 26.37(25)

4423 7.545(2) 31.09(38)

4823 7.546(3) 35.56(38)

5223 7.552(2) 40.58(53)

6623 7.552(2) 58.75(131)

8023 7.555(3) 81.02(193)

9023 7.557(3) 95.80(171)

4024 8.493(10) 25.40(30)

4824 8.501(6) 33.88(56)

5624 8.509(8) 42.02(93)

6424 8.526(7) 51.67(120)

7224 8.520(3) 59.46(140)

8024 8.535(6) 66.44(173)

8824 8.545(8) 75.23(296)

Table 2. βc and χ|lP | in SO(4) for Lt ≤ 4 on various volumes.
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L2
sLt βc χ|lP |
3626 11.110(31) 20.68(18)

4826 10.924(17) 28.87(36)

6026 10.861(9) 38.76(53)

7226 10.837(14) 47.33(83)

8426 10.809(21) 57.82(125)

9626 10.824(14) 70.28(199)

12026 10.835(8) 95.57(321)

4227 12.685(45) 29.41(38)

5627 12.494(22) 41.46(64)

7027 12.397(12) 54.24(94)

8427 12.303(12) 68.11(111)

9827 12.224(12) 81.74(172)

11227 12.261(19) 100.03(247)

12627 12.274(19) 117.10(302)

L2
sLt βc χ|lP |
6428 14.005(37) 55.93(88)

8028 13.836(24) 71.23(136)

9628 13.901(16) 93.98(248)

11228 13.712(16) 106.33(214)

12828 13.736(14) 131.84(390)

14428 13.767(20) 158.18(629)

80210 17.096(31) 95.93(174)

90210 16.919(35) 107.06(234)

100210 16.870(24) 127.64(305)

110210 16.790(53) 137.15(367)

120210 16.731(24) 154.83(462)

140210 16.725(23) 184.45(659)

72212 20.648(62) 107.12(158)

84212 20.202(66) 122.92(199)

96212 20.098(52) 144.13(252)

120212 19.797(29) 190.28(414)

144212 19.757(27) 236.11(603)

Table 3. βc and χ|lP | in SO(4) for Lt ≥ 6 on various volumes.

Lt βc(V → ∞) Ls range χ̄2
dof

2 6.4891(3) Ls ≥ 20 1.19

3 7.573(3) Ls ≥ 32 1.44

4 8.573(10) Ls ≥ 40 1.24

6 10.781(16) Ls ≥ 48 2.77

7 11.980(24) Ls ≥ 42 6.49

8 13.504(34) Ls ≥ 64 13.18

10 16.321(80) Ls ≥ 90 1.19

12 19.090(99) Ls ≥ 84 3.13

Table 4. Infinite volume limit of βc, range of volumes used and χ̄2
dof of extrapolation, for SO(4).
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L2
sLt βc χ|lP |
1622 10.380(1) 10.75(3)

1822 10.378(1) 12.82(4)

2022 10.378(1) 14.74(7)

2222 10.376(1) 16.83(9)

2422 10.377(2) 18.53(12)

2623 12.058(3) 13.41(14)

2823 12.054(3) 14.07(15)

3023 12.049(3) 14.76(12)

3223 12.053(4) 15.28(15)

3423 12.049(4) 16.02(25)

3224 13.964(10) 16.42(12)

3624 13.964(9) 18.90(13)

4024 13.955(7) 21.27(18)

4824 13.962(12) 24.13(27)

4025 16.316(14) 20.75(14)

4425 16.342(8) 24.15(23)

5025 16.300(13) 26.37(20)

5425 16.295(26) 27.87(18)

6025 16.265(8) 30.58(29)

7025 16.290(6) 35.40(40)

L2
sLt βc χ|lP |
4226 19.017(34) 28.35(49)

4826 18.939(61) 31.74(41)

5426 18.965(19) 36.39(49)

6026 18.930(18) 40.39(76)

5627 21.715(17) 46.57(67)

6027 21.663(16) 48.70(77)

6427 21.592(15) 53.02(81)

6827 21.595(15) 55.50(90)

7227 21.554(11) 58.01(99)

8427 21.564(17) 69.48(159)

6428 24.329(24) 63.20(102)

7228 24.294(18) 72.14(124)

8028 24.255(14) 80.30(154)

8828 24.255(17) 85.77(180)

9628 24.182(18) 83.53(197)

80210 29.730(19) 109.84(163)

90210 29.621(26) 116.99(200)

100210 29.521(19) 130.84(236)

110210 29.519(19) 141.11(272)

120210 29.517(22) 159.53(391)

Table 5. βc(V ) and χ|lP |(V ) for SO(5).

