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1 Introduction

On the basis of the gauge/gravity duality [1–3], real time processes in strongly coupled

gauge theories have been extensively studied from the viewpoint of time evolution in clas-

sical gravity. An interesting application in this direction is to understand the evolution

of strongly coupled plasma observed in experiments at the Relativistic Heavy Ion Collider

(RHIC) and Large Hadron Collider (LHC) from the solutions to Einstein equations in

dual gravitational setups [4–8]. On the other hand, focusing on flavor dynamics in the

gauge/gravity duality, some works computed far-from-equilibrium dynamics in D3/D7-

brane systems [9–13].

In [14], we studied nonlinear dynamics under small-but-finite perturbations of the flux

tube between an external quark-antiquark pair in N = 4 super Yang-Mills theory using

the gauge/gravity duality. The gravity description is given by an open string hanging from

the AdS boundary to the bulk [15, 16], and this configuration is stable under linearized

perturbations [17–20]. We computed the nonlinear time evolution of the string and found
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Figure 1. A dynamical string in Poincaré and global coordinates of AdS. Note that the string

static in the Poincaré coordinates is mapped to a string with moving endpoints. We solve the

time evolution of the perturbed string in the global coordinates and bring it back to the Poincaré

coordinates.

that the string exhibited turbulent behaviors that the energy is transferred to high fre-

quency modes. The direct energy cascade continued for strings oscillating in smaller than

1 + 3 dimensions, resulting in cusp formation. For string motions in full 1 + 4 dimensions

of the AdS5, the cascade changed to an inverse energy cascade in late time and no cusp

formation was found. The turbulent behaviors on probes in the gauge/gravity duality were

first found in the D3/D7 system and examined [10–12, 21]. There are related AdS string

works [22–24] which used methods and boundary conditions different from ours.

The question we ask in this paper is what happens if the string is strongly perturbed.

Initial tests using the numerical codes for [14] suggested that the string would plunge into

the Poincaré horizon. Computing in the Poincaré coordinates, however, had difficulties

because the Poincaré horizon is located at a coordinate singularity. Our idea then is to

make use of the global coordinates of the AdS spacetime where the Poincaré horizon is

regular, and a dynamical string can cross the Poincaré horizon without trouble. Since we

are interested in the boundary field theory in flat space, we map the static holographic

quark antiquark potential in the Poincaré coordinates to the global ones and solve its

dynamics there. In figure 1, we show a schematic picture of our strategy to solve the string

dynamics. Note that the static string in the Poincaré coordinates is mapped to a nonstatic

string in the global coordinates. Once computations are done, the results are brought back

to the Poincaré patch and interpreted.

In the rest of the paper, we begin with AdS coordinates in section 2, where we introduce

a parametrization convenient for our numerical work. We then prepare for computing the

string dynamics in the global AdS in section 3. We derive evolution equations, initial data,

and boundary conditions. We also explain how to detect horizons of interest. In section 4,

we show results for what we call longitudinal quenches. We first discuss a representative

example and then investigate different quench parameters. In section 5, we show results for
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transverse quenches where the string moves in more space dimensions than the longitudinal

ones. We close the paper with a summary and several discussions in section 6. Appendices

contain technical details about numerical computations.

2 Anti-de Sitter spacetime in global and Poincaré coordinates

While our interest is on a string in the Poincaré coordinates of five-dimensional anti-de

Sitter (AdS5) spacetime, for convenience we make use of the global coordinates of AdS5.

For this reason, we start from comparing these coordinates.

AdS5 is given by a hypersurface embedded in six-dimensional spacetime R4,2. The

metric of R4,2 is

ds2R4,2 = −dX2
0 + dX2

1 + · · ·+ dX2
4 − dX2

5 . (2.1)

The embedding of AdS5 is

−X2
0 −X2

5 +X2
1 + · · ·+X2

4 = −ℓ2 , (2.2)

where ℓ is a positive constant called the AdS radius.

The Poincaré coordinates cover only a part of the entire AdS spacetime. We specify

the coordinates by t, z, xi (i = 1, 2, 3). The Poincaré AdS5 is given by

X0 =
ℓξ+
z

, Xi =
ℓxi
z

, X4 =
ℓξ−
z

, X5 =
ℓt

z
, (2.3)

where we defined

ξ± ≡ z2 + |x|2 − t2 ± ℓ2

2ℓ
. (2.4)

The metric of the Poincaré AdS5 is written as

ds2 =
ℓ2

z2
(−dt2 + dz2 + dx2) . (2.5)

The AdS radial coordinate z takes 0 < z < ∞. The AdS boundary is at z = 0, and the

null surface z = ∞ is called Poincaré horizon. In these coordinates, the Poincaré horizon is

at the coordinate singularity. The boundary of the Poincaré AdS is flat 1 + 3 dimensional

spacetime.

For our computations with strong perturbations, it is convenient to use the global

coordinates which cover the entire AdS manifold beyond the Poincaré coordinates. In

particular, we take Cartesian-like coordinates χa (a = 1, 2, 3, 4) where the spatial directions

are conformally flat, and the global time is denoted by τ . Such global coordinates are

introduced by

X0

X5
= tan τ ,

Xa

ℓ
=

2χa

1− |χ|2 , (2.6)

– 3 –
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where χ = (χ1, χ2, χ3, χ4) satisfies |χ| ≤ 1. Note that both τ and χ are dimensionless.

The global AdS5 metric is given by1

ds2 = −ℓ2
(

1 + |χ|2
1− |χ|2

)2

dτ2 +
4ℓ2

(1− |χ|2)2dχ
2. (2.7)

The AdS boundary locates at |χ| = 1 and has the topology of S3. This metric is smooth

at the AdS center |χ| = 0. Although (2.6) implies the presence of a closed timelike curve,

we can define τ in −∞ < τ < ∞ by taking the universal covering.

