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1 Introduction

In the first decades of last century, physics encounters two great revolutions; one in large

scale structures’ domain namely special and general relativities and another in microscopic

world i.e. quantum mechanics. Since quantum mechanics deals with low speed microscopic

particles, physicists quickly thought about a new theory combining (at the first step) special

relativity and quantum mechanics called relativistic quantum mechanics in order to describe

high speed microscopic particles. In this regime, we continuously encounter production and

annihilation of particles. Therefore, relativistic quantum mechanics was progressed and

gave birth to a more consistent theory i.e. quantum field theory (QFT) where the Hilbert

space is vast enough to include arbitrary number of particles. QFT indicates impressive

theoretical results confirmed up to many significant digits by experiments in the case of

weak interactions where it is allowed to perform perturbation method [1]. However, when

coupling is strong, one should follow other ways in order to compute physical quantities in

the context of QFT.

Fundamental particles physics is not the only place where QFT is employed. In fact, the

situations where one faces non-relativistic particles produced and annihilated continuously

are the other places that QFT methods can be utilized. The most familiar situations with

this behavior are condensed matter systems. For instance, phonons in a lattice are produced

and annihilated. Also, electrons below or above Fermi level may pass it and cause a hole
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production or annihilation. These events resemble the pair production or annihilation.

Another place where QFT methods are useful is statistical field theory. When we have a

system with continuous configurations, the statistical mechanics of the system is formulated

in the context of statistical field theory. Accordingly, we deal with an integration in the

formula of central quantity of statistical mechanics namely partition function instead of the

usual summation. In the other hand, the amplitude of the transition between two states in

QFT interpreted as the generating function is calculated through the path integral method

and has very similar formulation to the partition function of statistical field theory. Hence,

the methods of QFT can be effectively applied in these cases. A very important example of

such situation happens near a critical point where we have a continuous phase transition.

As we mentioned above the common perturbation method does not work for strong

interactions in QFT and hence one should look for another methods to calculate quantities

in this case. One of these methods based on physics of black holes (mostly thermodynamics

of black holes) is gauge/gravity duality (GGD). The first version of GGD is AdS/CFT

correspondence presented by Maldacena in 1998 [2]. GGD connects the QFT (usually

gauge field theories) lives on n-dimensional boundary of the spacetime with black hole

solutions in (n+ 1)-dimensional gravity theories of the bulk. This connection is performed

by equality of generating function of QFT (ZQFT ) and the saddle-point approximation

of bulk partition function in the case of classical gravity. Through this, one can obtain

the key quantity of QFT namely generating function. Computation of almost all physical

quantities in QFT relies on generating function ZQFT .

The idea of GGD has been applied frequently in order to analyse condensed matter

systems. For instance quantum Hall effect [3], fractional quantum Hall effect [4], Nernst ef-

fect [5–7] and superconductors [8–12] have been studied by this method. Furthermore, there

are interesting strongly correlated electronic and atomic systems and also non-relativistic

ones which possess Schrodinger symmetry [13–15]. Nevertheless, the near a critical point

dynamics of such systems can be described by a relativistic conformal field theory or a

more subtle scaling theory respecting the Lifshitz symmetry [16]

t→ λzt, ~x→ λ~x. (1.1)

The spacetime which supports above symmetry on its r-infinity boundary is [16]

ds2 = −r
2z

l2z
dt2 +

l2dr2

r2
+ r2d~x2, (1.2)

known as Lifshitz spacetime. In (1.2), z is dynamical critical exponent. As regards the

fact that thermodynamics of black holes plays a central role in GGD, the literature has

encountered increasing interests on this issue. Solutions and thermodynamics of asymp-

totic Lifshitz black objects (usually called Lifshitz solutions) in the presence of massive

gauge fields have been studied in [17, 18] and [19–21] respectively. Also, thermodynamics

of Lifshitz solutions of gravity models containing higher curvature corrections has been

considered under study [22]. Lifshitz solutions with toroidal event horizons and their ther-

mal properties in the framework of gravity theory coupled to Abelian gauge fields with

negative cosmological constant have been studied in [23]. Moreover, in Einstein-dilaton
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gravity in the presence of massless gauge fields, thermal behavior of uncharged [24] and

linearly charged [25] Lifshitz black solutions have been investigated. In this context, also

nonlinearly charged Lifshitz solutions with power-law Maxwell field have been taken under

consideration [26]. Furthermore, thermodynamics of Gauss-Bonnet-dilaton Lifshitz black

branes has been discussed in [27]. The idea of holography has been applied for systems

with Lifshitz symmetry in different contexts including dilaton gravity from different points

of view [28–30] and behaviors of some quantities such as viscosity [31, 32] and different

kinds of conductivity [12, 33–38] have been analyzed. The authors of ref. [12], constructed

an Abelian Higgs model in a gravity background which is dual to a strongly coupled sys-

tem at a Lifshitz-fixed point and finite temperature. They also explored the conductiviy

via holographic techniques. The holographic conductivity in the presence of an additional

term in gauge field action including the Weyl tensor coupled to Maxwell fied strengths

in a domain-wall background whose near horizon IR geometry is Lifshitz black hole and

asymptotic geometry is AdS has been calculated by performing both memberane paradigm

and Kubo’s formula [34]. Employing the gauge/gravity duality the holographic supercon-

ductors were explored with z = 2 Lifshitz scaling [35]. The effects of Lifshitz dynamical

exponent z on the holographic superconductor models including s-wave and p-wave models

have been disclosed both numerically and analytically in [36]. Via holography, supercon-

ducting phase transitions of a system dual to Yang-Mills field coupled to an axion as probes

of black hole with arbitrary Lifshitz scaling have been studied with px+ipy condensate [37].

While the latter phase is known as unstable in the relativistic case (z = 1) and absence

of axion field, in the non-relativistic case (z 6= 1) with axion field, stability of it has been

studied and behavior of Hall conductivity in non-superconducting pahase has been studied

numerically as a function of Lifshitz scaling [37]. Furthermore, an analytic computation

for longtitudinal DC conductivity corresponding to Lifshitz-like fixed points based on lin-

ear response theory has been performed in the presence of chiral anomalies [38] and an

appropriate holographic set up has been constructed to calculate the Lifshitz sector of the

DC conductivity at strong coupling and low charge density limit.