Lt βc(V → ∞) Ls range χ̄2
dof

2 10.368(3) Ls ≥ 16 0.74

3 12.021(16) Ls ≥ 26 0.49

4 13.944(36) Ls ≥ 32 0.32

5 16.180(13) Ls ≥ 40 4.56

6 18.603(55) Ls ≥ 42 1.29

7 21.192(52) Ls ≥ 56 4.63

8 23.938(63) Ls ≥ 64 1.39

10 29.500(157) Ls ≥ 100 0.00

Table 6. Infinite volume limit of βc, range of volumes used and χ̄2
dof of extrapolation, for SO(5).
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L2
sLt βc χ|lP |
822 15.175(2) 3.191(8)

1022 15.185(1) 4.972(8)

1222 15.192(1) 7.151(12)

1223 17.810(9) 3.94(1)

1623 17.793(4) 6.22(2)

2023 17.821(4) 9.18(3)

2423 17.831(4) 12.34(5)

2823 17.833(3) 15.79(8)

3223 17.839(3) 19.53(13)

2824 21.295(6) 12.07(5)

3224 21.358(8) 15.56(12)

3624 21.356(8) 18.58(9)

4024 21.352(4) 22.23(13)

4424 21.370(6) 25.85(15)

L2
sLt βc χ|lP |

2825 25.479(24) 14.25(8)

3225 25.496(16) 17.77(12)

4025 25.501(14) 25.25(18)

4825 25.549(14) 33.99(38)

5625 25.577(11) 44.40(41)

6025 25.589(10) 48.77(68)

4226 29.781(26) 31.45(18)

4826 29.727(18) 38.65(30)

5426 29.791(33) 47.09(75)

6026 29.796(31) 55.66(75)

6626 29.819(9) 65.52(89)

4427 34.031(37) 38.73(30)

5027 33.907(25) 46.75(48)

5627 34.078(49) 57.24(96)

6027 34.042(36) 62.06(65)

6427 34.021(19) 69.71(85)

6827 34.009(25) 75.83(107)

7227 34.092(23) 83.87(143)

Table 7. βc(V ) and χ|lP |(V ) for SO(6).

Lt βc(V → ∞) Ls range χ̄2
dof

2 15.205(3) Ls ≥ 8 0.62

3 17.854(3) Ls ≥ 12 0.83

4 21.399(6) Ls ≥ 28 6.42

5 25.613(11) Ls ≥ 28 2.25

6 29.872(21) Ls ≥ 42 2.79

7 34.113(32) Ls ≥ 44 4.44

Table 8. Infinite volume limit of βc, range of volumes used and χ̄2
dof of extrapolation, for SO(6).
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L2
sLt βc χ|lP |
822 20.963(3) 3.347(3)

1022 20.960(3) 5.381(10)

1222 20.953(3) 7.916(14)

1223 25.148(29) 4.00(3)

1623 25.022(14) 6.60(4)

2023 24.982(13) 9.96(8)

2423 24.988(5) 14.27(7)

2823 25.011(7) 19.40(14)

2424 30.721(24) 12.65(12)

3224 30.714(21) 21.04(30)

4024 30.721(7) 31.62(27)

4824 30.727(6) 44.05(43)

5624 30.726(8) 58.67(67)

L2
sLt βc χ|lP |
3225 36.909(20) 23.75(21)

4025 36.885(19) 35.40(43)

4825 36.895(24) 50.05(80)

5625 36.930(22) 66.59(110)

6425 36.909(19) 83.37(151)

5226 43.088(25) 62.57(104)

5626 43.089(10) 72.92(93)

6026 43.164(14) 83.65(127)

6426 43.129(17) 94.02(115)

Table 9. βc(V ) and χ|lP |(V ) for SO(7).