From (2.3) and (2.6), we obtain the following coordinate transformation:

τ = tan−1(t/ξ+) +















π (t > ξ0)

0 (−ξ0 ≤ t ≤ ξ0)

−π (t < −ξ0)

,

χi =
xi

(√

ξ2− + z2 + |x|2 − z
)

ξ2− + |x|2 (i = 1, 2, 3) ,

χ4 =
ξ−

(√

ξ2− + z2 + |x|2 − z
)

ξ2− + |x|2 ,

(2.8)

where ξ0 ≡
√

z2 + |x|2 + ℓ2. In (2.8), one Poincaré patch is in −π ≤ τ ≤ π. The inverse

of (2.8) is given by

t

ℓ
=

(1 + |χ|2) sin τ
(1 + |χ|2) cos τ − 2χ4

, (2.9)

z

ℓ
=

1− |χ|2
(1 + |χ|2) cos τ − 2χ4

, (2.10)

xi
ℓ

=
2χi

(1 + |χ|2) cos τ − 2χ4
(i = 1, 2, 3) . (2.11)

From (2.10), we find that the denominator must be zero at the the Poincaré horizon. The

equation of the Poincaré horizon in the global coordinates hence becomes

3
∑

i=1

χ2
i +

(

χ4 −
1

cos τ

)2

= tan2 τ . (2.12)

This represents a S3 with the center (χi, χ4) = (0, 1/ cos τ) and the radius | tan τ |. The

Poincaré horizon is given by the cross section of this S3 cut off by the unit S3 of the

AdS boundary |χ| = 1. Moreover, if xi is finite on the Poincaré horizon, the numerator

in (2.11) also has to be zero: χi = 0. Therefore, the part of the Poincare horizon at finite

xi is mapped to a point given by (χi, χ4) = (0, (1− | sin τ |)/ cos τ).
1Taking polar coordinates in the χ-space as χa = tan(θ/2)ωa where ωa (a = 1, 2, 3, 4) are spherical

coordinates of S3, we obtain a familiar form of AdS5 metric: ds2 = ℓ2(−dτ2 + dθ2 + sin2 θdΩ2

3)/ cos
2 θ

where dΩ2

3 =
∑

4

a=1
dω2

a is the metric of a unit S3. The polar coordinates are however ill-defined at the

center of the global AdS θ = 0, where the S3 shrinks to a point. This coordinate singularity is absent in

the χ-coordinates.
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Figure 2. A schematic picture of AdS5 spacetime. The inside of the cylinder is the global AdS5
spacetime and its surface is the AdS boundary. Future and past Poincaré horizons are shown

by inclined surfaces in the cylinder. The region surrounded by these surfaces corresponds to the

Poincaré patch.

In figure 2, we show a schematic picture of AdS5 spacetime in the global patch. When

τ = ±π, the Poincaré patch shrinks to a point (χi, χ4) = (0,−1). Hence, the dynamics

confined to a Poincaré patch becomes singular at that time, unless it jumps over the

Poincare horizon before that time.

3 String dynamics in global AdS5

We consider strong perturbations of the string in AdS5. For this purpose, it is suitable to

use the global coordinates (2.7), which are regular in the entire spacetime, rather than the

Poincaré coordinates. Here, we describe the formulation to solve the string dynamics in

the global AdS5 numerically. We basically follow the method developed in [9, 14].

3.1 Evolution equations

We make use of double null coordinates on the string worldsheet. When the worldsheet

coordinates are denoted by (u, v), the string in the target space is parametrized as

τ = τ(u, v) , χ = χ(u, v) . (3.1)

Substituting them into eq. (2.7), we obtain the components of the induced metric as

γuu =
ℓ2

(1− |χ|2)2
(

−(1 + |χ|2)2 τ2,u + 4|χ,u|2
)

,

γvv =
ℓ2

(1− |χ|2)2
(

−(1 + |χ|2)2 τ2,v + 4|χ,v|2
)

,

γuv =
ℓ2

(1− |χ|2)2
(

−(1 + |χ|2)2 τ,uτ,v + 4χ,u · χ,v

)

. (3.2)
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Using the reparametrization freedom of the worldsheet coordinates, we impose the double

null condition on the induced metric as

C1 ≡ γuu = 0 , C2 ≡ γvv = 0 . (3.3)

From the double null conditions, we obtain

τ,u =
2|χ,u|
1 + |χ|2 , τ,v =

2|χ,v|
1 + |χ|2 , (3.4)

where we took the positive signature regarding ∂u and ∂v as future directed null vectors.

In the double null coordinates, the Nambu-Goto action is written as

S = − 1

2πα′

∫

dudv
√

γ2uv − γuuγvv =
1

2πα′

∫

dudvγuv

=

√
λ

2π

∫

dudv
1

(1− |χ|2)2
(

−(1 + |χ|2)2 τ,uτ,v + 4χ,u · χ,v

)

,

(3.5)

where in the second equality we used the double null conditions (3.3) and γuv < 0. The ’t

Hooft coupling is defined by λ ≡ ℓ4/α′2. The string evolution equations are given by

τ,uv = − 8

(1− |χ|2)(1 + |χ|2)2 (|χ,u|χ,v + χ,u|χ,v|) · χ ,

χ,uv = − 2

1− |χ|4
[

2|χ,u||χ,v|χ

+ (1 + |χ|2)
{

(χ · χ,v)χ,u + (χ · χ,u)χ,v − (χ,u · χ,v)χ
}

]

, (3.6)

where in the right hand sides, we eliminated τ,u and τ,v by using eq. (3.4). This process is

very important for stabilizing numerical calculations.

3.2 Poincaré static string in the global patch

As the initial configuration, we consider a static string hanging in the Poincaré AdS from

the boundary. Its endpoints correspond to a pair of quark and antiquark. We locate the

endpoints at x1 = ±L/2 and x2 = x3 = 0 where L is the separation. We call the one

with x1 = L/2 the quark endpoint. The static solution parametrized by the double null

coordinates (u, v) was obtained in [14] as

t = z0 (u+ v) , z = z0 f(u− v) , x1 = z0 g(u− v) , x2 = x3 = 0 , (3.7)

where z0 ≡ L/(2Γ0) and Γ0 ≡
√
2π3/2/Γ(1/4)2 ≃ 0.599. The constant z0 represents the

maximum value of the z-coordinate that the string reaches. The functions f and g are

defined as

f(φ) ≡ sn(φ; i) , g(φ) ≡ −
∫ φ

β0/2
dφ′ f(φ′)2 , (3.8)

where sn(x; k) is the Jacobi elliptic function.2 The constant β0 ≡ π/(2Γ0) ≃ 2.622 is the

minimum positive root of sn(x; i), and in (3.7) we have used the worldsheet reparametriza-

tion degrees of freedom to locate the two boundaries of the open string worldsheet at u = v

and u = v + β0.

