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Abstract: We study the dimensional continuation of the sphere free energy in conformal

field theories. In continuous dimension d we define the quantity F̃ = sin(πd/2) logZ, where

Z is the path integral of the Euclidean CFT on the d-dimensional round sphere. F̃ smoothly

interpolates between (−1)d/2π/2 times the a-anomaly coefficient in even d, and (−1)(d+1)/2

times the sphere free energy F in odd d. We calculate F̃ in various examples of unitary

CFT that can be continued to non-integer dimensions, including free theories, double-trace

deformations at large N , and perturbative fixed points in the ε expansion. For all these

examples F̃ is positive, and it decreases under RG flow. Using perturbation theory in

the coupling, we calculate F̃ in the Wilson-Fisher fixed point of the O(N) vector model in

d = 4−ε to order ε4. We use this result to estimate the value of F in the 3-dimensional Ising

model, and find that it is only a few percent below F of the free conformally coupled scalar

field. We use similar methods to estimate the F values for the U(N) Gross-Neveu model

in d = 3 and the O(N) model in d = 5. Finally, we carry out the dimensional continuation

of interacting theories with 4 supercharges, for which we suggest that F̃ may be calculated

exactly using an appropriate version of localization on Sd. Our approach provides an

interpolation between the a-maximization in d = 4 and the F -maximization in d = 3.
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1 Introduction and summary

An important problem in d-dimensional relativistic Quantum Field Theory (QFT) is to

uncover general constraints on the Renormalization Group flow. When an RG trajectory

connects a short-distance (UV) fixed point with a long-distance (IR) one, in some d it has

been possible to prove that a certain quantity, which characterizes the long-range degrees

of freedom, is greater in the UV than in the IR. The first such inequality was proven in

two space-time dimensions [1], i.e. for d = 2, and is commonly known as the c theorem,

since c is the standard notation for the Virasoro central charge of a d = 2 Conformal Field

Theory. This quantity is also the Weyl anomaly coefficient and is proportional to the Stefan-

Boltzmann constant of the theory at finite temperature. Soon after the seminal theorem [1]

was established, a quest began for its generalization to d > 2. The Stefan-Boltzmann

constant, cTherm, has been explored as a possible c-function; it appears, however, that it

does not generally decrease along RG flow unless the UV theory is free [2–4]. In d = 4,

there are two Weyl anomaly coefficients, and it was conjectured [5] that the coefficient

that multiplies the Euler density (in modern terminology it is called a) always decreases

along RG flow. Over the years, this conjecture received support from studies of N = 1

supersymmetric field theory where a is determined by the U(1)R symmetry [6], and the

correct U(1)R charges are fixed by the principle of a-maximization [7]. A general proof of

the a-theorem has become available relatively recently [8, 9].
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There is a considerable similarity between the theorems in d = 2 and d = 4, since

both of them concern the quantity that can be extracted from the free energy on the

Euclidean sphere Sd of radius R: F = − logZSd . In d = 4 the Weyl anomaly coefficient

a may be extracted from the logarithmic term, F = a logR + . . .. The same is true in

d = 2, where the standard central charge is then defined via c = −3a. Therefore, the

two-dimensional c-theorem is a particular example of a class of a-theorems that may hold

in all even dimensions, where a is the coefficient of the logR dependence of the sphere free

energy (alternatively, it is the Weyl anomaly coefficient which multiplies the Euler density).

In odd dimensions, however, there is no Weyl anomaly, and therefore the appropriately

regularized Sd free energy F is completely independent of the radius R. Several years

ago it was conjectured that, in odd dimensional RG flows, this regularized free energy F

satisfies inequalities similar to those satisfied by a in even dimensions [10–12].1 In the most

physically interesting case d = 3, a proof of the F -theorem has been presented [14], relying

on its exact relation with the entanglement entropy across a circle [15, 16].

The conjecture [11] that FUV > FIR in d = 3 was inspired by studies of RG flows with

N = 2 supersymmetry, where exact results are available via localization [17–19]. When

the U(1)R charges of a d = 3 superconformal theory are not fixed by the superpotential,

they are determined via the F -maximization principle [11, 18, 20], which is analogous to

the a-maximization in d = 4. In this paper we will suggest an explicit connection between

the a- and F -maximization by finding an appropriate maximization principle in continuous

dimension for theories with four supercharges.

When the supersymmetric localization methods cannot be applied, the problem of

calculating F is in general difficult. Results are available for free CFTs and for large N

theories with double trace operators [12, 21–24], but one is often interested in finding F

for non-supersymmetric CFTs that are strongly interacting and contain a small number

of fields. For example, the most common second-order phase transition in 3-d statistical

mechanics is in the universality class of the Ising model, which may be described by the

d = 3 Euclidean QFT of a real scalar field with a λφ4 interaction.

A well-known generalization of the λφ4 theory is to O(N) symmetric theory of N

real scalar fields φi, i = 1, . . . , N , with interaction λ
4 (φiφi)2. For small values of N there

are physical systems whose critical behavior is described by this d = 3 QFT. When N

is sufficiently large, one can develop 1/N expansions for scaling dimensions of various

operators using the generalized Hubbard-Stratonovich method [25–33]. Similarly, it is not

hard to calculate F in these d = 3 CFTs, including the O(N0) correction [12]

F =
N

16

(
2 log 2− 3ζ(3)

π2

)
− ζ(3)

8π2
+O(1/N) ≈ 0.0638N − 0.0152 +O(1/N) . (1.1)

The correction of order 1/N has not been found yet. Even if it becomes available, this

asymptotic expansion may not turn out to be very useful for low values of N , since the

available results for operator scaling dimensions exhibit rather poor convergence of the 1/N

1For d = 1, this coincides with the much earlier work on the g-theorem [13], where g = logZS1 .
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expansion.2 For example, [25–27]

∆φ =
1

2
+

0.135095

N
− 0.0973367

N2
− 0.940617

N3
+O(1/N4) (1.2)

∆φ2 = 2− 1.08076

N
− 3.0476

N2
+O(1/N3) , (1.3)

while the numerical values of these scaling dimensions for N = 1 (the 3-d Ising model) are

known to be ∆φ ≈ 0.518 and ∆φ2 ≈ 1.41 [38–41]. Discarding the O(1/N3) term in the

anomalous dimension of φi, whose coefficient is very large, we obtain the approximation

γφ ≈ 0.38, which is twice as big as the actual value. The 1/N expansion is even less useful

for estimating the dimension of φ2 in the 3-d Ising model.

Luckily, there exists another approximation scheme — the ε expansion [42] — that has

led to better estimates for the IR scaling dimensions of composite operators. Instead of

working directly in d = 3, one studies the physics as a function of the dimension d. In the

O(N) symmetric theory with the λ
4 (φiφi)2 interaction, there is evidence that the IR critical

behavior occurs for 2 < d < 4, and significant simplification occurs for d = 4 − ε where

ε� 1.3 Then the IR stable fixed point of the Renormalization Group occurs for λ of order

ε, so that a formal Wilson-Fisher expansion in ε may be developed [42]. The coefficients of

the first few terms tend to fall off rapidly; for example, the anomalous dimension of φi is [44]

γφ =
N + 2

4(N + 8)2
ε2 +

(N + 2)
(
−N2 + 56N + 272

)
16(N + 8)4

ε3 +O(ε4) . (1.4)

Setting ε = 1 provides rather precise approximations to the known experimental and nu-

merical results for low values of N [38–42, 44–46].4

This raises the hope that the 4− ε expansion of the sphere free energy will also provide

a good approximation. In this paper we will demonstrate, through a number of explicit

calculations, that this is indeed the case. As a first step, in section 2 we calculate it for the

free conformally coupled scalar and massless fermion. We find that the quantity

F̃ = sin(πd/2) logZSd = − sin(πd/2)F (1.5)

is a smooth positive function of d whose ε expansion indeed converges well. For odd integer

d, F̃ = (−1)(d−1)/2 logZSd , in accord with the proposal of [12]. It also has a smooth limit

(−1)d/2πa/2 as d approaches an even integer, since the pole in F is canceled by the zero

of sin(πd/2). Thus, the definition (1.5) proves to be very convenient for interpolating

between the Weyl anomaly a coefficients in even d and the F values in odd d. In section 3

we further demonstrate this by studying the large N CFTs perturbed by double-trace

operators in continuous dimension d. The sphere free energies in such theories were studied