Lt βc(V → ∞) Ls range χ̄2
dof

2 20.947(6) Ls ≥ 8 0.82

3 24.992(11) Ls ≥ 12 5.46

4 30.729(9) Ls ≥ 24 0.14

5 36.913(20) Ls ≥ 32 0.81

6 43.311(62) Ls ≥ 52 5.00

Table 10. Infinite volume limit of βc, range of volumes used and χ̄2
dof of extrapolation, for SO(7).

L2
sLt βc χ|lP |
822 27.583(4) 3.241(4)

1022 27.594(3) 5.279(6)

1222 27.605(3) 7.851(7)

1623 33.488(22) 6.29(6)

1823 33.503(17) 8.05(7)

2023 33.468(13) 9.68(5)

2423 33.521(8) 14.54(7)

2424 41.573(14) 13.20(6)

2824 41.600(18) 17.88(16)

3224 41.631(14) 23.71(17)

4024 41.686(14) 37.98(28)

L2
sLt βc χ|lP |
3225 50.073(23) 25.70(27)

4025 50.163(21) 40.21(40)

4825 50.178(37) 58.72(72)

5625 50.247(22) 81.93(90)

4226 58.560(18) 46.27(34)

4826 58.742(24) 63.38(78)

5426 58.703(19) 79.59(60)

6026 58.758(12) 101.15(99)

Table 11. βc(V ) and χ|lP |(V ) for SO(8).
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Lt βc(V → ∞) Ls range χ̄2
dof

2 27.622(5) Ls ≥ 8 0.66

3 33.547(21) Ls ≥ 16 4.06

4 41.769(32) Ls ≥ 24 0.22

5 50.319(32) Ls ≥ 32 0.46

6 58.935(29) Ls ≥ 42 6.65

Table 12. Infinite volume limit of βc, range of volumes used and χ̄2
dof of extrapolation, for SO(8).

L2
sLt βc χ|lP |
1623 43.443(9) 6.79(2)

1823 43.425(6) 8.64(2)

2023 43.427(7) 10.80(4)

2223 43.431(7) 13.26(5)

2423 43.460(7) 16.16(5)

2623 43.457(6) 19.17(6)

3023 43.424(7) 25.59(9)

3623 43.433(12) 37.59(26)

4223 43.399(8) 51.23(30)

L2
sLt βc χ|lP |
2024 54.449(28) 10.96(10)

2424 54.375(28) 15.93(14)

2824 54.393(19) 22.01(16)

3224 54.505(17) 30.22(18)

4024 54.464(14) 48.16(26)

4824 54.434(12) 70.28(55)

2425 65.634(38) 16.87(9)

2825 65.654(46) 23.34(16)

3225 65.661(38) 31.17(22)

3625 65.674(15) 40.16(22)

4025 65.648(20) 50.10(36)

4825 65.760(17) 75.33(53)

Table 13. βc(V ) and χ|lP |(V ) for SO(9).

Lt βc(V → ∞) Ls range χ̄2
dof

3 43.450(7) Ls ≥ 16 6.10

4 54.457(13) Ls ≥ 20 6.78

5 65.678(32) Ls ≥ 24 0.47

Table 14. Infinite volume limit of βc, range of volumes used and χ̄2
dof of extrapolation, for SO(9).

L2
sLt βc χ|lP |
622 63.57(1) 1.593(1)

722 63.59(1) 2.248(1)

822 63.58(1) 3.014(3)

823 80.72(1) 1.620(3)

1023 80.83(1) 2.640(8)

1223 80.96(1) 4.043(8)

1423 81.05(1) 5.800(16)

1623 81.12(1) 7.929(17)

L2
sLt βc χ|lP |
1224 101.81(5) 3.995(25)

1624 102.11(8) 7.619(84)

2024 102.19(4) 12.739(71)

2424 102.28(4) 19.393(88)

1625 123.03(10) 7.709(60)

2025 123.26(8) 12.988(104)

2425 123.52(4) 19.769(137)

2825 123.62(6) 27.835(284)

Table 15. βc(V ) and χ|lP |(V ) for SO(12).
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Lt βc(V → ∞) Ls range χ̄2
dof

2 63.610(14) Ls ≥ 6 3.35

3 81.299(17) Ls ≥ 8 0.70

4 102.424(45) Ls ≥ 12 0.16

5 124.011(15) Ls ≥ 16 0.34

Table 16. Infinite volume limit of βc, range of volumes used and χ̄2
dof of extrapolation, for SO(12).