It is well-known that the behavior of conductivity have a close relation to electrody-

namics model under consideration. There are several nonlinear electrodynamics models in

addition to linear Maxwell one. The first one of these models is Born-Infeld electrodynamics

presented in 1930’s [39]. This model which arises in open superstrings and D-branes [40–

44], removes the divergency of charged particles’ self energy. The nonlinearity of this model

is determined by a parameter β called nonlinear parameter. Born-Infeld electrodynamics

recovers the linear Maxwell model for large β’s. Recently, another nonlinear electrody-

namics model has been introduced which is called exponential electrodynamics [45]. The

large β behavior of this model is similar to Born-Infeld electrodynamics. The advantage

of exponential electrodynamics compared to Born-Infeld theory is that while it does not

fully remove the divergency of electric field at the source, it does make this divergency

much weaker in comparison with Maxwell field [46, 47]. This is more reasonable compared

to the Born-Infeld case, since near the origin where r → 0, the electric field of a point-

like charged particle should be an increasing function. Besides, it has been observed that

the exponential nonlinear electrodynamics has crucial effects on condensation and criti-
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cal temperature of a holographic superconductor [48]. Furthermore, in recent studies on

holographic superconductors, it has been shown that the exponential nonlinear electrody-

namics can increase the critical values of the external magnetic field as the temperature

goes to zero [49]. In this paper, we consider Einstein-dilaton gravity in the presence of

exponential electrodynamics coupled to dilaton field. We construct exact asymptotically

Lifshitz black hole/brane solutions and discuss the thermal behavior of them. Finally, we

apply GGD to obtain viscosity and conductivity corresponding to our solutions for (3 + 1)

and (2 + 1)-dimensional systems on boundary respectively.

The layout of this paper is as follows. In section 2, we first find the exact asymp-

totic Lifshitz topological black hole solutions of Einstein-dilaton gravity in the presence

of exponential electrodynamics coupled to dilaton field. Then, we calculate the conserved

and thermodynamics quantities in order to check the satisfaction of thermodynamics first

law. At the end of section 2, we disclose the effects of parameters of model on thermal

stability of our solutions. In section 3, we first apply the GGD through pole method to

obtain the viscosity of a system lives on three-dimensions. In continue of section 3, we

study the holographic conductivity of two-dimensional systems for both linear Maxwell

and nonlinear exponential elctrodynamics. Finally, we figure out the behavior of real and

imaginary parts of conductivity for asymptotic AdS and Lifshitz cases. The last section is

devoted to present summary and concluding remarks.

2 Thermodynamics of asymptotic Lifshitz solutions

In this section, we first find asymptotic Lifsthitz solutions. Then, we study thermodynamics

of our solutions and show that the first law of thermodynamics is satisfied on the horizon.

Finally, we investigate thermal stability of the solutions in both canonical and grand-

canonical ensembles.

2.1 Action and higher-dimensional solutions

The action of (n+ 1)-dimensional (n ≥ 3) Einstein-dilaton gravity coupled to a nonlinear

electrodynamics and two linear Maxwell fields can be written as

S =

∫
M
dn+1xL, (2.1)

L =

√
−g

16π

(
R− 4

n− 1
(∇Φ)2 − 2Λ + L(F,Φ)−

2∑
i=1

e−4/(n−1)λiΦHi

)
,

where R and Φ are Ricci scalar and dilaton scalar field, respectively. Here F = FµνFµν
and Hi = (Hi)µν(Hi)

µν , where Fµν = ∂[µAν], (Hi)µν = ∂[µ(Bi)ν], and Aν and (Bi)ν are

electromagnetic vector potentials. λi and Λ are some constants and L(F,Φ) is the La-

grangian of nonlinear electrodynamic matter source. Varying the action (2.1) with respect

to the metric gµν , scalar field Φ, and electromagnetic vector potentials Aν and (Bi)ν , leads
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to the following equations of motion,

Rµν =
gµν
n− 1

{
2Λ + 2LFF − L(F,Φ)−

2∑
i=1

Hie
−4λiΦ/(n−1)

}

+
4

n− 1
∂µΦ∂νΦ− 2LFFµλF

λ
ν + 2

2∑
i=1

e−4λiΦ/(n−1) (Hi)µλ (Hi)
λ

ν , (2.2)

∇2Φ +
n− 1

8
LΦ +

2∑
i=1

λi
2
e−4λiΦ/(n−1)Hi = 0, (2.3)

Oµ (LFF
µν) = 0, (2.4)

Oµ
(
e−4λiΦ/(n−1) (Hi)

µν
)

= 0, (2.5)

where we have used the convention XY = ∂X/∂Y . In this paper, we intend to consider

exponential nonlinear electrodynamics [45]. The Lagrangian of such type of nonlinear

electrodynamics coupled to the dilaton field in higher dimensions can be written as [50, 51]

L(F,Φ) = 4β2e4λΦ/(n−1)

[
exp

(
−e−8λΦ/(n−1)F

4β2

)
− 1

]
. (2.6)

The behavior of exponential nonlinear electrodynamics coupled to dilaton field (END) for

large β, namely

lim
β→∞

L(F,Φ) = −e−4λΦ/(n−1)F +
e−12λΦ/(n−1)F 2

8β2
+O

(
1

β4

)
, (2.7)

is similar to large β behavior of the Born-Infeld electrodynamics coupled to dilaton field

(BID)

lim
β→∞

LBI(F,Φ) = −e−4λΦ/(n−1)F +
e−12λΦ/(n−1)F 2

8β2
+O

(
1

β4

)
, (2.8)

where

LBI(F,Φ) = 4β2e4λΦ/(n−1)

1−

√
1 +

e−8λΦ/(n−1)F

2β2

 .
This similarity makes the form chosen for END justifiable and also implies that one can

consider both END and BID as the Lagrangian of nonlinear electrodynamics coupled to

dilaton field.

In order to construct asymptotic Lifshitz topological black hole solutions in higher

dimensions, we use the metric

ds2 = −r
2zf(r)

l2z
dt2 +

l2dr2

r2f(r)
+ r2dΩ2

n−1, (2.9)

where z ≥ 1 is dynamical critical exponent, dΩ2
n−1 is an (n− 1)-dimensional hypersurface

with constant curvature (n − 1)(n − 2)k and volume ωn−1 and f(r) → 1 as r → ∞.
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Lifshitz dilaton topological black hole solutions in the presence of linear Maxwell and

nonlinear power-law Maxwell fields have been studied in [25] and [52], respectively. The

first term of (2.7) recovers the linear case of electrodynamic Lagrangian of [52]. Therefore,

we expect that our solutions recover the results of this case. Using the metric (2.9), one

can immediately integrate (2.4) and (2.5) and find

Frt =
qe4λΦ/(n−1)

rn−z
exp

[
−1

2
LW (%)

]
, (2.10)

(Hi)rt =
qie

4λiΦ/(n−1)

rn−z
, (2.11)

where % ≡ q2l2z−2/(β2r2n−2) and LW (x) = LambertW (x) is the Lambert function which

satisfies the identity [53, 54]

LW (x)eLW (x) = x, (2.12)

and has the series expansion

LW (x) = x− x2 +
3

2
x3 − 8

3
x4 + · · · , (2.13)

which converges provided |x| < 1. For β →∞, Frt given in eq. (2.10) reduces to the linear

Maxwell case [52]

lim
β→∞

Frt =
qe4λΦ/(n−1)

rn−z
− q3l2z−2e4λΦ/(n−1)

2r3n−z−2β2
+O

(
1

β4

)
. (2.14)

