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Abstract: We continue to develop the pure connection formalism for gravity. We de-

rive the Feynman rules for computing the connection correlation functions, as well as the

prescription for obtaining the Minkowski space graviton scattering amplitudes from the

latter. The present formalism turns out to be simpler than the metric based one in many

aspects. Simplifications result from the fact that the conformal factor of the metric, a

source of complications in the usual approach, does not propagate in the connection for-

mulation even off-shell. This simplifies both the linearized theory and the interactions. For

comparison, in our approach the complete off-shell cubic GR interaction contains just 3

terms, which should be compared to at least a dozen terms in the metric formalism. We

put the technology developed to use and compute the simplest graviton-graviton scatter-

ing amplitudes. For GR we reproduce the well-known result. For our other, distinct from

GR, interacting theories of massless spin 2 particles we obtain non-zero answers for some

parity-violating amplitudes. Thus, in the convention that all particles are incoming, we

find that the 4 minus, as well as the 3 minus 1 plus amplitudes are zero (as in GR), but the

amplitudes with 4 gravitons of positive helicity, as well as the 3 plus 1 minus amplitudes

are different from zero. This serves as a good illustration of the type of parity violation

present in these theories. We find that the parity-violating amplitudes are important at

high energies, and that a general parity-violating member of our class of theories ”likes”

one helicity (negative in our conventions) more than the other in the sense that at high

energies it tends to convert all present gravitons into those of negative helicity.
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1 Introduction

In paper [1] one of us showed how Λ 6= 0 General Relativity (GR) can be described in the

”pure connection” formalism, in which the only field present in the Lagrangian formulation

of the theory is a (complexified) SO(3) connection rather than the metric. Paper [2] made

the first steps towards setting up the perturbation theory in this formalism, analyzing the

free theory and obtaining the propagator. In addition, a large class of interacting theories

of massless spin 2 particles that are distinct from GR was exhibited, making it particularly

clear that GR is just a special member in a large class of gravitational theories with similar

properties. Earlier works on the pure connection formalism for gravity (in the Λ = 0

setting) include [3] and [4]. Early works on distinct from GR gravitational theories with

two propagating degrees of freedom include [5] and [6]. In works of the author of [6] they are

referred to as ”neighbours of GR”. These earlier developments used formulations involving

other fields in addition to a connection; we refer the reader to [7] and references therein.

– 1 –



J
H
E
P
0
3
(
2
0
1
5
)
1
1
9

A recent work [8] by the present authors gave a more systematic treatment of the

linearized theory in the pure connection setting. One outcome of [8] is a realization that

the reality conditions satisfied by the connection can only be properly understood for Λ 6= 0,

i.e. before the Minkowski limit is taken. This paper also derived the mode decomposition

of the connection into creation/annihilation operators. The mode decomposition obtained

demonstrates, in particular, that the gauge-theoretic description of gravitons is parity

asymmetric, because the two helicities of the graviton are treated quite differently. One

can then expect that a generic gravitational theory built using this formalism is parity-

violating. This expectation will be confirmed in the present paper by a direct computation

of amplitudes of some parity-violating processes.

This is the second paper in a series on the pure connection formalism for gravity.

Our main objective here is to derive Feynman rules, as well as spell out the rules for

extracting the graviton scattering amplitudes from the connection correlation functions.

To illustrate how the formalism can be used for practical computations, we compute the

simplest graviton scattering amplitudes, the two-to-two graviton ones. In the next paper

from the series we apply the formalism to compute more general, in particular the so-called

maximally helicity violating (MHV), amplitudes with an arbitrary number of external

gravitons. The MHV amplitudes turn out to be the same for any member of the family of

gravitational theories that we study. An analysis of the loop amplitudes is postponed to

later papers in the series.

One of the conclusions of this paper is that the gauge-theoretic approach [2] to GR

(and more general gravity theories) works, in the sense that it can be used to reproduce the

known GR results. We also compute the helicity-violating scattering amplitudes that are

zero in GR, but are present in a general member of our family of theories, thus confirming

their parity-violating nature.

However, we hope to be able to convince the reader in a much stronger statement.

Thus, not only the gauge-theoretic description of GR is equivalent (at tree level) to the

standard one, but it is actually a significantly more efficient tool for practical calculations

than the description based on the Einstein-Hilbert action. In particular, we shall see that

the free theory looks considerably simpler in the language of connections, with the gauge-

fixed Lagrangian being of the φ�φ type, and only a set of fields in a single irreducible

component of the Lorentz group propagating. This should be contrasted with the situa-

tion in the metric-based GR, where both the tracefree and the trace part of the metric

perturbation propagate, with different signs in front of the corresponding kinetic terms.

Further, we shall see that in the connection formalism the interaction vertices contain

much smaller number of terms as compared to the metric-based description. For instance

we shall see that the GR cubic interaction vertex contains just 3 terms, of which just a

single term is responsible for the graviton-graviton scattering amplitude. The simplicity of

this cubic GR vertex figures even more prominently in the next paper on MHV amplitudes.

One finds that computations that would be very difficult in the usual metric description

are made easy by the use of the gauge theoretic framework. We will see that these signifi-

cant simplifications are due to the fact that the conformal mode of the graviton, which is

gauge in pure gravity, does not propagate in our formalism even off-shell. This simplifies
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in particular the interactions of the theory, and this in turn allows for computations that

are unimaginable in the usual formalism.

Let us also comment on parity and unitarity in the formalism that we develop. We

shall see that parity of GR, while being a symmetry of the theory, is not manifest in

our description, as it treats the two graviton helicities differently. Also, as was exhibited

in [8], parity in our context is related to the operation of Hermitian conjugation. It is thus

directly tied with the issue of the Lagrangian being Hermitian (something that is again

not manifest in our approach), and therefore unitarity. In these aspects the formalism

developed here is similar to the twistor description of Yang-Mills theory proposed in [9],

which also makes parity and unitarity not manifest. At the moment of writing this, we

do not know whether this is just an accidental similarity or there is a more deep relation

between our gauge-theoretic and the twistor approaches.

Our analysis here will be for a generic point in the space of gravity theories described

in [2], with GR results obtained as just a special case of more general formulas. We decided

against working out just the GR case because treating a general theory is at almost no

expense. For readers only interested in General Relativity we will always make the GR

versions of formulas explicit. However, as we shall see, embedding GR into a larger class

of theories makes some of its properties more transparent.

This paper uses spinors, and in particular the spinor helicity basis for the graviton

polarizations, quite heavily (in the second half of the paper). We shall see that some aspects

of our gauge-theoretic formalism can only be fully appreciated if one works in spinor terms.

Relevant facts about spinors are reviewed in the text. We warn the reader that gravity

community notations are adopted here, and our 2-component spinors are referred to as

unprimed and primed ones (not undotted and dotted). The reason for this choice is our

need, at places, to use the doubly-null tetrad representation of the metric and the self-dual

2-forms. These formulas are standard in the gravity literature using spinors, see e.g. [10],

and rewriting them in terms of dotted/undotted spinors would make them look awkward

(at least to us). We hope that the interested particle physics oriented reader will be able

to follow in spite of these choices.

We would also like to warn the reader that at places this paper becomes quite technical,

as we will have to develop from scratch many results that are simply assumed in more

standard treatments. This includes a prescription for how the scattering amplitudes can

be extracted from the connection correlation functions, as well as a statement of the crossing

symmetry. The results we get are not surprising and could have been guessed from the

start (modulo some minus signs that are characteristic of our approach treating gravity

à la theory of fermions), but we felt we needed to do the exercise to be sure about the

internal self-consistency of our approach. A particularly technical part of the paper is the

one dealing with the prescription of how to take the Minkowski space limit (our theory

begins as a theory of interacting gravitons in de Sitter space). Readers not interested in all

these technicalities can simply take the obtained Minkowski space Feynman rules as the

starting point, and then follow the part of the paper that computes the graviton scattering

amplitudes. For the convenience of the reader we review the Feynman rules in the appendix,

so the paper can well be read in the opposite direction, from the end to the beginning.
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The organization of this paper is as follows. We start with a brief review of relevant

facts from [8]. Then, in section 3 we derive a prescription for how the scattering amplitudes

can be obtained from the connection correlation functions. Here we also discuss the tricky

issues of taking the Minkowski limit. The outcome of this section is a practical prescription

for how to do calculations. We stress that even though the theory starts as being about

gravitons in de Sitter space, the final prescription works with Minkowski space quantities,

and, in particular, the usual Fourier transform is available. Then in section 4 we explain

how the gauge-fixing is done, and obtain the propagator. Section 5 computes the interac-

tion terms, up to quartic interactions. Section 6 reviews the necessary spinor technology.

This technology is then immediately put to use and the graviton polarization tensors are

translated into the spinors language. In section 7 we translate everything in spinor terms

and state the Feynman rules in the their final, most useful for computational purposes,

form. Section 8 then computes the graviton-graviton scattering amplitudes. We conclude

with a discussion.

2 Brief summary of the previous work

In this section we write down, for the convenience of the reader, formulas from [8] that we

need in the present work.

2.1 The theory

The class of gravity theories that we are studying in this work is described by the following

action principle [2]

S[A] = i

∫
f(F ∧ F ). (2.1)

Here i =
√
−1, and F i = dAi + (1/2)εijkAj ∧ Ak is the curvature of a complexified SO(3)

connection Ai. The function f , referred to as the defining function of the theory, is a

gauge-invariant, homogeneous function of degree one mapping symmetric 3 × 3 matrices

to (complex) numbers. The requirement that f is of degree of homogeneity one makes the

quantity f(F ∧ F ) in (2.1) a well-defined 4-form that can be integrated over spacetime.

As we have already mentioned, general relativity (GR) is only a special member of the

class (2.1), and the corresponding defining function is, see [1]

fGR(F ∧ F ) =
1

16πGΛ

(
Tr
√
F ∧ F

)2
, (2.2)

where G is the usual Newton’s constant, and Λ is the cosmological constant.

2.2 Background

As is described in details in [8], we fix a background connection and expand (2.1) around

this background. An explicit expression for the background connection can be found in [8].

Here we will only need the fact that the curvature of this connection satisfies:

F iµν = −M2Σi
µν , (2.3)
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where M is a parameter with dimensions of mass (it gives the unit in terms of which all

other dimensionful quantities are later measured), and Σi
µν are the self-dual 2-forms for

the de Sitter background. These 2-forms carry information about the (de Sitter) metric,

and all our computations below happen in and use this background metric structure. The

parameter M is then just the (inverse of) the radius of curvature of the background de

Sitter metric. We shall see that special care will need to be taken when passing to the

Minkowski limit M → 0, as many of the intermediate formulas will contain inverse powers

of M .

2.3 Convenient way to write the action

To obtain variations of (2.1), it is very convenient to rewrite it in a form such that the

defining function is applied to a certain 3×3 matrix rather than 4-form valued 3×3 matrix.

This is most conveniently achieved by introducing

X̂ij =
1

8iM4
εµνρσF iµνF

j
ρσ. (2.4)

Here εµνρσ is obtained from the volume form εµνρσ of the de Sitter background metric, by

raising all of its indices using the metric. The convenience of this choice lies in the fact that

on the background (2.3) we have X̂ij = δij . The integrand in (2.1) can then be written in

terms of X̂ij

S[A] = −2M4

∫
d4x
√
−g f(X̂), (2.5)

where
√
−g is the square root of the determinant of the de Sitter background metric. Now,

when determining the variations of this action, the variations should only be applied to the

function f and thus the curvature F on which it non-linearly depends. Thus, the variations

of (2.5) are very easy to compute.

2.4 Variations of the matrix X̂

We start by giving the variations of X̂, as a function of the connection, evaluated at the

background X̂ij =̂ δij . We have:

δX̂ij =̂ − 1

M2
Σ(iµνDµδA

j)
ν , (2.6)

δ2X̂ij =̂
1

iM4
εµνρσDµδA

i
νDρδA

j
σ −

1

M2
Σ(iµνεj)klδAkµδA

l
ν ,

δ3X̂ij =̂
3

iM4
εµνρσDµδA

(i
ν ε

j)klδAkρδA
l
σ.

Finally, the fourth variation is zero δ4X̂ij = 0 even away from the background. In all

expressions above Dµ is the covariant derivative with respect to the background connection.

Thus, it is important to keep in mind that D’s do not commute:

2D[µDν]V
i = εijkF jµνV

k, (2.7)

for an arbitrary Lie algebra valued function V i. Here F iµν is the background curvature (2.3).

Thus, the commutator (2.7) is of the order M2. This has to be kept in mind when (in the

limit M → 0) replacing the covariant derivatives D with the usual partial derivatives.
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2.5 Variations of the action

The variations of the action (2.5) are now easy to compute. We have

δS =̂ −2M4

∫
f
(1)
ij δX̂

ij , δ2S =̂ − 2M4

∫ [
f
(2)
ijklδX̂

ijδX̂kl + f
(1)
ij δ

2X̂ij
]
, (2.8)

δ3S =̂ −2M4

∫ [
f
(3)
ijklmnδX̂

ijδX̂klδX̂mn + 3f
(2)
ijklδ

2X̂ijδX̂kl + f
(1)
ij δ

3X̂ij
]
,

δ4S =̂ −2M4

∫ [
f
(4)
ijklmnpqδX̂

ijδX̂klδX̂mnδX̂pq + 6f
(3)
ijklmnδ

2X̂ijδX̂klδX̂mn

+4f
(2)
ijklδ

3X̂ijδX̂kl + 3f
(2)
ijklδ

2X̂ijδ2X̂kl
]
.

Here we have omitted the integration measure
√
−g d4x for brevity. The quantities f

(n)
ij...

are partial derivatives of the defining function with respect to its matrix-valued argument.

As is explained in [8], when evaluated at the background X̂ij = δij , these derivatives can

be parameterized as

f
(1)
ij =

f(δ)

3
δij ,

f
(2)
ijkl = −g

(2)

2
Pijkl, (2.9)

f
(3)
ijklmn = g(3)

∑
perm

1

3!
PijabPklbcPmnca +

g(2)

6
(δijPklmn + δklPijmn + δmnPijkl) , (2.10)

f
(4)
ijklmnpq = −g̃(4)1

∑
perm

1

4!
PijabPklbcPmncdPpqda + g̃

(4)
2

∑
perm

1

3
PijklPmnpq + . . . , (2.11)

where the terms denoted by dots contain δij in at least one of the ”channels” and are not

going to be important for us since they give rise to a contraction that is zero in view of our

gauge-fixing condition, see below. Note, however, that these terms would be of importance

for vertices of valency higher than 4, but we do not consider those in this work. Here

Pijkl :=
1

2
(δikδjl + δilδjk)−

1

3
δijδkl (2.12)

is the projector on symemtric tracefree matrices. Thus, a general theory from the class (2.1)

is parameterized by an infinite number of (dimensionless) independent coupling constants

g(2), g(3), . . ., as well as the value f(δ) of the defining function evaluated at the background.

For GR we get

fGR(δ)=
3M2

p

M2
, g

(2)
GR=

M2
p

M2
, g

(3)
GR=

3M2
p

4M2
, g̃

(4)
GR1=

15M2
p

8M2
, g̃

(4)
GR2=

M2
p

8M2
. (2.13)

Here we have defined M2
p = 1/16πG and chose the scale parameter M to be related to the

cosmological constant as M2 = Λ/3.

As we realized after [8] was completed, the two terms appearing in (2.11) are actually

multiples of each other, so that there is just a single independent coupling constant at the

fourth order. Explicitly, the sum over permutations in the first term in (2.11) is

1

3
(PijabPklbcPmncdPpqda + PijabPklbcPpqcdPmnda + PijabPmnbcPklcdPpqda) , (2.14)
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all other permutations just giving a multiplicative factor reducing 1/4! to 1/3. The sum

over permutations in the second term is

1

3
(PijklPmnpq + PijmnPklpq + PijpqPklmn) . (2.15)

It can be checked by an explicit computation that these two quantities are multiples of

each other. To compute the coefficient we contract both expressions in the index pairs ij

and kl. We have

PijmnPijpq = Pmnpq, Pijklδ
ik =

5

3
δjl, Pijklδ

ikδjl = 5. (2.16)

The contraction of (2.14) gives (7/6)Pmnpq. The contraction of (2.15) gives (7/3)Pmnpq.

We learn that two times (2.14) equals (2.15). This allows us to write (2.11) as

f
(4)
ijklmnpq = −g(4) 1

3
(PijklPmnpq + PijmnPklpq + PijpqPklmn) + . . . , (2.17)

where for GR we get

g
(4)
GR =

13M2
p

16M2
. (2.18)

This is our final expression for the matrix of fourth derivatives of the defining function, to

be used below in the computation of the 4-vertex.

2.6 Linearized action

The linearized action is obtained as half of the second variation of the action (2.5). We also

define the new, canonically normalized field aiµ = (
√
g(2)/i)δAiµ. The linearized Lagrangian

then reads

L(2) = −1

2
Pijkl(Σ

iµνDµa
j
ν)(ΣkρσDρa

l
σ). (2.19)

We emphasize that this is a Lagrangian for gravitons in de Sitter space. It should be

contrasted with a significantly more complicated linearized Lagrangian in the metric-based

description of GR. As is explained in [11], see also below, this Lagrangian assumes the most

transparent form when written in terms of spinors. It is then quite a direct generalization

of the linearized Lagrangian of Yang-Mills theory. It is worth stressing that the linearized

theory is the same for any member of the class (2.1).

2.7 Mode expansion

Once rewritten via the space plus time decomposition, the Lagrangian (2.19) describes two

propagating polarizations of the graviton. Only the symmetric tracefree transverse part

of the spatial connection aij propagates, and, taking into account the connection reality

conditions, one obtains the following rather non-trivial mode decomposition for aij

aij(t, ~x)=

∫
d3k

(2π)32ωk

[
ε−ij(k)uk(x)a−k +ε+ij(k)v∗k(x)(a−k )†−ε+ij(k)vk(x)a+k −ε

−
ij(k)u∗k(x)(a+k )†

]
,

(2.20)

– 7 –
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where we have introduced the following polarization tensors

ε−ij(k) =
M√
2ωk

mi(k)mj(k), ε+ij(k) =

√
2ωk
M

m̄i(k)m̄j(k), (2.21)

and the following modes

uk(x) =
H
M
e−iωkt+i~k~x, vk(x) =

M

H
e−iωkt+i~k~x

(
1 +

iH
ωk
− H

2

2ω2
k

)
. (2.22)

Note that the polarization tensors ε±ij(k) and the modes uk(x), vk(x) are not complex

conjugates of each other, and so the connection is not Hermitian. Instead, it satisfies a

reality condition that relates the Hermitian conjugation of the connection to its second

derivative, see [8].

Here we work in the de Sitter background with ds2 = c2(t)
(
−dt2 +

∑
i(dx

i)2
)
, and

c(t) = H/M , where the Hubble parameter is given by

H =
M

1−Mt
. (2.23)

The rather complicated-looking time dependent functions multiplying the usual plane waves

in (2.22) have to do with the fact that we are in the time-dependent de Sitter background.

We have normalized the mode functions in such a way that they have a well-defined limit

as M → 0, and in this limit they become the usual plane waves. Later we will give a pre-

scription for how the graviton scattering calculations can effectively be done in Minkowski

space. The quantity ωk in (2.20), (2.21) is ωk = |~k|, and the vectors mi, m̄i in (2.21) are
~k-dependent. Suppressing this dependence to have compact formulas, these vectors satisfy

iεijkzjmk = mi, iεijkzjm̄k = −m̄i, iεijkmjm̄k = zi, (2.24)

and ~z = ~k/|~k| is the unit vector in the direction of the spatial momentum ~k. Finally

(a±k )†, a±k are the creation-annihilation operators for the two helicities, which satisfy the

canonical commutational relations

[a±k , (a
±
k )†] = (2π)32ωkδ

3(k − p). (2.25)

3 LSZ reduction and the Minkowski limit

In this section we describe how graviton scattering amplitudes can be derived from the

connection correlation functions. We will also give a detailed prescription of how the

Minkowski spacetime amplitudes are extracted. We shall see that, if one is only interested

in the Minkowski space graviton scattering amplitudes, then all calculations can effectively

be done in Minkowski space, where the usual Fourier transform (including in the time

direction) is available. However, setting up the corresponding formalism requires some

care, because of the blowing up factors of 1/M in the interaction vertices, see below. The

content of this section is new.
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3.1 Creation-annihilation operators

To obtain a version of the LSZ reduction for our theory, we need expressions for the graviton

creation-annihilation operators in terms of the field operator. To obtain these, let us first

give expressions for the Fourier transform of the connection field operator. From (2.20)

we get:∫
d3xe−i

~k~xaij(t, ~x)=
1

2ωk

[
mimja−k

H√
2ωk

e−iωkt+mimj(a−−k)
†
√

2ωk
H

eiωkt
(

1− iH
ωk
− H

2

2ω2
k

)
−m̄im̄ja+k

√
2ωk
H

e−iωkt
(

1 +
iH
ωk
− H

2

2ω2
k

)
− m̄im̄j(a+−k)

† H√
2ωk

eiωkt
]
.