2A more fundamental approach to the O(N) symmetric CFTs relies on the ideas of conformal boot-

strap [34–37], and recently it has led to precise numerical calculations of the operator scaling dimensions in

three-dimensional CFT [38–40]. However, this approach has not yet shed light on the 3-sphere free energy F .
3One should keep in mind, however, that in non-integer dimensions even free theories are not unitary [43].
4One should note that the ε-expansion is only asymptotic, and extracting precise predictions from the

higher orders in perturbation theory typically requires some resummation techniques, see e.g. [47] for a

review.
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in [12, 21, 23], and their dimensional continuation was carried out in [22, 24]. Using these

results, we show that the quantity F̃ defined in (1.5) decreases for double-trace RG flow in

all d, provided the operator dimensions obey the unitarity bound. Studying other relevant

deformations that cause a unitary UV CFT to flow to a unitary IR CFT, we consistently

find that F̃UV > F̃IR for all dimensions d. This raises a tantalizing possibility that the

a-theorem in even integer dimensions and the F -theorem in odd integer dimensions are

special cases of the F̃ -theorem valid in continuous dimension.5

In section 4 we depart from the large N limit and consider the specific example of

Wilson-Fisher CFTs [42]. We perturb the CFT of N free scalars by the operator λ
4 (φiφi)2,

which is slightly relevant in d = 4 − ε. Using perturbative methods similar to those used

in [5, 12] for slightly relevant operators on Sd, we find the ε expansion of F̃ valid for all N :

F̃ = NF̃s(ε)−
π

576

N(N + 2)

(N + 8)2
ε3− π

6912

N(N + 2)(13N2 + 424N + 1840)

(N + 8)4
ε4 +O(ε5) , (1.6)

where F̃s is the free conformal scalar result (2.5). For the d = 3 Ising model (N = 1),

this expansion converges well and suggests that F3d Ising/Fs ≈ 0.96. This result, which is

consistent with the F -theorem, makes F3d Ising the smallest known F -value for a unitary

theory in d = 3. For comparison, we note that cT , the coefficient of the stress tensor

2-point function, is also known for the 3-d Ising model to be close to the free field value.

The conformal bootstrap results give c3d Ising
T /csT ≈ 0.9466 [38, 48].

In section 5 we carry out the dimensional continuation of interacting theories with 4

supercharges. We keep the dimension of the anti-commuting directions of superspace fixed,

while varying the number of spatial coordinates. In this fashion, theories with N = 1

supersymmetry in d = 4 are smoothly deformed into theories with N = 2 SUSY in d = 3,

and with N = (2, 2) SUSY in d = 2. In section 5.1 we study the Wess-Zumino model

with superpotential W ∼ X3. This theory, which could be regarded as the simplest N = 2

supersymmetric generalization of the Ising model, possesses a weakly coupled IR fixed point

in d = 4− ε. We develop the ε expansion using perturbation theory, and for ε = 1 compare

it with the exact results from the localization on S3 [17–19], finding excellent agreement.

In d = 2 the W ∼ X3 model describes the first member (k = 1, c = 1) of the series of

N = (2, 2) superconformal minimal models with central charges c = 3k/(k+2) [49]. Setting

ε = 2 we find very good agreement with this exact result.

In section 5.2 we argue that the supersymmetric localization on S3 [17–19] can be gen-

eralized to continuous d. For the Wess-Zumino models that contain only chiral multiplets,

we propose an explicit function of their scaling dimensions, defined in (5.23) and (5.24),

that has to be maximized in arbitrary d. In d = 4 our F̃ maximization reproduces the

a-maximization of [7], while in d = 3 the F -maximization of [11, 18, 20]. We compare

the ε expansion for the W ∼ X3 model with the exact results as a function of d, finding

excellent agreement. In section 5.3 we study a more complicated model with superfields X

and Zi, i = 1, 2, . . . N , and the O(N) symmetric superpotential W ∼ X
∑N

i=1 Z
iZi. In this

5Conjecturing the F̃ -theorem may seem risky in view of the non-unitarity of theories in non-integer

dimensions observed in [43]. However, the non-unitarity may not cause problems for positivity and mono-

tonicity of F̃ .
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model the scaling dimensions are not fixed by the superpotential, and we carry out the F̃

maximization, making contact with the results of [50] in d = 4 − ε, and of [51] in d = 3.

We show that the ε-expansion of the anomalous dimension, found in [50], is in agreement

with our proposal of F̃ maximization.

Among the motivations for studying the sphere partition functions for the d-

dimensional Euclidean CFTs where the dynamical fields transform in the vector repre-

sentation of O(N) or U(N), is their conjectured duality with the interacting higher spin

theories in AdSd+1 [52–55] (for a review, see [56]). While so far the duality has been tested

in integer dimensions [55, 57–61], it may apply in continuous d. In particular, as suggested

in [52], it would be interesting to carry out the 4− ε expansion in the Vasiliev higher spin

theory [62–67] and compare the results with those obtained in this paper.

2 F̃ for free fields

The eigenvalues and degeneracies of the Laplacian acting on fields of general spin on Sd

are known, and so it is not hard to compute F for free fields in arbitrary dimension. In

the case of conformally coupled scalars or massless fermions, a shortcut which yields a

compact representation of the free energy is to use the known results for the change in

F under double-trace flows [21–24] (this will be reviewed in section 3 below). In this

approach, one computes the determinant of the non-local kinetic operator of the auxiliary

Hubbard-Stratonovich field, which is essentially the two-point function of a conformal

primary of dimension ∆. When ∆ is equal to the dimension of a free conformal field (i.e.,

∆ = d/2−1 for a scalar and ∆ = (d−1)/2 for a spin 1/2 fermion), this two-point function

is, as an operator, the inverse of the appropriate kinetic operator on Sd, and hence their

determinants are inverse of each other. Adopting this approach, one arrives at the following

simple representations of F = − logZSd for free conformal scalars and spin 1/2 fermions6

Fs =
1

2
log det

(
−∇2 +

1

4
d(d− 2)

)
= − 1

sin(πd2 )Γ (1 + d)

∫ 1

0
duu sinπuΓ

(
d

2
+ u

)
Γ

(
d

2
− u
)

(2.1)

Ff = − 1

tr1
log det

(
i /∇
)

= − 1

sin(πd2 )Γ (1 + d)

∫ 1

0
du cos

(πu
2

)
Γ

(
1 + d+ u

2

)
Γ

(
1 + d− u

2

)
(2.2)

Here tr1 = 2[d/2] is the trace of the identity in the Dirac matrices space. For convenience,

we have defined Ff to be independent of this factor so that it represents the F value of a

single Fermion component. For instance, in d = 3, Ff as defined above corresponds to the

contribution of a single Majorana fermion. In all examples discussed below, we will not

need to continue tr1 to non-integer dimensions, but rather we will relate theories where

tr1 is held fixed.

6The mass-like term in the scalar kinetic operator arises from conformal coupling to the Sd curvature,

and we have set the radius to one.
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These expressions are valid for any d ≥ 2 and give a natural analytic continuation of

F to non-integer dimensions. It can be checked that in odd integer d they reproduce the

known values of F for free fields given in tables 1 and 2 of [12], e.g. in d = 3

Fs =
log 2

8
− 3ζ(3)

16π2
' 0.0638071 , Ff =

log 2

8
+

3ζ(3)

16π2
' 0.10948 . (2.3)

On the other hand, near even d, these expressions have simple poles whose coefficients

reproduce the known a-anomalies. For instance, in d = 4− ε

Fs =
1

90ε
+ . . . , Ff =

1

2

11

180ε
+ . . . (2.4)

which correspond respectively to the a-anomaly coefficient of a real scalar and half of that

of a Weyl fermion in d = 4 (recall that in (2.2) we have divided by tr1, so that in d = 4 (2.2)

corresponds to half the contribution of a Majorana or Weyl fermion).

The presence of the sin(πd/2) factor in the denominator of (2.1)–(2.2) suggests that it

is natural to consider the quantity F̃ ≡ − sin(πd/2)F , so that

F̃s =
1

Γ (1 + d)

∫ 1

0
duu sinπuΓ

(
d

2
+ u

)
Γ

(
d

2
− u
)
, (2.5)

F̃f =
1

Γ (1 + d)

∫ 1

0
du cos

(πu
2

)
Γ

(
1 + d+ u

2

)
Γ

(
1 + d− u

2

)
. (2.6)

While F oscillates between positive and negative values and has poles near even integer

dimensions, one can see that F̃ is finite, smooth and positive in the continuous range of

dimensions. In particular, since it is a finite quantity,7 F̃ is independent of the radius of Sd.

It smoothly interpolates between (−1)(d+1)/2 times the F -values in odd d, and (−1)d/2π/2

times a-anomaly coefficients in even d. For example, in d = 2, 4, 6 one gets

d = 2 : F̃s =
π

2

∫ 1

0
dxx2 =

π

6

d = 4 : F̃s =
π

24

∫ 1

0
dxx2(1− x2) =

π

180

d = 6 : F̃s =
π

720

∫ 1

0
dxx2

(
4− 5x2 + x4

)
=

π

1512
(2.7)

and similarly for the fermions. Plots of F̃s and F̃f for 2 ≤ d ≤ 4 are given in figure 1. F̃f
can be smoothly continued to d < 2, and for d = 1 we find log 2, which is the value of the

quantity g = logZS1 introduced in [13].