Substituting eqs. (2.10) and (2.11) into eqs. (2.2) and (2.3), one can find the following field

equations

(n− 1)2rf ′ + (n− 1)2nf + 4r2fΦ′2

2(n− 1)l2
+ Λ− (n− 1)(n− 2)k

2r2

+

2∑
i=1

q2
i e

4λiΦ/(n−1)

l2(1−z)r2(n−1)
+ 4β2e4λΦ/(n−1)Θ = 0, (2.15)

(n− 1)2rf ′ + (n− 1)2(n− 2)f + 2(n− 1)2fz − 4r2fΦ′2

2(n− 1)l2
+ Λ− (n− 1)(n− 2)k

2r2

+

2∑
i=1

q2
i e

4λiΦ/(n−1)

l2(1−z)r2(n−1)
+ 4β2e4λΦ/(n−1)Θ = 0, (2.16)

r2f ′′ + (2n+ 3z − 3)rf ′ + 4
n−1r

2fΦ′2 + (2z2 + 2(n− 2)z + (n− 1)(n− 2))f

2l2
+ Λ

− (n− 3)(n− 2)k

2r2
−

2∑
i=1

q2
i e

4λiΦ/(n−1)

l2(1−z)r2(n−1)
+ 4β2e4λΦ/(n−1)Ψ = 0, (2.17)

r2f ′Φ′+Φ′frz+nrfΦ′+fr2Φ′′

l2
−

2∑
i=1

q2
i λie

4λiΦ/(n−1)

l2(1−z)r2(n−1)
−4β2λe4λΦ/(n−1)Θ = 0, (2.18)

where

Θ =
1

2
+

qlz−1

2βrn−1

(√
LW (%)− 1√

LW (%)

)
,

– 6 –



J
H
E
P
0
3
(
2
0
1
6
)
0
3
7

and

Ψ =
1

2
− qlz−1

2βrn−1
√
LW (%)

.

The solutions of eqs. (2.15)–(2.18) can be obtained as

Φ(r) =
(n− 1)

√
z − 1

2
ln
(r
b

)
, (2.19)

f(r) = 1− m

rn+z−1
+

(n− 2)2kl2

(n+ z − 3)2r2
(2.20)

− 8β2l2b2z−2

(n− 1)(n− z + 1)r2z−2

{
1

2
+
qlz−1(n− z + 1)

2β
rz−n−1

∫
r1−z

(√
LW (%)− 1√

LW (%)

)
dr

}
,

where m is a parameter which is related to the total mass of black hole. The above solutions

will fully satisfy the field equations (2.15)–(2.18), provided

λ = −
√
z − 1, λ1 =

n− 1√
z − 1

, λ2 =
n− 2√
z − 1

,

q2
1 =

(n+ z − 1)(z − 1)b2(n−1)

2l2z
,

q2
2 =

k(n− 1)(n− 2)(z − 1)b2(n−2)

2(z + n− 3)l2(z−1)
,

Λ = −(n+ z − 1)(n+ z − 2)

2l2
. (2.21)

Since in the case of k = −1, q2 is imaginary (except for z = 1), we exclude this case

and focus on the black hole (k = 1) and black brane (k = 0) solutions in the remaining

part of this paper. It is notable to mention that althogh at first glance it seems that

constants (2.21) diverge for z = 1, one should note that λiΦ is finite for this case and

Hi = 0. Hence, for z = 1, action (2.1) reduces to (A)dS action in the presence of a

nonlinear electrodynamics field. One can perform the integration in eq. (2.20) by using

MATHEMATICA software. One obtains

f(r) = 1− m

rn+z−1
+

(n− 2)2kl2

(n+ z − 3)2r2

− 4β2l2b2z−2

(n− 1)(n− z + 1)r2z−2
+

8β2l2b2z−2(2n− 2)(z−5n+3)/(2n−2)

(z − 2)(z+3n−5)/(2n−2)rn+z−1

(
q2l2z−2

β2

)(n−z+1)/(2n−2)

×
{

4(n− 1)2

[
Γ

(
3n+ z − 5

2n− 2
,

2− z
2n− 2

LW (%)

)
− Γ

(
3n+ z − 5

2n− 2

)]
−(z − 2)2

[
Γ

(
z − n− 1

2n− 2
,

2− z
2n− 2

LW (%)

)
− Γ

(
z − n− 1

2n− 2

)]}
, (2.22)

where Γ(x, y) and Γ(x) are gamma functions and are related to each other with the relation

Γ(x, y) = Γ(x)− yx

x
F(x, 1 + x,−y), (2.23)

where F(a, b, c) is the hypergeometric function [53, 54]. At the first look, it seems that the

function (2.22) diverges for z = 2. However, the factor (z − 2) in denominator is removed

– 7 –
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when one uses eq. (2.23). Indeed, one can reexpress (2.22) by using relation (2.23) in terms

of the hypergeometric functions as

f(r) = 1− m

rn+z−1
+

(n− 2)2kl2

(n+ z − 3)2r2

− 4β2l2b2z−2

(n− 1)(n− z + 1)r2z−2
+

4β2l2b2z−2

(n− 1)rn+z−1

(
q2l2z−2

β2LW (%)

)(n−z+1)/(2n−2)

×
{

L2
W (%)

3n+ z − 5
F

(
3n+ z − 5

2n− 2
,

5n+ z − 7

2n− 2
,
z − 2

2n− 2
LW (%)

)
+

1

n− z + 1
F

(
z − n− 1

2n− 2
,
z + n− 3

2n− 2
,
z − 2

2n− 2
LW (%)

)}
. (2.24)

Using the fact that f(r+) = 0 where r+ is the outermost event horizon, one can obtain

m(r+) = rn+z−1
+ +

(n− 2)2kl2

(n+ z − 3)2r3−n−z
+

− 8β2l2b2z−2Ξ

(n− 1)(n− z + 1)rz−n−1
+

(2.25)

where

Ξ =
1

2
− (n− z + 1)

2rn−z+1
+

(
q2l2z−2

β2LW (%+)

)(n−z+1)/(2n−2)

×
{
L2
W (%+)

3n+ z − 5
F

(
3n+ z − 5

2n− 2
,

5n+ z − 7

2n− 2
,
z − 2

2n− 2
LW (%+)

)
+

1

n− z + 1
F

(
z − n− 1

2n− 2
,
z + n− 3

2n− 2
,
z − 2

2n− 2
LW (%+)

)}
, (2.26)

and %+ = q2l2z−2/(β2r2n−2
+ ). The large β limit of f(r) can be obtained by using the series

expansion (2.13). The result is

f(r) = 1− m

rn+z−1
+

(n− 2)2kl2

(n+ z − 3)2r2
(2.27)

+
2q2b2z−2l2z

(n− 1) (n+ z − 3) r2n+2z−4
− q4b2z−2l4z−2

2 (n− 1) (3n+ z − 5)β2r4n+2z−6
+O

(
1

β4

)
.

As we mentioned before, for β → ∞ the NED Lagrangian reduces to linear Maxwell

Lagrangian. Therefore, we expect that the large β limit of f(r) recover the metric function

of topological Lifshitz black holes in Maxwell theory [52]. One should note that this is

indeed the case and eq. (2.27) recover the linear case of f(r) presented in [52] when β →∞.