L2
sLt βc χ|lP |
422 114.85(2) 0.595(1)

522 114.82(2) 0.998(2)

622 114.84(2) 1.512(3)

623 149.17(2) 0.940(2)

823 149.32(2) 1.832(3)

1023 149.58(3) 3.141(4)

1223 149.76(2) 4.839(10)

1423 149.89(3) 6.897(20)

L2
sLt βc χ|lP |
624 192.07(26) 1.016(7)

824 189.04(32) 1.804(25)

1024 188.91(17) 3.011(42)

1224 189.13(11) 4.617(47)

1424 189.33(11) 6.725(74)

1624 189.55(6) 9.221(40)

825 230.62(44) 1.972(18)

1025 229.42(56) 3.013(44)

1225 228.60(5) 4.591(14)

1425 228.77(6) 6.572(18)

1625 229.01(7) 9.036(31)

2025 229.51(12) 15.429(88)

Table 17. βc(V ) and χ|lP |(V ) for SO(16).

Lt βc(V → ∞) Ls range χ̄2
dof

2 114.824(35) Ls ≥ 4 0.66

3 150.128(33) Ls ≥ 8 0.83

4 189.975(14) Ls ≥ 12 0.19

5 230.096(212) Ls ≥ 14 1.06

Table 18. Infinite volume limit of βc, range of volumes used and χ̄2
dof of extrapolation, for SO(16).
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N L2
sLt Bulk transition Weak coupling region

4 20224 β ∈ [9.1, 10.2] Lt ≥ 6

5 12224 β ∈ [13.5, 15.4] Lt ≥ 5

6 12224 β ∈ [18.0, 21.3] Lt ≥ 5

7 8224 β ∈ [23.5, 28.0] Lt ≥ 4

8 8224 β ∈ [31, 35] Lt ≥ 4

9 4224 β ∈ [37, 42] Lt ≥ 3

12 4224 β ∈ [65, 73] Lt ≥ 3

16 2224 β ∈ [111, 124] Lt ≥ 3

Table 19. Location of the bulk transition on volumes L2
s
Lt, and consequent range of Lt for which

βc is on weak coupling side.

Lt βc(V → ∞) a
√
σ Tc/

√
σ βI(V → ∞) Tc/(g

2N) Coupling

2 6.4891(3) 0.6208(3) 0.8054(3) 3.7234(5) 0.05818(1)

Strong3 7.573(3) 0.3970(7) 0.8397(14) 5.169(3) 0.05384(3)

4 8.573(10) 0.2936(10) 0.8515(31) 6.290(11) 0.04914(8)

6 10.781(16) 0.2146(17) 0.7766(60) 8.590(16) 0.04474(8)

Weak

7 11.980(24) 0.1845(11) 0.7743(44) 9.816(24) 0.04382(11)

8 13.504(34) 0.1609(12) 0.7770(60) 11.364(34) 0.04439(13)

10 16.322(80) 0.1206(13) 0.7718(81) 14.213(81) 0.04442(25)

12 19.090(99) 0.1083(15) 0.7692(106) 17.099(76) 0.04453(20)

Table 20. SO(4) critical temperature in units of the string tension, Tc/
√
σ, and in units of the

(mean field improved) ’t Hooft coupling, Tc/(g
2N), evaluated at βc(V → ∞).

Lt βc(V → ∞) a
√
σ Tc/

√
σ βI(V → ∞) Tc/(g

2N) Coupling

2 10.368(3) 0.6447(14) 0.7756(17) 5.811(5) 0.05811(5)

Strong3 12.021(16) 0.4248(19) 0.7847(36) 8.044(19) 0.05363(13)

4 13.944(36) 0.3214(15) 0.7778(36) 10.162(39) 0.05081(19)

5 16.180(13) 0.2593(15) 0.7714(44) 12.497(13) 0.04999(5)

Weak

6 18.603(55) 0.2190(12) 0.7611(43) 14.985(56) 0.04995(19)

7 21.192(52) 0.1877(11) 0.7613(45) 17.620(53) 0.05034(15)

8 23.938(63) 0.1624(9) 0.7698(41) 10.401(64) 0.05100(16)

10 29.500(157) 0.1281(10) 0.7801(62) 26.010(158) 0.05202(32)