The smoothness of F̃ suggests that it is a useful quantity to consider in the frame-

work of the ε-expansion. To further support this claim, in the rest of the paper we will

present several examples of computations of F̃ in interacting theories that have a natural

continuation to non-integer dimensions. As a first illustration that the ε-expansion of F̃

provides reasonable approximations, we can consider the explicit expansion of F̃s and F̃f

7Of course, there are power law divergences which are regulated away in dimensional regularization.
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2 3 4
d

p
12

p
6

p
180

11 p
720

3 z H3L

16 p2
+ logH2L

8

logH2L

8
- 3 z H3L

16 p2

F
è

Figure 1. F̃ for free conformal scalar and fermion (the vertical axis is on a logarithmic scale,

so we actually plot − log F̃ ). F̃ is positive for all d ≥ 2, and smoothly interpolates between
π
2 (−1)d/2a-anomalies in even d and (−1)(d+1)/2F in odd d. For example, the values F̃ = π/6

and F̃ = π/12 correspond respectively to central charges c = 1 and c = 1/2 for a free scalar and

Majorana fermion in d = 2.

in d = 4− ε. A straightforward calculation starting from (2.5), (2.6) yields the result

F̃s =
π

180
−
π
(
9 + 16γ + 240ζ ′(−1) + 480ζ ′(−3)

)
2880

ε+O(ε2) ,

F̃f =
11π

720
−
π
(
21 + 44γ + 480ζ ′(−1)− 480ζ ′(−3)

)
2880

ε+O(ε2) .

(2.8)

The numerical expansions are

F̃s =
π

180
+ 0.0205991ε+ 0.0136429ε2 + 0.00690843ε3 + 0.00305846ε4 +O(ε5)

F̃f =
11π

720
+ 0.0388187ε+ 0.0163383ε2 + 0.00484844ε3 + 0.00116604ε4 +O(ε5)

(2.9)

Setting ε = 1 in these expressions gives F̃s ' 0.0617 and F̃f ' 0.1092, which are quite close

to the exact values (2.3) in d = 3.

As an aside, we note that, since F̃s and F̃f are smooth functions of d, it is not hard

to develop their large d expansions. Using the asymptotic expansion of the Γ-function for

large argument, we find

F̃s = 21−d
√

2

π
d−3/2

[
1 +

3(3π2 − 16)

4π2d
+

5(29π4 − 352π2 + 1536)

32π4d2
+ . . .

]
(2.10)

and

F̃f = 21−d
√

2

π
d−1/2

[
1 +

π2 − 16

4π2d
+
π4 − 160π2 + 1536

32π4d2
+ . . .

]
(2.11)

Note that at large d this implies

F̃f

F̃s
= d− 2 +

8

π2
+

8
(
π2 − 12

)
π4d

+ . . . (2.12)
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which agrees with the structure found by a numerical interpolation of the a-anomaly coef-

ficients [68].

2.1 Free massive fields

It is straightforward to derive the value of F̃ for free massive fields for arbitrary d. The

eigenvalues and degeneracies for the scalar laplacian on the unit d-dimensional sphere, Sd,

are

λn = n(n+ d− 1) , dn =
(2n+ d− 1)Γ(n+ d− 1)

n!Γ(d)
, n = 0, 1, 2, . . . (2.13)

The free energy for a scalar of mass m is then

Fs(m) =
1

2

∞∑
n=0

dn log

(
n(n+ d− 1) +

1

4
d(d− 2) +m2

)
. (2.14)

The m = 0 case corresponds to the conformally coupled scalar. Taking a derivative with

respect to m2 allows for a direct evaluation of the sum, and one gets

∂F̃s(m)

∂m2
= − 1

2Γ(d)
Γ

(
d− 1

2
+ i

√
m2 − 1

4

)
Γ

(
d− 1

2
− i
√
m2 − 1

4

)
cosh

(
π

√
m2 − 1

4

)
(2.15)

and so

F̃s(m) = F̃s +

∫ m2

0
dm2∂F̃s(m)

∂m2
, (2.16)

where F̃s is the value corresponding to the conformal scalar (2.5). For example, in d = 3

one obtains, in agreement with [12],

F̃s(m) =
log 2

8
− 3ζ(3)

16π2
− π

4

∫ m2

0
dm2

√
m2 − 1

4
coth

(
π

√
m2 − 1

4

)

= −π
6

(
m2 − 1

4

) 3
2

− 1

2

(
m2 − 1

4

)
log

(
1− e−2π

√
m2− 1

4

)

+

√
m2 − 1

4

2π
Li2

(
e
−2π

√
m2− 1

4

)
+

1

4π2
Li3

(
e
−2π

√
m2− 1

4

)
.

(2.17)

In d = 4

F̃s(m) =
π

180
− π

24
m4 . (2.18)

Similarly, the eigenvalues and degeneracies for the Dirac operator on Sd are

λn = ±
(
n+

d

2

)
, dn =

Γ(n+ d)

Γ(d)n!
(2.19)

and so

Ff (m) = −
∞∑
n=0

dn log
(
(n+ d/2)2 +m2

)
. (2.20)

– 8 –
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This leads to
∂F̃f (m)

∂m2
=

1

2Γ (d)
Γ

(
d

2
+ im

)
Γ

(
d

2
− im

)
sinh(πm)

m
(2.21)

and finally

F̃f (m) = F̃f +

∫ m2

0
dm2∂F̃f (m)

∂m2
. (2.22)

In d = 3 one obtains [12],

F̃f (m) =
log 2

8
+

3ζ(3)

16π2
+
π

8

∫ m

0
dm(1 + 4m2) tanh(πm) (2.23)

=
π

24
m
(
4m2+3

)
+

4m2+1

8
log
(
1+e−2πm

)
− m

2π
Li2
(
−e−2mπ

)
− 1

4π2
Li3
(
−e−2mπ

)
and in d = 4

F̃f (m) =
11π

720
+

π

12
m2 +

π

24
m4 . (2.24)

3 Double-trace flows in large N CFT’s

Let us a consider a CFT perturbed by the square of a primary scalar operator of dimension

∆

SCFTλ = SCFT + λ

∫
ddxO2

∆ . (3.1)

We assume that the CFT has a large N expansion, so that for large N correlation functions

factorize: 〈O2
∆O

2
∆〉 ' 〈O∆O∆〉2. For example, the CFT could be a matrix-type theory and

O∆ a single-trace operator, or we could consider a vector model whith O∆ being a bilinear

in the fundamental fields.

A standard way to analyze the perturbed CFT is to introduce an auxiliary Hubbard-

Stratonovich field σ

SCFTλ = SCFT +

∫
ddxσO∆ −

1

4λ

∫
ddxσ2 . (3.2)

Then one can show that, for ∆ < d/2, the perturbed CFT flows to a large N IR fixed point

where O∆ ∼ σ has dimension d−∆ +O(1/N) [21, 69]. If ∆ > d/2, then the theory has a

formal large N UV fixed point, where O∆ ∼ σ has again dimension d−∆ +O(1/N).

At the fixed point, the quadratic term in σ in (3.2) can be neglected, and one can

develop a 1/N perturbation theory using the induced kinetic term for σ

S(2)(σ) = −1

2

∫
ddxddy σ(x)σ(y)〈O∆(x)O∆(y)〉0 (3.3)

where the subscript ‘0’ denote correlators in the unperturbed CFT. Then, to leading order

in the 1/N expansion, the change in the sphere free energy induced by the “double-trace”

deformation is given by the determinant of the non-local kinetic operator for the σ field

δF∆ =
1

2
log det〈O∆O∆〉0 +O(1/N) (3.4)
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where δF∆ denotes the change in F due to the O2
∆ perturbation. The two-point function

of a primary of dimension ∆ on the sphere is fixed by conformal invariance to be (up to

unimportant overall factors)

〈O∆(x)O∆(y)〉0 =
1

s(x, y)2∆
(3.5)

where s(x, y) is the chordal distance on Sd. Expanding this two-point function in spherical

harmonics, one ends up with the following expression for the determinant in (3.4) [21, 22]

δF∆ =
1

2

∞∑
n=0

dn log
Γ (n+ ∆)

Γ (n+ d−∆)
. (3.6)

where dn are the scalar degeneracies given in (2.13).8 Note that for ∆ = d/2 − 1, the

eigenvalues coincide with the inverse of the eigenvalues for the conformally coupled lapla-

cian (2.13), which implies that for this value of ∆ the formula (3.6) can be also used to

obtain the value of F for a free conformal scalar, as explained in the previous section.