The behavior of f(r) is depicted in figures 1a and 1b for different values of β. Figures 1a

and 1b correspond to black brane (k = 0) and black hole (k = 1) solutions respectively.

Inserting eqs. (2.19) and (2.21) into (2.10), one finds

Frt =
qb2z−2

rn+z−2
exp

[
−1

2
LW (%)

]
. (2.28)

The fact that our solutions are static implies At = At (r). Hence, we can obtain the gauge

potential using relation At (r) =
∫
Frtdr as

At = µ+
qb2z−2(2n− 2)(z−n−1)/(2n−2)

(2− z)(−5+3n+z)/(2n−2)

(
q2l2z−2

β2

)(3−n−z)/(2n−2)
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Figure 1. The behavior of f(r) versus r for l = 1.5, b = 0.3, q = 1.7, z = 1.5 and m = 1.6.

×
{

2(n− 1)

[
Γ

(
3n+ z − 5

2n− 2
,

2− z
2n− 2

LW (%)

)
− Γ

(
3n+ z − 5

2n− 2

)]
−(z − 2)

[
Γ

(
z + n− 3

2n− 2
,

2− z
2n− 2

LW (%)

)
− Γ

(
z + n− 3

2n− 2

)]}
. (2.29)

It is remarkable to note that since from one side LW (%)→ 0 as r →∞ and from another

side Γ (x, 0) = Γ (x), one can easily check that At is finite at infinity and reduces to the

constant µ. Although (2.29) seems divergent for z = 2, we can remove the factor (z − 2)

in denominator by using (2.23) and restate At as

At = µ− qb2z−2

(
q2l2z−2

β2LW (%)

)(3−n−z)/(2n−2)

×
{

LW (%)

3n+ z − 5
F

(
3n+ z − 5

2n− 2
,

5n+ z − 7

2n− 2
,
z − 2

2n− 2
LW (%)

)
+

1

n+ z − 3
F

(
n+ z − 3

2n− 2
,
3n+ z − 5

2n− 2
,
z − 2

2n− 2
LW (%)

)}
. (2.30)

We require that At vanishes at horizon r = r+. Thus, µ can be calculated as

µ = qb2z−2

(
q2l2z−2

β2LW (%+)

)(3−n−z)/(2n−2)

×
{
LW (%+)

3n+ z − 5
F

(
3n+ z − 5

2n− 2
,

5n+ z − 7

2n− 2
,
z − 2

2n− 2
LW (%+)

)
+

1

n+ z − 3
F

(
n+ z − 3

2n− 2
,

3n+ z − 5

2n− 2
,
z − 2

2n− 2
LW (%+)

)}
. (2.31)

In the next subsection we study thermodynamics of the solutions by computing thermo-

dynamic and conserved quantities.
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2.2 Thermodynamics of Lifshitz black holes/branes

In this section, we study thermodynamics of lifshitz black hole and brane solutions. Since,

the mass is a fundamental quantity in studying the thermodynamics, we start with its

calculation. Using the modified subtraction method of Brown and York (BY) [55], one can

find mass per unit volume ωn−1 as (see ref. [52])

M =
(n− 1)m

16πlz+1
, (2.32)

where m is the geometrical mass given by (2.25) in terms of outer horizon radius r+. Using

the Gauss law, one can also compute the charge as

Q =
1

4π

∫
rn−1LFFµνn

µuνdΩ, (2.33)

where nµ and uν are the unit spacelike and timelike normals to a sphere of radius r given as

nµ =
1√
−gtt

dt =
lz

rz
√
f(r)

dt, uν =
1
√
grr

dr =
r
√
f(r)

l
dr.

Therefore, the charge per unit volume ωn−1 is

Q =
qlz−1

4π
. (2.34)

The electric potential U is defined as

U = Aµχ
µ |r→∞ −Aµχµ|r=r+ , (2.35)

where χ = ∂t is the null generator of the horizon. Therefore, it is a matter of calculation

to obtain U by using (2.30) as

U = qb2z−2

(
q2l2z−2

β2LW (%+)

)(3−n−z)/(2n−2)

×
{
LW (%+)

3n+ z − 5
F

(
3n+ z − 5

2n− 2
,
5n+ z − 7

2n− 2
,
z − 2

2n− 2
LW (%+)

)
+

1

n+ z − 3
F

(
n+ z − 3

2n− 2
,

3n+ z − 5

2n− 2
,
z − 2

2n− 2
LW (%+)

)}
. (2.36)

The area law of the black hole entropy states that the entropy of a black hole is the quarter

of event horizon area [56–58]. The entropy of almost all kinds of black holes in Einstein

gravity including dilaton black holes is calculated by using this near universal law [59–62].

Thus, the entropy per unit volume ωn−1 of the Lifshitz black holes can be found as

s =
rn−1

+

4
. (2.37)

The Hawking temperature is

T =
rz+1

+ f ′ (r+)

4πlz+1
, (2.38)
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which can be calculated as

T =
(n+ z − 1)rz+

4πlz+1
+

(n− 2)2kl1−z

4π(n+ z − 3)r2−z
+

−2β2l1−zb2z−2

π(n− 1)rz−2
+

[
1

2
+

qlz−1

2βrn−1
+

(√
LW (%+)− 1√

LW (%+)

)]
. (2.39)

The large β limit of temperature reproduces the temperature of Einstein-Maxwell dilaton

Lifshitz black holes [52]:

T =
(n+ z − 1)rz+

4πlz+1
+

(n− 2)2kl1−z

4π(n+ z − 3)r2−z
+

− q2lz−1b2z−2

2π(n− 1)r2n+z−4
+

+
q4l3z−3b2z−2

8π(n− 1)r4n+z−6
+ β2

+O

(
1

β4

)
,

(2.40)

as one expects. We need the Smarr-type mass formula in order to check the satisfaction of

first law of thermodynamics. Using (2.25), (2.32), (2.34) and (2.37), the Smarr-type mass

can be written as

M (s,Q) =
(n− 1) (4s)(n+z−1)/(n−1)

16πlz+1
+

(n− 1) (n− 2)2k(4s)(n+z−3)/(n−1)

16πlz−1 (n+ z − 3)2

−β
2b2z−2(4s)(n−z+1)/(n−1)Π

2πlz−1(n− z + 1)
, (2.41)

where

Π =
1

2
− (n− z + 1)

2(4s)(n−z+1)/(n−1)

(
16π2Q2

β2LW (ζ)

)(n−z+1)/(2n−2)

×

{
LW (ζ)2

3n+ z − 5
F

(
3n+ z − 5

2n− 2
,

5n+ z − 7

2n− 2
,
z − 2

2n− 2
LW (ζ)

)
+

1

n− z + 1
F

(
z − n− 1

2n− 2
,
n+ z − 3

2n− 2
,
z − 2

2n− 2
LW (ζ)

)}
, (2.42)

and ζ = π2Q2/
(
β2s2

)
. As β →∞, the behavior of Smarr-type mass is

M (s,Q) =
(n− 1)(4s)(n+z−1)/(n−1)

16πlz+1
+

(n− 1)(n− 2)2k(4s)(n+z−3)/(n−1)

16π(n+ z − 3)2lz−1
(2.43)

+
2πQ2b2z−2(4s)(3−n−z)/(n−1)

(n+ z − 3)lz−1
− 8π3Q4b2z−2(4s)(5−3n−z)/(n−1)

(3n+ z − 5)lz−1β2
+O

(
1

β2

)
.