(3.1)

We have used mi(−k) = m̄i(k) in the second and fourth terms. For compactness, the k

dependence of the null vectors mi, m̄i is suppressed in the above formula, and it is assumed

that they are all evaluated at the 3-vector k. We can now take the projection of the mimj

or m̄im̄j terms, and then device an appropriate linear combination of the connection and

its first time derivative to extract the creation-annihilation operators. We get

a−k = iε+ij(k)

∫
d3x v∗k(x)

←→
∂t a

ij , a+k = −iε−ij(k)

∫
d3xu∗k(x)

←→
∂t a

ij , (3.2)

(a−k )† = −iε−ij(k)

∫
d3xuk(x)

←→
∂t a

ij , (a+k )† = iε+ij(k)

∫
d3x vk(x)

←→
∂t a

ij ,

where, as usual f
←→
∂t g = f∂tg − g∂tf , and uk(x), vk(x) are the modes given by (2.22).

Importantly, all the creation-annihilation operators are expressed solely in terms of the

field aij , and the complex conjugate field never appears. Thus, it is quite non-trivial to

see that e.g. (a−k )† is the Hermitian conjugate of a−k . This would involve using the reality

condition for the field operator aij .

As usual in the proof of the LSZ reduction formulas, see e.g. [17] Chapter 5, we now

take time integrals of the time derivative of the creation-annihilation operators. These are

zero in free theory, but the corresponding expressions are used in an interacting theory to

extract the scattering amplitudes. So, we have

a−k (∞)− a−k (−∞) =

∫
dt ∂ta

−
k = iε+ij(k)

∫
d4x v∗k(x)D̄Daij ,

a+k (∞)− a+k (−∞) =

∫
dt ∂ta

+
k = −iε−ij(k)

∫
d4xu∗k(x)D̄Daij ,

(a−k )†(∞)− (a−k )†(−∞) =

∫
dt ∂t(a

−
k )† = −iε−ij(k)

∫
d4xuk(x)D̄Daij ,

(a+k )†(∞)− (a+k )†(−∞) =

∫
dt ∂t(a

+
k )† = iε+ij(k)

∫
d4x vk(x)D̄Daij ,

where the readers are referred to [8] for the definitions of operators D, D̄. Note that on

connection satisfying its free theory field equation D̄Da = 0 all these quantities are zero.

We can now use these expressions to state the rules for extracting the graviton scattering

amplitudes from the interacting theory connection correlation functions.
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3.2 LSZ reduction

Quantum field theory in de Sitter space is an intricate subject with many subtleties. Be-

cause the background is time-dependent, one may argue that even the very in-out S-matrix

is no longer defined, see e.g. [12] for a recent nice description of the difficulties that arise

(and the possible ways to handle them). However, since in this paper we are only inter-

ested in extracting the Minkowski limit results from our formalism, we can ignore all the

subtleties and proceed in an exact analogy to what one does in Minkowski space.

We thus insert a set of graviton creation operators in the far past, and then a set of

annihilation operators in the far future to form a graviton scattering amplitude

〈a−k−(∞) . . . a+k+(∞) . . . |(a−p−)†(−∞) . . . (a+p+)†(−∞) . . .〉 (3.3)

≡ 〈k− . . . k+ . . . |p− . . . p+ . . .〉.

Here k− . . . and k+ . . . are the set of n negative and m positive helicity outgoing graviton

momenta, and p− . . . p+ . . . are the incoming momenta of n′ negative andm′ positive helicity

gravitons. We now add the time ordering, and then express the annihilation operators in

the future in terms of those in the past, and creation operators in the past in terms of

those in the future via the formulas obtained in the previous subsection. This results in

the following formula for the scattering amplitude

〈k− . . . k+ . . . |p− . . . p+ . . .〉=in+n
′−m−m′

∫
d4x−ε

+
ij(k−)v∗k−(x−)D̄D . . .∫

d4x+ε
−
kl(k+)u∗k+(x+)D̄D. . .

∫
d4y−ε

−
mn(p−)up−(y−)D̄D. . .

∫
d4y+ε

+
rs(p+)vp+(y+)D̄D. . .

〈Taij(x−) . . . akl(x+) . . . amn(y−) . . . ars(y+)〉.
(3.4)

The time-ordered correlation functions are then obtained from the functional integral via

the usual perturbative expansion.

We note some unusual features of the formula (3.4). A similar formula can be written

for extracting the amplitudes from the metric correlators. In this case, however, because the

field equation satisfied by the metric perturbation is real, there is only one solution for each

sign of the frequency. In other words, only one type of mode would appear in (3.4), together

with its complex conjugate. In the case of the connection the field equation D̄Da = 0 is

complex. This has the effect that for a given sign of the frequency, e.g. positive, there are

two linearly independent solutions that we denoted by uk(x), vk(x). This is of course just a

manifestation of the parity asymmetry of our formalism, because one of the modes is used

for the negative helicity and the other for the positive.

3.3 Minkowski limit: general discussion

Now we would like to understand how the Minkowski spacetime graviton scattering ampli-

tudes can be extracted from the general formula (3.4). The standard procedure for taking

such a limit is to keep the past and future time limits in the LSZ formula finite, take the
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M → 0 limit, and then take the time limits to infinity.1 This procedure, however, requires

performing all computations in the position space, which is doable, but has the drawback

of the spinor helicity formalism being not available to aid the computation. For this reason

we will follow an alternative route that will eventually allow us to use the usual Fourier

transform and the momentum spinors.

To set the stage, let us first discuss in more details how to take the Minkowski limit

in the metric formalism. In this case one can also write a version of LSZ formula (3.4),

and the amplitudes are obtained from correlation functions of the metric perturbation.

For definiteness let us consider just one Feynman diagram contributing to some scattering

amplitude. In this diagram, every graviton (on internal or external line) is characterized

by its energy ωk, and we would like to concentrate on processes for which for all gravitons

ωk � M . A systematic way to do this is to expand all building blocks of this Feynman

diagram (i.e. external wave functions, propagators and vertices) in powers of M/ωk. The

leading order term in this expansion is the desired Minkowski limit.

Then, instead of first computing the result in de Sitter space and then taking a limit,

one can reduce the problem to a computation in Minkowski space. To see this, we need

the above mentioned rule that the time intervals are taken to be finite, the M → 0 limit

is computed and then the time interval is sent to infinity. Indeed, consider the time

dependence of the external wave-functions and the propagators. For ωk � M this can

be separated into the ”fast” time dependence coming from the exponents eiωkt and ”slow”

coming from the factors of H. The covariant derivatives present in the vertices act on the

external wave functions and the propagators, and the result is sensitive both to the fast

and slow dependence. Let us assume that all the time derivatives have been evaluated.

Then, keeping in mind that we take the limit M → 0 keeping all time intervals finite, we

can switch off the ”slow” time dependence by setting Mt → 0 everywhere. In physical

terms, this corresponds to assuming that the duration of any process is much shorter than

the de Sitter time scale. With the slow time dependence switched off, the space and time

dependence of all the quantities is as in flat space, and the Fourier transform becomes

available. Effectively, the above discussion implies that we can just do the computation in

Minkowski space, using the Minkowski limits of the vertices, propagators and the external

wave-functions.

The situation in our formalism is not so simple. The source of complication, absent in

the metric formulation is that our interaction vertices have powers of 1/M in front of them,

see below. There are similar factors of M and 1/M in the polarization tensors. Thus, in

computing Feynman diagrams and applying (3.4) we face the problem that we can only

take the M → 0 limit of the whole scattering amplitude, but not of the pieces that it is

built from, as some of these pieces diverge in the limit, while some tend to zero. This

appears to prevent us from doing the computation in Minkowski space.

We can, however, circumvent this problem by taking the limit in two steps. First, we

can compute all time derivatives (coming from the vertices) present in a given Feynman

diagram, and then switch off the slow time dependence. At this stage all the quantities

1KK is grateful to Richard Woodard for a discussion on this point.
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are still M -dependent, only the time dependence became the fast time dependence of the

exponentials eiωkt. We can then expand all the quantities, i.e. the external wave-functions

and propagators (possibly with derivatives applied to them) in powers of M/ωk. At this

stage, while M -dependence is still there, we can already do computations in Minkowski

space. In the second step, after the Feynman diagram is evaluated, one keeps only the

leading, zeroth order in M term in the result.

An apparent difficulty with this prescription is that it seems hard to decide how many

orders of the expansion in powers of M/ωk we need to keep for each quantity. Indeed,

in principle there could be powers of 1/M coming from the (positive) polarization tensors

and the vertices cancelling the powers of M coming from (M/ωk)
n, and producing a finite

result. This difficulty is resolved by the following consideration. Let us start by considering

the leading order terms in the expansion of all the quantities. Let us call the result of the

computation of the Feynman diagram where only the leading orders are kept its leading

order part. The first assumption we need to make is that for physically relevant diagrams

(i.e. those arising in computations of scattering amplitudes) it is never the case that the

leading order part blows up in the M → 0 limit. We will see that this assumption is true

for all the amplitudes considered in this paper. It is possible that one can prove this in full

generality, but we will not attempt it here. However, see some further discussion about

this point below.

Let us now consider some amplitude with the leading part surviving in the limitM → 0.

For such an amplitude it is clear that the corrections obtained by keeping the subleading

terms in the expansion of all its building blocks will be vanishing in the M → 0 limit. This

establishes that it is sufficient to consider only the leading parts in the expansion of the

(derivatives of the) wave functions and the propagators.

Let us now come back to our assumption that the leading order part is never singular

in the M → 0 limit. What we will see below when we do the computations is that the

potentially singular leading order parts of the amplitudes, i.e. containing a negative power

of M in front of them, are always zero for reasons of spinor contractions. In other words,

these amplitudes are such that the spinors coming from the helicity spinors inserted on the

external lines contract to zero. It could, in principle happen that there are subleading in

M/ωk terms for which the spinor contractions do not give a null result, and this conspires

to give a non-zero amplitude in the M → 0 limit. If this was the case, it would not be

sufficient to just work with the leading parts of all the building blocks of the diagrams,

which would make the analysis significantly more complicated. While we cannot give a

general proof that this does not happen, the reasons for why the spinor contractions give

a null result for potentially ”dangerous” amplitudes are always very general, and appear

to hold independently of any expansion in powers of M/ωk. We thus assume that the

”dangerous” diagrams that have zero leading parts for reasons of spinor contractions are

zero precisely, i.e. even before any expansion in M/ωk is performed. This allows us to

work with only the leading parts of all the objects. As we have said, to us this assumption

appears to be well motivated by the details of the computations that are made below.

However, it would be comforting to either perform explicit checks (by doing computations

in de Sitter space), or find another direct argument proving this. At the moment, all
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our analysis is based on this assumption. Our results, and in particular the fact that the

GR amplitudes are correctly reproduced, seem to justify the assumption, but more direct

arguments may be necessary to establish this beyond doubt.

3.4 Minkowski limit: prescription for the leading order parts

Let us see how all this works in practice. From the above discussion we know that we

need to keep the leading order of the external wave-functions and propagators, as well as

their derivatives (as coming from the vertices), when everything is expanded in powers of

M/ωk. For propagators this is easy, as the leading order of the propagator itself is just

its Minkowski limit, and the leading order of a covariant derivative of the propagator is

just the usual partial derivative of the Minkowski limit. In physical terms, this can be

rephrased by saying that in Minkowski limit all internal lines, as well as the derivatives

acting on them, are unaware of the fact that they are actually objects in de Sitter space.

Thus, we only need to worry about the leading order parts of the external wave-functions

and their covariant derivatives.

The covariant derivative that is applied to an external graviton wave-function appears

in our interaction vertices only in the combination D[µa
i
ν]. This Lie algebra-valued two-

form can be further decomposed into its self-dual and anti-self-dual parts as in (5.1) below.

From the Hamiltonian analysis in [8], see formula (87) of this reference, we know that the

self-dual part of D[µa
i
ν] is essentially given by the action of the operator D on the spin 2

component aij of the spatial connection. This is modulo the term involving the derivative

of the temporal component of the connection ai0 (shifted by ci, see (87) of [8]), which is

set to zero in the Hamiltonian treatment. Similarly, it is clear that the anti-self-dual part

of D[µa
i
ν] is obtained by applying the derivative operator D̄ to aij , see formula (98) of [8]

for the definition of both operators. Thus, we have to consider the action of D, D̄ on all

the wave-functions that appear in (3.4), i.e. on ε−(k)uk(x) and ε−(k)u∗k(x), as well as on

ε+(k)vk(x) and ε+(k)v∗k(x). Moreover, as we discussed above, we are only interested in the

leading-order behavior of these derivatives in the limit M → 0. We get

Dε−(k)uk = Dε−(k)u∗k = 0,

Dε+(k)vk → −2ωkε
+(k)e−iωkt+i~k~x, Dε+(k)v∗k → 2ωkε

+(k)eiωkt−i
~k~x.

The action of the D̄ operator has been worked out in (135) of [8]. In the limit M → 0 we

can write

D̄ε−(k)uk → 2ωke
−iωkt+i~k~xε−(k), D̄ε−(k)u∗k → −2ωke

iωkt−i~k~xε−(k),

D̄ε+(k)vk → −
M2

ωk
e−iωkt+i~k~xε+(k), D̄ε+(k)v∗k →

M2

ωk
eiωkt−i

~k~xε+(k).

The idea now is to device some Minkowski spacetime wave-functions that give exactly the

same leading order results when the operators limM→0D = −i∂t+ ε∂, limM→0 D̄ = i∂t+ ε∂

are applied. We also note that the limiting case operators are just the complex conjugates

of each other.
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For the modes involving uk and its complex conjugate the answer is obvious — one

should just take limM→0 uk as the corresponding wave-function. Thus, we set

uMk (x) := e−iωkt+i~k~x, (3.5)

and use this wave-function (and its complex conjugate) instead of uk(x) and u∗k(x) every

time it appears in the LSZ formula (3.4). The operators that act on uMk (x) (and its complex

conjugate) are the Minkowski limit ones −i∂t + ε∂ and i∂t + ε∂.

For the vk mode the situation is more non-trivial. If we choose it to be just the ordinary

plane wave we will correctly reproduce the leading order of the action of the D operator.

However, the limM→0 D̄ = i∂t + ε∂ operator will give zero. The reason why one gets a

non-zero answer when acting on the full wave-function vk(x) is that this has a non-trivial

time-dependent factor multiplying e−iωkt+i~k~x. The idea is then to change the frequency ωk
in the plane wave to model this non-trivial time-dependence factor. This is achieved by

the following plane wave

vMk (x) := e−iω̃kt+i~k~x, (3.6)

where

ω̃k :=
√
ω2
k − 2M2 = ωk

(
1− M2

ω2
k

+O

(
M4

ω4
k

))
. (3.7)

Indeed, modulo the higher order corrections this choice of the wave-function gives precisely

the required

(i∂t + ε∂)ε+(k)vMk (x) = −M
2

ωk
ε+(k)vMk (x), (i∂t + ε∂)ε+(k)v∗Mk (x) =

M2

ωk
ε+(k)v∗Mk (x).

(3.8)

At the same time, the leading order term in the result of the action of −i∂t + ε∂ on this

mode is unchanged by this shift of the frequency.

Thus, the choice (3.5), (3.6) satisfies the requirement that when acted upon by the

operators −i∂t + ε∂ and i∂t + ε∂ one reproduces the leading behavior of the derivatives of

the wave-functions with the full time-dependence. Therefore, if we are interested in the

leading order parts of up to the first derivatives of the wave-functions, it is sufficient to

replace the full wave-functions by (3.5), (3.6), and the operators D, D̄ by the corresponding

M → 0 limit operators.

3.5 The prescription for Minkowski limit amplitudes

All in all, we see that the computation of the Minkowski graviton amplitudes can be

reduced to computations with the Minkowski 1/k2 propagator (4.20), the vertices obtained

by replacing the covariant derivatives with partial ones everywhere, with the polarization

tensors (2.21), and with the wave-functions (3.5), (3.6). The rule for the wave-functions

is that the on-shell condition for the negative helicity graviton is the usual one ω = ±ωk,
while the positive helicity graviton should be taken to have a small mass ω = ±ω̃k, with ω̃k
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given by (3.7). In doing the computation one keeps all the M -dependent prefactors, and

at the end takes the limit M → 0 (if this exists).

Let us write the above prescription in terms of a formula. Given that our Minkowski

space wave-functions (3.5) and (3.6) are just the standard plane waves, we can immediately

write down the momentum space LSZ prescription. Indeed, we note that the position space

integrals give us the Fourier transforms of the time-ordered correlation function. As usual

we will be assigning an arrow to each line in the Feynman diagram, with the arrows on

incoming lines pointing towards the diagram, and the arrows on outgoing lines away from

it. Then as usual the 4-momentum of each particle is to be understood as in the direction

of the arrows. This prescription takes care of the factors of uMk , v
M
k and their complex

conjugates. The factors of D̄D will then amputate the propagators on the external lines.

This will also absorb the overall factors of i in the formula (3.4). However, with our

conventions for the mode decomposition there are some signs that are left over. Indeed,

we have D̄D = ∂2t −∆ = −∂µ∂µ = −�. At the same time we have −�eikx = k2eikx, and

so the operator D̄D will cancel k2 from each external line. However, in our conventions

the propagator is 1/ik2, and so we will have a prefactor of (−1)m+m′ left, where m,m′ are

the numbers of incoming and outgoing positive helicity gravitons. This nicely follows the

pattern that positive helicity gravitons are a source of headache in the formalism. However

these minus signs in the amplitudes are convention dependent and are not of any physical

significance. We finally have:

〈k− . . . k+ . . . |p− . . . p+ . . .〉 = (−1)m+m′(2π)4δ4
(∑

k −
∑

p
)
(3.9)

ε+ij(k−) · · · ε−kl(k+)ε−mn(p−) · · · ε+rs(p+) 〈Taij(k−) . . . akl(k+) . . . amn(p−) . . . ars(p+)〉amp,

where the momentum space amplitude is amputated from its external line propagators. We

should add to this formula the prescription that the positive helicity incoming particle 4-

momentum, as well as the 4-momentum of the negative helicity outgoing particle is slightly

massive, see (3.7), while the 4-momenta of the incoming negative and outgoing positive

helicity are massless ω = ωk = |k|.
The above prescription is guaranteed to reproduce the correct leading orderM -dependence.

Thus, it is only consistent if the answers one gets turn out to have non-zero limit as M → 0,

i.e. if all the factors of M cancel out from the end result. Below we will see that this is the

case for the graviton-graviton amplitudes.

3.6 Crossing symmetry

We can now ask about an analog of the field theory crossing symmetry relation for our

scattering amplitudes. We shall discuss the crossing symmetry in the Minkowski space

limit only. We recall that the usual QFT crossing symmetry arises if one takes an incom-

ing particle of momentum ~k and energy ωk, and analytically continues the amplitude to

energy −ωk. The amplitude can then be interpreted as that of an outgoing anti-particle of

momentum −~k.

Let us see what happens in our case. Since the field is electrically neutral, our particles

are their own anti-particles, so we should only expect the helicity to change if we flip one
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graviton from the initial to the final state. That this is indeed the case is seen from our

formula (3.9). Indeed, to make an outgoing particle incoming one should just flip the

direction of the arrow on Feynman diagram external line corresponding to that particle.

This will correctly continue ωk → −ωk and ω̃k → −ω̃k, as well as change the sign of the

corresponding 3-momentum. Note that we do not touch the helicity states. It is then

clear that if we apply the crossing symmetry to a negative helicity outgoing graviton,

we produce a positive helicity incoming one, and similarly if we make a positive helicity

outgoing graviton to be incoming, we will get a negative helicity one. This is clear from the

fact that we are projecting on the negative/positive polarization tensors for the incoming

negative/positive helicity gravitons, but do the reverse projection for the outgoing ones.

Since by flipping one graviton from outgoing to incoming state we always change the

total number of positive helicity gravitons in the amplitude (negative becomes positive,

positive becomes negative, so there is always a change in the number of total positive

helicity particles), then any crossing symmetry flip always introduces a minus sign coming

from (−1)m+m′ prefactor. Such a minus sign is appropriate for fermions, and here we see

it occurring for purely bosonic particles, which again signifies the analogy between our

treatment and that of fermions.

Thus, we see that the crossing symmetry operates within our formalism, and we can

from now on restrict our attention to all gravitons being e.g. incoming. Realistic scattering

amplitudes can then be obtained from these by applying the crossing symmetry relations.

4 Gauge-fixing and the propagator

We will now derive the Feynman rules, starting with the propagator (that was already

referred to in the previous section), and then finishing with the interaction vertices. The

propagator in the pure connection formalism was obtained in [2]. Here we repeat the anal-

ysis, by a slightly simpler method, and add some details such as the gauge-fixed linearized

action before the Minkowski limit is taken. We also derive the ghost sector Feynman rules.

We first work in de Sitter space and then take the Minkowski limit, as is explained in the

previous section.

4.1 Diffeomorphisms

As is discussed in more details in [2, 8], at the linearized level diffeomorphisms act as

δξa
i
µ = ξαΣi

αµ. It is not hard to see what this action is by decomposing the field aiµ into

its irreducible components with respect to the action of the Lorentz group. Thus, let us

introduce the following projectors

P
(3,1)
µi|νj :=

2

3

(
δijgµν −

1

2
εijkΣ

k
µν

)
, P

(1,1)
µi|νj :=

1

3

(
δijgµν + εijkΣ

k
µν

)
. (4.1)

Both act on pairs µi of a spacetime index and an internal one. The projector P (3,1) is on

the irreducible component S3
+ ⊗ S−, and P (1,1) is on S+ ⊗ S− in the spinor representation

S2
+ ⊗ S+ ⊗ S− that the pair µi lives in. Here S+, S− are two 2-dimensional fundamental

representations of the Lorentz group (i.e. the representation realized by unprimed and by
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primed 2-component spinors). The diffeomorphisms are then simply shifts of the (1, 1)

component. They can be completely gauge-fixed by requiring

aiµ = εijkΣj
µ
νakν , (4.2)

or

P
(1,1)
µi|νja

νj = 0. (4.3)

It is important to stress that the gauge-fixing condition for the diffeomorphisms does not

contain derivatives (as is appropriate for the transformation that is merely a shift of the

field in some direction in the field space).