Taking a derivative with respect to ∆, performing the sum and integrating back yields

the final answer [22]

δF∆ = Γ(−d)

∫ ∆− d
2

0
duu

[
Γ
(
d
2 − u

)
Γ
(
1− u− d

2

) − Γ
(
d
2 + u

)
Γ
(
1 + u− d

2

)]

= − 1

sin(πd2 )Γ (1 + d)

∫ ∆− d
2

0
duu sinπuΓ

(
d

2
+ u

)
Γ

(
d

2
− u
)

(3.7)

where we have used the identity Γ(z)Γ(1− z) = π/ sin(πz). Equivalently, in terms of F̃ :

δF̃∆ =
1

Γ (1 + d)

∫ ∆− d
2

0
duu sinπuΓ

(
d

2
+ u

)
Γ

(
d

2
− u
)
. (3.8)

Note that setting ∆ = d/2 − 1 and changing the overall sign (since this computes the

determinant of the two-point function rather than the kinetic operator), this indeed agrees

with (2.5).

Similarly, one can consider a CFT perturbed by the square of a spin 1/2 operator

of dimension ∆. Introducing a fermionic Hubbard-Stratonivich field and computing the

determinant of its induced kinetic operator, one arrives at the final result [23, 24]

δF̃∆,f =
2tr1

Γ (1 + d)

∫ ∆− d
2

0
du cos(πu)Γ

(
d+ 1

2
+ u

)
Γ

(
d+ 1

2
− u
)
. (3.9)

Setting ∆ = (d − 1)/2 and changing overall sign, this reproduces the free fermion result

in (2.6).

8Here we assume that the sum is evaluated using dimensional regularization, where the sum over de-

generacies dn vanishes [22]. In this approach, the conformal anomaly arises as a pole in dimensional

regularization close to even integer d.
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A simple example of such double-trace flow is provided by the O(N) symmetric scalar

field theory with quartic interaction

S =

∫
ddx

[
1

2

(
∂µφ

i
)2

+
λ

4

(
φiφi

)2]
. (3.10)

For 2 < d < 4, this theory flows to the well-known Wilson-Fisher IR fixed point, which

can be studied in the framework of the ε-expansion in d = 4 − ε. At large N , the quartic

interaction term can be viewed as a double-trace deformation of the type described above,

with ∆ = d− 2, and it is straightforward to compute δF̃∆ using eq. (3.8). For d = 3, one

obtains [12]

δF̃∆=1 = −ζ(3)

8π2
+O(1/N) . (3.11)

It is known that the UV fixed points of the O(N) non-linear sigma model in d > 2 provide

an alternative description of the same critical CFT. The 3d F -theorem FUV > FIR then

implies that the critical CFT should satisfy

(N − 1)Fs < Fcritical < NFs (3.12)

where the right inequality comes from the description as IR fixed point of the quartic

theory, and the left one from the non-linear sigma model point of view. Equivalently, this

implies in d = 3 that −Fs < δF∆=1 < 0, which is indeed seen to be true from eq. (2.3)

and (3.11). A natural question is whether the quantity F̃ also satisfies F̃UV > F̃IR in

continuous dimensions. This would imply by the same logic that −F̃s < δF̃∆=d−2 < 0.

Using (3.8) and (2.5), one can verify that this is indeed true in the whole range 2 < d < 4.

This provides some evidence for the validity of the F̃ theorem in continuous d.

For later reference, let us also work out the explicit ε expansion of δF̃ . Using (3.8), a

short calculation yields the result

δF̃∆=d−2 = − π

576
ε3 − 13π

6912
ε4 +

(
π3

13824
− 647π

414720

)
ε5 +O(ε6) , d = 4− ε . (3.13)

Setting ε = 1, this yields the estimate δF̃∆=d−2 ≈ −0.0140, while the exact d = 3 re-

sult (3.11) is δF̃∆=1 = −0.0152 . . .. Including a few more orders in the ε-expansion quickly

improves the agreement with the exact answer.

The quartic O(N) theory (3.10) was also recently reconsidered in the range 4 < d < 6.

In d = 4 + ε, the model has a formal UV fixed point at negative coupling. It was recently

proposed that the same interacting CFT can be described as the IR fixed point of a

O(N) symmetric cubic theory with N + 1 scalars in d = 6 − ε, which is unitary for

sufficiently large N [70]. Then, the condition F̃UV > F̃IR implies in 4 < d < 6 that

NF̃s < F̃critical < (N + 1)F̃s, or, in terms of δF̃

0 < δF̃∆=d−2 < F̃s , 4 < d < 6 . (3.14)

This was checked to be true in d = 5 [70]. Using (3.8) and (2.5), we have verified that

in fact it holds in the whole range 4 < d < 6. This provides additional evidence for the

validity of the F̃ theorem in continuous d.
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Let us also work out the expansion of δF̃ near six dimensions:

δF̃∆=d−2 =
π

1512
+
π
(
− 31/2− 30γ − 378ζ ′(−1) + 378ζ ′(−5)

)
45360

ε+O(ε2) , d = 6− ε .
(3.15)

The leading contribution is indeed equal to π/2 times the anomaly coefficient of a free

massless scalar in d = 6 (see (2.7)), in precise agreement with the description of the critical

CFT in terms of the cubic theory in d = 6 − ε. Subtracting the contribution of one free

scalar, we get

δF̃∆=d−2 − F̃s = − 1

Γ (1 + d)

∫ 1

d/2−2
duu sinπuΓ

(
d

2
+ u

)
Γ

(
d

2
− u
)

= − π

960
ε2 − 19π

43200
ε3 +O(ε4) .

(3.16)

This subtraction will allow for a more direct comparison with the perturbative calculation

for the cubic scalar theory in d = 6− ε in the next section.

Another interesting CFT example is the Gross-Neveu model [71] in the dimension

range 2 < d < 4

S =

∫
ddx

(
ψ̄i/∂ψ

i +
g

2
(ψ̄iψ

i)2
)
, (3.17)

where ψi are Ñ Dirac fermions. This theory has perturbative UV fixed points in d = 2 + ε.

At large N = 2[d/2]Ñ , one can study these fixed points using the Hubbard-Stratonovich

approach described above, in the whole range 2 < d < 4 (for d > 4, the fixed points

become non unitary). Remarkably, it was found that this critical fermionic theory has an

alternative, “UV complete”, description in terms of the IR fixed points of a Gross-Neveu-

Yukawa (GNY) model in d = 4− ε [72–74]. The GNY model includes an extra propagating

scalar field interacting with the fermions via the Yukawa interactions

SGNY =

∫
ddx

(
ψ̄i/∂ψ

i +
1

2
(∂µσ)2 + g1σψ̄iψ

i +
1

24
g2σ

4

)
. (3.18)

The existence of the two alternative descriptions of the same CFT imply that, if F̃UV > F̃IR,

then

NF̃f < F̃GN < NF̃f + F̃s . (3.19)

At large N , in terms of δF̃∆ defined in (3.8), this implies

0 < δF̃∆=d−1 < F̃s , 2 < d < 4 . (3.20)

Note that in this case ∆ = d − 1, which is the dimension of the ψ̄iψ
i operator in the free

CFT. This inequality was checked to be true in d = 3 [12, 70], where δF̃∆=2 = + ζ(3)
8π2 . Using

the dimensionally continued results (3.8) and (2.5), we have verified that it holds in the

full range 2 < d < 4 (and it is violated for d > 4, where the theory becomes non-unitary).

Finally, since it will be useful in the next section, let us quote the explicit expansion of

δF̃∆=d−1 near four dimensions. Setting d = 4− ε and expanding for small ε, one finds

δF̃∆=d−1 =
π

180
−
π
(
9 + 16γ + 240ζ ′(−1) + 480ζ ′(−3)

)
2880

ε+O(ε2) (3.21)
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The first two terms are the same as the free scalar result in d = 4, which is a nice test that

near four dimensions one gets an extra propagating scalar, as in (3.18). This suggests that

it is useful to consider the difference

δF̃∆=d−1−F̃s=− 1

Γ (1+d)

∫ 1

d/2−1
duu sinπuΓ

(
d

2
+u

)
Γ

(
d

2
−u
)

=− π

96
ε2− π

192
ε3+O(ε4) .

(3.22)

This result will be compared with a perturbative calculation in the GNY model in the next

section.

4 Weakly coupled fixed points in the ε-expansion

4.1 O(N) scalar theory in d = 4 − ε and the Ising model

The action for the O(N) quartic scalar field theory in d = 4− ε is

S =

∫
ddx

(
1

2

(
∂µφ

i
0

)2
+
λ0

4
(φi0φ

i
0)2

)
=

∫
ddx

(
1

2

(
∂µφ

i
)2

+
λµε

4
(φiφi)2 +

δφ
2

(
∂µφ

i
)2

+
δλ µ

ε

4
(φiφi)2

)
.