This satisfy our expectation that the mass of the linear Maxwell case should be recov-

ered [52]. Now, in order to check the satisfaction of the first law of thermodynamics, we

take S and Q as a complete set of extensive quantities for mass M(s,Q). Then, we define

their conjugate intensive quantities as temperature T and electric potential U that implies

T =

(
∂M

∂s

)
Q

and U =

(
∂M

∂Q

)
s

. (2.44)

Intensive quantities computed by (2.44) are in coincidance with ones obtained by (2.36)

and (2.39). Hence, the first law of thermodynamics

dM = Tds+ UdQ. (2.45)

– 11 –
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Figure 2. The behaviors of
(
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Q

and T versus r+ for k = 0 with l = b = 1, q = 1.1, z = 3

and n = 5.
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Figure 3. The behaviors of
(
∂2M/∂s2

)
Q

and T versus z for k = 0 with l = b = 1, q = 0.5,

r+ = 0.7 and n = 5.

is satisfied. In the next subsection we investigate the stability of this thermodynamic

system under thermal perturbations.

2.3 Thermal stability in the canonical and grand-canonical ensembles

In the first part of this section, we showed that one can regard a black hole solution as

a thermodynamic system. On the other hand, it is necessary to investigate the stability

of a thermodynamic system under thermal perturbations. Therefore, this subsection is

devoted to study the thermal stability of the obtained solutions of the previous sections.

The formal way to analyze the stability of a thermodynamic system with respect to small

– 12 –



J
H
E
P
0
3
(
2
0
1
6
)
0
3
7

r
+

1.1 1.3 1.5 1.7 1.9

0.05

0

0.05

0.1

0.15

T

10
4
H

M

s,Q

Figure 4. The behavior of 104HM
s,Q and T versus r+ for k = 0 with l = 2, b = 1, q = 0.2, n = 5,

z = 6 and β = 0.1.
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Figure 5. The behavior of HM
s,Q and 10T versus z for k = 0 with l = b = 1, q = 0.2, n = 5,

r+ = 0.7 and β = 0.1.

variations of the thermodynamic coordinates is by investigating the behavior of the entropy

s(M,Q) around equilibrium. This analysis can also be performed in terms of the Legendre

transformation of entropy namely M(s,Q). In any ensemble, the local stability requires

that the energy M(s,Q) be a convex function of its extensive variable [63–65]. The number

of thermodynamic variables is ensemble-dependent. In the canonical ensemble, since the

charge is fixed, the positivity of (∂2M/∂s2)Q in the ranges where temperature T is positive

suffices to ensure the local stability. For the Lifshitz black solutions we have,

(
∂2M

∂s2

)
Q

=
z(n− 1 + z)rz−n+1

+

(n− 1)πlz+1
+
k (n− 2)

2
(z − 2)rz−n−1

+

πlz−1(n− 1) (z + n− 3)
(2.46)

+
8(z − 2)β2r3−n−z

+

π(n− 1)
2
lz−1b2−2z

{
1

2
+
qlz−1r1−n

+

2β(z − 2)

[
(n+ z − 3)

√
LW (%+)− z − 2√

LW (%+)

]}
.
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Figure 7. The behavior of 102(∂2M/∂s2)Q, 10HM
s,Q and T versus r+ for k = 1 with l = 7, b = 1,

q = 0.5, n = 4, z = 1.5 and β = 3.

The behavior of (2.46) for large β is(
∂2M

∂s2

)
Q

=
z(n− 1 + z)rz−n+1

+

(n− 1)πlz+1
+
k (n− 2)

2
(z − 2)rz−n−1

+

πlz−1(n− 1) (z + n− 3)
+

2q2(2n+ z − 4)b2z−2r5−3n−z
+

π(n− 1)2l1−z

−
q4(4n+ z − 6)b2z−2r7−5n−z

+

2π(n− 1)2l3−3zβ2
+O

(
1

β4

)
, (2.47)

which recovers the result of [52] for the linear Maxwell electrodynamics, as expected. Before

we turn to grand canonical case it is remarkable to find
(
∂2M/∂s2

)
Q

for highly nonlinear

case i.e. β → 0. In this case the behavior of
(
∂2M/∂s2

)
Q

is

lim
β→0

(
∂2M

∂s2

)
Q

=
z(n− 1 + z)rz−n+1

+

(n− 1)πlz+1
+
k (n− 2)2 (z − 2)rz−n−1

+

πlz−1(n− 1) (z + n− 3)
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Figure 9. The behaviors of
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∂2M/∂s2

)
Q

and T versus r+ for k = 1 with l = b = 1, q = 1.1, z = 3

and n = 5.

+
4qβr4−2n−z

+ (n+ z − 3)

π(n− 1)2b2−2z

√√√√LW

(
q2l2z−2

β2r2n−2
+

)
. (2.48)

Soon we use (2.48) to discuss thermal stability of highly nonlinear solutions. In the grand-

canonical ensemble, since Q is not a fixed parameter, the local stability requires the posi-

tivity of determinant of Hessian matrix HM
sQ =

[
∂2M/∂s∂Q

]
> 0. The determinant of the

Hessian matrix HM
s,Q for the solutions under consideration can be calculated as

HM
s,Q =

4βb2z−2l3−3z

q(n− 1)2rn−3
+

√
LW (η+)

[
Υ +

4qβ(z − 2)b2z−2lz−1

(n− 1)rn+2z−3
+

(√
LW (η+)− 1√

LW (η+)

)]
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Figure 11. The behavior of (∂2M/∂s2)Q and T versus β for k = 1 with l = 1, b = 0.3, q = 0.1,

n = 5, r+ = 0.5 and z = 1.3.

−16b2z−2l2−2z(z − 2)

rn−z−1
+ (2n− 2)2

(
β2LW (η+)

q2l2z−2

)(n+z−3)/(2n−2)

×

[
Υ +

4qβb2z−2lz−1

(n− 1)rn+2z−3
+

(
(n+ z − 3)

√
LW (η+)− z − 2√

LW (η+)

)]

×
{
LW (η+)

3n+ z − 5
F

(
3n+ z − 5

2n− 2
,

5n+ z − 7

2n− 2
,
z − 2

2n− 2
LW (ζ)

)
+

1

n+ z − 3
F

(
n+ z − 3

2n− 2
,

3n+ z − 5

2n− 2
,
z − 2

2n− 2
LW (ζ)

)}
, (2.49)
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where

Υ =
z(n+ z − 1)

l2
+

(z − 2)(n− 2)2k

(n+ z − 3)r2
+

+
4(z − 2)β2b2z−2

(n− 1)r2z−2
+

.