We could now add the square of this gauge-fixing condition to the action (with some

gauge-fixing parameter) and make the corresponding components of the connection propa-

gating. However, this would have the effect that some components of the connection have

the 1/k2 propagator, while the pure diffeomorphism gauge modes have a mode-independent,

algebraic propagator. This would require dealing with the two components separately,

which would make the formalism very cumbersome. To avoid this, we fix the gauge (4.3)

sharply, i.e. work in the corresponding Landau gauge. We shall later see that the gauge-

fixing condition (4.3) is particularly transparent when expressed in spinor terms. It will

simply state that everything but the completely symmetric (in spinor indices) component

of the connection is zero. This condition will be then easy to impose and it will simplify

the computations significantly.

On the other hand, the remaining gauge freedom, namely the usual SO(3) transforma-

tions, will be gauge-fixed (in the next subsection) as in Yang-Mills theory, i.e. by adding a

Dµaiµ term squared to the Lagrangian. It is interesting to note that the way the gauge is

fixed in our pure connection approach is opposite to that used in e.g. the first order formu-

lation of general relativity that possesses both the internal as well as diffeomorphism gauge

symmetry, as in our case. In the first-order formulation the gauge symmetry correspond-

ing to SO(1, 3) local gauge transformations is fixed by requiring the tetrad perturbation

hIJ , I, J = 0, 1, 2, 3 to be symmetric, i.e. by projecting away some irreducible component

of the field with respect to the action of the Lorentz group. The diffeomorphisms are then

fixed in the usual derivative way, using the de Donder gauge. What happens in our for-

malism is precisely the opposite. The diffeomorphisms are fixed in a non-derivative way

by projecting away some irreducible component of the field. The gauge rotations are then

fixed by adding to the action the square of a term containing the derivative of the field.

4.2 Gauge-fixing the gauge rotations

We now add to the Lagrangian the gauge-fixing term

Lgf = −α
2

(
DµP

(3,1)
µi|νja

νj
)2
, (4.4)

where the projector is inserted to make the gauge-fixing condition diffeomorphism-invariant.

As in [2], we could have then done the transformations in full generality, without imposing

– 17 –



J
H
E
P
0
3
(
2
0
1
5
)
1
1
9

the gauge-fixing (4.3). We would find that (for a choice of α to be given below) the gauge-

fixed linearized Lagrangian (modulo the background curvature term) is just a multiple of

aDµDµP
(3,1)a. However, we can simplify the computation significantly by imposing the

gauge condition (4.3) from the very beginning.

The simpler computation is as follows. First, we note that the gauge-fixed connections

satisfy Σµνiaiν = 0. We can then ignore the δijδkl term in the projector Pijkl, and write the

Lagrangian (2.19) as

L(2) = −1

2
δikδjl(Σ

(iµνDµa
j)
ν )(Σ(kρσDρa

l)
σ ). (4.5)

We now use the gauge-fixing condition (4.3) to obtain the following identity

ΣiµνDµa
j
ν − ΣjµνDµa

i
ν = εijkDµakµ. (4.6)

In other words,

Σ(iµνDµa
j)
ν = ΣiµνDµa

j
ν −

1

2
εijkDµakµ. (4.7)

In the derivation of (4.6) we have secretly extended the covariant derivative with respect

to the background connection to a derivative that also acts on the spacetime indices, so

that Σµνi can be taken trough the covariant derivative. Thus, from now on there is also

the usual Christoffel symbol inside Dµ.

We now substitute (4.7) into the Lagrangian (4.5), and use the gauge-fixing condition

once more to convert the result into a sum of just two terms:

L(2) = −2P+µνρσδijDµa
i
νDρa

j
σ +

1

4
δab(D

µaiµ)(Dνajν). (4.8)

Here we have used the fact that

ΣµνiΣρσi = 4P+µνρσ = gµρgνσ − gµσgνρ − iεµνρσ, (4.9)

which is just a multiple of the self-dual projector. We now integrate by parts in the first

term, and then represent the self-dual projector as

4P+µνρσ = gµρgνσ − gµνgρσ + 4P−µρνσ, (4.10)

where P− is the anti-self-dual projector. Then in terms that are anti-symmetric in the

covariant derivatives, we express the commutator2 of two covariant derivatives via the

curvature tensors. We have

D[µDρ]a
i
σ =

1

2
Rµρσ

αaiα +
1

2
εijkF jµρa

k
σ, (4.11)

where Rµρσ
α is the Riemann curvature. We can now use the fact that the last term here

is a purely self-dual quantity, and thus drop this part as it will be multiplied by P−µρνσ.

We get:

4P−µρνσD[µDρ]a
i
σ =

1

2
(gµνgρσ − gµσgρν + iεµρνσ)Rµρσ

αaiα = −Rναaiα, (4.12)

2Our conventions are ∇µVν := ∂µVν−ΓρµνVρ for the covariant derivative and 2∇[µ∇ν]Vρ = −RαρµνVα =

Rµνρ
αVα for the curvature.
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where Rν
α := gσρRσνρ

α is the Ricci tensor. We finally get

L(2) = −1

2
δijg

ρσDµaiρDµa
j
σ +

3

4
δij(D

µaiµ)(Dνajν)− 1

2
δijR

µνaiµa
j
ν . (4.13)

It is now clear that the choice α = 3/2 gives

L(2) + Lgf = −1

2
δijg

ρσDµaiρDµa
j
σ −

1

2
δijR

µνaiµa
j
ν , (4.14)

which is just the scalar field Lagrangian for every component of aiµ (projected onto the

(3, 1) representation by the gauge-fixing condition (4.3)), plus a curvature term.

We can further rewrite (4.14) by using the fact that the background metric is Einstein

with positive scalar curvarture:

Rµν = 3M2gµν . (4.15)

This gives for the gauge-fixed Lagrangian (after integrating by parts)

L(2) + Lgf =
1

2
aµi
(
D2 − 3M2

)
aiµ, (4.16)

where D2 = DµDµ.

What is significant about the gauge-fixed Lagrangian (4.16) is that all modes ap-

pear in it with the same sign in front of their kinetic term, unlike in the metric-based

description that exhibits the conformal factor problem. This is also the reason why the

Lagrangian (4.16) gives rise to simpler Feynman rules than in the metric case. Indeed, in

our case all the fields are treated uniformly, while in the metric case one often meets (e.g. in

the vertices) the tracefree part of hµν and its trace separately, which makes computations

more involved.

4.3 Minkowski space propagator

The quadratic form in the gauge-fixed Lagrangian (4.14) can be inverted in full general-

ity, using the relevant de Sitter space modes to construct the associated Green’s function.

However, as we have already stated above, effectively we are doing all our graviton scat-

tering calculations in Minkowski space. Then the Lagrangian (4.14) admits an obvious

Minkowski spacetime limit

L(2) + Lgf = −1

2
(∂µa

i
ν)2. (4.17)

The propagator is now easily obtained by going to the momentum space, and is obviously

a multiple of the projector P (3,1) times 1/k2. To get all the factors right we introduce into

the action a source term, and integrate out the connection

S(2)[a, J ] =

∫
d4k

(2π)4

[
−1

2
aµi(−k)k2aiµ(k) + Jµi(−k)aiµ(k)

]
. (4.18)

Integrating out the connection we get

S(2)[J ] =

∫
d4k

(2π)4
1

2
Jµi(−k)

P
(3,1)
µi|νj

k2
Jνj(k), (4.19)
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where the usual iε prescription is implied. The propagator is then

〈aµi(−k)aνj(k)〉 =
1

i

δ

δJµi(−k)

1

i

δ

δJνj(k)
eiS[J ]

∣∣∣∣
J=0

=
P

(3,1)
µi|νj

i k2
(4.20)

4.4 The ghost sector

We only need to worry about the ghosts for fixing the non-Abelian SO(3) gauge-symmetry.

This is done as in the case of Yang-Mills gauge theory, with the only non-triviality being

that the projector P (3,1) is inserted into the gauge-fixing condition (4.4). We thus get the

following ghost sector Lagrangian

Lgh =
3

2
c̄iDµP

(3,1)
µi|νj

(
Dνcj − i√

g(2)
εjklaνkcl

)
, (4.21)

where ci, c̄i are ghosts, and we have extended the derivative to the full, non-linear covari-

ant derivative including the connection perturbation. We have also multiplied the ghost

Lagrangian by 3/2 to have the standard ghost 1/ik2 propagator. The quantity g(2) is a

coupling constant that in particular appears in the rescaling of the connection perturbation

in order to put its kinetic term in the canonical form (4.17).

In the Minkowski limit, in which all computations will be done, we can replace Dµ →
∂µ. The Σ-part of the projector in the kinetic term can then be dropped, as the partial

derivatives commute. We then end up with the standard Yang-Mills theory ghost propagator

〈c̄i(−k)cj(k)〉 =
δij

i k2
. (4.22)

5 Interactions

Having derived the propagator we only need the Feynman rule vertex factors, as well as

polarizations to be used to project the external legs of diagrams onto physical graviton

scattering amplitudes. We have already gave expressions (2.21) for the later when spelling

out the mode decomposition. However, we will also need the covariant versions, and these

will require introducing spinors. At the same time we can get sufficiently far in the analysis

of interactions without using spinors. Thus, we first work out the interactions. We first

compute the full de Sitter interactions, and will specialize to the interaction vertices as

relevant in the Minkowski limit in the section that computes their spinor versions.

5.1 Decomposition of Da

Before we do the algebra that exhibits the structure of the interaction vertices, let us

introduce a convenient representation for the Lie-algebra valued two-form D[µa
i
ν]. We

can write

D[µa
i
ν] =

1

4
(Da)ijΣj

µν +
1

8
εijk(Dρajρ)Σ

k
µν + (D̃ai)µν , (5.1)

where

(Da)ij := Σµν(iDµa
j)
ν , (Da)ij = (Da)(ij), Tr(Da) = 0 (5.2)
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is the symmetric tracefree matrix that encodes the self-dual components of D[µa
i
ν], and

(D̃ai)µν stands for the anti-self-dual part

(D̃ai)µν := (Dai)asdµν . (5.3)

Our gauge-fixing condition (4.2), together with the fact that the propagator contains the

P (3,1) projector, implies that in all vertices and on all the lines, internal and external, the

connection aiµ can be taken to belong to just its S3
+ ⊗ S− irreducible component. Indeed,

on the internal lines this projection is carried out by the propagator. On the external

lines it will be performed by the polarization tensors, see below. We can thus use the

gauge-fixing condition for aiµ. Then the matrix ΣµνiDµa
j
ν is traceless, and we have denoted

its symmetric part by (Da)ij and wrote the anti-symmetric part as a separate (second)

term in (5.1). As we shall see below, the above components of D[µa
i
ν] encode different

information, and this is why it is convenient to separate the self- and anti-self-dual parts

of D[µa
i
ν] in the vertices.

Let us use the above expansion of Da to rewrite some terms that frequently appear in

the interaction vertices. We have

1

i
εµνρσDµa

i
νDρa

j
σ =

1

2
(Da)ik(Da)kj− 1

2
(Da)k(iεj)kl(Dµalµ)

+
1

8
(δijδkl−δikδjl)(Dµakµ)(Dνalν)− 2(D̃ai)µν(D̃aj)µν

(5.4)

and

1

i
εµνρσDµa

i
νε
jklakρa

l
σ=

1

2
(Da)ik(Σεaa)kj− 1

4
εikl(Σεaa)kj(Dµalµ)−2(D̃ai)µνεjklakµa

l
ν , (5.5)

where we have introduced

(Σεaa)ij := Σµνiεjklakµa
l
ν . (5.6)

We note that (Σεaa)ij is automatically symmetric as a consequence of (4.2).

5.2 Cubic interaction

The cubic interaction vertex is obtained from the third order terms in the expansion of

the action (2.8). Dividing the third variation by 3!, and rescaling the variation of the

connection δAiµ = (i/
√
g(2))aiµ we get the following third order Lagrangian

3iM2(g(2))3/2L(3) = g(3)(Da)ij(Da)jk(Da)ki (5.7)

−3g(2)

2

(
1

i
εµνρσDµa

i
νDρa

j
σ−M2(Σεaa)ij

)
(Da)ij − 1

i
f(δ)M2εµνρσDµa

i
νε
ijkajρa

k
σ.
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We now use (5.4) and (5.5) to rewrite (5.7) as

3iM2(g(2))3/2L(3) =

(
g(3)− 3g(2)

4

)
(Da)ij(Da)jk(Da)ki +

3g(2)

16
(Da)ij(Dµaiµ)(Dνajν) (5.8)

+3g(2)(Da)ij(D̃ai)µν(D̃aj)µν +
M2

2
(3g(2) − f(δ))(Da)ij(Σεaa)ij

+2M2f(δ)(D̃ai)µνεijkajµa
k
ν .

We note that in the case of GR, see (2.13), the first term in the line 1 and the second term

in the line 2 above are absent and we get simply

iMpML(3)GR=(Da)ij(D̃ai)µν(D̃aj)µν+
1

16
(Da)ij(Dµaiµ)(Dνajν)+2M2(D̃ai)µνεijkajµa

k
ν . (5.9)

Below we shall see that only the first of these 3 terms in the cubic GR Lagrangian is

important for the scattering of two gravitons of opposite helicities. Note that the terms

cubic in the derivatives of the connection blow up in the limit M → 0, both in the general

theory case and in GR. Thus, care will have to be taken when going to this limit. Note also

that the cubic interaction starts with (∂a)3 terms, and thus seems to be very different from

the (∂h)2h cubic vertex in the metric formulation. Still, we will see that in the case of (5.9)

one is working with just a different description of the same GR interactions of gravitons.

We would like to emphasize how much simpler the cubic vertex (5.9) is as compared

to the 13 terms one finds in the expansion of the Einstein-Hilbert Lagrangian around

the Minkowski background metric, see [13], formula (A.5) of the appendix. The cubic

vertex (5.9) is still more complicated than the one in the case of Yang-Mills theory, but

we shall see that in many cases (e.g. for purposes of computing MHV amplitudes) one

effectively needs only the first term, which is of the same degree of complexity as in the

Yang-Mills case. The analogy with Yang-Mills will become even more striking when we

write down the spinor expression for this cubic vertex below.

5.3 Quartic interaction

We now work out the quartic term. Dividing the fourth variation of the action from (2.8)

by 4! we get

−12M4(g(2))2L(4) = −g(4)(Da)ij(Da)ij(Da)kl(Da)kl

+6g(3)Pijkl(Da)im(Da)mj
(

1

i
εµνρσDµa

k
νDρa

l
σ −M2(Σεaa)kl

)
+

6

i
g(2)M2(Da)ijεµνρσDµa

i
νε
jklakρa

l
σ+g(2)(Da)ij(Da)ij

(
1

i
εµνρσDµa

k
νDρa

k
σ−M2(Σεaa)kk

)
−3g(2)

2
Pijkl

(
1

i
εµνρσDµa

i
νDρa

j
σ −M2(Σεaa)ij

)(
1

i
εµνρσDµa

k
νDρa

l
σ −M2(Σεaa)kl

)
For purposes of this paper we will only need the 4-vertex when evaluated completely on-

shell. Thus, let us use the Lorentz gauge condition Dµaiµ = 0. This simplifies both (5.4)
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and (5.5). Using these expansions, and collecting the terms we get

−12M4(g(2))2L(4) =

(
−g(4) +

1

2
g(3) +

7g(2)

16

)
(Da)ij(Da)ij(Da)kl(Da)kl

−3(4g(3)−g(2))(Da)ik(Da)kj(D̃ai)µν(D̃aj)µν+(4g(3)−3g(2))(Da)ij(Da)ij(D̃ak)µν(D̃ak)µν

−3M2

2
(4g(3)−3g(2))

(
(Da)ik(Da)kj − 1

3
Tr((Da)2)δij

)
(Σεaa)ij

−3g(2)

2
Pijkl

(
2(D̃ai)µν(D̃aj)µν +M2(Σεaa)ij

)(
2(D̃ak)µν(D̃al)µν +M2(Σεaa)kl

)
−12M2g(2)(Da)ij(D̃ai)µνεjklakµa

l
ν .

(5.10)

In the case of GR many of these terms become zero and we get a much simpler (on-shell

Dµaiµ = 0) 4-vertex for GR:

2M2
pM

2L(4)GR = (Da)ik(Da)kj(D̃ai)µν(D̃aj)µν + 2M2(Da)ij(D̃ai)µνεjklakµa
l
ν (5.11)

+ Pijkl

(
(D̃ai)µν(D̃aj)µν +

M2

2
(Σεaa)ij

)(
(D̃ak)µν(D̃al)µν +

M2

2
(Σεaa)kl

)
.

This should be compared with a much more formidable expression in the case of the metric-

based GR, see [13], formula (A.6). Even with the graviton field on-shell and the background

metric taken to be flat, this occupies about half a page, as compared to just two lines

in (5.11). We also note that both the GR 4-vertex as well as the general vertex (5.10) start

with terms (∂a)4, to be compared with just two derivatives present in the metric-based

vertex (∂h)2hh. This is part of a general pattern, and in our gauge-theoretic description

the order n vertex starts from (∂a)n terms.

5.4 Ghost sector interactions

For completeness, we also spell out the ghost sector interactions, even though we will not

need this in the present paper. Thus, the second, interaction term in (4.21), after some

simple algebra involving integrating by parts, expanding the product of two ε tensors and

using the gauge-fixing condition (4.3), becomes

Lintergh = − i√
g(2)

∂µc̄i
(
εijkηµν +

1

2
δijΣk

µν

)
aνjck, (5.12)

which is different from the usual Yang-Mills ghost vertex in the fact that an extra Σ-term

is present. The factors in front of this interaction vertex that come from rescaling of the

connection perturbation are also unusual.

6 Spinor technology and the helicity spinors

As is common to any modern derivation of the scattering amplitudes, the formalism of

helicity states turns out to be extremely convenient. These are most efficiently described

– 23 –



J
H
E
P
0
3
(
2
0
1
5
)
1
1
9

using spinors, or, as some literature calls them, twistors. The recent wave of interest into

the spinor helicity methods originates in [9]. The method itself is, however, at least twenty

years older, see e.g. [14, 15]. We start by listing some formulas involving spinors, mainly

to establish the conventions. Our notations and conventions are more similar to those in

the gravity literature, but we hope that the interested particle physics reader will still be

able to follow.

6.1 Soldering form

The soldering form provides a map from the space of vectors to the space of rank two

spinors (with two indices of opposite types). We use the conventions with a Hermitian

soldering form:

(θAA
′

µ )∗ = θAA
′

µ .

The metric is obtained as a square of the soldering form:

ηµν = −θµAA
′
θνB

B′εABεA′B′ , (6.1)

where the minus sign is dictated by our desire to work with a Hermitian soldering form,

while at the same time have signature (−,+,+,+). We can also rewrite this formula as

ηµν = θAµA′θνA
A′ , (6.2)

so that the minus sign disappears. The contraction that appears in this formula, i.e.

unprimed indices contracting bottom left to down right, and the primed indices contracting

oppositely, will be referred to as natural contraction. We will sometimes use index free

notation and then the natural contraction will be implied. Another useful formula is

θµAA
′
θµBB′ = −εBAεB′A

′
. (6.3)

6.2 The spinor basis

It is very convenient to introduce in each spinor space S+, S− a certain spinor basis. Since

each space is (complex) 2-dimensional we need two basis vectors for each space. Let us

denote these by

oA, ιA ∈ S+, oA
′
, ιA

′ ∈ S−.

Note that we shall assume that the basis in the space of primed spinors is the complex

conjugate of the basis in the space S+:

ιA
′

= (ιA)∗, oA
′

= (oA)∗.

The basis vectors are pronounced as ”omicron” and ”iota”. Since the norm of every

spinor is zero, we cannot demand that each of the basis vectors is normalised. However, we

can demand that the product between the two basis vectors in each space is unity. Thus,

the basis vectors satisfy the following normalisation:

ιAoA = 1, ιA
′
oA′ = 1.
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Of course, a spinor basis in each space S+, S− is only defined up to an SL(2,C) rotation.

Any SL(2,C) rotated basis gives an equally good basis, and it can be seen that any two

bases can be related by a (unique) SL(2,C) rotation.

Once a spinor basis is introduced, we have the following expansion of the spinor metric,

that is the εAB symbol

εAB = oAιB − ιAoB. (6.4)

A similar formula is also valid for εA′B′ .

6.3 The soldering form in the spinor basis

The following explicit expression for the soldering form θµA
A′ in terms of the basis one-

forms tµ and xµ, yµ, zµ, as well as the spinor basis vectors oA, oA
′
, ιA, ιA

′
can be obtained:

θAA
′

µ =
tµ√

2
(oAoA

′
+ ιAιA

′
) +

zµ√
2

(oAoA
′ − ιAιA′) +

xµ√
2

(oAιA
′
+ ιAoA

′
) +

iyµ√
2

(oAιA
′ − ιAoA′).

Note that the above expression is explicitly Hermitian.