(4.1)

Here we have written the first line in terms of bare fields and coupling, and the second

line in terms of renormalized fields and dimensionless coupling λ, with µ the renormaliza-

tion scale. The counterterms δφ and δλ are known up to five loop order in dimensional

regularization [47, 75]. The leading terms read

δλ =
N + 8

8π2

λ2

ε
+ . . . , δφ = −N + 2

(4π)4

λ2

ε
+ . . . . (4.2)

The corresponding β-function in d = 4− ε is [47, 75]

β = −ελ+
N + 8

8π2
λ2 − 3(3N + 14)

64π4
λ3 + . . . (4.3)

Then, one can see that there is a perturbative IR fixed point at a critical coupling λ∗ given

by

λ∗ =
8π2

N + 8
ε+

24(3N + 14)π2

(N + 8)3
ε2 + . . . (4.4)

For N = 1 and ε = 1, this fixed point describes the Ising model in d = 3.

We now want to conformally map the theory to Sd and compute the sphere free energy

F at the IR fixed point. The action of the model on the sphere is the same as (4.1), provided

we covariantize it and add the conformal coupling term d(d−2)
4 (φiφi). The counterterms δφ,

δλ (and hence the β-function and fixed point coupling λ∗) are fixed by the flat space UV

divergences [76, 77] and so we can still use (4.2) when working on the sphere. To the order

λ3 that we will consider here, no further renormalization of the theory is needed. However,

at higher orders a non-trivial renormalization of the conformal coupling parameter, as well

as pure curvature counterterms, are expected to play a role [76, 77].
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The Sd free energy to cubic order in λ is given by

F − Ffree = − 1

2 · 42

(
λ2 + 2λδλ

)
µ2ε

∫
ddxddy

√
gx
√
gy〈φ4(x)φ4(y)〉0

+
λ3µ3ε

6 · 43

∫
ddxddyddz

√
gx
√
gy
√
gz〈φ4(x)φ4(y)φ4(z)〉0 +O(λ4) (4.5)

where Ffree = NFs, and φ4 ≡ (φiφi)2. Here we have used the fact that 〈φ4〉0, being a

one-point function in a (free) CFT, vanishes. Note that the wave function renormalization

δφ does not in fact enter at this order (it will affect the order λ4 and higher). The two and

three point functions of the free theory on the sphere read

〈φ4(x)φ4(y)〉0 = 8N(N + 2)

(
Γ(d/2− 1)

4πd/2

)4 1

s(x, y)2(2d−4)
(4.6)

〈φ4(x)φ4(y)φ4(z)〉0 = 64N(N + 8)(N + 2)

(
Γ(d/2− 1)

4πd/2

)6 1

[s(x, y)s(y, z)s(z, x)]2d−4

where s(x, y) is the chordal distance. In the stereographic coordinates where the metric of

Sd with radius R is ds2 = 4R2dxµdxµ

(1+x2)2
, it reads

s(x, y) =
2R|x− y|

(1 + x2)1/2(1 + y2)1/2
. (4.7)

Let us recall the integrals [5, 12]

I2(∆) =

∫
ddxddy

√
gx
√
gy

1

s(x, y)2∆
= (2R)2(d−∆) 21−dπd+ 1

2 Γ
(
d
2 −∆

)
Γ
(

1+d
2

)
Γ (d−∆)

(4.8)

I3(∆) =

∫
ddxddyddz

√
gx
√
gy
√
gz

1

[s(x, y)s(y, z)s(z, x)]∆
= R3(d−∆) 8π

3(1+d)
2 Γ

(
d− 3∆

2

)
Γ (d) Γ

(
1+d−∆

2

)3 .

In the present case, we have ∆ = 2d− 4, and so

F − Ffree = − 1

32

(
λ2 + 2λδλ

)
8N(N + 2)

Γ(d/2− 1)4

256π2d
µ2εI2(2d− 4)

+
λ3

384
64N(N + 8)(N + 2)

Γ(d/2− 1)6

4096π3d
µ3εI3(2d− 4) .

(4.9)

Setting d = 4− ε, we obtain the expansions

Γ(d/2− 1)4

256π2d
µ2εI2(2d− 4) =

1

18(4π)4
+

1

72(4π)4

(
43

3
+ 4γ + 4 log

(
4πµ2R2

))
ε+ . . .

Γ(d/2− 1)6

4096π3d
µ3εI3(2d− 4) =

1

3(4π)6ε
+

1

(4π)6

(
29

18
+

1

2
γ +

1

2
log(4πµ2R2)

)
+ . . . (4.10)

Inserting these into (4.9), and using the explicit form of the counterterm (4.2), one can

verify that the 1/ε pole in I3 is cancelled, as expected from renormalizability of the theory.

If we remove the dimensional regulator, then we get the d = 4 result

F d=4 − F d=4
free = −N(N + 2)

72(4π)4
λ2 +

N(N + 2)(N + 8)

72(4π)6

(
5 + 2γ + 2 log(4πµ2R2)

)
λ3 +O(λ4)

(4.11)
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from which we find

R
∂

∂R

(
F d=4 − F d=4

free

)
=
N(N + 2)(N + 8)

18(4π)6
λ3 +O(λ4) (4.12)

which agrees with known results for the conformal a-anomaly of the φ4 theory [78]. We

also note that the Callan-Symanzik equation
(
β ∂
∂λ + µ ∂

∂µ

)
(F d=4 − F d=4

free ) = 0 is satisfied

to this order (here β is the 4d beta-function, i.e. eq. (4.3) with ε = 0).

On the other hand, in the case of the d = 4− ε fixed points which is our main interest

here, using (4.9), (4.10), and the expression for the critical coupling λ = λ∗ given in (4.4),

we obtain the result

F − Ffree = − N(N + 2)

288(N + 8)2
ε2 − N(N + 2)(13N2 + 424N + 1840)

3456(N + 8)4
ε3 +O(ε4) (4.13)

Note that the term proportional to log(µ2R2) has cancelled out, consistently with conformal

invariance of the fixed point theory (we do not have a conformal anomaly in d = 4 − ε).
Equivalently, in terms of F̃ = − sin(πd/2)F , we thus have (1.6). A non-trivial test of

this result comes from comparing with the double-trace formulae at large N . Indeed,

expanding (1.6) to leading order at large N , we find agreement with the expansion (3.13)

in d = 4− ε.
We can now use (1.6) to obtain an estimate for F in the 3d Ising model. Setting N = 1

and ε = 1, and using the expansion (2.9) for F̃s, we obtain9

F3d Ising =
π

180
+0.0205991ε+0.0136429ε2 +0.00670643ε3 +0.00258524ε4 ≈ 0.06099 (4.14)

Note that the correction in (1.6) due to interactions is quite small. Recalling that, in d = 3,

Fs ≈ 0.0638 (see (2.3)), our result implies

F3d Ising

Fs
≈ 0.956 . (4.15)

Thus, the F value of the 3d Ising model appears to be rather close to the free field value.

This is in line with the recent bootstrap results for the stress tensor two point function

coefficient cT , which yield c3d Ising
T /c3d free scalar

T ≈ 0.9466 [38, 48]. The fact that 0 <

F3d Ising < Fs is consistent with the F -theorem in d = 3. It is natural to propose that

F3d Ising is the lowest possible value of F in a unitary 3-dimensional CFT.

We can further use (1.6) to study the ratio
F3dO(N)

NFs
for N > 1. As N is increased,

this ratio first decreases slightly, attaining a minimum of ≈ 0.9551 for N = 3. After that

it begins to increase, and for large N it approaches 1. A plot of the ratio as a function

of continuous N is shown in figure 2. Interestingly, the same qualitative behavior as a

function of N (a slight decrease followed by increase) is also found in conformal bootstrap

calculations of
c
3dO(N)
T

Nc3d free scalar
T

[39]. The non-monotonicity in N can also be seen in the

behavior of γφ, which increases slightly from N = 1 to N = 2 and then begins to fall [39].

9Since we have found the effects of interaction up to O(ε4), for consistency we keep only the terms up

to O(ε4) in the expansion of F̃s.
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F3d OHNL
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Figure 2. Plot of the ratio
F3dO(N)

NFs
as a function of N , showing a clear minimum around N = 3.
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F
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Figure 3. Plot of the result for F̃Ising from the ε-expansion to order ε4, normalized by the free

scalar field value given in (2.5).

We may consider further decreasing d and comparing with the known exact results in

d = 2. The N = 1 fixed point, i.e. the φ4 theory, is expected to be continuously connected

to the 2-d Ising model [79], which has central charge c = 1/2 known to be the smallest

possible c for a unitary 2-d CFT. The N = 2 fixed point should connect with the d = 2

theory of a compact scalar field, which has c = 1. For N > 2 the d = 2 theory is the O(N)

non-linear sigma model which is not conformal. In terms of F̃ , F̃2d Ising = π/12 ≈ 0.2082.