2The Jacobi elliptic function sn(x; k) is the inverse function of the incomplete elliptic integral of the first

kind defined as F (x; k) =
∫ x

0
dt(1− t2)−1/2(1− k2t2)−1/2.
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Figure 3. Mapping of the Poincaré static hanging string to the global coordinates when ℓ/L = 1.

The colored lines correspond to the string configurations when τ = 0, π/4, π/2, 3π/4 from the top,

and the red dot at (χ1, χ4) = (0,−1) is that for τ = π. The three dashed lines as well as the dots

at (χ1, χ4) = (0,±1) are the Poincare horizon at each corresponding time. Their ordering from the

top is the same as that of the string.

We map the Poincaré patch’s static solution (3.7) to the global coordinates. This

is done by substituting it into eq. (2.8). It is straightforward to check that the mapped

solution satisfies the evolution equations (3.6) and the constraints (3.3). The solution static

in the Poincaré patch (3.7) becomes a τ -dependent solution in the global coordinates. In

figure 3, we show the string configurations for several τ -slices. Note that χ2 = χ3 = 0 for

the static solution, and hence figure 3 corresponds to the spatial part of an AdS3 slice in

the AdS5. The string shrinks as τ approaches π as the Poincaré horizon surrounding the

string also does. Eventually, both the static string and the Poincaré horizon collapse to

a point at τ = π. The string configurations are symmetric under τ → −τ , and thus the

string expands as τ increases for −π ≤ τ ≤ 0.

In the Poincaré coordinates, the AdS radius ℓ does not appear in the equations and

solution of the string. However, the transformation (2.8) involves ℓ, and therefore the string

configurations in the global coordinates look differently depending on ℓ/L. For instance,

figure 3 is drawn when ℓ/L = 1. Nevertheless, once the string dynamics computed in the

global coordinates is transformed back to the Poincaré patch, the dependence on ℓ disap-

pears. We can hence use arbitrary values of ℓ/L convenient for numerical computations.

For the time evolution, we take v = 0 as the initial surface and use the Poincaré static

solution mapped to the global coordinates as the initial data. Nontrivial string dynamics

is induced by changing the boundary conditions at the string endpoints in time.

3.3 Boundary conditions

In the Poincaré patch, the two string endpoints are denoted by x = xq(t) and xq̄(t), cor-

responding to the locations of the quark and antiquark, respectively. We induce dynamics

on the string by changing their positions. Since we are interested in the dynamics in the

Poincaré patch, we specify the patterns of endpoint motion as functions there. In solving

the time evolution in the global patch, the quark positions are translated to the global

patch’s boundary through eq. (2.8).
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To introduce perturbations on the string, we move the quark endpoint for a time

duration ∆t with amplitude ǫ. We use the same motion patterns as in [14] but focus on

the parameter region with larger ǫ. In particular, we consider the following three kinds

of “quenches”:

(i) Longitudinal quench:

xq(t) =

(

L

2
+ ǫLα(t), 0, 0

)

. (3.9)

(ii) Transverse linear quench:

xq(t) =

(

L

2
, ǫLα(t), 0

)

. (3.10)

(iii) Transverse circular quench:

xq(t) =

(

L

2
, ǫLα(t),±ǫL

√

α(t)(1− α(t))

)

, (3.11)

where the upper and lower signs are taken for t ≤ ∆t/2 and t > ∆t/2, respectively.

The other endpoint is fixed at the original position: xq̄(t) = (−L/2, 0, 0). The function

α(t) is a compactly supported C∞ function defined by

α(t) =







exp
[

2
(

∆t
t−∆t − ∆t

t + 4
)]

(0 < t < ∆t)

0 (else)
. (3.12)

We show the profile of this function in figure 4. This function has a gaussian-like profile

but the support is compact in 0 ≤ t ≤ ∆t. In figure 5, we show schematic pictures of the

quenches (i)-(iii). For later convenience, we introduce the velocity and the Lorentz factor

of the quark as

vq(t) ≡
dxq(t)

dt
, γ(t) ≡ 1

√

1− v2
q (t)

. (3.13)

These quench patterns, which are the same as those considered in [14], are chosen to

represent typical string motions, particularly with different dimensionality. For quenches (i)

and (ii), the motion of the string is restricted in (2+1)- and (3+1)-dimensions, respectively.

On the other hand, by the quench (iii), fluctuations along both x2- and x3-directions are

induced, and the string moves in all (4+1)-dimensions. The significant difference from [14]

in this paper is the magnitude of ǫ, which we choose much bigger.

Using the residual coordinate freedoms u = u(ū) and v = v(v̄), we fix the locations

of the string endpoints on the worldsheet to u = v and u = v + β0. Letting χq(τ) and

χq̄(τ) denote the trajectories of the endpoints in the global patch, we write the boundary

conditions for χ(u, v) as

χ|u=v = χq(τ) , χ|u=v+β0
= χq̄(τ) . (3.14)

– 8 –
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Figure 4. The profile of the compactly supported C∞ function α(t).

Longitudinal  

quench

Transverse

linear quench

Transverse

circular quench

Figure 5. Schematic pictures of the quenches.

The functional form of χ(τ) is found from (τ,χ) through (2.8) where the right hand sides

are determined by the quark and antiquark positions in the Poincaré patch’s boundary.

While the endpoints are quenched, it is hard to find analytic expressions of χ(τ). It is

practical to find the relation between τ and χ numerically at each time.

Outside the quench period, however, simple expressions for (3.14) can be obtained.

When x = (x̃, 0, 0) is constant, we can eliminate t and z from (2.8) and obtain

χ1|bdry =
ℓx̃ cos τ + x̃

√

x̃2 sin2τ + ℓ2

x̃2 + ℓ2
,

χ4|bdry =
x̃2 cos τ − ℓ

√

x̃2 sin2τ + ℓ2

x̃2 + ℓ2
,

(3.15)

with χ2 = χ3 = 0. In our case, x̃ = ±L/2.

At the boundaries, we evolve τ(u, v) by satisfying the boundary conditions (3.14). At

|χ| = 1, the constraint equations (3.4) reduce to

τ,u = |χ,u| , τ,v = |χ,v| . (3.16)

Solving these equations, we determine the consistent evolution of (τ,χ).