6.4 A doubly null tetrad

Collecting the components in front of equal spinor combinations in the above formula for

the soldering form we can rewrite it as:

θAA
′

µ = lµo
AoA

′
+ nµι

AιA
′
+mµo

AιA
′
+ m̄µι

AoA
′
, (6.5)

where

lµ =
tµ + zµ√

2
, nµ =

tµ − zµ√
2

, mµ =
xµ + iyµ√

2
, m̄µ =

xµ − iyµ√
2

.

Note that l, n are real one-forms, while m̄µ = m∗µ. The above collection of one-forms is

known as a doubly null tetrad. Indeed, it is easy to see that all 4 one-forms introduced

above are null, e.g. lµlµ = 0. The only non-zero products are

lµnµ = −1, mµm̄µ = 1.

Thus, the Minkowski metric can be written in terms of a doubly null tetrad as

ηµν = −lµnν − nµlν +mµm̄ν + m̄µmν ,

which can also be verified directly by substituting (6.5) into the formula (6.1) for the metric.

6.5 Self-dual two-forms

The self-dual two-forms that play the central role in this article can be written down more

naturally (i.e. without any reference to the time plus space decomposition of the tetrad

internal index) in terms of spinors. We use the following definition:

ΣAB :=
1

2
θAA′ ∧ θBA

′
, (6.6)
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or, without the form notation

ΣAB
µν = θµ

(A
A′ θν

B)A′ , (6.7)

where we used the fact that symmetrization on the unprimed spinor indices has the same

effect as anti-symmetrization on the spacetime indices.

Explicitly, in terms of the null tetrad and the spinor basis we get

ΣAB = l ∧moAoB + m̄ ∧ n iAiB + (l ∧ n−m ∧ m̄)i(AoB). (6.8)

Using εµνρσ = 24i l[µnνmρm̄σ] it can be checked that these forms are indeed self-dual

εµν
ρσΣAB

ρσ = 2iΣAB
µν .

Let us also give the following useful formula for the decomposition of a contraction of

two soldering forms (via a primed index) in terms of the metric and the self-dual two-forms:

θµ
A
A′θ

BA′
ν = −1

2
εABgµν + ΣAB

µν . (6.9)

This is easily checked by either contracting with εAB, which produces minus the metric on

both sides, or by symmetrizing with respect to AB, which reproduces (6.7).

6.6 SU(2) spinors

We need to introduce the notion of SU(2) spinors when we consider the Hamiltonian

formulation of any fermionic theory. In our case, we need this notion to establish a relation

between our polarization tensors (2.21) and some spacetime covariant expressions that we

shall write down below.

To define SU(2) spinors we need a Hermitian positive-definite form on spinors. This

is a rank 2 mixed spinor GA′A : G∗A′A = GA′A, such that for any spinor λA we have

(λ∗)A
′
λAGA′A > 0. Here (λ∗)A

′
is the complex conjugate of λA. We can define the SU(2)

transformations to be those SL(2,C) ones that preserve the form GA′A. Then GA′A defines

an anti-linear operation ? on spinors via:

(λ?)A := GAA′(λ
∗)A

′
. (6.10)

We require that the anti-symmetric rank 2 spinor εAB is preserved by the ?-operation:

(ε?)AB = εAB, (6.11)

which implies the following normalisation condition

GAA′G
A′
B = εAB. (6.12)

Using the normalisation condition we find that (λ??)A = −λA or

?2 = −1. (6.13)
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Thus, the ?-operation so defined is similar to a ”complex structure”, except for the fact

that it is anti-linear:

(αλA + βηA)? = ᾱ(λ?)A + β̄(η?)A. (6.14)

Now for the purpose of comparing to results of the 3+1 decomposition, we need to

introduce a special Hermitian form that arises once a time vector field is chosen. We can

consider the zeroth component of the soldering form

θAA
′

0 ≡ θAA′µ

(
∂

∂t

)µ
=

1√
2

(
oAoA

′
+ ιAιA

′
)
. (6.15)

It is Hermitian, and so we can use a multiple of θAA
′

0 as GAA
′
. It remains to satisfy the

normalisation condition (6.12). This is achieved by

GAA
′

:=
√

2θAA
′

0 . (6.16)

We then define the spatial soldering form via

σi AB := GAA′θ
i BA′ , (6.17)

which is automatically symmetric σi AB = σi (AB) because its anti-symmetric part is pro-

portional to the product of the time vector with a spatial vector, which is zero. Explicitly,

in terms of the spinor basis introduced above we have

σi AB = mioAoB − m̄iιAιB −
zi√

2
(ιAoB + oAιB). (6.18)

The action of the ?-operation on the basis spinors is as follows:

(o?)A = −ιA, (ι?)A = oA. (6.19)

It is then easy to see from (6.18) that the spatial soldering form so defined is anti-Hermitian

with respect to the ? operation:

(σi ?)AB = −σi AB. (6.20)

It is not hard to deduce the following property of the product of two spatial soldering

forms:

σiA
BσjB

C =
1

2
δijεA

C +
i√
2
εijkσkA

C . (6.21)

6.7 Converting to the spinor form

We are now ready to use the spinor objects introduced above. First, let us discuss how the

expressions written in SO(3) notations used so far can be converted into spinor notations.

Indeed, we have so far worked with the connection perturbation being aiµ. It is now

convenient to pass to the spinor description, in which all indices of aiµ are converted into
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spinor ones. This is done with the soldering form for the spacetime index, and with Pauli

matrices for the internal one.

To fix the form of the multiple of the Pauli matrices that is relevant here, we will

require that under this map the identity matrix δij becomes the matrix ε(A|C|εB)D in spinor

notation. Indeed, both matrices have trace 3. Thus, we denote the map from objects with

SO(3) indices to those with pairs of unprimed spinor indices by T iAB and require it to have

the property:

δijT iABT jCD = ε(A|C|εB)D. (6.22)

This fixes T iAB up to a sign.

Now, to determine what multiple of this object appears in the relation between Σi
µν

and ΣAB
µν , both of which have been defined before, we need to look into the algebra satisfied

by them. We have the algebra used many times in the preceding text:

Σi
µ
ρΣj

ρν = −δijηµν − εijkΣk
µν . (6.23)

At the same time, a simple computation of the same contraction of ΣAB
µν gives

ΣAB
µ

ρΣCD
ρν = −1

2
ε(A|C|εB)Dηµν +

1

2
εA(CΣD)B

µν +
1

2
εB(CΣD)A

µν . (6.24)

The coefficient in front of the first term here is half that in (6.23). We thus learn that there

is a factor of
√

2 in the conversion of an SO(3) index into a pair of spinor ones:

1√
2

Σi
µνT

iAB = ΣAB
µν . (6.25)

To fix the sign of the quantity T i AB we just need to compare the terms containing Σ

in (6.23) and (6.24). Substituting (6.25) into (6.24) we get

√
2εijkT

i ABT j CD = −εA(CTD)B
k − εB(CT

D)A
k . (6.26)

We thus see that the matrices T iAB satisfy the following algebra:

T iABT jB
C = −1

2
δijεAC +

1√
2
εijkT kAC , (6.27)

which fixes them uniquely. We see that these quantities are just

T iAB = −iσiAB,

where σiAB are the spatial soldering forms introduced above. Explicitly, in terms of the

spinor basis, as well as a basis mi, m̄i, zi in R3 we have:

T i AB = −imioAoB + im̄iιAιB +
i√
2
zi(ιAoB + oAιB). (6.28)

Note that T iAB is ?-Hermitian, i.e. (T i?)AB = T iAB.
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We can now write down the conversion rule of the εijk tensor. Thus, introducing

ε(AB) (CD) (EF ) := εijkT i ABT j CDT k EF

we get from (6.26)

√
2 ε(AB) (CD)

(EF ) X
(EF ) = −εA(CXD)B − εB(CXD)A. (6.29)

This can be rewritten more conveniently as a rule for the commutator

√
2ε(AB)

(CD)(EF )X
CDY EF = XAEYE

B +XBEYE
A, (6.30)

where the spinor contraction is in a natural order.

6.8 Further on spinor conversion

Let us now discuss the rules of dealing with the spacetime indices. Each such index has to

be converted into a mixed type pair of spinor indices using the soldering form θµAA
′
. We

shall refer to the operator of the partial derivative with its spacetime index converted into

a pair of spinor indices as the Dirac operator:

∂µ := θµAA′∂
AA′ . (6.31)

Note that, because of our signature choice, and thus a minus sign in (6.1), we have ∂AA
′

=

−θµAA′∂µ. One has to be careful about these minus signs.

We now come to objects that have both types of indices, spacetime and internal. The

conversion of these is that we write them as the corresponding soldering forms times objects

with only spinor indices. Thus, e.g. for the connection we write

aiµ = T iABθMM ′
µ aABMM ′ , (6.32)

which defines what we mean by the connection with all its indices translated into the spinor

ones. This choice of the normalization factor in the above formula is convenient, because

as we already discussed before the Kronecker delta δij goes under this map into the object

ε(ACε
B)
D, which is the identity map on the space of symmetric rank two spinors. The only

unusual translation rule is

Σi
µν :=

√
2T iABθMM ′

µ θNN
′

ν ΣAB
MM ′NN ′ , (6.33)

where

ΣAB
MM ′NN ′ = ε(AM ε

B)
N εM ′N ′ . (6.34)

The only reason for putting the factor of
√

2 in (6.33) is that the objects so defined have the

same algebra (6.23) as we are used to, and as was used on multiple occasions in deriving

the form of the interaction terms in the Lagrangian.

The final useful formula for the purposes of conversion is

θMM ′

[µ θNN
′

ν] =
1

2
εNMΣM ′N ′

µν +
1

2
εM
′N ′ΣMN

µν , (6.35)
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where

ΣMN
µν = θ

(M
µM ′θ

N)M ′
ν , ΣM ′N ′

µν = θM(M ′
µ θ

N ′)
νM . (6.36)

Note that the natural contractions appear in these definitions, and, as a result, the anti-

self-dual two-forms ΣM ′N ′
µν are minus the complex conjugates of the self-dual ones ΣMN

µν .

The formula (6.35) then implies

V[µUν] =
1

2
VMM ′UN

M ′ΣMN
µν +

1

2
VM

M ′UMN ′Σ
M ′N ′
µν , (6.37)

where again natural contractions appear. The first term here is the self-dual part, and the

second is anti-self-dual part of the two-form V[µUν].

6.9 Momentum spinors

Consider a massless particle of a particular 3-momentum vector ~k. The 4-vector kµ =

(|k|,~k) is then null. As such, it can be written as a product of two spinors kAkA
′

= θµAA′kµ.

In the case of Lorentzian signature the spinors kA, kA
′

must be complex conjugates of each

other (so that the resulting null 4-vector is real). It is then clear that kA is only defined

modulo a phase. Moreover, as the vector ~k varies, i.e. as ~n = ~k/|~k| varies over the sphere

S2, there is no continuous choice of the spinor kA. We make the following choice:

kA ≡ kA(~k) := 21/4
√
ωk

(
sin(θ/2)e−iφ/2ιA + cos(θ/2)eiφ/2oA

)
, (6.38)

where oA, ιA is a basis in the space of unprimed spinors, and ωk = |k|. Here θ, φ are the

usual coordinates on S2 so that the momentum vector in the direction of the positive z-

axes corresponds to θ = φ = 0. We see that the corresponding spinor is 21/4
√
ωko

A. The

formula (6.38) can be checked using the expression (6.5) for the soldering form.

We can now see effects of the change of the momentum vector direction. Consider, for

example, what happens when the momentum direction gets reversed. This corresponds to

θ → π − θ and φ→ φ+ π. We get

kA(−~k) = i 21/4
√
ωk

(
− cos(θ/2)e−iφ/2ιA + sin(θ/2)eiφ/2oA

)
. (6.39)

We now note that

kA(−k) = i(k?)A(k), (6.40)

where the action of the ?-operation on the basis spinors is given in (6.19). Now, using

the fact that ?2 = −1 it is easy to see that flipping the sign of the momentum twice we

get minus the original momentum spinor. In other words, kA takes values in a non-trivial

spinor bundle over S2.

6.10 Helicity spinors

The aim of this subsection is to use the rules for the i→ (AB) conversion deduced above,

as well as the definition (6.38) of the momentum spinors kA to write down convenient

expressions for the polarization tensors (2.21) in the spinor language.
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Our polarization tensors are built from the vectors mi(k), m̄i(k), where the direction

of the zi axes is chosen to be that of the momentum 3-vector ~k. Thus, let us start by

assuming that ~k points along the positive z-direction. Then from (6.28) we have T iABmi =

i ιAιB, T iABm̄i = −i oAoB, and therefore

mimj → −ιAιBιCιD, m̄im̄j → −oAoBoCoD (6.41)

when converted to spinor notations. We can, however, use the available freedom of gauge

SO(3) rotations and consider polarization tensors (spinors) more general than those above.

Indeed, we can always shift our (spatial projection of the) connection by a gauge transfor-

mation aij → aij + (∂(iφj))
tf , where also the tracefree part needs to be taken in order to

preserve the tracelessness of the aij . Such a shift being pure gauge, it does not have any

effect on the scattering amplitudes. So, we can freely add to both polarization tensors an

object of the form z(iφj), where again a tracefree part is assumed. Moreover, the vector

φi can be different for the positive and negative helicity polarizations. Using the spinor

conversion rules written above, it is not hard to see that this means that one will obtain

correct scattering amplitudes when using instead of (6.41) the following expressions

ιAιBιCιD → (ι+αo)(A(ι+βo)B(ι+γo)CιD), oAoBoCoD → (o+α′ι)(A(o+β′ι)B(o+γ′ι)CoD),

for arbitrary coefficients α, β, γ, α′, β′, γ′. For reasons to become clear below, the most

convenient choice is

ιAιBιCιD → q(AqBqCιD)

(qEoE)3
, oAoBoCoD → o(AoBoC(p?)D)

(ιE(p?)E)
, (6.42)

where qA, pA are arbitrary spinors, and ? is the operation on SU(2) spinors introduced

above. Note that while in the choice of the first polarization spinor we have replaced as

many as 3 copies of ιA by an arbitrary reference spinor qA, in the second polarization we

only changed a single copy of oA to (p?)A. The reason for this will become clear below.

Let us now rewrite the spinor expressions for the full polarization tensors (2.21) using

the spinors kA = 21/4
√
ωko

A and (k?)A = −21/4
√
ωkι

A. We get

ε−ABCD(k) = M
q(AqBqC(k?)D)

(qEkE)3
, ε+ABCD(k) =

1

M

k(AkBkC(p?)D)

(k∗)E(p?)E
. (6.43)

Note that all the annoying factors of
√

2 in the original formulas (2.21), as well as some

minus signs present in the intermediate expressions, have now cancelled. Note also that

while the previous spinor expressions were only valid in a frame where the 3-momentum

was pointing in the z-direction, the expressions (6.43) are valid in an arbitrary frame.

It remains to observe that one will obtain (6.43) as the spin 2 parts of the spatial

projections of the following mixed spinors:

ε−ABCA
′
(k) = M

qAqBqCkA
′

〈q k〉3
, ε+ABCA

′
(k) =

1

M

kAkBkCpA
′

[p k]
, (6.44)

where we have introduced the usual notations for the spinor contractions

〈λ η〉 := λAηA, [λ η] = λA′η
A′ . (6.45)
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We note that the helicity spinors are normalized so that

ε−ABCA
′
ε+ABCA′ = 1. (6.46)

The expressions (6.44) are the main outcome of this heavy in conventions section. We

note that these expressions could have been guessed as the only ones with the correct

dimensions, as well as with the right homogeneity degree zero dependence on the reference

spinors qA, pA
′
, and the right degree of homogeneity under the rescaling of the momentum

spinors kA → tkA, kA
′ → t−1kA

′
. Indeed, it is clear that under these rescalings (keeping

the 4-momentum kAkA
′

unchanged) we get

ε−ABCA
′
(k)→ t−4ε−ABCA

′
(k), ε+ABCA

′
(k)→ t4ε+ABCA

′
(k). (6.47)

However, under any such a guess possibly important numerical factors could have been

missed, and it is gratifying to see that after establishing all the conversion formulas, the

helicity spinors turned out to be just the simplest expressions possible, without any compli-

cating numerical prefactors. We note that the final spacetime covariant expressions (6.44)

explain our choice (6.42) at the level of the spatially projected expressions.

The only complication that remains to be discussed is the fact that the positive helicity

gravitons have to be taken to be slightly massive, as we have seen in the section on the

Minkowski space limit. Because of this, the meaning of the spinor kA that is used in the

positive helicity spinor in (6.44) is not yet defined. To settle this, we shall represent the

massive 4-vector k2 = 2M2 of the positive helicity gravitons as follows

kAA
′

= kAkA
′
+M2 pApA

′

〈p k〉[p k]
. (6.48)

This gives precisely the required k2 = −kAA′kAA′ = 2M2. Here pApA
′

are a reference

spinor and its complex conjugate. At this point it can be arbitrary, but it is convenient to

take it to be the same as the one that appears in the positive helicity spinor in (6.44). It is

now the spinor kA that appears in the decomposition (6.48) is what one has to use in the

positive helicity spinor in (6.44). We emphasize that only the positive helicity momentum

4-vectors should be taken to be massive, while the negative helicity does not need this

complications, and the corresponding momenta 4-vectors come directly as a product of

two spinors.

6.11 A relation to the metric helicity states

It is instructive to see how the metric description helicity spinors can be obtained from

the expressions (6.44). For this we need to recall the passage to the metric perturbation

variable that was explained in great detail in [8]. In that paper we have seen that the metric

perturbation is obtained by applying to the connection the operator D̄. One should also

rescale by 1/M to keep the mass dimension correct. At the spacetime covariant level the

operator D̄ corresponds to the operation of taking the anti-self-dual part of the two-form

dai. In the spinor notations, this boils down to the following expression for the metric

perturbation

hABA′B′ ∼
1

M
∂EA′aB′EAB, (6.49)
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where ∂AA′ = −θµAA′∂µ is the Dirac operator, and the ∼ sign means that we are only inter-

ested in this relation modulo numerical factors. Applying this to the helicity spinors (6.44),

and ignoring the arising numerical factors, one immediately sees that the usual metric

spinor helicity states get reproduced:

h−AA′BB′(k) ∼ qAkA′qBkB′

〈q k〉2
, h+AA′BB′(k) ∼ kApA′kBpB′

[p k]2
. (6.50)

Note that for the negative helicity the metric formulation helicity spinor arises by a single

q spinor in the numerator of (6.44) contracting with the momentum k spinor, removing one

of the factors of 〈q k〉 from the denominator. There is also the cancellation of the factor of

M in the connection helicity spinor with 1/M in the passage to the metric perturbation.

For the positive helicity the mechanism of obtaining the usual metric formulation helicity

spinor is more subtle. Indeed, if the positive helicity graviton 4-momentum was null, then

we would be contracting two momentum k spinors, which would give a zero result. Instead,

it is the second, mass term in (6.48) that gives a non-zero contribution. The factor of M2

in this second term then is nicely cancelled by the 1/M in the helicity spinor and the

additional factor of 1/M in (6.49). We therefore see that it is essential that the positive

helicity graviton is kept massive till the Minkowski limit can be taken.

Once again, the fact that the usual metric helicity states get reproduced could be taken

as the sufficient reason to work with (6.44). However, we find the given above derivation

of (6.44) that does not involve any reference to the metric more self-contained.

7 Feynman rules in the spinor form

Now that we understand how expressions can be converted into the spinor language, we

can write down the derived above Feynman rules in the spinor form. Here we will also

pass to the form relevant in the Minkowski limit, i.e. replace all the derivatives by the

partial ones. As we shall see, there are many advantages in working with spinors, as some

operations that are not easy to deal with in the SO(3) notation become elementary once

one expresses them using spinors. The prime example is the projection on the S3
+ ⊗ S−

representation of the Lorentz group that appeared in our derivation of the propagator. In

the spinor language this simply corresponds to the symmetrization on the unprimed spinor

indices. We shall also see that the interaction vertices take a particularly simple form once

the spinor notations are applied.

7.1 Propagator

We have previously found the propagator to be given by 1/ik2 times the projector P
(3,1)
µi|νj ,

given in (4.1), on the S3
+ ⊗ S− irreducible component of objects of type aiµ with one

spacetime and one internal index. To find what this projector becomes once converted into

the spinor form one can multiply the spacetime indices with the soldering forms, and the

internal indices with T iAB. However, one does not need to do this computation as it is

clear that this projector is simply the product of the identity operator acting on the primed
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index, times the operator of symmetrization of the 3 unprimed spinor indices. Thus, we

can write

〈aEFGE′(−k)aABCA
′
(k)〉 =

1

ik2
εE

(AεF
BεG

C)εE′
A′ . (7.1)

7.2 Pieces of the interaction vertices

Here we develop a dictionary translating the various blocks that appear in the interaction

vertices into the spinor form. As we recall from (5.1), one of the main building blocks of

the vertices is the two-form D[µa
i
ν], and various quantities constructed from it. We remind

that from now on we replace the covariant derivative D by the partial one.