If we take our result (1.6) in d = 4 − ε, set N = 1, ε = 2, and divide by the free scalar

contribution F̃2d free scalar = π/6, we obtain

F2d Ising

F2d free scalar
≈ 0.4 , (4.16)

which is not too far off the expected value of 0.5, considering that we only have the first few

orders in the ε expansion. Similarly, setting N = 2, ε = 2 in (1.6) we find
FO(2)

F2d free scalar
≈ 0.81;

this is not far off the exact result 1. A plot of the ε-expansion prediction for F̃ as a function

of d for N = 1, normalized by the free scalar result is given in figure 3.
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Let us mention that another possible approach is to dimensionally continue the ratio

F̃ /F̃free, instead of F itself. From our result (4.13) in d = 4− ε, we have

F̃

NF̃s
= 1−

N+2
288(N+8)2

πε3 + (N+2)(13N2+424N+1840)
3456(N+8)4

πε4 + . . .
π

180 + 0.0206ε+ . . .
. (4.17)

Expanding to quartic order in ε, and then setting ε = 1, N = 1, yields

F3d Ising

Fs
≈ 0.975 , (4.18)

which is slightly different from our estimate (4.15) above. This is not surprising, given that

this approach essentially involves a partial resummation of (4.13). Clearly, higher orders

in the ε expansion, potentially coupled with some kind of resummation technique, may be

necessary to obtain a more precise estimate of F3d Ising. Nevertheless, we believe that the

conclusion that F3d Ising is a few percent below the free scalar value is robust.

4.2 Gross-Neveu-Yukawa model

Another interesting example of weakly coupled fixed points in d = 4− ε is provided by the

GNY model (3.18). The one-loop β-functions for the renormalized couplings g1, g2 are [74]

βg1 = − ε
2
g1 +

N + 6

32π2
g3

1

βg2 = −εg2 +
1

8π2

(
3

2
g2

2 +Ng2
1g2 − 6Ng4

1

)
,

(4.19)

where N = Ñtr1, and Ñ is the number of Dirac fermions (i.e., the model has a U(Ñ)

global symmetry). There is a stable IR fixed point at the critical couplings

(g∗1)2 = 16π2 ε

N + 6
, g∗2 = 16π2R(N)ε

R(N) =
24N

(N + 6)
[
N − 6 +

√
N2 + 132N + 36

] . (4.20)

The O(ε2) corrections to the critical couplings and to the operator anomalous dimensions

were found in [80] using the two-loop beta functions.

The calculation of the sphere free-energy at the d = 4− ε fixed points follows the same

step as in the previous section. To leading order, only the Yukawa coupling contributes,

since at the fixed point g1 ∼
√
ε, g2 ∼ ε. We have

〈σψ̄ψ(x)σψ̄ψ(y)〉0 = N
Γ
(
d
2 − 1

)
4π

d
2

(
Γ
(
d
2

)
2π

d
2

)2
1

s(x, y)2( 3
2
d−2)

(4.21)

and so

F − Ffree = −1

2
g2

1Nµ
εΓ
(
d
2 − 1

)
4π

d
2

(
Γ
(
d
2

)
2π

d
2

)2

I2

(
3

2
d− 2

)
+ . . . . (4.22)
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Note that to this order we do not need to worry about the contribution of the counterterms

(they will cancel the poles coming from higher order diagrams). Using (4.9), and inserting

the fixed point value of the coupling constant, we get

F − Ffree = − N

48(N + 6)
ε+O(ε2) , (4.23)

or, in terms of F̃ = − sin(πd/2)F

F̃GNY = NF̃f + F̃s −
π

96

N

N + 6
ε2 +O(ε3) . (4.24)

We see that at large N this precisely agrees precisely with the double-trace result (3.22).

Note also that the sign of the correction due to interactions is negative, in agreement with

the expectation that F̃UV > F̃IR. Expanding the free field results F̃f and F̃s to order ε2,

we find

F̃GNY = N

(
11π

720
+ 0.0388187ε+ 0.0163383ε2

)
+

π

180
+ 0.0205991ε

+ 0.0136429ε2 − π

96

N

N + 6
ε2 +O(ε3) .

(4.25)

Now setting ε = 1, we obtain an estimate for the 3d critical Gross-Neveu model

F3d GN ≈ N · 0.103154 + 0.0516953− π

96

N

N + 6
(4.26)

For the case of the U(1) Gross-Neveu model, we should set N = Ñtr1 = 2.10 Then, we get

the estimate F3d GNU(1)
≈ 0.2498. The corresponding free field value is

2Ff + Fs =

(
log 2

4
+

3ζ(3)

8π2

)
+

(
log 2

8
− 3ζ(3)

16π2

)
≈ 0.282767 , (4.27)

so that
F3d GNU(1)

Ffree
≈ 0.883 . (4.28)

4.3 Cubic O(N) scalar theory in d = 6 − ε

Let us now consider the O(N) symmetric cubic scalar field theory in d = 6− ε

S =

∫
ddx

[
1

2

(
∂µφ

i
)2

+
1

2
(∂µσ)2 +

g1

2
µ
ε
2σφiφi +

g2

6
µ
ε
2σ3

]
. (4.29)

Again, we omit the explicit counterterms, as we will only do a leading order computation

of the free energy.

The one-loop β-functions for the renormalized couplings g1, g2 are [70]

β1 = − ε
2
g1 +

(N − 8)g3
1 − 12g2

1g2 + g1g
3
2

12(4π)3

β2 = − ε
2
g2 +

−4Ng3
1 +Ng2

1g2 − 3g3
2

4(4π)3
.

(4.30)

10If we instead define the dimensional continuation so that the number of degrees of freedom is kept fixed,

then the lowest possible value is N = 4, corresponding to two Dirac fermions in d = 3.
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For N > Ncrit, these have real zeroes corresponding to unitary IR stable fixed points. The

solution for the critical couplings has the form

g∗1 =

√
6ε(4π)3

(N − 44)z(N)2 + 1
z(N) , g∗2 =

√
6ε(4π)3

(N − 44)z(N)2 + 1
(1 + 6z(N)) (4.31)

where z(N) is the solution to the cubic equation

840z3 − (N − 464)z2 + 84z + 5 = 0 (4.32)

with large N asymptotics z(N) = N/840 + O(N0).11 As N is reduced, this real solution

disappears at the critical value of N where the discriminant of the cubic equation (4.32)

vanishes; this happens for N = Ncrit ≈ 1038.266 [70].12

It is not difficult to derive the large N expansion of the critical couplings to any desired

order. The first few terms read [70]

g∗1 =

√
6ε(4π)3

N

(
1 +

22

N
+

726

N2
− 326180

N3
+ . . .

)
g∗2 = 6

√
6ε(4π)3

N

(
1 +

162

N
+

68766

N2
+

41224420

N3
+ . . .

)
.

(4.33)

Now, let us calculate the first correction to the sphere free energy in d = 6 − ε. We just

need the two-point functions in the free theory

〈σφiφi(x)σφjφj(y)〉0 = 2N

(
Γ
(
d
2 − 1

)
4π

d
2

)3
1

s(x, y)2( 3
2
d−3)

〈σ3(x)σ3(y)〉0 = 6

(
Γ
(
d
2 − 1

)
4π

d
2

)3
1

s(x, y)2( 3
2
d−3)

(4.34)

and so we get

F − Ffree = − 1

12

(
3g2

1N + g2
2

)(Γ
(
d
2 − 1

)
4π

d
2

)3

I2

(
3

2
d− 3

)
+ . . . (4.35)

Using (4.9) and expanding to leading order in d = 6− ε, we get

F − Ffree =
3(g∗1)2N + (g∗2)2

8640(4π)3
+O(ε2) (4.36)

where g∗1, g
∗
2 are the fixed point couplings (4.31). Note that the change in F is positive in

this case. However, in terms of F̃ = − sin(πd/2)F , we have

F̃ = (N + 1)F̃s −
π

17280

3(g∗1)2N + (g∗2)2

(4π)3
ε+O(ε3) . (4.37)

which is consistent with F̃UV > F̃IR (the reason for the change of sign is simply that

sin(πd/2) = πε
2 + . . . in d = 6− ε). Using the large N expressions (4.33) for the fixed point

couplings, it is also easy to check that this result agrees as expected with the double-trace

formula (3.16).