– 9 –
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To solve the time evolution, we use the numerical method explained in [14]. (See

its appendix A for details.) We introduce a grid with spacing ∆u = ∆v = h on the

(u, v)-coordinates and then discretize the equations of motion with second-order finite

differentials. How to discretize the boundary evolution (3.16) for this global AdS case is

described in appendix A. In appendix B, numerical errors are evaluated. In this work, we

compute all time evolution in the global coordinates. When we evaluate quantities given in

terms of the Poincaré coordinates, the global coordinate’s numerical solution is converted

to the Poincaré coordinates by using (2.9)–(2.11).

3.4 String dynamics and horizons

Solving the evolution equations (3.6), we obtain τ(u, v) and χ(u, v) as functions on the

worldsheet. We compare the solution with horizons relevant to our string dynamics.

Poincaré horizon. One of this paper’s interests is to see whether the string can reach

the Poincaré horizon. In the global coordinates, the target space metric is regular at

the Poincaré horizon. Hence there is no obligation for the dynamical string to cross the

surface. To check if this occurs, we compare the solution with (2.12). On the worldsheet,

the locations crossing the Poincaré horizon, if exist, are continuous and form a spacelike

curve connecting the two boundary points with τ = π.

Whether the Poincaré horizon is crossed or not also divides the fate of the string

evolution. If the string does not cross the horizon, it shrinks to one point (χ1, χ2, χ3, χ4) =

(0, 0, 0,−1) at τ = π. On the worldsheet point of view, the fields τ(u, v) and χ(u, v)

converge to the limiting values as (u, v) → ∞. However, at τ = π, denominators in

the right hand sides of the evolution equations (3.6) become close to zero, and numerical

calculations break down as τ = π is approached. This fate is different if the string cross

the Poincaré horizon by strong quenches. In this case, the string extends in the global AdS

at τ = π. Then (3.6) is regular, and the numerical calculations can continue to τ > π. In

figure 6, we show the string worldsheet for such a case schematically.

Worldsheet effective horizons. The part of the string worldsheet that has crossed the

Poincaré horizon, of course, is not visible from the boundary in a Poincaré patch. Before the

Poincaré horizon, the string worldsheet has dynamically created effective horizons from the

inside of which no signal reaches the AdS boundary in the Poincaré patch. We can define

the effective horizons as the boundary of the causal past of the string endpoints at τ = π.

In figure 6, the effective horizons are drawn with blue and red lines, which are respectively

at constant v and u. We also draw the Poincaré horizon with a black dashed curve. The

Poincaré horizon is hidden in the effective horizons. The formation of the worldsheet

effective horizons indicates that the quark and antiquark are informationally disconnected

in the Poincaré patch. We will sometimes refer to the transition to the configuration

of the two straight strings accompanied by the creation of the effective horizons as the

disconnection of the string.

Practically, we can identify the effective horizons in the numerical solutions as follows.

We monitor τ(u, v) at each boundary and find u = uH and v = vH such that τ(uH , uH) = π

and τ(vH +β0, vH) = π, respectively. (These are shown by red and blue points in figure 6.)

– 10 –
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Figure 6. Poincaré and effective horizons on the worldsheet.

Then, the effective horizons are given by H = {(u, v)|u = uH , v ≥ vH}⋃{(u, v)|v = vH , u ≥
uH}. The region that cannot be seen from both endpoints is shaded with green in figure 6.

Note that each of the triangular region surrounded by the dashed and solid lines and a

boundary can be seen only from one endpoint.

4 Longitudinal quench

We show results of string dynamics. We start from the longitudinal quench (3.9), which

exhibits typical phenomena. We will also discuss the transverse quenches (3.10) and (3.11)

in the following section, emphasizing similarities and differences.

4.1 String dynamics

As a representative example, we consider the longitudinal quench with ǫ = 0.15 and

∆t/L = 2. In figure 7, we show snapshots of the string in the global patch for ℓ/L = 1.

Starting from a static hanging string configuration at τ = 0, we observe that a wave is

induced on the string by the quench (τ = π/2). As τ = π approaches, we find that the

string extends beyond the Poincaré horizon (τ = 7π/8), and when τ = π the string keeps

a finite length, in contrast to the shrinking static string in figure 3 (and strings with small

perturbations as well). We thus find that this parameter choice corresponds to a case where

the dynamical string crosses the Poincaré horizon.

We look into this dynamical string in figure 8. In these plots, thick and thin curves

correspond to the string configurations and Poincaré horizons, respectively, and the part

of the string inside of the worldsheet effective event horizons is depicted by the dashed

curves. Note that for variables in the global coordinates nothing irregular happens. For

2 ≤ τ ≤ 2.3, we see that the string is smooth and does not reach the Poincaré horizon.

(Note that the Poincaré horizon is outside the displayed region.) At τ ≥ 2.4, cusps and

self-intersection appear on the string. We then observe that the string crosses the Poincaré
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Figure 7. Snapshots of the string dynamics in the global patch for the longitudinal quench with

ǫ = 0.15 and ∆t/L = 2 for ℓ/L = 1. The real lines correspond to the string, and the dashed lines

the Poincaré horizon.
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AdS boundary

(a) 2 ≤ τ ≤ 2.3
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-0.8
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-0.6
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-0.3 -0.2 -0.1 0 0.1 0.2 0.3

(b) 2.4 ≤ τ ≤ 2.7

Figure 8. More snapshots of the string dynamics in the global patch for the longitudinal quench

with ǫ = 0.15 and ∆t/L = 2 for ℓ/L = 1. Figures (a) and (b) are for 2 ≤ τ ≤ 2.3 and 2.4 ≤ τ ≤
2.7, respectively. The thick and thin curves correspond to the string configurations and Poincaré

horizons. The part of the string depicted by the dashed curve is inside of the effective event horizons

on the worldsheet. For visibility, in figure (a) we show the location of the effective horizon pair by

red points.

horizon around τ ≃ 2.6. Prior to this time, the pair of the effective horizons appears

around τ ≃ 2.1.

This string motion in the global patch is seen as disconnection of the string in the

Poincaré patch. The numerical solutions τ(u, v) and χ(u, v) are mapped to the Poincaré

patch’s t = T (u, v), z = Z(u, v) and x = X(u, v) through eqs. (2.9)–(2.11).3 In figure 9, we

show the corresponding string dynamics in the Poincaré patch. The string becomes longer

as t increases, and in the late time its configuration eventually approaches two straight

strings. We find that the effective event horizons appear around t/L ≃ 2.54.