The first block to be translated is the (Da)ij symmetric tracefree matrix, whose defi-

nition is given in (5.2). Applying the rules given above we get:

(Da)ij →
√

2∂(AM ′a
BCD)M ′ , (7.2)

where the result is easy to understand, and the factor of
√

2 comes from the same factor

in the translation (6.33) of Σi
µν . Further, we have

Dµaiµ → ∂MM ′a
AB

M
M ′ . (7.3)

Finally, we have

(D̃ai)µν →
1

2
ΣM ′N ′
µν ∂MM ′a

AB
MN ′ . (7.4)

We also need the spinor representation of the two-form εijkajµakν . Its self-dual part

encoded in the matrix (5.6) is given by

(Σεaa)ij → aCE(A
M ′a

B)
E
DM ′ + aDE(A

M ′a
B)
E
CM ′ . (7.5)

It is (AB) → (CD) symmetric, but it has trace given by the full contraction of the two

connections. The anti-self-dual part of εijkajµakν is given by

(εijkajµa
k
ν)asd →

1√
2

ΣM ′N ′
µν aEF (A

M ′a
B)
EFN ′ . (7.6)

We now introduce some notations to simplify the above spinorial expressions. The

idea behind this notation is that we omit pairs of naturally contracted indices. Thus, we

define

(∂a)ABCD := ∂(AM ′a
BCD)M ′ , (∂a)M

′N ′AB := ∂C(M ′aC
ABN ′), (∂a)AB := ∂MM ′a

AB
M
M ′ ,

(aa)ABCD := aABMM ′a
CD

M
M ′ , (aa)M

′N ′CD := aCD(AM ′aCD
B)N ′ .

(7.7)

The blocks appearing in the interaction vertices can then be written very compactly in

terms of these quantities.
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7.3 Cubic interaction

As we discussed in the section on the Minkowski limit, we keep only the leading order

terms of all the quantities in the limit M → 0. Converting all the terms in (5.8) into spinor

form we get

3iM2(g(2))3/2L(3) = 23/2

(
g(3) − 3g(2)

4

)
(∂a)AB

CD(∂a)CD
EF (∂a)EF

AB (7.8)

+ 2−1/23g(2)(∂a)ABCD(∂a)M ′N ′AB(∂a)M
′N ′

CD + 21/2
3g(2)

16
(∂a)ABCD(∂a)AB(∂a)CD

− 21/2M2(3g(2) − f(δ))(∂a)ABCD(aa)ABCD + 21/2M2f(δ)(∂a)M
′N ′AB(aa)M ′N ′AB,

where an additional factor of 1/2 in the first term in the second line came from the factors

of 1/2 in (7.4), with one of them being cancelled by the factor of 2 that appears in the

contraction of two Σ’s.

The last term in the second line in (7.8) is only (possibly) relevant for loop compu-

tations, for in any tree diagram at least one of the two factors of (∂a)AB gets hit by an

external state, which gives zero. Thus, we shall ignore this term in the present paper. Let

us now consider the second term in (7.8) in more details, which can be seen to be the only

relevant term in the M → 0 limit of the GR cubic interaction.

7.4 The parity-preserving cubic vertex

In the case of GR the coefficients in front of the term in the first line, and the first term in

the third line in (7.8) become zero, and we are left with the simple

iL(3)GR =
1

2

κ

M
(∂a)ABCD(∂a)M ′N ′AB(∂a)M

′N ′
CD + κM(∂a)M

′N ′AB(aa)M ′N ′AB, (7.9)

where we have used (2.13). Here we introduced the usual notation

κ2 := 32πG, κ =

√
2

Mp
. (7.10)

Below we shall see that it is the first term in (7.9) that gives most of the interesting

physics, and, in particular, is the one relevant for computations of the MHV amplitudes.

The second term seems to be suppressed by a factor of M2/E2, where E is energy, as

compared to the first. However, due to the subtleties of taking the Minkowski limit we

cannot just throw it away, and it turns out to give a contribution to some scattering

amplitudes. For now, let us analyze the much more interesting first term and come back

to the second piece of the GR cubic vertex later.

First, we would like to make a pause and emphasize the similarity of the first term

in (7.9) to the vertex of Yang-Mills theory, when rewritten in the spinor notations. Thus,

one starts with the Yang-Mills Lagrangian in the form LYM ∼ (Fsd)
2, where Fsd is the

self-dual part of the curvature. Applying the described above spinor conversion rules, at

the linearized level this gives

L(2)YM ∼ (∂
(A
A′A

B)A′)2, (7.11)
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where AAA′ is the connection, and we omitted the Lie-algebra indices. Our linearized

Lagrangian (2.19), when converted into the spinor form, is precisely analogous, except that

the connection field in the case of gravity has two more unprimed spinor indices. Let us

now look at the Yang-Mills cubic interaction. Again translating into the spinor form we get

L(3)YM ∼ (∂
(A
A′A

B)A′)AAB′AB
B′ . (7.12)

Again, the analogy to the first term in (7.9) is striking. Basically, the gravitational inter-

action described by the first term in (7.9) is the only possible one that can be constructed

following the Yang-Mills pattern, but now with more unprimed indices on the connec-

tion. Indeed, generalizing the first block (∂
(A
A′A

B)A′) to the case with more indices one gets

(∂
(A
A′ a

BCD)A′) ≡ (∂a)ABCD. We would now like to have a symmetric block involving two

connections with free indices being 4 unprimed spinor indices ABCD. Thus, two indices

must come from one connection, and the other two from the other. For reason to be-

come clear below, we also want to have some quantities constructed out of the connections

that contract only in the primed indices. This means that we have to convert one of the

unprimed indices in each connection to a primed using the Dirac operator. This results

precisely in (7.9). The other possible choice of having connections contracting directly,

with no Dirac operators involved, i.e. aAB
E
A′aCDE

A′ , can be easily seen not to give the

desired on-shell amplitudes, see below. We thus learn that (7.9) is the only possible gen-

eralization of the Yang-Mills cubic vertex that gives the correct on-shell amplitudes. The

second term in (7.9) is superficially more analogous to (7.12) than the first, as it involves

just one derivative. However, we will see that it does not give the standard answers for the

on-shell amplitudes, and so is not the ”right” generalization.

Let us now check that the vertex given by (7.9), when evaluated on the graviton

helicity spinors gives just the required − − + and + + − amplitudes, i.e. the squares of

these amplitudes for spin one particles (it is easy to check that the − − − and + + +

amplitudes resulting from it are zero).

Let us first compute the − − + amplitude. The required helicity states are given

in (6.44). We first note that the second term in (7.9) cannot contribute to this amplitude.

Indeed, no matter which pair of legs of this term the two negative helicity states are

inserted, there is always a contraction of the reference spinors qA and the result is zero.

Thus, we only have to consider the first term in (7.9) for this helicity combination. Let us

now recall that the combination (∂a)ABCD only gives a non-zero result when applied to

a positive helicity state. Thus, we must insert the positive helicity wave-function in this

leg. The other two legs are symmetric, and we insert into them the remaining two negative

helicity states. Let us denote the negative helicity momenta by k1, k2, and the positive

momentum by k3. We will assume that all the momenta are incoming. After applying all

the derivatives present in the vertex to their corresponding states we obtain the following

contraction

i
κ

M

1

M
3A3B3C3DM

qAqB1M ′1N ′

〈1 q〉2
M
qCqD2M

′
2N
′

〈2 q〉2
=iκ[1 2]2

〈3 q〉4

〈1 q〉2〈2 q〉2
, (7.13)
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where we have used the usual notation kA1 ≡ 1A, etc. We can now use the momentum

conservation equation, which we contract with the reference spinor qA to get 〈1 q〉1A′ +

〈2 q〉2A′ + 〈3 q〉3A′ = 0. This immediately gives 〈3 q〉2/〈1 q〉2 = [1 2]2/[3 2]2, 〈3 q〉2/〈2 q〉2 =

[1 2]2/[3 1]2, which allows us to rewrite (7.13) as

M−−+ = iκ
[1 2]6

[1 3]2[2 3]2
. (7.14)

This is just the expected square of the spin one result.

The opposite + + − helicity configuration is computed similarly, but now we cannot

ignore the second term in (7.9). So, the computation is somewhat more involved. Let us

consider the first term in (7.9) first. We note that if two positive helicity gravitons hit the

two symmetric legs of this vertex, the reference spinors pA
′

will contract, and this gives

zero. Thus, one of the positive helicity gravitons must necessarily be inserted into the leg

(∂a)ABCD. This of course also comes from the fact that (∂a)ABCD gives zero when applied

to a negative helicity state. Thus, the negative helicity graviton must hit one of the two

symmetric legs. If we choose the state inserted into (∂a)ABCD to be the graviton number

two, we get the following contraction

−i
κ

M

1

M
2A2B2C2DM

1A1BpM ′pN ′

[1 p]2
M
qCqD3M

′
3N
′

〈3 q〉2
= −iκ〈1 2〉2 [3 p]2〈2 q〉2

〈3 q〉2[1 p]2
. (7.15)

To this we must add the contribution from 1 and 2 gravitons exchanged, which gives the

overall contribution from the first term in (7.9) as

−iκ〈1 2〉2 [3 p]2

〈3 q〉2

(
〈2 q〉2

[1 p]2
+
〈1 q〉2

[2 p]2

)
. (7.16)

To this, we must add the contribution from the second term in (7.9). In this case, the

positive helicity gravitons can only be inserted into the two symmetric legs of this vertex.

This gives the following contraction

2iκM3M
′
3EM

qEq
AqB3N

′

〈q 3〉3
1

M

1E1F 1ApM ′

[p 1]

1

M

2E2F 2BpN ′

[p 2]
=−2iκ〈1 2〉2 [3 p]2

〈3 q〉2
〈1 q〉〈2 q〉
[1 p][2 p]

.(7.17)

Adding (7.16) and (7.17) we get

M++− = −iκ〈1 2〉2 [3 p]2

〈3 q〉2

(
〈2 q〉
[1 p]

+
〈1 q〉
[2 p]

)2

. (7.18)

We would like to rewrite the answer in terms of the angle brackets only. To this aim we take

the [3 p] into the brackets, then use the momentum conservation and then the Schouten

identity. This gives the desired

M++− = −iκ
〈1 2〉6

〈1 3〉2〈2 3〉2
. (7.19)

We thus see that the GR cubic vertex is parity-invariant, as it should be of course, in

the sense that the amplitude for an opposite configuration of helicities is given by the
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complex conjugate of the original amplitude. Note, however, that to obtain this result

both terms in (7.9) were used in an essential way. This can be viewed as a justification for

the presence of the second term in (7.9), while it is the first term only that is important

for many calculations, such as e.g. that of MHV graviton amplitudes.

Let us now discuss the corresponding Feynman rules. When we write the vertex factor

corresponding to the first term in (7.9) we obtain 3 terms, since the first instance of (∂a)

corresponding to the self-dual part of the two-form da can be applied to any of the 3 legs

of the vertex. We will not write the vertex factor as we will never need it in this paper,

and because its explicit form containing many ε symbols and symmetrizations is not very

illuminating. Instead, we shall draw a picture of the contractions involved in the vertex

for just one of the terms, when momenta k1,2 that we assume are incoming are on the lines

corresponding to (∂a)asd, and the momentum k12 = k1 + k2 is on the line corresponding to

(∂a)sd. In this picture the red lines correspond to primed, and black to unprimed spinor

indices. The symbols of momenta in circles stand for the factors of kAA
′
. This part of the

full vertex is given by

iκ

M
(7.20)

where one also has to symmetrize over the two external legs that can get contracted to k12.

As we shall see later, for the purpose of computing the most interesting (graviton-graviton

or more generally MHV amplitudes) this will be the only surviving contribution to the full

vertex.

Let us now briefly discuss the case of a general theory. In this case the vertex of

interest in the tree level computations has several pieces. The most ”interesting” part is

still essentially the most interesting part of the GR vertex, i.e. the first term in (7.9), but

with the different prefactor

i
√

2

M2
√
g(2)

(7.21)

We can therefore expect that the Newton constant measuring the strength of interactions

of gravitons in the general theory is

1

16πG
= M2g(2), (7.22)

which is essentially the coupling constant g(2), expressed in the units of M , the only

dimensionful parameter present in the theory. This expectation will be confirmed below

when we compute the parity-preserving graviton scattering amplitude.
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Let us also give a pictorial representation for the second term in (7.9). We have

−2iκM (7.23)

where the factor of two in front comes from the two ways that the symmetric legs can be

applied. The prefactor here is as is relevant for the case of GR. Let us also give a general

theory expression for this vertex. From (7.8) we get the following graphical representation

− i

3
κ3M3f(δ) (7.24)

Here we have already summed over the two ways that the symmetric legs can be applied.

7.5 The parity-violating cubic vertex

For a general theory there are two more vertices. One comes from the first term in (7.8).

Assuming again the convention that the two momenta are incoming and one is outgoing,

and taking into account the symmetry factor of 3!, the vertex can be graphically repre-

sented as

i
√

2(4g(3) − 3g(2))

M2(g(2))3/2
(7.25)

To see what kind of interaction this generates, let us evaluate this vertex on the graviton

polarization spinors. It is immediately clear that it only produces a non-zero result when

all the helicities are positive, because the negative helicity inserted into the combination

(∂a)ABCD gives a zero result. After applying all the derivatives to the external states, we

get for the amplitude coming from this vertex

M+++ =

√
2(4g(3) − 3g(2))

iM5(g(2))3/2
〈1 2〉2〈2 3〉2〈3 1〉2. (7.26)

Using the already known to us fact (7.22) that the Planck mass M2
p = 1/16πG equals

M2g(2) we can express the quantity g(2) here in terms of the Planck mass. Also, to un-

derstand the behaviour of this amplitude in the M → 0 limit we specialize to a family of
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theories considered in the appendix, which are guaranteed to have only Planckian modi-

fications of GR. For this family the difference 4g(3) − 3g(2) = −(27/4)β2M2/M2
p , and the

amplitude becomes

M+++ = i
27κ5β2

16
〈1 2〉2〈2 3〉2〈3 1〉2. (7.27)

Here β is a parameter controlling deviations from GR, see (C.1).

We note that the amplitude of the type (7.27) can arise in a gravity theory with

the (Riemann)3 term in the Lagrangian, see e.g. [18], discussion following formula (57).

However, a theory with this term in the Lagrangian would be parity-preserving, and thus

would also have a non-zeroM−−− amplitude. We stress that in our theories this is not the

case, with only one chiral half of this amplitude being present, and the amplitude M−−−

continuing to vanish as in GR. We thus learn that the higher order in curvature correction

that is present in a general member of our family of theories is not (Riemann)3 but rather

(Weylsd)
3, in other words the cube of the self-dual part of Weyl curvature. No anti-self-

dual part cubed is present, and this is why the 3 negative helicity amplitude continues to

be zero. Below we shall discuss implications of this fact in more details.

7.6 Another first derivative vertex

We finally consider the last remaining piece of a general cubic vertex. It comes from the

first term in the last line of (7.8). Graphically, it can be represented as

i
√

2
3g(2) − f(δ)

3(g(2))3/2
(7.28)

As before, let us understand what kind of interaction this vertex represents by eval-

uating it on-shell. It is easy to see that there can be at most a single negative helicity

graviton. Indeed, any pair of legs in this vertex is connected by a black line. Thus, if there

are two negative helicity states, there will be a contraction of the reference qA spinors,

which results in a null amplitude. Thus, the only possible amplitude is + +−. We also see

that one of the plus helicities must be inserted into the bottom leg. This is because the

derivative present in the bottom leg would give zero when applied to a negative helicity,

and also because if two positive helicity states are inserted from the top, there would be

a contraction of the reference spinors pA
′

along the red lines. For this configuration of

helicities, however, there is no need to compute the result, as it can be seen to go to zero

as M → 0. Indeed, we know that g(2) = M2
p /M

2. From the consideration of the appendix

we know, see (C.18), that the difference 3g(2) − f(δ) = (27/4)αβ2 goes to zero as M2/M2
p .

This means that the prefactor in this vertex goes as M5/M5
p , which is too fast to give

any surviving contribution when contracted with the 1/M factor coming from the helicity

states. So, there is no surviving in the M → 0 limit amplitude that this vertex produces. It
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turns out that this vertex does not contribute to the graviton-graviton amplitudes either,

so we can safely ignore it for the rest of this paper.

7.7 Quartic interaction

As for the cubic vertex, we now take the full expression (5.10), replace all the derivatives

by the partial ones, and convert everything into spinors. Our life is considerably simplified

by an observation that in order to contribute to the graviton-graviton amplitudes the 4-

vertex needs to have at least 4 derivatives. This will be demonstrated below. Taking this

observation into account, we can ignore the lower derivative parts of the vertex (5.10). The

4-derivative part that we keep, converted into the spinor form, reads

−4!M4(g(2))2L(4) =
(
−8g(4)+4g(3)+(7/2)g(2)

)
(∂a)AB

CD(∂a)CD
AB(∂a)EF

MN (∂a)MN
EF

−24(4g(3) − g(2))(∂a)ABEF (∂a)EF
CD(∂a)M ′N ′AB(∂a)M

′N ′
CD (7.29)

+8(4g(3) − 3g(2))(∂a)ABCD(∂a)ABCD(∂a)M ′N ′
EF (∂a)M

′N ′
EF

−12g(2)(∂a)M ′N ′
(AB(∂a)CD)M ′N ′(∂a)E′F ′AB(∂a)E

′F ′
CD .

We emphasize that this is an on-shell vertex, with all legs satisfying ∂µaiµ = 0 condition,

and that only the 4-derivative part was kept. Thus, some terms potentially relevant for

loop computations have not been written down. Only two of these terms survive in the

GR case, and we get

L(4)GR =
κ2

M2
(∂a)ABEF (∂a)EF

CD(∂a)M ′N ′AB(∂a)M
′N ′

CD (7.30)

+
κ2

4M2
(∂a)M ′N ′

(AB(∂a)CD)M ′N ′(∂a)E′F ′AB(∂a)E
′F ′

CD .

We will only write down the vertex factors corresponding to the first term in (7.29),

the reason being that the other terms cannot contribute to the graviton-graviton scattering

(for a particular convenient choice of the reference spinors). This will become clear in the

next section. Thus, in particular the GR 4-vertex present in (7.30) is not at relevant as far

as the graviton-graviton scattering is concerned, and we have written it only for reference.

For the vertex factor we will use the rule that all 4 momenta are incoming. Taking

into account the symmetry factors, the associated vertex is

i(8g(4) − 4g(3) − (7/2)g(2))

3M4(g(2))2
, (7.31)

where one needs to the sum over possible permutations. There are 3 terms that are num-

bered e.g. by what k1 gets connected to.

Just as a reference, we will also give pictures of the index contractions present in the

other 3 terms appearing in (7.29). As we have said, these other terms will not contribute to
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any computations in this paper, but the pictures below will be instrumental in seeing this.

We give them in the order that they appear in (7.29), without any associated prefactors.

(7.32)

The first and the last of these are the ones that appear in (7.30).

8 Graviton-graviton scattering

This is the last section of the present paper, where we put to use all the technology that we

developed. As is the case with the metric-based GR, even the simplest −−++ amplitude

is somewhat easier to compute as just the first non-trivial case of a more general MHV

amplitude with all but two positive helicity gravitons. For such amplitudes one can write

the so-called BCFW recursion relation [19], and then the −−++ amplitude is given by a

sum of two terms, both involving just the known −−+ amplitudes (7.14). However, here

we avoid developing the technology of recursion relations, postponing it to the next paper.

Instead, we compute all amplitudes of interest by directly evaluating the relevant Feynman

diagrams, of course using the spinor helicity technology that we have already developed.

We will see that the −−++ amplitude receives contributions from only tri-valent graphs

with vertices (7.20), and there are two diagrams to compute. The degree of complexity

of this computation is very similar to the analogous textbook computation in Yang-Mills

theory, see e.g. [17]. We first do the computation of the − − ++ amplitude, and then

consider the −+++ and ++++ amplitudes (which are only non-zero in our more general

parity-violating theories).

8.1 The all negative and all negative one positive helicity amplitudes

The amplitudes with at most one positive helicity graviton can be shown to vanish in full

generality, just by a simple count of the number of derivatives present in any given diagram.

Let us first consider the all minus case, with n external legs. In this case the helicity

states (6.44) each carry 3 copies of the negative helicity reference spinor qA. This spinor

can then be chosen to be the same for all the gravitons. Thus, we have 3n copies of qA in

the diagram, and we have to contract them all with some momenta that appear as a result

of evaluating in the derivatives present in the vertices. It is then easy to see that there

are not enough derivatives to avoid contracting the qA’s between themselves. Indeed, the

largest possible number of derivatives is in a diagram with 3-valent vertices only. There

are n− 2 such vertices, and thus at most 3(n− 2) derivatives present (as the largest power

of the derivative in each vertex is 3). Since each derivative can only eat one copy of qA,

there is not enough derivatives for these amplitudes to be non-zero.
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The argument with all minus one plus proceeds similarly, but in this case one chooses

all the reference spinors of the negative helicity gravitons to be the momentum spinor kA

of the positive helicity graviton. Then there are again 3n instances of kA and only at most

3(n− 2) derivatives, which is not enough to avoid the kA’s contracting.

8.2 The −−++ amplitude

This is the only non-vanishing amplitude in the case of GR, as we shall also explicitly see

using our methods.

Let us first verify that the 4-vertex containing diagrams cannot contribute to this

amplitude. This is an argument of the same type that we already gave to show that the

all minus and all minus one plus amplitudes are zero. Indeed, we now have 6 copies of

qA coming from the two negative helicity states, and we can choose them to be equal to

the momentum spinor kA3 of one of the positive helicity graviton. We thus get 9 copies of

kA3 that need to contract with something else than themselves. Let us count other object

available. We have 3 copies of the other positive helicity momentum spinor kA4 coming

from its helicity spinor (6.44). We thus need at least 6 derivatives to absorb the remaining

6 copies of kA3 . These can only come from tri-valent diagrams, as the other diagrams

contain less derivatives. Incidentally, the same argument shows that only the 3-valent

graphs contribute to any MHV amplitude (which in our convention is the amplitude with

at most two plus helicity gravitons).