The large β behavior of HM
sQ is

HM
s,Q =

4z(n+ z − 1)b2z−2r4−2n
+

(n− 1)(n+ z − 3)l2z
+

4(n− 2)2(z − 2)kb2z−2r2−2n
+

(n− 1)(n+ z − 3)2l2z−2
(2.50)

−
8q2(z − 2)b4z−4r8−4n−2z

+

(n− 1)2(n+ z − 3)
+

2q2b2z−2

(n− 1)(3n+ z − 5)β2r4n−4
+

×

(
q2(z − 2)b2z−2l2z−2

(n− 1)(n+ z − 3)r2n+2z−6
+

− 3k(n− 2)3

n+ z − 3
−

3z(n+ z − 1)r2
+

l2

)
+O

(
1

β4

)
,

which coincides with the one of linear Maxwell case [52]. In what follows we discuss the

stability for k = 0 (black branes) and k = 1 (spherical black holes), separately.

k = 0: in this case, calculations show that the solutions are always stable in the canonical

ensemble. Although it is difficult to see this for arbitrary β from (2.46), we can show this

fact for large and small β’s. For large β where the linear Maxwell regime is dominant,

this fact that the solutions are always stable in canonical ensemble has been pointed out

in [52]. For small β, the behaviour of
(
∂2M/∂s2

)
Q

has been given in (2.48). It is obvious

from (2.48) that limβ→0

(
∂2M/∂s2

)
Q
> 0 for k = 0. Figures 2a and 3a depict the fact

that black branes are always stable in canonical ensemble. Of course, one should check the

positivity of temperature for these choices. This can be seen in figures 2b and 3b which

show that the temperature is positive for these choices and therefore we have black branes.

In grand canonical ensemble, the system is thermally stable provided that the radius of

the black hole is larger than r+ min (figure 4). Figure 5 shows that there is a zmax that for

values greater than it we encounter instability. We also have a βmax that black branes are

stable under thermal perturbations for values lower than it as one can see in figure 6.
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k = 1: as one can see from figure 7, there is a Hawking-Page phase transition between

small and large black holes in both ensembles. In terms of z we have an ensemble-dependent

minimum zmin which depends on the parameters of the system and black holes are unstable

for values lower than it as figure 8 shows. The value of zmin is greater in grand-canonical

ensemble compare to that in canonical ensemble. For highly nonlinear case (small β) and

also linear case (large β) black holes are stable for z ≥ 2 in canonical ensemble as one can

see from (2.47) and (2.48). Hence, one can conclude that there are always stable black

holes for z ≥ 2 in canonical ensemble (figures 9 and 10). Figure 11 shows that black holes

are unstable in canonical ensemble for β < βmin in the case of z < 2. In grand-canonical

ensemble we have stable black holes for β < βmax (figure 12).

3 Gauge/gravity duality

In this section, we would like to perform the gauge/gravity duality idea on our obtained

solutions. We first try to calculate zero-frequency shear viscosity for a hydrodynamic

system. Then, we employ this idea to study the behavior of the holographic conductivity

for a two dimensional system for both asymptotic AdS (z = 1) and asymptotic Lifshitz

cases and present experimental observations matched with obtained results.

3.1 Holographic viscosity

Here we intend to calculate the ratio of shear viscosity to entropy η/s in the zero frequency

limit. For this aim, we use the pole method [66, 67]. We consider the five-dimensional

planar metric

ds2 = −r
2zf(r)

l2z
dt2 +

l2dr2

r2f(r)
+ r2(dx2

1 + dx2
2 + dx2

3), (3.1)

where the QFT lives on the 4-dimensional r-infinity boundary. Defining y = 1 − r2
+/r

2,

one can rewrite (3.1) as

ds2 = −
F (y)r2z

+

l2z(1− y)z
dt2 +

l2dy2

4F (y)(1− y)2
+

r2
+

1− y
(dx2

1 + dx2
2 + dx2

3), (3.2)

where

F (y) = 1− m(1− y)(3+z)/2

r3+z
+

− 4β2l2b2z−2(1− y)z−1

3(5− z)r2z−2
+

+
4β2l2b2z−2(1− y)(3+z)/2

3r3+z
+

(
q2l2z−2

β2LW (%y)

)(5−z)/6

×
{
L2

W (%y)

7 + z
F

(
7 + z

6
,

13 + z

6
,
z − 2

6
LW (%y)

)
+

1

5− zF
(
z − 5

6
,
z + 1

6
,
z − 2

6
LW (%y)

)}
,

%y ≡ q2l2z−2(1− y)3/(β2r6
+) and horizon located at y = 0. In order to use the pole method,

we first apply an off-shell perturbation

dxi → dxi + εe−iωtdxj , (3.3)

where ε is an infinitesimal positive parameter. Then, by using the perturbed metric and

the expansion of F (y) near the horizon, namely

F (y) =

[
z + 3

2
− 2β2b2z−2l2

3r2z−2
+

− 2qβb2z−2lz+1

3r2z+1
+

(√
LW (%+)− 1√

LW (%+)

)]
y (3.4)
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−

[
(z + 3)(z + 1)

8
− (3z + 2)q2b2z−2l2z

6r2z+4
+

exp

[
−1

2
LW (%+)

]

+
(3z − 1)β2b2z−2l2

6r2z−2
+

(
exp

[
−1

2
LW (%+)

]
− 1

)]
y2 +O

(
y3
)
,

we calculate the residue of the pole at y = 0 in the Lagrangian density

Resy=0L = −
ε2ω2r3

+e
−2iωt

128π2T
, (3.5)

where T is given by eq. (2.39). Now, via the formula [66, 67]

η = −8πT lim
ε,ω→0

Resy=0L
ε2ω2

, (3.6)

the shear viscosity for zero frequency case can be obtained as

η =
r3

+

16π
. (3.7)

Therefore, the ratio η/s is obtained as

η

s
=

1

4π
, (3.8)

where we have used eq. (2.37). Therefore, we regain the well-known value 1/4π for η/s as

many cases in Einstein gravity. This implies that neither non-AdS symmetry of the system

on boundary nor the presence of the dilaton and additional gauge fields cannot affect the

value of the shear viscosity of the system.

3.2 Holographic conductivity

Our aim in this subsection is to calculate the holographic conductivity by performing

gauge/gravity duality for both linear Maxwell (infinite β) and nonlinear cases. Finally, we

depict the behaviour of conductivity for linear and nonlinear electrodynamics cases and

show that our results are supported by some experimental observations.