11The other two solutions have asymptotics z(N) = ±
√

5/N + O(N−1) and they are not IR stable for

generic N .
12Higher loop corrections show that the value of this criticalN is significantly reduced as ε is increased [81].
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5 SUSY theories: comparing localization and ε-expansion

5.1 The Wess-Zumino model with cubic superpotential in d = 4 − ε

It is known that the usual dimensional regularization is inconsistent with supersymmetry,

since it breaks the balance between bosonic and fermionic degrees of freedom. However,

a variant of dimensional regularization, known as dimensional reduction scheme [82, 83]

is widely used in loop calculations in supersymmetric theories.13 In this regularization

scheme, all tensor and spinor manipulations are done in the fixed integer space-time di-

mension, and at the end the loop integrals are continued to non-integer d dimensions. This

procedure preserves supersymmetry and it is believed to be a consistent regularization

technique in supersymmetric field theories. While this scheme is typically employed to

regulate loop calculations near a given integer dimension, here we will use it to connect

theories with four supercharges in 2 ≤ d ≤ 4, in the spirit of the Wilson-Fisher ε-expansion.

In this way, we will connect N = 1 Wess-Zumino models in d = 4, to N = 2 models in

d = 3 and N = (2, 2) models in d = 2.

As an explicit simple example, let us consider the Wess-Zumino model with a cubic

superpotential for a chiral superfield X:

S =

∫
ddx

[∫
d2θd2θ̄X̄X +

λ

6

∫
d2θX3 +

λ

6

∫
d2θ̄X̄3

]
. (5.1)

This theory has classically marginal interactions in d = 4, and the corresponding β function

is known to four loop order [85–88]. Due to the non-renormalization of the superpotential

vertex [82, 89], the β-function is completely determined by the wavefunction renormaliza-

tion of X

3λγX = β4d (5.2)

where β4d is the β-function in d = 4, whose first few orders read

β4d =
3

2

λ3

(4π)2
− 3

2

λ5

(4π)4
+O(λ7) (5.3)

When we continue the model to d = 4− ε, the β-function becomes simply

βd=4−ε = − ε
2
λ+ β4d . (5.4)

Then, we see that in d = 4− ε there is a perturbative IR fixed point given by

λ∗ =
4π
√
ε√

3

(
1 +

ε

6
+ . . .

)
. (5.5)

This is a supersymmetric version of the Wilson-Fisher fixed point for the quartic scalar field

theory in 2 ≤ d ≤ 4. In d = 3, it describes the IR fixed point of the N = 2 Wess-Zumino

model with cubic superpotential (see e.g. [90]). Note that (5.2) completely determines the

13This scheme is also used in loop calculations in supersymmetric Chern-Simons matter theories in d = 3

(see e.g. [84]), for which the usual dimensional regularization cannot be used due to the presence of the

Chern-Simons term.
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dimension of X at the fixed point, where β4d(λ∗) = ελ∗/2. Then, at the IR fixed point we

find

3λ∗γX =
ε

2
λ∗ (5.6)

or, writing ∆X = d/2− 1 + γX

∆X =
d− 1

3
. (5.7)

In particular, in d = 4 this corresponds to the free field dimension ∆ = 1, and in d = 3

it gives ∆ = 2/3 at the interacting IR fixed point [90]. Another way to derive the exact

dimension (5.7) is to note that, in all dimensions the superpotential must have the U(1)R
charge equal to 2, so that RX = 2/3. Continuing the BPS condition ∆X = d−1

2 RX from

integer to real d, we then recover (5.7).

In d = 3, the sphere free energy of any N = 2 supersymmetric field theory can be com-

puted exactly using the supersymmetric localization [17–19]. Introducing the function [18]

`(z) =
i

2π
Li2
(
e2iπz

)
+
iπ

2
z2 − z log

(
1− e2iπz

)
− iπ

12

∂z`(z) = −πz cot(πz)
(5.8)

the free energy of the model with W ∼ X3 at the fixed point is given by

FW=X3 = −`(1−∆)|∆=2/3 = 0.290791 . . . (5.9)

where we used the fact that the conformal dimension in the IR is fixed by the superpotential.

This may be compared with the value of F for the free chiral multiplet, Ffree chir. = 1
2 log 2.

Therefore,
FW=X3

Ffree chir.
= −2`(1/3)

log 2
≈ 0.839 , (5.10)

in agreement with the F -theorem.

To test the validity of the ε-expansion, let us now try to compute perturbatively the

sphere free energy of this model in d = 4 − ε. The calculation is very similar to the one

for the GNY model described in section 4.2. In components, the Lagrangian of the d = 4

Wess-Zumino model reads [86]

L =
1

2
(∂µA)2 +

1

2
(∂µB)2 +

1

2
ψ̄ /∂ψ +

λ2

16

(
A2 +B2

)2
+

λ

2
√

2
ψ̄ (A+ iγ5B)ψ , (5.11)

where A and B are a real scalar and pseudo-scalar, and ψ a Majorana fermion (this has two

propagating degrees of freedom in d = 4, the same as a Dirac fermion in d = 3). To leading

order, the only contribution to the sphere free energy comes from the Yukawa interactions.

Using the integrals defined in (4.9), we thus get

F − Ffree chir. = −1

2

(
λ

2
√

2

)2 Γ
(
d
2 − 1

)
4π

d
2

(
Γ
(
d
2

)
2π

d
2

)2

2 · 2 · tr1 I2

(
3

2
d− 2

)
+O(λ3) . (5.12)

Note that a factor of 2 comes from the fact that the fermions are Majorana (so that there

are non-zero Wick contractions ψψ and ψ̄ψ̄), and an additional factor of 2 takes into
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account the two Yukawa couplings ψ̄Aψ and ψ̄γ5Bψ. Finally, the factor tr1 is the trace

of identity in the gamma matrices space, which should be set to tr1 = 4 according to the

rules of dimensional reduction. Then, plugging in the critical coupling (5.5), expanding to

leading order in ε and inserting a factor of − sin(πd/2), we get the result for F̃

F̃W=X3 = F̃free chir. −
π

144
ε2 +O(ε3) . (5.13)

The free field contribution corresponds to a free conformal chiral superfield, for which we

get (see eq. (2.9))

F̃free chir. = 2F̃s + 2F̃f =
π

24
+ 0.118836ε+ 0.0599625ε2 +O(ε3) . (5.14)

Then, we obtain the prediction to quadratic order in ε:

F̃W=X3 =
π

24
+ 0.118836ε+ 0.0381459ε2 +O(ε3) . (5.15)

In d = 3, this gives

F̃W=X3(ε = 1) ≈ 0.288 , (5.16)

which is within 1% of the exact localization result (5.9)! Thus, the ε-expansion seems to

be a remarkably good approximation (at least in this supersymmetric example), given that

we have only performed a leading order calculation in d = 4− ε.
It is also interesting to consider the continuation of the model to d = 2. In this case,

the IR fixed point corresponds to the N = (2, 2) SCFT with cubic superpotential, which

has ∆X = 1/3 and central charge c = 1. This is the first member, k = 1, of the N = (2, 2)

superconformal minimal models in d = 2; these theories have superpotentials W = Xk+2

and central charges c = 3k/(k + 2) [49]. Setting ε = 2 in our result (5.15), we obtain

F̃W=X3(ε = 2) ≈ 0.5212 = 0.9953
π

6
, (5.17)

corresponding to central charge c = 0.9953. This approximation from the ε expansion is

again remarkably close to the exact result c = 1.

5.2 Interpolating F̃ -maximization

In this section we propose a natural extension of the localization on S3 [17–19] that can

be applied to any Wess-Zumino type model with four supercharges on Sd, 2 ≤ d ≤ 4. As

we will show below, our proposal smoothly interpolates between the a-maximization [7] in

d = 4, and the F -maximization [11, 18, 20] in d = 3.

We start by observing that the function (5.8) appearing in the 3d localization for

N = 2 supersymmetric theories has a simple origin. It can be obtained from the one-

loop determinants on S3 of free massive scalars and fermions. Indeed, the supersymmetric

Lagrangian for a free chiral multiplet with non-canonical dimension ∆ is given by [18, 19, 91]

Lchiral = ∂µφ
∗∂µφ+ ∆(2−∆)φ∗φ− iψ̄ /∇ψ −

(
∆− 1

2

)
ψ̄ψ + F̄F (5.18)
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where we have assumed that there is no vector multiplet in the theory, and we have set

the radius of the sphere to one. Adding a superpotential to the theory does not change

the value of the localized partition function, except for constraining the allowed values of

the R-charges. Then, each chiral multiplet with trial dimension ∆ contribute to the S3

partition function a factor

Zchiral
S3 =

det
[
−i /∇− (∆− 1/2)

]
det [−∇2 + ∆(2−∆)]

. (5.19)

The relevant functional determinants can be obtained from the results (2.17) and (2.23)

for free massive fields, and correspond to the free energy contribution

F chiral
S3 = 2Fs(m)|m2=(∆− 1

2
)( 3

2
−∆) + 2Ff (m)|m=i(∆− 1

2
) = −`(1−∆) , (5.20)

where we recall that the value of the scalar mass was defined in (2.14) as the deviation

from conformal coupling, and the factor of 2 is because the 3d N = 2 chiral superfield

contains a complex scalar and a Dirac fermion.