3In the Poincaré patch, we use capital letters for functions specifying the string configuration following

the notation in [14].
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Figure 9. Snapshots of the string dynamics in the Poincaré patch for the longitudinal quench with

ǫ = 0.15 and ∆t/L = 2. The effective horizons appear on the worldsheet within finite time. The

string configuration approaches two straight strings in the late time.

4.2 Forces acting on the quarks

Forces act on the quark and antiquark endpoints as the response of the string. In view of

the gauge/gravity duality, the position of the string endpoint corresponds to the “source”

of the field theory operator dual to the string, and that operator is the force. We compute

the forces in the Poincaré patch, after the dynamical string solution is mapped from the

global coordinates. Let xi = Xi(t, z) denote the string coordinates in the target space. The

force on the quark is then given by [14]

Fi(t) =

√
λ

4π
γ−1[δij + γ2viqv

j
q ]∂

3
zXj(t, z)|z=0,x=xq . (4.1)

where the velocity vq and Lorentz factor γ have been defined in eq. (3.13). The force on

the antiquark can be simply given by changing xq → xq̄ with vq = 0 and γ = 1.

In figure 10, the absolute values of the forces for the longitudinal quench with ǫ = 0.15

and ∆t/L = 2 are shown in a log-log scale. In the plots, the forces on the quark and

antiquark are denoted by F and F̄ . As t → ∞, both F and F̄ approach zero. This

also indicates that the flux tube disconnects, and the final configuration (in t → ∞) is

two straight strings. The divergence in F̄ at t/L ∼ 10 is due to a cusp arriving at the

boundary. (See [14].) Once the cusp passes, F̄ monotonically decays and its behavior

seems to approach that of F .

In the late time behavior of the forces, we observe power law decay. This is clearly seen

in F . In the case of ǫ = 0.15 and ∆t/L = 2, a fit of the power law in F is t−n with n ∼ 3.8.

It appears that F̄ also realizes power law decay, but because of its different evolution from

F such as the travel of the cusp, the approach of F̄ to a power law seems quite delayed.

The power depends on the quench parameters. In figure 11, we compare F for ǫ =0.1,

0.125, 0.15 when ∆t/L = 2. With the first value, the string extends its length a little but

does not reach the Poincaré horizon, and the late time oscillations in the plot are due to

bounces of cusps [14]. For the latter two, the string reaches the Poincaré horizon. As seen
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Figure 10. The forces acting on the quark and antiquark for the longitudinal quench with ǫ = 0.15

and ∆t/L = 2.

Figure 11. Comparison of the forces acting on the quark for ǫ =0.1, 0.125 and 0.15 when ∆t/L = 2.

in the ǫ = 0.1 plot, the power law can be observed even when the string does not reach

the horizon, although it is disturbed by the travel of waves and cusps on the string. The

power law exponent is read off n ∼ 2, 3.3, 3.8 for ǫ =0.1, 0.125, 0.15, respectively. The

decay becomes steeper as ǫ increases. The dependence on the quench parameters implies

that the slope of the power law is not simply fixed by the AdS background.

What is the origin of the power law tail? One of the most plausible explanations for

the power law tail can be given by the redshift of the effective horizon.4 Before going to

detailed arguments, we emphasize that the curved initial configuration of the string is also

important. Let us define “left moving” as “from the quark to antiquark” (xq → xq̄) and

“right moving” as “from the antiquark to quark” (xq̄ → xq).
5 While a left moving wave is

mainly generated on the worldsheet by the quench, right moving waves are also generated

secondarily from the backscattering by the curvature of the hanging-shape string and/or

the reflection at the other boundary. Such right moving waves then can propagate back to

the quark endpoint.

4We first focus on the “tail” in the case that the string reaches the Poincaré horizon. The situation of

the ǫ = 0.1 case is commented later.
5In figure 9, we plotted xq and xq̄ endpoints to the right and left, respectively.
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Suppose that the left and right moving waves are present on the string and effective

event horizons are formed on the string. We then focus on the force on the quark endpoint.

Let us consider a right moving wave which has a non-trivial profile at the effective horizon.

A wave from near the horizon needs very long time to reach the AdS boundary and would

cause the tail in the force. For an asymptotically AdS black hole with finite surface gravity

κ, perturbations decay with ∼ e−κt.6 In the present case, however, the effective horizon

approaches the Poincaré horizon that can be regarded as an extremal horizon (κ = 0). For

an extremal case, the exponential decay is absent and replaced by a power law decay [26–29].

The worldsheet effective horizons on the string in pure AdS might inherit such a property.

As seen in figure 11, the power law decay is temporarily present even for ǫ = 0.1 and

∆t/L = 2 with which the string does not plunge into the Poincaré horizon. This behavior

can be observed roughly until the string stops expanding. It would be fair to speculate

that redshift on the stretching string might be generally responsible for causing the power

law even if worldsheet event horizons are not formed.

Before we close this section, we would like to comment that if we start from an initial

configuration given by a straight string extending to the Poincaré horizon from the AdS

boundary and perturb the boundary endpoint, we do not observe a power law tail. In this

sense, the power law tail would be regarded as a relic of the dynamical “phase transition”

between the hanging string and two straight strings. In [30], the full nonlinear solution for

the perturbed straight string has been obtained. This solution is a purely ingoing wave and

there is no backscattering. After the quench, therefore, the force on the quark becomes

exactly zero and cannot have a power law tail. While this analytic argument might be

enough, we also numerically tested nonlinear evolution of a straight string with boundary

perturbations by using our numerical method and checked that the force dropped to zero

without a tail.

4.3 Condition for the disconnection

Stepping forward from the above example, we investigate dependence on the quench pa-

rameters: we search critical parameters for the string to cross the Poincaré horizon. The

numerical strategy we take for this is as follows. For a fixed ∆t, we start from a large am-

plitude and measure τ when the string crosses the horizon. As the amplitude is decreased,

the crossing time approaches τ = π, but as the critical amplitude approaches, numerical

computations are challenged because very high resolution becomes necessary. While we can

compute for crossing times very close to τ = π, once numerical errors become significant,

we use an extrapolation to estimate the critical amplitude with which the crossing time

would be τ = π. We repeat this by changing ∆t and obtain critical (ǫ,∆t/L). In figure 12,

we plot the results in red points.