3.2.1 Linear Maxwell case (β-infinity)

We consider a four-dimensional planar metric

ds2 = −
F∞(u)r4z

+

l2zu2z
dt2 +

l2du2

F∞(u)u2
+
r4

+

u2
(dx2

1 + dx2
2), (3.9)

where

F∞(u) = 1− muz+2

r2z−4
+

+
q2b2z−2l2zu2z+2

zr4z+4
+

,

which can be obtained by defining u = r2
+/r in the metric (2.9). The horizon locates at

u = r+, while the QFT lives at u = 0 boundary. We turn on perturbations gtx1 (u) e−iωt
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and Ax1 (u) e−iωt and therefore receive one Einstein and one electrodynamic additional

equations of motion as

A′′x1 (u) +

[
F ′∞(u)

F∞(u)
+

3(1− z)

u

]
A′x1 (u) +

l2z+2u2z−2

r4z
+ F∞(u)2

[
ω2Ax1 (u)− qb2z−2uzF∞(u)

l2r2z
+

(
2gtx1 (u) + ug′tx1 (u)

)]
= 0, (3.10)

and

2gtx1 (u) + ug′tx1 (u) = 4qr2z−4
+ u2−zAx1 (u) , (3.11)

where the prime denotes derivative with respect to u. Combining eqs. (3.10) and (3.11),

one can easily find a decoupled equation for Ax1

A′′x1 (u) +

[
F ′∞(u)

F∞(u)
+

3(1− z)

u

]
A′x1 (u) +

l2z+2u2z−2

r4z
+ F∞(u)2

[
ω2 − 4q2b2z−2u2F∞(u)

l2r4
+

]
Ax1 (u) = 0.

(3.12)

Near the boundary u = 0, eq. (3.12) reduces approximately to

A′′x1 (u) +
3(1− z)

u
A′x1 (u) + · · · = 0, (3.13)

which has the solution

Ax1 (u) = A0 +A1u3z−2 + · · · , (3.14)

where A0 and A1 are constants of integration. Following the procedure presented in ap-

pendix A, we can calculate the conductivity as

σ =
(3z − 2)r6z−4

+ A1

4πiωb2z−2lz+1A0
(3.15)

3.2.2 Nonlinear electrodynamics

Here we follow the above procedure to calculate the holographic conductivity in the case

of nonlinear electrodynamics. We consider the four-dimensional planar metric

ds2 = −
F(u)r4z

+

l2zu2z
dt2 +

l2du2

F(u)u2
+
r4

+

u2
(dx2

1 + dx2
2), (3.16)

where

F(u) = 1− muz+2

r2z+4
+

− 2β2l2b2z−2u2z−2

(4− z)r4z−4
+

+
2β2l2b2z−2uz+2

r2z+4
+

(
q2l2z−2

β2LW (%u)

)(4−z)/4

×
{
L2
W (%u)

4 + z
F

(
4 + z

4
,

8 + z

4
,
z − 2

4
LW (%u)

)
+

1

4− z
F

(
z − 4

4
,
z

4
,
z − 2

4
LW (%u)

)}
,

and %u ≡ q2l2z−2u4/r8
+β

2. Turning on perturbations gtx1 (u) e−iωt and Ax1 (u) e−iωt, we find

below equations of motion

A′′x1 (u) +

[
F ′(u)

F(u)
+

3(1− z)

u
+

2LW (%u)

u(1 + LW (%u))

]
A′x1 (u) (3.17)
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+
l2z+2u2z−2

r4z
+ F(u)2

[
ω2Ax1 (u)− βb2z−2uz−2F(u)

lz+1r2z−4
+

√
LW (%u)

(
2gtx1 (u) + ug′tx1 (u)

)]
= 0,

and

2gtx1 (u) + ug′tx1 (u) = 4qr2z−4
+ u2−zAx1 (u) , (3.18)

The result of combining eqs. (3.17) and (3.18) is decoupled equation for Ax1

A′′x1 (u) +

[
F ′(u)

F(u)
+

3(1− z)

u
+

2LW (%u)

u(1 + LW (%u))

]
A′x1 (u) +

+
l2z+2u2z−2

r4z
+ F(u)2

(
ω2 − 4qβb2z−2F(u)

lz+1

√
LW (%u)

)
Ax1 (u) = 0. (3.19)

Near the u = 0 boundary, eq. (3.19) reduces approximately to eq. (3.13) with the solu-

tion (3.14). Performing the procedure of appendix A, the holographic conductivity can be

obtained as

σ =
(3z − 2)r6z−4

+ A1

4πiωb2z−2lz+1A0
exp

−1

2

(
lzωA0r2z−6

+ u3−z

βb2z−2

)2
∣∣∣∣∣∣
u=0

. (3.20)

As one can see from (3.20), the behaviour of conductivity is different for different ranges of z

σ =


(3z−2)r6z−4

+ A1

4πiωb2z−2lz+1A0 , for z < 3

(3z−2)r6z−4
+ A1

4πiωb2z−2lz+1A0 exp

[
−1

2

(
lzωA0r2z−6

+

βb2z−2

)2
]
, for z = 3

0, for z > 3

(3.21)

3.2.3 Behavior of the conductivity and experimental results

In order to illustrate the behavior of the conductivity, we should solve the decoupled

differential equation for Ax1 . By defining

Ax1 (u) = F(u)−i4πω/TS(u), (3.22)

near the horizon, where S(u) = 1 +a(u− r+) + b(u− r+)2 + · · · , we remove the oscillations

for numerical stability. It is remarkable to note that at the horizon where S(u) = 1,

Ax1 (u) ∝ F(u)±i4πω/T . However, we choose F(u)−i4πω/T in (3.22) in order to perform

ingoing boundary condition. The coefficients a, b,· · · can easily be found by looking for

Taylor series expansion of differential equation (3.12) at the horizon. These coefficients are

initial values necessary for solving eq. (3.12) numerically to obtain the conductivity.

Figures 13 and 14 depict the real and imaginary parts of the conductivity for z = 1

in terms of ω/T . It is notable to mention that the real part of the conductivity is the

dissipative part while the imaginary part is the reactive one. Figure 13 shows that σDC ≡
Re [σ (ω = 0)] is greater for smaller values of q. The same behavior can be seen for the

nonlinear parameter β i.e. σDC increases when β decreases. The behaviors of the real

and imaginary parts of the conductivity are in excellent agreement with the experimental
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Figure 13. The behaviors of real and imaginary parts of conductivity σ versus ω/T for z = 1 and

different values of q with l = b = r+ = 1.
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Figure 14. The behaviors of real and imaginary parts of conductivity σ versus ω/T for z = 1 and

different values of β with l = b = r+ = 1.

results reported in [68]. These experimental results show the increase in Re [σ] near the

zero frequency due to impurities and ionic lattice. The holographic conductivity computed

by employing a gravity dual model with linear Maxwell electrodynamics cannot produce

this behavior [69]. However, as one can see in figures 13 and 14, for suitable choices of

parameters the nonlinearity of electrodynamics model can result this behavior for real part

of conductivity.