Table 21. SO(5) critical temperature in units of the string tension, Tc/
√
σ, and in units of the

(mean field improved) ’t Hooft coupling, Tc/(g
2N), evaluated at βc(V → ∞).
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Lt βc(V → ∞) a
√
σ Tc/

√
σ βI(V → ∞) Tc/(g

2N) Coupling

2 15.205(3) 0.6535(13) 0.7651(15) 8.460(4) 0.05875(3)

Strong3 17.854(3) 0.4201(7) 0.7935(13) 11.964(4) 0.05539(2)

4 21.399(6) 0.3106(10) 0.8050(27) 15.784(6) 0.05480(2)

5 25.613(11) 0.2501(7) 0.7996(22) 20.147(11) 0.05596(3)

Weak6 29.872(21) 0.2077(3) 0.8024(14) 24.497(21) 0.05670(5)

7 34.113(32) 0.1774(4) 0.8053(19) 28.798(32) 0.05714(6)

Table 22. SO(6) critical temperature in units of the string tension, Tc/
√
σ, and in units of the

(mean field improved) ’t Hooft coupling, Tc/(g
2N), evaluated at βc(V → ∞).

Lt βc(V → ∞) a
√
σ Tc/

√
σ βI(V → ∞) Tc/(g

2N) Coupling

2 20.947(6) 0.6571(8) 0.7610(10) 11.597(9) 0.05917(4)
Strong

3 24.992(11) 0.4181(7) 0.7972(13) 16.816(12) 0.05720(4)

4 30.729(9) 0.3104(5) 0.8053(12) 22.924(10) 0.05848(2)

Weak5 36.913(20) 0.2455(7) 0.8147(22) 29.302(20) 0.05980(4)

6 43.311(62) 0.2023(6) 0.8239(26) 35.821(63) 0.06092(11)

Table 23. SO(7) critical temperature in units of the string tension, Tc/
√
σ, and in units of the

(mean field improved) ’t Hooft coupling, Tc/(g
2N), evaluated at βc(V → ∞).

Lt βc(V → ∞) a
√
σ Tc/

√
σ βI(V → ∞) Tc/(g

2N) Coupling

2 27.622(5) 0.6586(8) 0.7591(9) 15.266(8) 0.05963(3)
Strong

3 33.547(21) 0.4179(7) 0.7977(14) 22.715(23) 0.05915(6)

4 41.769(32) 0.3051(11) 0.8193(28) 31.414(33) 0.06136(6)

Weak5 50.319(32) 0.2415(4) 0.8281(15) 40.210(32) 0.06283(5)

6 58.935(29) 0.2003(5) 0.8320(20) 48.975(29) 0.06377(4)

Table 24. SO(8) critical temperature in units of the string tension, Tc/
√
σ, and in units of the

(mean field improved) ’t Hooft coupling, Tc/(g
2N), evaluated at βc(V → ∞).

Lt βc(V → ∞) a
√
σ Tc/

√
σ βI(V → ∞) Tc/(g

2N) Coupling

3 43.450(7) 0.4150(2) 0.8032(4) 29.586(8) 0.060877(16)

Weak4 54.457(13) 0.3025(4) 0.8263(11) 41.190(13) 0.063564(21)

5 65.678(32) 0.2395(3) 0.8351(12) 52.714(33) 0.065079(40)

Table 25. SO(9) critical temperature in units of the string tension, Tc/
√
σ, and in units of the

(mean field improved) ’t Hooft coupling, Tc/(g
2N), evaluated at βc(V → ∞).
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Lt βc(V → ∞) a
√
σ Tc/

√
σ βI(V → ∞) Tc/(g

2N) Coupling

2 63.610(14) 0.6600(24) 0.7576(27) 35.213(22) 0.06113(4) Strong

3 81.299(17) 0.4070(6) 0.8191(12) 56.114(18) 0.064947(21)

Weak4 102.424(45) 0.2977(6) 0.8399(18) 78.245(46) 0.06792(4)

5 124.011(15) 0.2354(12) 0.8497(43) 100.359(180) 0.06969(12)

Table 26. SO(12) critical temperature in units of the string tension, Tc/
√
σ, and in units of the

(mean field improved) ’t Hooft coupling, Tc/(g
2N), evaluated at βc(V → ∞).