To understand the condition for the string to transition to the straight strings, we

evaluate the energy of the dynamical string. The formula for evaluating the energy of the

dynamical string can be derived as follows. In the global patch, the worldsheet action

6For asymptotically AdS black holes with finite temperature, there is no power law tail in perturbations

unlike asymptotically flat black holes [25].
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Figure 12. Results of the evaluation of the string configuration change in (ǫ,∆t/L)-parameters.

The dots are the critical parameters obtained from the direct search. The real line corresponds

to the energy injection equal to the energy difference of the two static string configurations. For

comparison, an estimation of the threshold for cusp formation ǫ = 9.3 × 10−4(∆t/L)3 obtained

in [14] is also plotted with the dashed line.

is given by (3.5). Using eq. (2.8), we can rewrite the action in terms of the Poincaré

coordinates as7

S =

√
λ

2π

∫

dudv
1

Z2
(−T,uT,v + Z,uZ,v +X,u ·X,v)

=

√
λ

4π

∫

dσ0dσ1 1

Z2
ηab(T,aT,b − Z,aZ,b −X,a ·X,b) ,

(4.2)

where we introduced σ0 = u + v, σ1 = u − v, and ηab = diag(−1, 1). The domains of the

coordinates are −∞ < σ0 < ∞ and 0 ≤ σ1 ≤ β0. This action is invariant under the time

translation: T → T + const. Its conserved current is given by

P a =

√
λ

2π

1

Z2
ηabT,b . (4.3)

To compute the string total energy, we integrate P 0 along σ1 for fixed σ0,
8

Ebare = −
∫

dσ1P 0 =

√
λ

2π

∫ β0−ǫ′

ǫ
dσ1 ∂0T

Z2
. (4.4)

This quantity diverges in the limits of ǫ → 0 and ǫ′ → 0 due to contributions at the AdS

boundary. The divergence is interpreted as coming from the energy of the infinitely heavy

quarks ∼ mqγ and mq̄γ̄. The energy is regularized by adding counter terms as

Ereg = Ebare −
√
λ

2π

[

γ(T )

Z

∣

∣

∣

∣

σ1=ǫ

+
γ̄(T )

Z

∣

∣

∣

∣

σ1=β0−ǫ′

]

. (4.5)

7While the energy can be equally calculated in the global coordinates, because of the simplicity of

regularization we work in the Poincaré coordinates.
8Since we consider only one-sided quenches, the fact that there is no energy inflow from the other

endpoint makes the situation easy. We can simply use the constant-σ0 slices for integration. If the other

endpoint is also quenched, in order to define a total energy meaningful for the boundary field theory, it

would be necessary to use spacelike slices where the two endpoints have the same boundary time.
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Substituting the static hanging string solution (3.7) into the above expression, we obtain

the static energy as EstatL/
√
λ = −4π2/Γ(1/4)4 ≃ −0.2285, consistent with the result

in [15, 16]. This value corresponds to the energy difference between the static hanging

string and straight strings, where the regularized energy of the latter is zero.

In actual numerical calculations, we include the boundary terms in the integrand as

Ereg =

√
λ

2π

∫ β0

0
dσ1

[

∂0T

Z2
− ∂1

(

s(σ1)

Z

)]

, (4.6)

where s(σ1) is any smooth function satisfying s = γ(T )|σ1=0 + O((σ1)2) (σ1 → 0) and

s = −γ̄(T )|σ1=β0
+O((β0−σ1)2) (σ1 → β0). This form is convenient because the integrand

is finite at σ1 = 0 and β0. The difference between the time dependent value of (4.6) and

the static value gives the amount of energy injected to the string by the quench until that

moment. Evaluating the energy at t ≥ ∆t gives the total addition of the energy.

An alternative way to evaluate the amount of the energy injection is to compute the

work done on the quark endpoints. The total work is given by9

W = −
∫

C
dx · F = −

∫ ∆t

0
dtvq · F , (4.7)

where in the last expression we used the fact that our quench patterns are compact in

time. The integrand vq · F has the form of the product of time derivative of the “source”

and the “response” in the sense of holography and reflects non-conservation of the energy

in the presence of a time dependent source. We checked that the total work computed by

evaluating (4.7) agreed with the energy change evaluated from (4.6).

We compute the energies injected to the string by changing ǫ and ∆t. In particular,

we are interested in the parameters where the total energy injection is equal to the energy

difference between the straight and hanging strings (i.e. Ereg = 0). We obtain the values

of (ǫ,∆t) for such critical injections. The result is plotted with a purple curve in figure 12.

Remarkably, this result agrees with that of the direct search (shown in the red dots). This

implies that if the amount of the energy larger than the static energy is injected, the

hanging string dynamically changes its topology to two straight strings. By this process,

the two endpoints are causally disconnected. This phenomenon is seen in the dual field

theory as a breaking of the flux tube when the energy bigger than the “binding” energy is

supplied. It has been argued in [31] that the quark antiquark pair would be unbound for

Ereg > 0, forming worldsheet horizons. Our results for the search of the border support

that consideration.

We can show that the string cannot plunge into the Poincaré horizon for Ereg < 0 as

follows. Let us consider dynamical solutions intersecting with the Poincaré horizon. In

terms of the Poincaré target space coordinates, the regularized energy for such a string is

given by

Ereg =

√
λ

2π

∫

∞

0
dz





1 +X ′2

z2
√

(1− Ẋ2)(1 +X ′2)− (Ẋ ·X ′)2
− 1

z2



 , (4.8)

9In [14], it was argued that an extra term proportional to ∂t(γvq) may appear in the regularized

force (4.1). However, that term becomes vq · ∂t(γvq) = ∂tγ in the integrand, and since γ = 0 at the

boundaries of the integration (t = 0, ∆t), there is no contribution in (4.7).
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(a) Global patch (b) Poincaré patch

Figure 13. Snapshots of the string dynamics for the transverse linear quench with ǫ = 0.2 and

∆t/L = 2. Figures (a) and (b) are for the global and Poincaré patches, respectively, and figure (a)

is for ℓ/L = 1. In figure (a), Poincaré horizons are shown by thin curves only on the (χ1, χ4)-plane

for visibility. Dashed curves correspond to the region inside the effective event horizons.

where we took the upper bound of the integration as z = ∞ since the string intersects

with the horizon, and Ẋ ≡ ∂tX and X ′ ≡ ∂zX. It is straightforward to check that the

straight static string X(t, z) = 0 minimizes the above energy as Ereg = 0. This implies

that, even if time-dependence is taken into account, string configurations with Ereg < 0

cannot intersect with the horizon.