The behaviors of the real and imaginary parts of the conductivity in terms of ω/T

for z = 1.1 are illustrated in figures 15 and 16. In this case, σDC changes with respect
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Figure 15. The behaviors of real and imaginary parts of conductivity σ versus ω/T for z = 1.1

and different values of q with l = b = r+ = 1.
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Figure 16. The behaviors of real and imaginary parts of conductivity σ versus ω/T for z = 1.1

and different values of β with l = b = r+ = 1.

to q and β in the similar manner that it does for z = 1. However, in contrast to the

asymptotic AdS spaces in which the real part of the conductivity tends to a constant in large

frequencies, in this case (z = 1.1) Re[σ] grows. Similar behavior for Re[σ] has been reported

recently for the optical conductivity of single-layer graphene induced by mild oxygen plasma

exposure [70]. It is remarkable to note that our numerical calculations show that there is

no significant difference between the behaviour of conductivity for β = 10 and larger.
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4 Summary and concluding remarks

In this paper, we constructed a new class of Einstein-dilaton-Lifshitz black solutions in

the presence of exponential nonlinear electrodynamics. Our solutions respect the Lifshitz

symmetry t→ λzt and ~x→ λ~x at r-infinity boundary where z(≥ 1) is the dynamical critical

exponent. The exponential electrodynamics behaves as Born-Infeld electrodynamics for

large values of the nonlinear parameter β where they reduce to linear Maxwell regime, as

expected. It is worth mentioning that, while the Born-Infeld nonlinear electrodynamics

removes divergences in the electric field and has finite value near the origin where r → 0,

the exponential form of the nonlinear electromagnetics does not cancel the divergency of the

electric field exactly at r = 0, however, its singularity is much weaker than Maxwell theory.

This is more reasonable compared to the Born-Infeld case, since near the origin where r →
0, the electric field of a point-like charged particle should be an increasing function. The

behavior of the electric field of the exponential nonlinear electrodynamics near the origin

in the absence and in the presence of the dilaton field was explicitly shown in table A of

refs. [46] and [51], respectively. Besides, it was argued that in applications of the AdS/CFT

correspondence to superconductivity, exponential nonlinear electrodynamics, makes crucial

effects on the condensation as well as the critical temperature of the superconductor [48].

It was also recently observed that, in the holographic superconductor, the exponential

nonlinear electrodynamics can increase the critical values of the external magnetic field as

the temperature goes to zero [49].

We considered topological black holes with zero (k = 0), positive (k = 1) and negative

(k = −1) horizon curvatures, but the reality of charge of asymptotic Lifshitz supporting

Maxwell matter field imposes that there is no allowed solution with negative horizon cur-

vature except for asymptotic AdS case (z = 1). Next, we calculated the conserved and

thermodynamical quantities namely mass, charge, electric potential, entropy and tempera-

ture. We obtained the mass in terms of the extensive quantities entropy s and charge Q i.e.

M (s,Q) and checked that the intensive quantities temperature T and electric potential U

calculated from it match with those obtained from the geometry of the black hole. Thus,

the first law of thermodynamics is satisfied.

Subsequently, we turned out to study thermal stability of the obtained solutions. We

showed that black brane solutions (k = 0) are always thermally stable in canonical ensem-

ble. In grand-canonical ensemble black branes with horizon radius r+ larger than r+ min

are stable while there is a maximum z (β) that black branes are unstable for values greater

than it. We observed that black holes (k = 1) encounter the Hawking-Page phase transi-

tion between small and large black holes in both canonical and grand-canonical ensembles.

For z ≥ 2, our black holes are always stable in canonical ensemble. For other values of z in

canonical ensemble as well as grand-canonical ensemble, there is a minimum for dynamical

critical exponent that black holes are stable for values greater than it. Moreover, black

holes are stable for nonlinear parameters greater than βmin in canonical ensemble while

they are unstable for values greater than βmax in grand-canonical ensemble.

Afterward, we performed the gauge/gravity duality to compute the ratio of shear vis-

cosity to entropy for a three-dimensional hydrodynamic system by using the pole method.
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We obtained the well-known 1/4π result which shows that even the non-AdS symmetry

of hydrodynamic system cannot affect the value of viscosity. Finally, we turned to study

the behavior of the holographic conductivity for two-dimensional systems. We examined

the issue for both linear Maxwell and nonlinear exponential electrodynamics. Our inves-

tigations revealed that the effect of nonlinearity is vanishing the conductivity for z > 3.

We depicted the behaviors of real and imaginary parts of conductivity for asymptotic AdS

(z = 1) and Lifshitz cases and pointed out some two-dimensional graphene systems taken

under consideration experimentally which have behaviors resemble our numerical results.
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A A brief review on gauge-gravity duality basics

Here we are going to present a brief review on the idea of gauge-gravity duality (reader

can see for instance [69] and [71] for more details). Let us start with QFT. The generating

function in QFT ZQFT has a central role. For instance the expectation value of an operator

O sourced by φ0 is given by

〈O〉 =
1

ZQFT [φ0]

∂ZQFT [φ0]

i∂φ0
=
∂ ln (ZQFT [φ0])

i∂φ0
. (A.1)

For a strongly interacting field theory, it is hard to compute the generating function ZQFT

and here is the position where gauge-gravity duality helps us. Consider a bulk that our

field theory lives on its u = 0 boundary. The function φ0 (x) on the boundary becomes a

field φ (x, u) governed by an equation of motion in the bulk so that φ (x, u) → φ0 (x) as

one approaches the boundary u → 0. The fundamental formula of holography is GKPW

formula (Gubser, Klebanov, Polyakov [72] and Witten [73]) that its classical gravity limit is

ZQFT [φ0] = eiSbulk , (A.2)

where Sbulk is the action calculated by using solutions of bulk equations of motion obtained

subject to the requirement that φ→ φ0 on the boundary. Using (A.2), one can find that

〈O〉 =
∂Sbulk

∂φ0
. (A.3)

In order to find a more convenient alternative for (A.3), we pause here to remind the

Hamilton-Jacobi theory. Varying the action of a point particle with position x, one receives

δSparticle =

∫ tf

ti

dt

[
∂L

∂x
− d

dt

(
∂L

∂ẋ

)]
δx+

[
∂L

∂ẋ
δx

]tf
ti

. (A.4)

Considering the on-shell action and supposing that initial position of the particle is fixed

(δx (ti) = 0) while the final position is varying (δx (tf ) 6= 0), one obtains

∂S

∂xf
=
∂L

∂ẋ

∣∣∣∣
tf

= pf . (A.5)
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We can generalize the above result to our case and rewrite (A.3) as

〈O〉 =
∂L

∂ (∂uφ)

∣∣∣∣
u=0

. (A.6)

Therefore, we could obtain the expectation value of the operator O without calculating

ZQFT. Note that the expectation value was a simple example to present the basic ideas

of gauge-gravity duality. Another remark to note is that the operator O and its source φ0

which are scalars can be extended to vectors or tensors. For instance the source for J i is

Ai0 and the source for T ij is gij0 . As an example the expectation value of Ji sourced by the

perturbation δA0i = A0ie
−iωt is

〈Ji〉 =
∂L

∂ (∂uδAi)

∣∣∣∣
u=0

. (A.7)

Then, with (A.7) in hand we can obtain the conductivity via the formula σ = 〈Ji〉 /Ei.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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