Lt βc(V → ∞) a
√
σ Tc/

√
σ βI(V → ∞) Tc/(g

2N) Coupling

2 63.610(14) 0.6438(25) 0.7766(31) 64.219(47) 0.06271(5) Strong

3 81.299(17) 0.4003(12) 0.8328(24) 104.617(35) 0.068110(23)

Weak4 102.424(45) 0.2925(9) 0.8547(26) 146.288(207) 0.07143(10)

5 124.011(15) 0.2320(7) 0.8622(28) 187.090(218) 0.07308(9)

Table 27. SO(16) critical temperature in units of the string tension, Tc/
√
σ, and in units of the

(mean field improved) ’t Hooft coupling, Tc/(g
2N), evaluated at βc(V → ∞).

N Tc/
√
σ χ̄2

dof Tc/(g
2N) χ̄2

dof Tc/M0+

3* 0.7072(80) 0.03236(45) 0.2373(33)

4 0.7702(88) 0.12 0.04567(43) 2.17 0.2293(30)

5 0.7963(114) 0.00 0.05544(93) 0.05 0.2244(33)

6 0.8105(42) 0.16 0.05996(19) 0.53 0.2232(14)

7 0.8351(38) 0.98 0.06478(18) 4.01 0.2234(12)

8 0.8418(39) 0.05 0.06809(16) 0.00 0.2224(15)

9 0.8515(15) 0.30 0.07043(7) 0.10

12 0.8642(38) 0.02 0.07552(14) 0.63 0.2217(18)

16 0.8780(38) 0.15 0.07947(17) 0.85 0.2220(22)

Table 28. SO(N) continuum limit of the deconfining temperature in units of the string tension,

Tc/
√
σ, of the ’t Hooft coupling, Tc/(g

2N), and of the lightest scalar glueball mass, Tc/M0+ , with

corresponding χ̄2
dof of the fits. Note that we infer the SO(3) value (*) from the SU(2) value.

Tc/
√
σ Tc/g

2N Tc/M0+

N SO(2N) SU(N) SO(2N) SU(N) SO(2N) SU(N)

2 0.7702(88) 1.1238(88) 0.0913(9) 0.1998(34) 0.2293(30) 0.2373(19)

3 0.8105(42) 0.9994(40) 0.1199(4) 0.1904(12) 0.2232(14) 0.2288(10)

4 0.8418(39) 0.9572(39) 0.1362(3) 0.1884(12) 0.2224(15) 0.2259(11)

5 0.9380(19) 0.1874(10) 0.2233(7)

6 0.8642(38) 0.9300(48) 0.1510(3) 0.1873(8) 0.2217(18) 0.2232(12)

8 0.8780(38) 0.9144(41) 0.1589(3) 0.1849(10) 0.2220(22) 0.2207(11)

Table 29. SO(2N) and SU(N) [1] continuum limit of the deconfining temperature in units

of the string tension, Tc/
√
σ, the ’t Hooft coupling, Tc/(g

2N), and the lightest scalar glueball

mass, Tc/M0+ .
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for SO(6) on a 2023 lattice. The vertical lines, spanning the

transition, correspond to β = (β
−
, β0, β+) = (17.5, 17.8, 18.1).
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Figure 4. Polyakov loop lP histograms at β = β
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, β0, β+ (see figure 2) for SO(6) on a 2023 lattice.
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Figure 5. Polyakov loop lP history plots at β = β
−
, β0, β+ (see figure 2) for SO(6) on a 2023

lattice from a run of 106 configurations.
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Figure 11. The infinite volume extrapolation for SO(4) with Lt = 2.
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Figure 13. Susceptibility volume dependence for SO(4) and Lt = 2.
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Figure 14. Susceptibility volume dependence for SO(8) and Lt = 5.
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Figure 16. Continuum extrapolation of SO(6) deconfining temperature in units of the string

tension.
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Figure 17. Large-N extrapolation of SO(2N) deconfining temperature in units of the string

tension. Plotted points include both SO(2N) and SO(2N + 1).
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Figure 18. Large-N extrapolation of SO(2N) deconfining temperature in units of the lightest

scalar glueball mass. Plotted points include both SO(2N) and SO(2N + 1).
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Figure 19. Large-N extrapolations of SO(2N) and SU(N) deconfining temperatures in units of

the string tension.
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lightest scalar glueball mass.
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