Does a string with Ereg > 0 always intersect with the Poincaré horizon? This is a

difficult question since to obtain an answer it is necessary to consider all time dependent

solutions with positive energies. At least in our numerical calculations, the final fate of

the string dynamics for Ereg > 0 is always straight strings. The straight strings may be

regarded as an attractor for positive energy solutions. It would be interesting to see if it is

possible to find fine-tuned initial data and boundary conditions by which the string never

plunges into the horizon.

5 Transverse quenches

We also consider transverse quenches where string motions are in more spatial dimensions

than the longitudinal quenches. In figure 13, we show snapshots of the string dynamics

for the transverse linear quench (3.10) with ǫ = 0.2 and ∆t/L = 2. The string motion

is in the (3 + 1)-dimensions spanned by (t, χ1, χ2, χ4). Figure 13(a) visualizes that the

string plunges into the Poincaré horizon accompanied by the effective horizon formation

on the worldsheet. The solution mapped to the Poincaré patch is shown in figure 13(b).

The string becomes longer as t increases and in the late time approaches the configuration

with two straight strings. Although it is not so much clear in figure 13, we found cusp

formation by checking roots of the Jacobian τ,uχ,v−τ,vχ,u [14]. On the other hand, we did

not observe self-intersections of the string in this example although it is possible from the

dimensional point of view for the transverse linear quench. Self intersections of the string

could be observed in general (3 + 1)-dimensional string dynamics.

Transverse circular quenches induce string dynamics in the whole AdS5 spacetime.

Once we project the profile of the string into subspaces, (τ, χ1, χ2, χ3) and (τ, χ1, χ2, χ4),
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(a) (x1, x2, z)-space (b) (x1, x3, z)-space

(c) (x1, x2, x3)-space

Figure 14. Poincaré coordinate snapshots of the string dynamics for the transverse circular quench

with ǫ = 0.1 and ∆t/L = 2.

we find dynamics qualitatively similar to that in transverse linear quenches. However, we

find no cusp formation nor self interaction. In figure 14, we show snapshots in the Poincaré

coordinates by projecting the (1 + 4)-dimensional dynamics to three dimensional spaces.

The effective horizons appear on the string, and the string approaches z → ∞ in the late

time. This implies that the quark and antiquark are causally disconnected by the strong

quench also in this case.

In figure 15, the forces acting on the quark and antiquark for the transverse quenches

are shown. Their behaviors are similar to the case of longitudinal quenches: the forces

show power law decay in the late time as the string expands. For the transverse linear

quench with (ǫ,∆t/L) = (0.15, 2), we find that the increase of the energy by the quench

is almost the same as the case of the longitudinal quench with the same parameters. The

power law in F is also found t−3.8, consistent with the corresponding longitudinal quench.

The transverse circular quench shown here has a little bit smaller energy injection and a

different exponent t−3.7. These similarities in the exponents implies that in the power law

tail might not be significantly differed by different quench patterns among (i)-(iii), and the

amount of energy injection might be of significant. The force on the antiquark also seem

to behave in the same power law as the quark side. In figure 15(a), however, the curve of

|F̄ | does not look to approach that of |F |, but this might be because of distortion by the

cusps. In contrast, figure 15(b) suggests that the behaviors of the forces will be similar in

very late time.

In these examples of different quenches, we observe common transition to the power

law tail region, and the string plunges into the Poincaré horizon once a sufficient amount
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(a) Transverse linear quench (b) Transverse circular quench

Figure 15. Forces acting on the quark and antiquark for the transverse quenches. The parameters

are (ǫ,∆t/L) = (0.15, 2) and (0.1, 2) for the transverse linear and circular quenches, respectively.

of energy is supplied by the quench. Hence it looks that the the dynamical change of the

string configurations is most likely governed by the strength of the perturbation associated

with the amount of energy injection and less sensitive to the details like quench patterns

of dimensionality of string motions.

What depend on dimensionality of string motions are cusp formation and self-inter-

section. In particular, in the transverse circular quench, there is no cusp formation and

self-intersection. While our time evolution is for purely classical strings, physically finite-Nc

effects can be important at the cusps and self-intersection points. This implies that time

evolution after their appearance may significantly alter due to such corrections, if they are

formed before the event horizons. However, as we saw in this section, for general string

dynamics where the string moves in all (4+1)-dimensions, neither cusp formation nor self-

intersection is found. Hence practically it is not likely that the dynamical disconnection is

prevented by the finite-Nc effects in general quenches.

6 Summary and discussion

We studied strong perturbations of a fundamental string in AdS dual to the flux tube

between a pair of external quark and antiquark in N = 4 super Yang-Mills theory. Non-

linear perturbations were introduced to the string by shaking its endpoints. While our

physical interest was in the Poincaré patch, we adopted the global patch as the target

space for solving the string dynamics numerically. We found that the string plunged into

the Poincaré horizon if the perturbations were strong enough. In this process, effective

event horizons were dynamically created on the worldsheet before the string reached the

Poincaré horizon. The condition for the string plunge was that the injected energy by a

quench exceeded the potential energy of the q-q̄ pair. The forces acting on the quark and

antiquark were found to approach zero at late time with power law decay, whose exponent

depended on the quench parameters. We argued that the presence of the power law tail
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might be associated with redshift effects on the string and the initial curved configuration

of the string.

The slope of the power law depended on the quench parameters. As ǫ/∆t decreases,

the exponent seems to be smaller, while it becomes difficult to observe a long-time power

law tail because the string stops expanding and waves reflect between the boundaries. In

the limit of ǫ/∆t → 0, no dynamics is induced on the string, and the exponent may also

approach zero. On the other hand, for large ǫ/∆t, the slope would be steeper. The velocity

of the string endpoint by quenches reaches the speed of light at some finite ǫ/∆t [14]. In

such a situation, the bulk string element adjacent to the boundary is causally disconnected,

and the initial shape of the bulk string would be irrelevant to the force. In that limit, the

force may drop to zero suddenly after the compact quench is over.