It remains to see that only the vertices (7.21) can contribute to this amplitude. As

we just saw, we need to have at least 6 derivatives, so the only other possible vertex

is (7.25). We cannot use this vertex twice, because it can only take the positive helicity

states. Thus, let us assume that just one of the vertices used is (7.25). Since this vertex

can only take the positive helicity gravitons, both available positive helicity states must go

in it. The other vertex is then (7.21), with two negative helicity states inserted in it. It

is then a simple verification to see that in the internal edge of the diagram we will have

qAqBqC coming from the negative helicities contracting with k
(A
3 kB3 k

C)
4 or with k

(A
3 kB4 k

C)
4

coming from the positive helicities. Since we have chosen qA to be the momentum spinor

of one of the positive helicity gravitons, this contraction is zero. Again, precisely the same

argument works for a general MHV amplitude, and establishes that only the vertex (7.21)

is relevant in MHV computations. This means that after the identification (7.22) is made,

all MHV amplitudes for a general member of our family of theories are the same as in GR.

In particular, the − − ++ amplitude defining the Newton’s constant is the same, and so

in the following considerations we can assume the form (7.20) of the relevant vertex.

Thus, we only need to consider the 3-valent graphs with vertices (7.21). There are

3 such graphs (s, t, u channels), and each vertex factor has 3 terms. Thus, there are in

principle 27 terms to consider. However, most of them are zero.

A very convenient way to organize the computation is to consider the possible ways

of putting two negative helicities into the vertex (7.20). It is clear that they must go into

the two legs in which the vertex is symmetric. Indeed, any pair of external legs containing

the (∂a)ABCD leg (this is the bottom leg in the pictorial representation) is connected by

a black line. Thus, the insertion of a pair of negative helicity states in any other way but
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from the top gives a zero result. Recalling that the top legs came from the anti-self-dual

part of the two-form dai, we shall refer to them as the ASD legs. Similarly, the bottom leg

will be referred to as SD.

We can now recall our choice qA = kA3 . It means that for many purposes the positive

helicity graviton of momentum k3 behaves like a negative heliclity one. In particular, if we

are to put this positive helicity graviton into the vertex (7.20) together with some negative

helicity graviton, it is easy to see that both necessarily must go into the ASD legs. Indeed,

if the positive helicity goes into the bottom leg in the picture (7.20) it is easy to see that

at least one of the qA’s from the negative helicity graviton will contract with kA3 along

the black lines. Thus, in case of the graviton of momentum k3 and some negative helicity

graviton, both must go into the upper, ASD legs in the figure (7.20).

Let us now compute the result of such insertion of two negative or one negative one

positive of momentum k3 helicity states into the vertex (7.20). For two negative states that

we label by 1 and 2, we get the following quantity

iMκqAqBqC(k1 + k2)
DD′qD

[1 2]2

〈1 q〉2〈2 q〉2
. (8.1)

Similarly, when the states 1 and 3 are put together into this vertex we get

−iMκqAqBqC(k1 + k3)
DD′qD

[1 p]2

〈1 q〉2[3 p]2
, (8.2)

where an extra minus is from ∂EM ′aEABN ′ where we get kE1 qE = 〈1 q〉, but in the denom-

inator of these helicity states we have 〈q 1〉3, and this different order of the contraction

produces an extra minus sign. Two of such minus signs have cancelled each other in (8.1).

We remind the reader that in (8.2) we have used kA3 = qA.

The important point about the results (8.1) and (8.2) is that they can now be put to-

gether with some other state via a 3-vertex (7.20) only in a single way, again from the upper

two legs in the picture. The reason for this is that both of them, as the original helicity

states, contain 3 copies of qA, thus, the argument we gave above about the only possible

way to couple such states applies. This means that the vertex (7.20) works only ”in one

direction” coupling the negative helicities or the positive helicity graviton of momentum k3
by taking them in its ASD legs. As an aside remark, we note that this immediately implies

that even in a general MHV amplitude with two plus helicity gravitons, the vertex (7.25)

cannot be used. Indeed, it could only be used to couple the two positive helicity gravitons

to all negative gravitons already coupled in some way with (7.21). However, the one leg

off-shell current with any number of negative helicity gravitons is necessarily proportional

to qAqBqC , and this will vanish when contracted with what comes from the vertex (7.25),

as we have already discussed above. In the next paper we will put these facts to work

and compute the one leg off-shell all negative helicity current. For now we continue our

consideration of the −−++ amplitude.

The above picture of the vertex (7.20) working as a coupler of states just in one

direction gives 3 possibilities to consider. One can either couple first the two negative
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helicity gravitons 1 and 2, and then couple the result to 3, or first couple 1 and 3, and then

couple to 2, or first couple 2 to 3 and then to 1.

In all these cases one couples to the positive helicity graviton 4 at the very end. These

are of course just the 3 different s, t, u channels, but we now have just 3 terms to consider

instead of 27.

The final simplification comes from the availability to choose the positive helicity ref-

erence spinor pA
′

conveniently. We recall that we have not yet made any choice of this in

the analysis so far, so we are now free to make the most convenient choice. We choose

pA
′

= 2A
′
, which eliminates the possibility (8.2) to couple 3 directly to 2. This leaves just

the first two terms in the above picture to consider.
Let us compute the diagram when 1 and 2 get coupled first, and then couple to 3. We

have computed the result of coupling 1 and 2 in (8.1). We then multiply this result by the
propagator 1/ik2, where k2 = kAA′kA

A′ computes, using the fact that both k1 and k2 are
null, to just k212 = 2〈1 2〉[1 2]. We now couple together (8.1) with the propagator added
at the end with the positive helicity state 3. After applying the derivatives present in the
vertex we get the following contraction

(i)2κ2qAqB(k1 + k2)EM ′qE(k1 + k2)FN ′qF (k1 + k2 + k3)DD′
[1 2]

2

〈1 q〉2〈2 q〉2
1

2i〈1 2〉[1 2]
M
qCqDp

M ′
pN

′

[3 p]
2

= 2iM
(κ

2

)2
qAqBqC(k1 + k2 + k3)DD′qD

[1 2]

〈1 2〉
〈q|k1 + k2|p]2

〈1 q〉2〈2 q〉2[3 p]
2 .

We finally insert into this result the last remaining positive helicity (1/M)4A4B4CpD
′
/[p 4].

We can also use the momentum conservation to replace k1 + k2 + k3 by −k4 (all momenta

are incoming). Substituting also qA = 3A and pA
′

= 2A
′

we get, overall

2i
(κ

2

)2 [1 2]3

〈1 2〉
〈3 4〉4

〈2 3〉2[2 3]2
. (8.3)

We now compute the other non-vanishing diagram, where 1 gets first connected to 3,
and then the result connects to 2. Adding to (8.2) the propagator, taking the helicity state
for 2 and applying all the derivatives gives the following contraction

(i)2κ2 qAqB(k1 + k3)EM ′qE(k1 + k3)FN ′qF (k1 + k2 + k3)DD′
[1 p]

2

〈1 q〉2[3 p]
2

1

2i〈1 3〉[1 3]
M
qCqDp

M ′
pN

′

〈2 q〉2

= 2iM
(κ

2

)2
qAqBqC(k1 + k2 + k3)DD′qD

[1 p]
2

〈1 3〉[1 3]

〈q|k1 + k3|p]2

〈1 q〉2〈2 q〉2[3 p]
2 .

We now put in this the last remaining state 4, and use the values of qA, pA
′

to get

2i
(κ

2

)2 [1 2]4

〈1 3〉[1 3]

〈3 4〉4

〈2 3〉2[2 3]2
. (8.4)
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Adding (8.3) and (8.4) and using the momentum conservation we get

−2i
(κ

2

)2 〈3 4〉4

〈2 3〉2[2 3]2
[1 2]3〈1 4〉[1 4]

〈1 2〉〈1 3〉[1 3]
. (8.5)

We now convert as many square bracket contractions into the round ones using the mo-

mentum conservation identities, e.g. [1 4]/[1 3] = −〈2 3〉/〈2 4〉. We finally get

M−−++ = 2i
(κ

2

)2
〈3 4〉6 1

〈1 3〉〈1 4〉〈2 3〉〈2 4〉
[1 2]

〈1 2〉
, (8.6)

which is the usual GR result, see below.

To rewrite (8.6) in a more recognizable form, we evaluate the spinor contractions

present in the center of mass frame, and rewrite everything in terms of the Mandelstam

variables. The relevant contractions are given in (A.3). We get

M−−++ = i
(κ

2

)2 s3
tu
, (8.7)

which is the form one find this result in e.g. [20], formula (17), modulo the factor of i that

most likely has to do with different conventions, or in [23], formula (40) with the coefficient

c given after formula (42). Our factors in (8.7) precisely match those in [23].

We emphasize that the result (8.7) holds for a general member of our family of theories.

It is a particular case of a more general result that all MHV amplitudes (i.e. amplitudes with

just two positive helicity gravitons) are the same for all members of our family, provided

one identifies the Newton’s constant as in (7.22). The generality of the result (8.7) is

important, because it immediately tells us important information about the types of higher

derivative terms that are present in the Lagrangian of our theories if one interprets them as

metric theories. Indeed, for a general counterterm corrected Einstein-Hilbert Lagrangian

one expects (8.7) to get modified, see e.g. formula (61) of [18]. The fact that this does not

happen for our class of theories tells us that no such R4 type modifications are present.

Once again it illustrates a very tightly constrained character of the modifications present

in our different from GR gravitational theories.

8.3 The −+ ++ amplitude

We now compute the first example of an amplitude that is zero in GR, but non-zero in a

general parity-violating theory (the +++ amplitude encountered in the previous section is

zero once the momentum is taken to be real and the momentum conservation is imposed).

The first check that we need to do is that both for this, and the ++++ amplitude only

the 4-vertices with at least 4 derivatives can contribute, and so it is sufficient to restrict

one’s attention to (7.29). Let us first run the argument for the all plus case. Here we have 4

reference spinors qA
′
, and these need to be contracted with something else than themselves.

Therefore, one must have at least 4 derivatives. The same argument also works in the case

−+++, if one chooses the positive helicity reference spinors to be equal to the momentum

spinor for the negative helicity state.
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Let us now check that there cannot be any contribution to this amplitude from the

4-valent vertices. Since we have one negative helicity, only the vertices in (7.32) could

contribute, with the negative helicity inserted into one of the ASD legs, i.e. where the

contraction of the derivative with the connection is of the form ∂EM ′aEABN ′ . However,

such a leg gets necessarily contracted with another ASD leg, where we will have a positive

helicity graviton. As usual, we can choose the reference momenta of all positive helicity

gravitons to be the same and equal to the momenta of the negative one. Let the negative

helicity graviton be of momentum k1, then we choose pA
′

= 1A
′
. It is now easy to see that

the primed index contraction will give that of pA
′

with itself, and so these 4-valent graph

diagrams cannot contribute. Another way to phrase this argument is to note that there is

always a red line connecting at least one pair of vertices in (7.32). Such red lines give a

contraction of the reference spinors pA
′
, or of these reference spinors with the momentum

spinors 1A
′
, and this gives a zero result.

It remains to compute contributions from the 3-valent graphs. There appears to be

many possibilities, as we have 4 different types of 3-valent vertices to consider. Indeed,

because we need just 4 derivatives to be present, it appears that even the one-derivative

vertices can give some contribution. However, as usual, most of the possibilities give a zero

result. In particular, the one-derivative vertices cannot contribute. Let us check this first.

The way to check which diagrams can contribute is to follow the red lines. With our

choice pA
′

= 1A
′

we know that we cannot put together states in a pair of legs that is

connected by a red line. E.g., in the GR vertex (7.21) we can only put the states one in

an upper leg, one in a lower, but not two in the upper ASD legs, because this would result

in a zero spinor contraction. If we do put two states into this vertex in the only allowed

way, we will get the reference spinor pA
′

on the free red line, later to be contracted into

some other 3-valent vertex. The same argument applies to (7.23) and (7.24) where we

again see that in order to avoid the contractions of the positive helicity reference spinors

we need to use a very specific insertion. Thus, in the case of (7.23) we must necessarily

insert the external states from the top, with again a reference spinor pA
′

appearing on the

red line of the free leg (bottom in this case). With (7.24) we can only insert the external

states one into a top leg, one into a bottom, as these are not connected by a red line.

Again, there is a pA
′

spinor appearing on the free leg. This immediately tells us that the

vertices (7.21), (7.23) and (7.24) cannot be paired, i.e. any diagram involving only vertices

of these types is zero (for this choice of helicities). This means that one of the vertices

must be (7.25). In particular, this argument explains why this amplitude is zero in GR (in

our formulation).

The easiest way to see that the diagrams involving vertices (7.23), (7.25)

and (7.24), (7.25) cannot contribute is to work out the M -dependence. The prefactor

in (7.25) goes as M3/M5
p . The helicity states give M from the negative helicity times

1/M3 from the positive. Overall, this leaves a factor of M to first positive power. Thus,

in order for these diagrams to give a surviving in M → 0 contribution the other 3-valent

vertex must have a negative power of M in front. However, this is not the case. The

vertex (7.23) goes as M/Mp, and the vertex (7.24) goes as M5/M5
p . Thus, no non-zero

Minkowski limit contributions are produced in this case.

– 47 –



J
H
E
P
0
3
(
2
0
1
5
)
1
1
9

The only possibly non-vanishing in the M → 0 limit diagram is therefore one involving

GR vertex (7.21) and the vertex (7.25). We must necessarily insert the negative graviton

into the vertex (7.21), in one of the upper legs. Also, some positive helicity graviton should

go into the bottom leg of this vertex. Let us compute the corresponding contraction,

including the propagator at the end. We take the positive graviton to be the one of

momentum k2, and get

− iκ

M
M
qEqF 1M

′
1N
′

〈1 q〉2
1

M
2E2F 2(A2B(k1 + k2)

C)
N ′

1

2i〈1 2〉[1 2]
(8.8)

=
κ

2M2

〈2 q〉2

〈1 2〉〈1 q〉2
2A2B2C1M

′
.

The free indices here are ABCM ′. We have to contract this object with one obtained by

combining the gravitons 3 and 4 via the vertex (7.25). This gives

i
√

2(4g(3) − 3g(2))

M2(g(2))3/2
1

M2
3E3F 4E4F 3(A3B4C4D)(k3 + k4)

D
M ′ . (8.9)

The symmetrization here, together with its contraction with k3 + k4 can be written as

3(A3B4C4D)(k3 + k4)
D
M ′ =

1

2

(
3D3(A4B4C) + 4D4(A3B3C)

)
(k3 + k4)

D
M ′ (8.10)

=
1

2

(
〈4 3〉3(A4B4C)4M ′ + 〈3 4〉4(A3B3C)3M ′

)
.

Overall, after contracting the above two quantities, we get for this contribution to the

amplitude

i(4g(3) − 3g(2))

2M2M4
p

〈2 q〉2〈3 4〉3〈2 3〉〈2 4〉
〈1 2〉〈1 q〉2

(〈2 4〉[1 4]− 〈2 3〉[1 3]) . (8.11)

This is 34 symmetric, as it should be. Note that we have replaced κ with
√

2/Mp and

also used the fact that M2g(2) = M2
p . We should now add contributions from the 2 more

diagrams in which 1 first gets connected to 3 and then to 1 and 4, and another one where

1 first gets connected to 4 and then to the rest. What one gets can be checked to be

q-independent, as it should be of course. So, we shall make a choice and set qA = 4A, so

that there is just one more contribution to consider. It reads

i(4g(3) − 3g(2))

2M2M4
p

〈3 q〉2〈2 4〉3〈3 2〉〈3 4〉
〈1 3〉〈1 q〉2

(〈3 4〉[1 4]− 〈3 2〉[1 2]) . (8.12)

We now set qA = 4A and add the above two quantities. We can also use the momentum

conservation to note that the quantities in brackets in both (8.11) and (8.12) are equal,

so that we can keep only the first one of them in each case, and double the result. We

thus get

i(4g(3) − 3g(2))

M2M4
p

[1 4]
〈2 4〉3〈3 4〉3〈2 3〉

〈1 4〉2

(
〈2 4〉
〈1 2〉

− 〈3 4〉
〈1 3〉

)
. (8.13)
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Using the Schouten identity this finally gives

M−+++ = i
(4g(3) − 3g(2))

M2M4
p

[1 4]

〈1 2〉〈1 3〉〈1 4〉
〈2 4〉3〈3 4〉3〈2 3〉2. (8.14)

Using the momentum conservation this can be seen to be 234 symmetric.

It is instructive to rewrite the result (8.14) using the Mandelstam variables. The

relevant spinor contractions in the center of mass frame are given in the appendix, see (A.3).

One gets

M−+++ =
(4g(3) − 3g(2))

8iM2M4
p

stu. (8.15)

Specializing to the one-parameter family of theories guaranteed to contain only Planckian

modifications of gravity, we use (C.12) and get

M−+++ = i
27β2

32M6
p

stu. (8.16)

Here β is a parameter that controls the strength of deviations from GR, see (C.1). We see

that at high energies this amplitude goes as E6/M6
p .

8.4 The + + ++ amplitude

We now study the final graviton-graviton amplitude, involving 4 incoming gravitons of

positive helicity. This amplitude vanishes if there are just the GR vertices, but is non-

vanishing in general, as we shall now compute.

Many of the argument of the previous section apply, and we can see that the 4-vertices

in (7.32) do not contribute. We also know that from the 3-valent diagrams, only ones

involving the vertex (7.25) can contribute. We will analyze the 3-valent diagrams containing

just one copy of the vertex (7.25) in the appendix. Let us now consider the diagram

containing two vertices of the type (7.25). We know that the prefactor in this vertex goes

as M3/M5
p . Given two such prefactors, and taking these together with the factor of 1/M4

coming from the positive helicity states, we see that the result goes as M2, and so does

not survive in the Minkowski limit.

We thus have to consider only the contributions from the 4-valent graphs with the

vertex (7.31), as well as 3-valent graphs involving just one copy of the vertex (7.25). The

later are worked out in the appendix. On the other hand, the computation of the 4-valent

diagram is very easy, because after the derivatives get applied to the external states, one

is just left with (1/M)kAkBkCkD quantities, where kA is the corresponding momentum

spinor, to contract as dictated by the black lines in figure (7.31). The result is

i(8g(4) − 4g(3) − (7/2)g(2))

3M8(g(2))2
(〈1 3〉4〈2 4〉4 + 〈1 2〉4〈3 4〉4 + 〈1 4〉4〈2 3〉4).

We can rewrite the above results more compactly by going into the center of mass frame

and introducing the Mandelstam variables (A.4). Using the results of spinor contractions
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given in (A.3) we get

M++++
4−vert =

i(2g(4) − g(3) − (7/8)g(2))

12M4M4
p

(s4 + t4 + u4). (8.17)

For theories having only Planckian modifications, such as the family described in the ap-

pendix, we have (C.16), and

M++++
4−vert = i

27β3

48M8
p

(s4 + t4 + u4). (8.18)

Adding this to the contribution (D.23) from the 3-valent diagrams from the appendix we

get the following answer for this amplitude

M++++ = i
135β2

16M6
p

stu+ i
27β3

48M8
p

(s4 + t4 + u4). (8.19)

At sub-Planckian energies the first term dominates and the amplitude goes as E6/M6
p .

9 Discussion

The main outcome of this work is a derivation of the Feynman rules, as well as of the

prescription for computing the Minkowski space graviton scattering amplitudes. For the

convenience of the reader these are listed in the appendix.

Our main physical result is the computation of the graviton-graviton scattering am-

plitudes. We recall that in GR there is just one non-vanishing such amplitude (in the

convention that all particles are e.g. incoming), and this is the amplitude with two gravi-

tons of one and two of the opposite helicity. Using the terminology of maximally helicity

violating (MHV) amplitudes (in our conventions these are amplitudes with just two posi-

tive helicities), the GR graviton-graviton amplitudes is the simplest MHV amplitude. Our

computation confirms the GR result, which is completely expected since we work with just

a different, but equivalent at the tree level formulation of General Relativity.

However, some aspects of this computation deserve to be emphasized. As we already

stressed in the Introduction, the gauge-theoretic formulation of GR is quite different from

the metric-based one, with one of the most significant distinctive features being that the

graviton conformal mode does not propagate even off-shell. The fact that such a reformu-

lation is possible does not come as a surprise. Indeed, in the formulation due to Bern, see

e.g. [20], one introduces an additional scalar field, and then does a field redefinition of the

metric variable in such a way that the conformal mode of the graviton completely disap-

pears (in favor of the new scalar field). Then, for the purposes of computing the tree-level

scattering amplitudes the scalar field can be forgotten about completely, because it is not

sourced on the external lines, and thus cannot propagate on the internal lines either. What

happens in our formulation is similar, except that the statement that the conformal mode

does not propagate is true in even greater generality, as it extends to loops. Thus, the

gauge-theoretic formulation can be expected to start to differ from the metric-based GR

when one computes quantum effects. And at the tree level, our formulation automatically
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produces the simple 3-vertex (7.9) which is at the heart of the simplicity of the present

formalism. While many simplifications of the metric-based GR cubic vertex are possible

by a clever choice of gauge-fixing as in e.g. [21], or by the trick of introducing an additional

scalar field as in [20], our formulation produces a simple and practical for calculations

expression for this vertex automatically, without too much thought.