One of the future directions of our work is to study string dynamics in AdS black

hole background.10 In finite temperatures, straight strings extending to the black hole

represent deconfined quarks in gluon plasma [33, 34]. It would be straightforward to see

that a nonlinarly perturbed hanging string changes to straight strings extending to the

black hole. In general, it is known that perturbations around AdS black holes do not

show power law decay tails [25]. However, while the string is heading for the black hole,

power law decay would appear, at least for a sufficiently low temperature, although it

may be eventually taken over by an exponential ring down due to the presence of the

black hole. It would be interesting to see if a time domain of power law decay can be

observed in high temperature black holes. In application of the gauge/gravity duality to

strongly coupled QCD, much attention has been also given to moving quarks in Yang-

Mills plasma [35–41] and moving quark-antiquark pairs [42, 43]. It would be interesting to

apply our computational methods to study nonlinear fluctuations on quarks and mesons

in strongly coupled plasmas from the viewpoint of the holographic string.

The interpretations of the disconnection of the string in the dual field theory is that

the flux tube between the quark and antiquark vanishes. While horizons are created on the

string as if the string were broken into two, this actually is not analogous to the breaking of

the flux tube in “confined” theories. In fact, N = 4 super Yang-Mills theory is conformal

and not confining. What we observed in our AdS setup was that the AdS string having two

static solutions transitioned from the hanging to straight strings. While this dynamical

transition is calculated and observed in a simple setup of the pure AdS background in

this work, this finding would have interesting implications in generalizations of this work:

nonlinear perturbations of strings in confining geometries. The string may become infinitely

long in confining geometries where no disconnected string configuration exists. A related

study was done in [24] for a global AdS string whose boundary conditions are different

from ours, and a phase with endlessly extending string was found when perturbations were

continuously added. It would be interesting to examine if a finite perturbation can make

a string stretch forever as well as create event horizons on the string.

An exact solution of an expanding string with accelerating endpoints has been found

in [44]. This solution, having effective horizons on its worldsheet, has been regarded as the

10A related work in Vaidya-AdS is [32].
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holographic dual of an Einstein-Podolsky-Rosen (EPR) pair [45] since the quark and anti-

quark pair should be color singlet (entangled) but is causally disconnected (See also [46].).

In this paper, we found the dynamical horizon creation on the string worldsheet just by

changing the string endpoints temporarily, and as a result the endpoints became causally

disconnected. How the effective horizons shut their communication was schematically vi-

sualized in figure 6. It would be interesting to consider entanglement and EPR pairing in

this kind of dynamical horizon formation.

Acknowledgments

The authors thank Hans Bantilan, Paul Romatschke, and Kentaroh Yoshida for fruitful

discussions and comments. The work of T.I. was supported by the Department of Energy,

DOE award No. DE-SC0008132. The work of K.M. was supported by JSPS KAKENHI

Grant Number 15K17658.

A Discretization at the boundary

In this appendix, we explain the discretized evolution at the boundary in the global coor-

dinates. This is different from the Poincaré patch’s flat boundary considered in [14]. While

the χ-coordinates are useful for solving equations in the bulk, we find it convenient to go

through the polar coordinates in deriving the discretized equations at the boundary. The

coordinate change between them is given by

χa = ωa tan
θ

2
, (A.1)

where 0 ≤ θ ≤ π/2 is the AdS radial coordinate and ωa are the spherical coordinates of S3.

In terms of the polar coordinates, the constraint equations at the boundary (3.16) become

τ,u =
√

θ,u2 + |ω,u|2 , τ,v =
√

θ,v2 + |ω,v|2 . (A.2)

Let us discretize (A.2). For simplicity, we consider one of the string’s boundaries at u = v;

the other (u = v + β0) can be handled similarly. Introducing notations φN = φ(u+ h, v +

h), φE = φ(u, v + h), φW = φ(u+ h, v) and φS = φ(u, v) where φ represents the fields, we

can discretize the sum of the two equations in (A.2) as

τN − τS =
1

2

(

√

(θN − θE + θW − θS)2 + |ωN − ωE + ωW − ωS |2

+
√

(θN − θW + θE − θS)2 + |ωN − ωW + ωE − ωS |2
)

. (A.3)

From the boundary condition for θ, θ|u=v = π/2, we have θN = θS = π/2. By examining

the boundary series expansions, we find θ,uv|u=v = 0 and ω,u|u=v = ω,v|u=v. Discretizing

them, we obtain θE = π − θW and ωE = ωW . Therefore, (A.3) becomes

τN = τS +
√

(π − 2 θW )2 + |ωN − ωS |2

= τS +
√

(π − 4 tan−1|χW |)2 + |χN − χS |2 , (A.4)
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Figure 16. Constraint violation for several resolutions, N = 400, 800 and 1600. (a) Longitudinal

quench with ǫ = 0.15 and ∆t/L = 2. (b) Transverse linear quench with ǫ = 0.15 and ∆t/L = 2.

(c) Transverse circular quench with ǫ = 0.1 and ∆t/L = 2.

where we used |ωN − ωS | = |χN − χS | on the AdS boundary and θW = 2 tan−1|χW |
obtained from (A.1). By solving (A.4) with (3.14) giving χN = χ(τN ), we can compute

the time evolution, τN and χN .

B Error analysis

In this appendix, we estimate numerical errors by checking the constraint violation. The

constraint equations have been obtained in eq. (3.3). To remove the coefficients diverging

at the boundary, we define rescaled constraints as

C̃1 = −(1 + |χ|2)2 τ2,u + 4|χ,u|2 , C̃2 = −(1 + |χ|2)2 τ2,v + 4|χ,v|2 . (B.1)

Mathematically, they should be zero in the whole computational region if we impose the

constraints at the string’s boundaries and initial surface. Hence, they can be used for

checking our numerical accuracy after discretization.

For visibility, we consider the constraint violation on slices on the worldsheet. We

define a surface Σ(v0) ≡ {v = v0, 0 < u < β0, |τ(u, v0)| < π}. By assembling the surfaces,

we define a one-dimensional function as

Cmax(v) = max
Σ(v)

(|C̃1|, |C̃2|) , (B.2)

where on each Σ(v) we seek the maximum value of the constraint violation by varying

u. We also take the bigger of |C̃1| and |C̃2|. Let N be the number of the discretization

segments on v = const surfaces. We plot Cmax(v) for N = 400, 800 and 1600 in figure 16.

The constraint behaves as Cmax ∝ 1/N2, consistent with our second-order discretization

scheme. In the paper, we basically choose N = 1600 for which the constraint violation is

less than 10−3.
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