We have also stressed a very strong analogy between the linearized Lagrangian, as

well as the cubic interaction in our gauge-theoretic formulation of GR and Yang-Mills. As

we already discussed after introducing the cubic interaction in (7.9), both the linearized

Lagrangian and the cubic interaction in gauge-theoretic gravity are more or less direct

generalizations of the corresponding objects in Yang-Mills theory. The generalization in

question is the passage from an object with one unprimed one primed spinor index AMM ′ ,

which is the Yang-Mills spin 1 field with its color index suppressed, to an object aABMM ′

with 3 unprimed indices and one primed, which is the SU(2) gauge field that we used for

our description of gravitons.

We now come to the discussion of even more intriguing aspects of the present formalism.

One of the most dramatic outcomes of the studied here (and related) reformulations of GR

is that general relativity is not the only theory of interacting massless spin 2 particles. To

understand how our theories manage to avoid the GR uniqueness, let us recall how the

uniqueness statement is established. There are many proofs, but for our purposes it will

be convenient to concentrate on the proof from unitarity. The proof starts by dimensional

reasoning. It is first shown that the amplitudes for 3 on-shell gravitons (with analytically

continued to complex values momenta) are completely fixed by their behaviour with respect

to the little group. All helicity combinations are in general possible, but only the spinor

contractions appearing in M−−+ and M−++ amplitudes have small enough dimensions

(energy squared) to result from a vertex without too many derivatives. Indeed, in the usual

formalism they are produced by the (1/Mp)h
2∂2h cubic vertex of GR. To give rise to non-

zero amplitudesM−−− orM+++ one would need a vertex of the form (1/M5
p )(∂2h)3. This

vertex, if present in the Lagrangian, would give a theory with field equations containing

more than two derivatives of the basic field. This is undesirable, as generically higher

derivatives are known to lead to instabilities already in the classical theory. This fixes

the only cubic amplitudes to be M−−+ and M−++, and then the only possible quartic

amplitude is shown to be M−−++. Its part that has singularities in the s, t, u plane is

shown to be completely fixed by the tree-level unitarity. Non-singular contributions to the

M−−++ amplitude are also possible, but they can only come from terms in the Lagrangian

that have too many derivatives. This shows uniqueness of GR as the only interacting

theory of massless spin 2 particles without too many derivatives in the Lagrangian.

When we reformulate GR as a theory of connections we are using a different spin 2

representation of the Lorentz group to describe gravitons. Namely, it is the connection field

aABCA
′

that is used instead of hABA
′B′ in the metric GR. The natural helicity spinors to be

used are then qAqBqCkA
′
/〈k q〉3 for one of the polarisations (in our conventions negative),

and kAkBkCqA
′
/[kq], where qA, qA

′
are some reference spinors. However, these helicity

spinors are dimensionful, unlike the natural constructs in metric GR. Thus, one needs to

multiply them by a dimensionful parameter to produce the polarisations with correct mass
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dimension zero. This has the effect that the helicity spinors are now given by (6.44). In

particular, the minus polarisation contains a factor of M , and the plus polarisation contains

a factor of 1/M , where in our framework M is the square root of the cosmological constant

(our reformulation only makes sense with a non-zero scalar curvature).

This form of the polarisations immediately shows that the connection formulation ver-

tex that gives rise to e.g.M−−+ amplitude must contain one more derivative as compared

to the metric formalism. Indeed, we have M2 from the negative polarisations and 1/M

from the positive helicity graviton. Thus, to produce the same containing 1/Mp final result

we need a cubic vertex with the pre factor 1/MMp, which thus contains three, not two

derivatives as in the metric GR. Thus, the familiar GR vertex (1/Mp)h
2∂2h is now cast

into the form (1/MMp)(∂a)3. Note that in spite of the fact that there is one more deriva-

tive in the vertex as compared to GR, the derivatives only appear as a power of the first

derivative of the field. This means that the field equations produced from this contain still

just second derivatives (as well as non-linearities in the first derivative).

The final point of this discussion is that, unlike in the metric formalism, it is now pos-

sible to have theM+++ amplitude without increasing the order of field equations. Indeed,

there is 1/M3 coming from the polarisation spinors. The spinor contractions present in the

M+++ amplitude have dimensions of M6, and so this amplitude is of the form 1/M5 times

the spinor contractions. Taking into account that we have a factor of 1/M3 coming from

the polarisations, we see that the vertex that produces a non-zero such amplitude is still of

the form that we have already encountered, namely 1/M2(∂a)3. More precisely, it comes

out to be of the form M3/M5
p (∂a)3 so that there are no factors of M left in the final result

for theM+++ amplitude. But what is important for us is that the connection formulation

made it possible for the amplitudes M−−+ as well as M+++ to come from schematically

the same cubic interaction vertex 1/M2(∂a)3. Of course, the tensorial contractions present

in the vertices that lead to M−−+ and M+++ are different, but what is important for us

is that they both contain just the third power of the first derivative of the connection. The

amplitude M−++ also works out correctly, but with a bit more work, see the main text.

Note also that the amplitudeM−−− does not fit this framework, because of too many

factors of M coming from the polarisations. Indeed, one gets M3 from there, but the

answer one wants to get must contain a factor of 1/M5. Thus, there must be 1/M8 in the

vertex, which corresponds to (1/M8)(∂3a)3. There are clearly too many derivatives here

to have second order field equations, and this is why this vertex is excluded.

To summarise, the reformulation of the theory of interacting gravitons in terms of

a different representation of the Lorentz group puts the amplitudes M−−+,M−++ and

M+++ all on the same footing, in the sense that they are all produced by a vertex of

the type (1/M2)(∂a)3. There is no conflict with second order in derivatives nature of the

field equations, and this is why there is more than one theory of interacting gravitons with

just second order equations of motion provided one uses connection, not metric to describe

gravitons. We have seen that the essence of why this works lies in the fact that the two

helicities are treated asymmetrically, with a factor of M in one (negative) helicity and

1/M in the positive one. It is this factor of 1/M in the positive helicity that allows for a

new cubic amplitude M+++, and in fact for a new amplitude M+...+ at any number of
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gravitons, without increasing the order of field equations. This explains why there is an

infinite-parametric family of theories of interacting gravitons without higher derivatives in

the field equations, provided one uses the connection formalism. For more details of this

argument the reader is directed to [25].

Let us contrast this story with what is possible in the metric formalism. In the metric

formulation it is possible to have amplitudes that are absent in GR, e.g. M+++ but these

come from terms in the Lagrangian that contain higher derivatives. The developed gauge

theoretic formalism allows for these amplitudes without increasing the order of field equa-

tions. However, the resulting theories are necessarily chiral (parity-violating), as only the

mostly plus amplitudes can get produced by the above mechanism.

As the new interactions possible in the gauge-theoretic framework are parity-violating,

it appears likely that if the condition of parity-invariance is added, then GR may indeed

be the unique theory of interacting gravitons. We have not attempted to prove any such

statement here, but since all the deviations from GR that we have found are in the direction

of parity violation, it is possible that such GR uniqueness statement can be shown to hold.

However, there is no physical reason to restrict one’s attention to only parity-invariant

theories. Indeed, we know that Nature does violate parity invariance (in the Standard

Model) in the strongest possible way. It is gratifying to see that gravitational theories

where parity invariance is not built in from the start are also possible.

One interesting property of the whole class of gravitational theories that we are study-

ing is that they all admit an unambiguous definition of the Newton’s constant. Indeed, in

our story Newton’s constant can be defined as the strength of interaction of two gravitons,

and can be read off from the amplitude for two gravitons of some helicities to undergo

a scattering process that does not change their helicities. In all our theories this am-

plitude has the same dependence on the Mandelstam variables s, t, u as in GR, namely

M−−++ ∼ s4/stu. The dimensionful coefficient in front of this amplitude comes out as

(2M2g(2))−1, where M2 is the dimensionful parameter setting the radius of curvature of

the background on which we work (M2 ∼ Λ), and g(2) is the first coupling constant that

characterises a theory from our class. Recall that g(2) is read off (2.10) from the matrix of

second derivatives of the defining function. We can then define the Newton’s constant so

that the amplitude has exactly the same form as in GR. This fixes (16πG)−1 = M2g(2). We

stress that this definition makes sense for an arbitrary member of our infinite-parametric

family of theories. It is clear that this definition of the Newton’s constant only makes

sense because our theories do not contain the most general imaginable higher derivative

modification of GR. Indeed, with terms of the form R4 in the metric formalism it would be

possible to have contributions to the M−−++ amplitude that have a different functional

dependence on the s, t, u variables. In this case the Newton’s constant (the coefficient

in front of the s4/stu part of the amplitude) could not be simply read off from a single

measurement of the graviton scattering. As it will be clear from the next paper in this

series, the fact that the M−−++ amplitude is the same as in GR generalises to a stronger

statement that all MHV amplitudes for our infinite-dimensional class of theories are the

same as in GR.

Let us now discuss the obtained parity-violating amplitudes in more details. The first
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such amplitude (7.27) we encountered was for 3 gravitons (with complexified momenta),

all of positive helicity. At the same time, the − − − amplitude continues to be zero,

as in GR. This tells us that, at least to the cubic order in perturbation theory, we can

think about our parity-violating gravitational theories as General Relativity corrected by

a term (1/M2
p )(Weyl+)3, where Weyl+ is the self-dual part of the Weyl curvature tensor.

Indeed, this term, if added to the GR Lagrangian, would not give any contribution to the

amplitudes containing at least one negative helicity graviton, and would produce precisely

an amplitude with the structure of (7.27) for the +++ helicity configuration. This term is

of the same type as the famous Goroff-Sagnotti [13] counterterm (Weyl)3, except that now

it is only the self-dual part of curvature tensor that is present and the Lagrangian is not

invariant under parity. Moreover, this Lagrangian, in Lorentzian signature, is complex, in

view of the fact that all parity-odd terms in it are purely imaginary. This raises immediate

concerns about the unitarity of these theories. We will not attempt any investigation of

the unitarity issues in this paper, leaving this aside for future work.

Let us discuss what 2-to-2 graviton parity-violating amplitudes tell us. These are

amplitudes that do not vanish even for real momenta. First, there is a set of amplitudes

where parity is flipped just by one unit. Applying the crossing symmetry and converting two

gravitons from incoming to outgoing states, we can draw these parity-violating processes as

In both cases one of the positive helicity gravitons is converted into a negative helicity

one. We have seen (8.16) that this amplitude goes as stu/M6
p , where s, t and u are the

usual Mandelstam variables. It is thus of equal importance as the usual parity-preserving

amplitude (1/M2
p )s3/tu at Planck energies, which is just an illustration of the fact that a

generic member of our family of gravity theories is very different from GR at high energies.

If one could extrapolate beyond the Planck barrier (which in reality one cannot because

the perturbation theory breaks down), one could say that at higher energies the parity-

violating processes scaling as E6 become even more important than the parity-preserving

ones scaling as E2.

Another set of the processes is when the helicity is flipped by two units. This can be

drawn as
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Two positive helicity gravitons are converted by this process into two negative helicity

ones, with the amplitude computed in (8.19) having one contribution going as stu/M6
p and

another one proportional to (s4 + t4 + u4)/M8
p . Again, at Planck energies these processes

become equally important to the parity-preserving ones.

One is then led to admittedly speculative, but thought-provoking picture of the dy-

namics of gravity at high energies, as predicted by our theories. Indeed, the parity-violating

processes only go in one direction (the theories are not T-invariant). It is then clear that

eventually all gravitons will get converted into gravitons of a single helicity (negative in our

conventions). Whether this indeed has anything to do with what happens at the Planck

scale remains to be seen, but it is clear that this picture is a valid, and to some extent

unexpected outcome of our gauge-theoretic approach.

To conclude the discussion of the parity-violating amplitudes let us make one more

comment on how our theories manage to avoid the proof of GR uniqueness, see also remarks

above. There is a proof given in [23] that works directly with the scattering amplitudes. One

point about the work [23] that makes it not general enough is the assumption of the parity

symmetry. This is clearly violated by our theories. The absence of parity is also the reason

why in our case it is possible to get non-zero answers for parity-violating processes, while

in [23] parity can be easily shown to lead to vanishing of the 2, 2;−2,−2 amplitude, in the

conventions of these authors. The vanishing of another amplitude 2, 2; 2,−2 is shown in [23]

by a more subtle argument, which does not relate to parity in a direct way. The argument

is that the kinematical singularities of this amplitude are known, and then the non-singular

piece must behave (for dimensional reasons) as such a high power of momentum that this

is impossible in a theory with at most two derivatives in a vertex. The way this argument

is circumvented is instructive. While our theories lead to second-order in derivatives field

equations, they have arbitrary number of derivatives at vertices when expanded, in the

sense that the n-th order vertex can contain as many as n derivative, but always with just

a single derivative acting on each leg of the vertex. This is the reason why the argument

in [23] for the case of the 2, 2; 2,−2 amplitude is not applicable to our theories, and indeed,

we see a non-vanishing single helicity flip amplitude (8.16).

Let us now come to a discussion of open issues. One unsatisfactory aspect of our

approach is our inability to control the form of the defining function of the theory, e.g. as a

function of the energy scale. Thus, in contrast to the metric approach where the Einstein-

Hilbert action is clearly the most dominant term at low energies, we do not at present

understand why at low energies the defining function of our theory should be chosen the

way it is for GR. From our results we can only see that the scattering amplitudes for parity

violating processes go as much higher power of energy than is the case for GR amplitudes.

This does indicate that at low energies these processes can be neglected, which to some

extent explains why the parity-preserving GR is the low energy theory. But it would be nice

to convert this qualitative argument into a quantitative, and this is missing at the moment.

Another, related aspect is our lack of understanding of the renormalizability properties

of our class of theories. The question is whether any counterterms that are not already

present in the Lagrangian need to be added in the process of renormalization. If, as

originally conjectured in [24], it happens that this class of theories is closed under the
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renormalization, one could compute the associated RG flow, and then answer the question

of how the defining function flows with energy in a quantitative way. In the absence of any

such result, we could only choose the defining function by hand, which is what we did in

obtaining the above stated amplitude results. In particular, our conclusion that the parity-

violating processes are of importance only at Planck energies was based on a particular

choice of the defining function worked out in appendix D. For this choice, one is guaranteed

to have only Planckian modifications of gravity. However, if the defining function does not

approach the GR one at low energies as in this simple case, then the energy scales where

the parity-violating processes become important are different. In particular, because the

cosmological constant Λ = M2 gets involved, see (8.15), (8.17), the associated energy scales

become much lower than Mp, which is a potentially very interesting effect. Thus, it is worth

stressing that a general member of our family of theories is very different from GR in its

properties. Not only it is parity-violating, but more importantly, for a generic choice of the

couplings g(2), g(3), . . . the theory becomes strongly coupled at a much lower energy scale

than Mp, even if one makes Mp � M by making the coupling g(2) large, see (7.22). This

makes GR a very special point in the family of theories that we studied, and makes the

question of why it is GR that is seen at low energies non-trivial.

One other important outcome of this work is a better understanding of the modification

of GR that is provided by a generic member of our family of theories. We have already

discussed the parity-violating aspect of this modification, as well as the potential difficulties

with unitarity. Another aspect so far less emphasized is the fact that the graviton-graviton

parity-preserving amplitude is unmodified at all, and is the same for all members of our

family. An even stronger statement is true: All MHV amplitudes, defined as amplitudes

with just two positive helicity gravitons, are exactly the same as in GR. We have sketched an

argument to this effect in the main text, and will study these amplitudes in more details

in the next paper. Let us concentrate on the graviton-graviton case. A general metric

theory with higher powers of curvature present in the Lagrangian will modify the graviton-

graviton amplitude, basically due to the fact that it introduces new (higher derivative)

vertices. The fact that there is no such modification taking place for all our theories tells us

a lot about them. It is possible to establish several general statements for second-derivative

gravity theories. In particular, it can be shown that the graviton-graviton parity-preserving

amplitude cannot be anything else except what it is in GR. Thus, it is not too surprising

that this particular amplitude does not get modified. But it is worth emphasizing that this

signals once more that the theories considered are not the most general gravity theories, the

latter tending to introduce additional propagating degrees of freedom and, in particular,

modify the graviton-graviton parity preserving amplitude.

Another interesting aspect of the modification provided by our theories is that (at tree

level) they continue to give zero results for the mostly negative helicity amplitudes, such

as amplitudes with all gravitons of negative helicity, or just with a single positive helicity

particle. This is of course the case for GR, but it continues to hold for all members of the

class we have studied. This property can in turn be shown to be related to the property of

MHV amplitudes being unmodified. And this property can again be used to characterize

the type of corrections present in our theories as compared to GR. Indeed, a general metric
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Lagrangian quantum corrected by all curvature invariants will typically render both all

minus and all plus amplitudes non-zero. For example, even the simplest term Riemann

curvature cubed (the Goroff-Sagnotti term) that needs to be added as a counterterm at

two loops will give rise to non-zero answers for both the all negative and the all positive

graviton-graviton amplitude. The fact that this does not happen in our case tells us that

the type of counterterm corrections that have been included in our theories on top of what

is present in GR is very special. Indeed, as we have already discussed, this means that

only the self-dual part of the Weyl curvature cubed is present in our Lagrangian, rather

than the full Weyl cubed. It may thus seem that our class of theories has no chance of

being closed under the renormalization, as containing not the full Goroff-Sagnotti term,

but rather only its chiral half. While this is a legitimate worry, we also recall that our

theories are expected to differ from GR as far as quantum corrections are concerned (being

equivalent only on-shell). Thus, it is possible that their two-loop behavior is different, and

that only the self-dual part of Weyl cubed arises as a counterterm. More work is needed

to see if this is the case. However, it is interesting that results in the present paper suggest

yet another clear test of how the closedness under the renormalization can be probed (by

performing the two-loop computation [13] for GR but in the gauge-theoretic language).

We close by stating once more our amazement at how efficient and powerful the pre-

sented gauge-theoretic formulation of gravity is for practical computations. We did not

expect this amount of simplicity when we embarked on the present study. It also comes

to us as a surprise that the present family of gravity theories can be understood in rather

complete generality, and many statements that are true for all members of the family are

possible. In the next paper from this series we will see even more instances of this, in that

it will be possible to characterize all tree level scattering amplitudes, not just MHV, to

certain extent. The studied here reformulation of gravity as a diffeomorphism invariant

gauge theory thus continues to be a source of fascination.
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A Center of mass frame momentum spinors and Mandelstam variables

The center of mass frame expressions for our momentum spinors can be obtained

from (6.38). We take the particles 1, 2 to be moving in the direction of the ~z axes, positive

and negative respectively. This gives

1A = 21/4
√
ωko

A, 2A = i 21/4
√
ωkι

A. (A.1)

The particles 3, 4 we take to be the scattered ones, moving at an angle θ to the ~z axes. For

simplicity we put φ = 0. We get

3A=21/4
√
ωk
(
sin(θ/2)ιA+cos(θ/2)oA

)
, 4A=i 21/4

√
ωk
(
sin(θ/2)oA−cos(θ/2)ιA

)
. (A.2)
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The non-zero contractions are

〈1 2〉 = −i
√

2ωk, 〈1 3〉 = −
√

2ωk sin(θ/2), 〈1 4〉 = i
√

2ωk cos(θ/2), (A.3)

〈2 3〉 = i
√

2ωk cos(θ/2), 〈2 4〉 = −
√

2ωk sin(θ/2), 〈3 4〉 = i
√

2ωk.

It is also customary to introduce the following Mandelstam variables

s = −4ω2
k, t = 4ω2

k sin2(θ/2), u = 4ω2
k cos2(θ/2). (A.4)

B Feynman rules

In this appendix we collect all the Feynman rules derived in the main text, directly in

spinor notations that are most convenient for practical computations.

In spinor notations the vertices involve only the factors of momentum spinors kAA
′

on

the legs of the vertex, as well as factors of spinor metrics εAB, εA
′B′ . Writing down the

corresponding expressions can quickly lead to horribly looking formulas. For this reason it

is much more efficient to draw the vertices, indicating the factors of εAB, εA
′B′ by lines. The

only drawback of this procedure is that it is not easy to keep track of the signs (remember

that raising-lowering a pair of spinor indices induces a minus sign). We have not tried to

develop any convention for these signs, just going back to the corresponding term in the

Lagrangian and seeing how the indices contract when there is a question. But it is possible

that a more systematic sign convention can be developed. Here, in view of the fact that

only simple computations are done, our rules are sufficient.

With these remarks in mind, let us state the rules of the game. First, we only state

here the rules of computing the Minkowski space amplitudes. The way these are obtained

as a limit of more general de Sitter graviton amplitudes is explained in the main text. The

field that propagates in our theory is an SU(2) connection, but after all the gauge-fixings

and translation into the spinor notations, this is a field aABCC′ with 4 spinor indices, 3

unprimed and one primed. It is moreover symmetric in its 3 unprimed spinor indices, thus

forming an object that takes values in an irreducible representation of the Lorentz group.

Thus, only 4 × 2 = 8 components of the field propagate, as compared to 10 in the usual

metric treatment. As in any textbook example, the scattering amplitudes are obtained

from the field (connection) correlation functions by certain reduction formulas. These are

most practical in the momentum space representation, where the correlation function is

that of the Fourier coefficients of the field operator. The scattering amplitude then reads

〈k− . . . k+ . . . |p− . . . p+ . . .〉 = (−1)m+m′(2π)4δ4
(∑

k −
∑

p
)

(B.1)

〈Tε+(k−) · a(k−) . . . ε−(k+) · a(k+) . . . ε−(p−) · a(p−) . . . ε+(p+)a(p+)〉amp,

where we denoted the contractions of the spinor indices involved by a dot, in other words

ε(k) · a(k) ≡ εABCC′(k)aABCC
′
(k), and k−, k+ are the momenta of the outgoing negative

and positive helicity gravitons, p−, p+ are those of the incoming particles, and m,m′ are

the numbers of positive helicity outgoing and incoming gravitons respectively. As usual,

the momentum space amplitude is amputated from its external line propagators, and there

is a factor of the total momentum conservation.
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The quantities ε± are the graviton helicity states that read

ε−ABCA′(k) = M
qAqBqCkA′

〈q k〉3
, ε+ABCA′(k) =

1

M

kAkBkCpA′

[p k]
, (B.2)

where M is the mass scale of the background de Sitter space, and qA, pA
′

are the nega-

tive and positive helicity reference spinors, which we denote (for convenience) by different

letters.

We have the usual statement of the crossing symmetry, which is that one can change

an outgoing state into an incoming one, if one flips the direction of the arrow on the

corresponding external leg, and flips the helicity. In addition, there is a factor of minus

sign for any such flip, but this is a result of our convention choices. Because of the crossing

symmetry, one can assume all particles to be e.g. incoming, which is what we do.

Finally, the rule is that all positive helicity (incoming) particles are taken to be slightly

massive, with the mass related to the mass scale M in (B.2). The meaning of kA in this

formula is then explained by the following decomposition of the 4-momentum kAA
′

kAA
′

= kAkA
′
+M2 pApA

′

〈p k〉[p k]
. (B.3)

The convention is that the reference spinors pA, pA
′

in this formula are the same as what is

used in the positive helicity spinor in (B.2). The negative helicity particles are all massless.

The propagator of the theory is best represented as a drawing, consisting of a set of

lines contracting the indices, and a black box denoting the symmetrization of the unprimed

spinor indices. Black lines represent unprimed indices, while the red line is for the single

primed index. The propagator then reads

1

ik2

In the same graphic notation, the 3-valent vertex that is relevant for the computation

of the MHV amplitudes reads

iκ

M
, (B.4)

where κ2 = 32πG. For GR this is the only relevant vertex (at tree level, for MHV am-

plitudes). The general member of our family of theories contains an additional 3-vertex,

which reads

iκ3M(2g(3) − (3/2)g(2)) (B.5)
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where (2g(3)−(3/2)g(2)) is a certain combination of the coupling constants that vanishes in

the case of GR. For the family of theories considered in the next section, this combination

goes as M2/M2
p , see (C.12).

The other vertex we will need in this paper is the single-derivative one present already

in GR. It is not important for computations of the MHV amplitudes, but contributes to

some other amplitudes, e.g. the ++− amplitude (for complex momenta) and to the ++++

amplitude. Represented pictorially, it reads

− i

3
κ3M3f(δ) (B.6)

Drawings for the 4-valent vertices can be found in the main text.

C Theory with modifications at the Planck Scale

In this section we consider a simple one-parameter family of deformations of GR. This

family has the advantage that the modifications one introduces are guaranteed to be only

those relevant at the Planck scale. In contrast, as we have seen in the main text, a generic

defining function would give rise to strong coupling phenomena at much lower energy scales.

As in [2], consider the following Lagrangian

S[B,A,Ψ] =
1

8πiG

∫ [
Bi ∧ F i(A)− 1

2

(
Ψij − Λ

3
δij +

β

2M2
p

Tr
(
Ψ2
)
δij
)
Bi ∧Bj

]
.(C.1)

When β = 0 this is just the Lagrangian of GR. One obtains a pure connection Lagrangian

for GR in the form (2.1) by integrating out first the two-form field Bi, and then the

Lagrange multiplier field Ψij . On-shell, the Lagrange multiplier field Ψij receives the

meaning of the self-dual part of the Weyl curvature. When β 6= 0 we have added to the

Lagrangian a term that becomes important when (Weyl)/M2
p is of order unity. Thus, (C.1)

is guaranteed to produce only Planckian modifications of GR (for β of the order unity).

Integrating out the two-form field in (C.1) one gets

S[A,Ψ] =
1

16πiG

∫ (
Ψij − Λ

3
δij +

β

2M2
p

Tr
(
Ψ2
)
δij
)−1

F i ∧ F j . (C.2)

To prepare this functional for minimizing with respect to Ψ let us rescale Ψ̃ = Ψ/M2,

where as before M2 = Λ/3. We can then rewrite the above action as

S[A, Ψ̃] =
i

α

∫ (
δij − Ψ̃ij − αβ

2
Tr
(

Ψ̃2
)
δij
)−1

F i ∧ F j . (C.3)

The new Lagrange multiplier field Ψ̃ij is dimensionless, and

α :=
M2

M2
p

, (C.4)
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where as usual M2
p = 1/16πG. This way of writing the functional shows that deviations

from GR are parameterized by β always in the combination αβ.

We can now extremize (C.3) by passing to eigenvalues of both the F i∧F j and Ψ̃ij matri-

ces, as in [1]. Denoting the eigenvalues of F i∧F j by λ1,2,3, i.e. F i∧F j = diag(λ1, λ2, λ3) d
4x,

we obtain the following expression for the extremum of (C.3) as a function of the eigenvalues

S[A] = i

∫
f [λ] d4x, (C.5)

where

f [λ] =
(
∑

i

√
λi)

2

3α

(
1 +

3αβ

2
(C.6)

− 9(αβ)2

4(
∑

i

√
λi)3

(
4λ

3/2
1 − 3λ1

√
λ2 − 3

√
λ1λ2 + 4λ

3/2
2 − 3λ1

√
λ3

+6
√
λ1
√
λ2
√
λ3 − 3λ2

√
λ3 − 3

√
λ1λ3 − 3

√
λ2λ3 + 4λ

3/2
3

)
−27

8

α3β3(√
λ1 +

√
λ2 +

√
λ3
)
4

(
16λ21 − 17λ

3/2
1

√
λ2 + 6λ1λ2 − 17

√
λ1λ

3/2
2 (C.7)

+16λ22 − 17λ
3/2
1

√
λ3 + 12λ1

√
λ2
√
λ3 + 12

√
λ1λ2

√
λ3 − 17λ

3/2
2

√
λ3

+6λ1λ3+12
√
λ1
√
λ2λ3+6λ2λ3−17

√
λ1λ

3/2
3 −17

√
λ2λ

3/2
3 + 16λ23

)
+O((αβ)4)

)
.

This expression is sufficient to compute various coupling constants that appear in (2.9)–

(2.11). Thus, from (2.9) we have

−g
(2)

3
=

∂2f

∂λ1∂λ1

∣∣∣∣
λi=1

. (C.8)

This gives

g(2) =
1

α

(
1 +

3αβ

2
+

9α2β2

4
+

27α3β3

8
+O[αβ]4

)
. (C.9)

Similarly, from (2.10) we have

∂3f

∂λ1∂λ1∂λ1

∣∣∣∣
λi=1

=
2g(3)

9
+
g(2)

3
, (C.10)

which gives

g(3) =
3

4α

(
1 +

3

2
αβ − 27

4
α3β3 +O[αβ]4

)
. (C.11)

We can now see how the coefficient in front of the vertex (B.5) scales with M . We have

g(3) − 3

4
g(2) = −27

16
αβ2 +O(α2β3), (C.12)

and therefore this goes as M2/M2
p .
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To compute g(4) in a similar fashion, we will need to write down the terms denoted by

dots in (2.17). We have

∂4f

∂Xij∂Xkl∂Xmn∂Xpq
=−g(4)

∑
Perms3

1

3
P ij|abP kl|bcPmn|cdP pq|da

−8

3
g(3)

∑
Perms4

1

4
δijP pq|abP kl|cbPmn|ac− 2

3
g(2)

∑
Perms6

1

6
P pq|klδijδmn.

(C.13)

Then the fourth derivative with respect to one of the eigenvalues gives

∂4f

∂λ1∂λ1∂λ1∂λ1

∣∣∣∣
λi=1

= −2g(4)

9
− 16g(3)

27
− 4g(2)

9
, (C.14)

which in turn gives

g(4) =
104 + 156αβ + 126α2β2 + 297α3β3

128α
+O(α3β4). (C.15)

The coefficient appearing in the 4-vertex and in the + + ++ amplitude then reads

2g(4) − g(3) − 7

8
g(2) =

27

4
α2β3 +O(α3β4). (C.16)

Note that this goes as a higher power of M than the similar difference (C.12).

Finally, from (C.6) we see that

f(δ) =
3

α

(
1 +

3αβ

2
+O((αβ)3)

)
. (C.17)

This implies that

3g(2) − f(δ) =
27αβ2

4
+O(α2β3). (C.18)

D Contributions to the + + ++ amplitude from the 3-valent graphs

The purpose of this section is to compute contributions to the all plus amplitude from two

different 3-valent diagrams. The computation is more involved than any of those that we

have done before, and so we decided to put it in the appendix.

There are two types of diagrams to consider. In one, we couple the MHV-relevant

vertex (B.4) to the vertex (B.5), and in the other it is the 1-derivative vertex (B.6) that

is similarly coupled to (B.5). Let us consider the 3-derivative vertex diagram first. We do

the calculation in several steps. First, we will compute the diagram where the states 1, 2

are inserted into the 3-derivative vertex, and the states 3, 4 are inserted into (B.5). Then

we perform the sum over permutations.

First, consider the 3-derivative vertex with the states 1, 2 inserted. We necessarily

have to insert one of them into the SD leg, and another into an ASD one. Since the vertex
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is not symmetric in this leg, we will need to add the permutation of 1 and 2. So, let 1 go

into the ASD leg, and 2 into the SD one. We change the orientation of the SD leg, so that

the momentum on all the lines is now incoming, and add a minus sign resulting from this

change. There is another minus sign coming from the fact that the SD leg insertion gives

for k(AA′a
BCD)A′

1

M
2A2A′

2B2C2DpA
′

[p 2]
= − 1

M
2A2B2C2D. (D.1)

Insertion into the ASD leg gives, taking into account the fact that the positive helicity

states are massive

M
1A1BpM ′pN ′

[1 p]2
. (D.2)

Combining everything, and adding a factor for the final momentum we get

iκ

M

〈1 2〉2

[1 p]2

(
2(A2B1C)[1 p] + 2A2B2C [2 p]

)
pA
′
. (D.3)

This will have to be multiplied by the propagator 1/2i〈1 2〉[1 2], and then connected to the

other vertex. However, before we do this, let us add all other contributions coming from

connecting 1, 2 via the 3-derivative vertex. It is clear that we also need to add to (D.3) the

same quantity with 1 and 2 exchanged. This gives

κ

2M

〈1 2〉
[1 2]

(
1A1B1C

[1 p]

[2 p]2
+ 2A2B2C

[2 p]

[1 p]2
+ 1(A1B2C) 1

[2 p]
+ 2(A2B1C) 1

[1 p]

)
pA
′
, (D.4)

where we also multiplied by the propagator.

We now connect this to the result of insertion of states 3, 4 into the vertex (B.5). Here

we choose to represent the momentum on the internal line of the diagram, outgoing from

the vertex (B.5), as −(1 + 2)AA
′
. We get for this vertex

− i
√

2(4g(3) − 3g(2))

MM3
p

〈3 4〉23(A3B4C4D)(1
D1A′ + 2D2A′). (D.5)

Contracting (D.4) and (D.5) we get, after simplifying the prefactor

(4g(3) − 3g(2))

iM2M4
p

〈1 2〉〈3 4〉2

[1 2][1 p]2[2 p]2

(
1A1B1C1D[1 p]4 + 2A2B2C2D[2 p]4

+2 · 2A1B1C1D[1 p]3[2 p] + 2 · 1A2B2C2D[1 p][2 p]3 + 2 · 1A1B2C2D[1 p]2[2 p]2
)

3(A3B4C4D).

To perform the contraction, we rewrite the symmetrization 3(A3B4C4D) in several different

ways, depending on the symmetries of the expression that it gets contracted to. For the

contracting object that is BCD symmetric we can write

3(A3B4C4D) =
1

2

(
3A3(B4C4D) + 4A4(B3C3D)

)
. (D.6)
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For the contracting object that is AB and CD symmetric, as well as symmetric under the

exchange of pairs AB and CD we can write

3(A3B4C4D) =
1

6

(
3A3B4C4D + 4A4B3C3D + 4 · 3(A4B)3(C4D)

)
. (D.7)

Performing the contractions we get the following amplitude

(4g(3)−3g(2))

iM2M4
p

〈1 2〉〈3 4〉2

[1 2]

[
〈1 3〉2〈1 4〉2 [1 p]2

[2 p]2
+〈2 3〉2〈2 4〉2 [2 p]2

[1 p]2
(D.8)

+
(
〈2 3〉〈1 3〉〈1 4〉2+〈2 4〉〈1 4〉〈1 3〉2

) [1 p]

[2 p]
+
(
〈1 3〉〈2 3〉〈2 4〉2+〈1 4〉〈2 4〉〈2 3〉2

) [2 p]

[1 p]

+
1

3

(
〈2 3〉2〈1 4〉2 + 〈1 3〉2〈2 4〉2 + 4〈1 3〉〈1 4〉〈2 3〉〈2 4〉

) ]
.

The first four terms in (D.8) are p-dependent, while the ones in the last line are

not. We expect the result to be p-independent, but this should only be true after all the

permutations are added. Thus, the above result is 12 and 34 symmetric (by construction),

but is not symmetric under the permutation of 12 with 34. This means that we have to

consider overall 6 different permutations, and add them all up. We first need to show that

the result of adding all these permutations is p-independent. To this end, let us consider

all the terms that will have [1 p]2 in the denominator. These are

〈2 3〉2〈2 4〉2〈3 4〉2

[1 p]2

(
[2 p]2

〈1 2〉
[1 2]

+ [3 p]2
〈1 3〉
[1 3]

+ [4 p]2
〈1 4〉
[1 4]

)
. (D.9)

We can now use the Schouten identity to rewrite [2 p]2 in terms of the square brackets [3 p]

and [4 p]. Thus, we replace

〈1 2〉2[1 2]2 = 〈1 3〉2[3 p]2 + 〈1 4〉4[4 p]2 + 2〈1 3〉〈1 4〉[3 p][4 p]. (D.10)

Then, after some simplifications with the use of the Schouten identity we get for (D.9)

−〈2 3〉2〈2 4〉2〈3 4〉2〈1 3〉〈1 4〉[3 4]2

〈1 2〉[1 2][1 3][1 4]
, (D.11)

where [1 p]2 cancelled out. We can now rewrite this result in a bit more convenient form, by

eliminating as many square brackets as possible using the momentum conservation. This

gives for (D.11)

〈1 2〉〈1 3〉〈1 4〉〈2 3〉〈2 4〉〈3 4〉〈3 4〉
[1 2]

. (D.12)

The fact that this is 2, 3, 4 symmetric follows easily from the momentum conservation. It

can then be checked that the other terms in the sum of permutations of (D.8) containing

squares of p-dependent square brackets in the denominator are all equal to (D.12). Thus,

running the same argument for e.g. the terms proportional to 1/[2 p]2 gives precisely the

same result as (D.12). This means that the sum of permutations of the first two terms

in (D.14) is 4 times (D.12).
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Let us now consider permutations of terms containing just a single power of p-

dependent square bracket. Let us concentrate on the terms proportional to 1/[1 p]. These

give rise to the sum

〈2 3〉〈2 4〉〈3 4〉
[1 p]

(
(〈1 3〉〈2 4〉+ 〈1 4〉〈2 3〉) [2 p]

〈1 2〉〈3 4〉
[1 2]

(D.13)

− (〈1 2〉〈3 4〉−〈1 4〉〈2 3〉) [3 p]
〈1 3〉〈2 4〉

[1 3]
−(〈1 2〉〈3 4〉+〈1 3〉〈2 4〉) [4 p]

〈1 4〉〈2 3〉
[1 4]

)
.

Using the momentum conservation to convert the determinants inside the brackets into

multiples of [1 2] we get

〈2 3〉〈2 4〉〈3 4〉2

[1 p][1 2]
((〈1 3〉〈2 4〉+ 〈1 4〉〈2 3〉) [2 p]〈1 2〉 (D.14)

+ (〈1 2〉〈3 4〉 − 〈1 4〉〈2 3〉) [3 p]〈1 3〉 − (〈1 2〉〈3 4〉+ 〈1 3〉〈2 4〉) [4 p]〈1 4〉) .

We can now again use the momentum conservation, now in the form 〈1 2〉[2 p] =

−〈1 3〉[3 p]−〈1 4〉[4 p]. After some simple algebra involving the Schouten identity the expres-

sion in brackets becomes −3〈1 3〉〈1 4〉(〈2 3〉[3 p] + 〈2 4〉[4 p]) = −3〈1 2〉〈1 3〉〈1 4〉[1 p], where

in the last equality we used the momentum conservation. Overall, (D.14) becomes

−3〈1 2〉〈1 3〉〈1 4〉〈2 3〉〈2 4〉〈3 4〉〈3 4〉
[1 2]

. (D.15)

As previously the case with (D.12), there are in total a multiple of 4 of these, coming from

applying the same analysis to different p-dependent denominators, e.g. to terms propor-

tional to 1/[2 p], etc.

It remains to consider terms in (D.8) that are p-independent, together with their

permutations. For this, using Schouten identity it is convenient to rewrite the term in the

last line of (D.8) as

2〈1 3〉〈1 4〉〈2 3〉〈2 4〉+
1

3
〈1 2〉2〈3 4〉2. (D.16)

Then the first of these two terms, when multiplied by the prefactor in (D.12), is already

of the form (D.12). Summing over 6 different permutations we thus get a multiple of 12

of (D.12) from the first term in (D.16). For the permutations of the second term in (D.16)

we have

2

3

(
〈1 2〉4〈3 4〉4

[1 2][1 2]
+
〈1 3〉4〈2 4〉4

[1 3][1 3]
+
〈1 4〉4〈2 3〉4

[1 4][1 4]

)
. (D.17)

Converting the square brackets in the denominators into multiples of [1 2] using the momen-

tum conservation, and then using the Schouten identity we get for (D.17) −2 times (D.12).

Thus, the sum of all permutations of (D.8) is equal (1−3)4+12−2 = 2 multiples of (D.12).

Together with the prefactor, this gives the following result for this part of the amplitude

2(4g(3) − 3g(2))

iM2M4
p

〈1 2〉〈1 3〉〈1 4〉〈2 3〉〈2 4〉〈3 4〉〈3 4〉
[1 2]

. (D.18)
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We now compute the other diagram, where the 1-derivative vertex (B.6) is connected

to (B.5). As before, we first consider contributions from connecting 1, 2 into the 1-derivative

vertex and 3, 4 into the vertex (B.5), and then sum over the permutations. For the 1-

derivative vertex, both states are now inserted into the legs with no derivatives in them.

We also need to change the orientation of the ASD leg, so that all the momenta are

incoming, with a resulting extra minus sign. Overall, we get

i

3
κ3Mf(δ)

〈1 2〉2

[1 p][2 p]
1(A2B

(
1C)[1 p] + 2C)[2 p]

)
pA
′
. (D.19)

We now multiply this by the propagator, and connect to the other vertex (D.5). We get,

after simplifying the prefactor

2f(δ)(4g(3)−3g(2))

3iM6
p

〈1 2〉〈3 4〉2

[1 2]
1A2B

(
1C1D

[1 p]

[2 p]
+2C2D

[2 p]

[1 p]
+2 · 1C2D

)
3(A3B4C4D). (D.20)

We perform the contraction using (D.6), (D.7). We get for this contribution to the ampli-

tude

2f(δ)(4g(3) − 3g(2))

3iM6
p

〈1 2〉〈3 4〉2

[1 2]

[1

2

(
〈2 3〉〈1 3〉〈1 4〉2 + 〈2 4〉〈1 4〉〈1 3〉2

) [1 p]

[2 p]
(D.21)

+
1

2

(
〈1 3〉〈2 3〉〈2 4〉2+〈1 4〉〈2 4〉〈2 3〉2

) [2 p]

[1 p]
+2〈1 3〉〈1 4〉〈2 3〉〈2 4〉+ 1

3
〈1 2〉2〈3 4〉2

]
,

where we have used (D.16). We have already performed the sums over permutations

required here, and so we can immediately write down the result. It is given by the prefactor,

times a multiple −(3/2) ·4+12−2 = 4 of (D.12), in other words this part of the amplitude

equals

8f(δ)(4g(3) − 3g(2))

3iM6
p

〈1 2〉〈1 3〉〈1 4〉〈2 3〉〈2 4〉〈3 4〉〈3 4〉
[1 2]

. (D.22)

We now have to add the two results (D.18) and (D.22), and compute the M → 0 limit.

Since 4g(3)−3g(2) = −(27/4)β2M2/M2
p plus higher order in M terms, and f(δ) = 3M2

P /M
2

plus order unity terms, we only need to keep these leading orders. Thus, we get, overall,

our sample one-parameter family of theories with Planckian modifications

M++++
3−vert = i

135β2

2M6
p

〈1 2〉〈1 3〉〈1 4〉〈2 3〉〈2 4〉〈3 4〉〈3 4〉
[1 2]

= i
135β2

16M6
p

stu. (D.23)
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