This suggests a natural generalization of the 3d localization to non-integer d. To a given

chiral superfield with trial dimension ∆, or equivalently trial R-charge R = 2∆/(d− 1), we

associate the function

F̃(∆) ≡ 2F̃s(m)|m2=(∆− d
2

+1)( d
2
−∆) + 2F̃f (m)|m=i(∆− d

2
+1) (5.21)

where F̃s(m) and F̃f (m) are the F̃ -values of free massive fields given in (2.16) and (2.22).

The value of the masses above are such that they reduce to (5.20) for d = 3, and for

the canonical dimension ∆ = d/2 − 1 they correspond to the usual conformal coupling in

dimension d. The function F̃(∆) can be given a more compact representation in terms of

its derivative with respect to ∆. Using the results in section 2.1, we find

dF̃(∆)

d∆
=

Γ (d− 1−∆) Γ (∆) sin
(
π(∆− d

2)
)

Γ (d− 1)
. (5.22)

Integrating this equation with the boundary condition that F̃(∆ = d/2 − 1) must equal

the contribution of a free conformal chiral multiplet, (5.14), we find

F̃(∆) = 2(F̃s + F̃f ) +

∫ ∆

d/2−1
dx

Γ (d− 1− x) Γ (x) sin
(
π(x− d

2)
)

Γ (d− 1)
. (5.23)

By comparing (5.22) and (5.23) to (5.8), it is straightforward to verify that F̃(∆) =

−`(1 − ∆) for d = 3. Our proposal can be then stated as follows. For a theory with

four supercharges including several chiral superfields (and restricting for the time being to

theories without gauge fields), the exact value of F̃ is given by

F̃ =
∑

chirals

F̃(∆i) (5.24)

where the trial dimensions ∆i are determined by maximizing F̃ , under the constraint that

the superpotential has exact R-charge 2. In d = 3, this reproduces the result of [18] by
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construction. Let us show that in d = 4 this is equivalent to the a-maximization of [7].

Specializing (5.23) to d = 4, we obtain

F̃d=4(∆) =
π

24
+
π

2

∫ ∆

1
dx(x− 1)(x− 2) = (2∆− 3)(2∆(∆− 3) + 3)

π

24

=
3π

16
(R− 1)

(
3(R− 1)3 − 1

)
(5.25)

where in the second step we have used ∆ = 3/2R. This is indeed the correct expression for

the a-anomaly of a d = 4 chiral superfield as a function of the R-charge of the scalar field [6]

(recall that in d = 4 our conventions imply that F̃ = a π/2). Thus, the maximization

of (5.24) indeed smoothly connects the 4d a-maximization and 3d F -maximization.

It is also worth noting that in d = 2 our proposal (5.24) correctly reproduces the

central charges of the N = (2, 2) superconformal minimal models. In d = 2, from (5.23)

and (5.22) we get

F̃d=2(∆) =
π

2
− π

∫ ∆

0
dx =

π

2
(1− 2∆) . (5.26)

Thus, we find that the central charge is given by

c = 3
∑
i

(1− 2∆i) , (5.27)

in agreement with [49]. For example, for the superconformal model with W = Xk+2, the

dimension of X is ∆ = d−1
k+2 = 1

k+2 . So we obtain

F̃ = F̃d=2

(
∆ =

1

k + 2

)
=

3k

k + 2

π

6
(5.28)

which indeed corresponds to the correct central charge c = 3k
k+2 [49].

A non-trivial test of (5.24) can be obtained by comparing with the direct perturbative

calculation for the W ∼ X3 model in d = 4− ε performed in the previous section. Setting

∆ = (d− 1)/3 and d = 4− ε, and expanding in powers of ε, (5.23) and (5.24) give

F̃W=X3 − F̃free chir. = − π

144
ε2 − π

162
ε3 −

π
(
20− π2

)
3456

ε4 +O(ε5) . (5.29)

The leading order term indeed precisely reproduces our perturbative result (5.13). To fur-

ther test the correctness of our localization proposal, it would be interesting to match the

subleading corrections by a direct Feynman diagram calculation in d = 4−ε. It is also inter-

esting to compare the exact localization prediction (5.24) in 2 ≤ d ≤ 4 to the ε-expansion.

In figure 4, we plot the exact prediction for F̃W=X3 normalized by the value for a free chiral

superfield, and compare it to the ε-expansion: remarkably, keeping only up to order ε2 al-

ready provides a very good approximation of the exact result in the whole range 2 ≤ d ≤ 4.

We may also consider the d = 3−ε expansion of models which have classically marginal

interactions in d = 3. The simplest such theory is the N = 2 model with quartic superpo-

tential W ∼ X4. This model is IR free in d = 3, but it is expected to have non-trivial IR

fixed points in 2 ≤ d < 3. In d = 2 it becomes the second member, k = 2, of the N = (2, 2)
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Figure 4. Plot of F̃ for the “super-Ising” model with superpotential W = X3, normalized by

the free chiral superfield value F̃free chir.. The solid line is the prediction of the localization pro-

posal (5.24), while the dashed line is the result of the direct perturbative calculation (5.15) in

d = 4− ε to order ε2.

superconformal discrete series with central charges c = 3k/(k + 2) [49]. This model with

c = 3/2 may be regarded as a N = (2, 2) supersymmetric version of the tricritical Ising

model. It is straightforward to derive F̃ for this model in d = 3− ε. The dimension in the

IR is fixed to be ∆X = (d − 1)/4. Inserting this value in (5.23) and expanding in ε, we

obtain the prediction

F̃ − F̃free chir. = −π
2

64
ε2 − π2

192
(6 log 2− 1) ε3 +O(ε4) (5.30)

where the free chiral superfield contribution in d = 3− ε is

F̃free chir. = 2(F̃s + F̃f ) =
1

2
log 2 + 0.370779ε+ 0.248032ε2 + 0.149738ε3 +O(ε4) . (5.31)

It would be interesting to reproduce (5.30) from a direct perturbative calculation in d =

3 − ε. Setting ε = 1 in (5.30) and including the free field contribution expanded to order

ε3, we obtain the estimate F̃ ≈ 1.53π6 in d = 2, corresponding to c ≈ 1.53 which is close to

the exact value 1.5. Thus, we again see that the first few orders of the ε expansion provide

rather good approximations to the exact answers.

5.3 An example with O(N) symmetry

So far, we have discussed examples where the R charges are completely fixed by the super-

potential. As an example where the F̃ -maximization is needed to fix the R charges, let us

consider the model with N + 1 chiral superfields and O(N) symmetric superpotential

W =
λ

2
X

N∑
i=1

ZiZi . (5.32)
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This model has classically marginal interactions in d = 4, and its RG analysis in d = 4− ε
was carried out in [50].14 The β-function and anomalous dimensions for this model are

known up to the four loop order [92]. The first few orders read

γZ =
λ2

(4π)2
− (N + 2)λ4

2(4π)4
− (N2 − 10N − 4− 24ζ(3))λ6

4(4π)6
+O(λ8) ,

γX =
Nλ2

2(4π)2
− Nλ4

(4π)4
+
N(2N + 1 + 6ζ(3))λ6

(4π)6
+O(λ8) , (5.33)

β = − ε
2
λ+

(N + 4)λ3

2(4π)2
− 2(N + 1)λ5

(4π)4
+

(
N2 + 11N + 4 + 6(N + 4)ζ(3)

)
λ7

2(4π)6
+O(λ9) .

In d = 4 the theory is IR free, while in d = 4 − ε one can see that there is a perturbative

IR fixed point with

λ∗ =
4π
√
ε√

N + 4

(
1 +

2(N + 1)

(N + 4)2
ε+ . . .

)
(5.34)

This is continuously connected to the non-trivial IR fixed point of the 3d N = 2 model with

the same superpotential (this model was recently used in [51] to provide a counterexample

to a potential CT theorem in d = 3). Note that the anomalous dimensions and β-function

in (5.33) are related by (2γZ + γX)λ = β4d, analogously to (5.2). This implies that at the

IR fixed point the conformal dimensions are constrained by

2∆Z + ∆X = d− 1 . (5.35)

This is equivalent to the condition that the R-charge of the superpotential equals 2.

As a test of the F̃ -extremization procedure, we can use it to derive the conformal

dimensions ∆X and ∆Z in d = 4− ε, and compare the result with the RG analysis. Given

the constraint (5.35), the exact F̃ is given by

F̃ = N F̃(∆Z) + F̃(d− 1− 2∆Z) (5.36)

where we used (5.35), and the value of ∆Z should be determined by extremizing F̃ . Us-

ing (5.22), we obtain

dF̃

d∆Z
= N

Γ (d− 1−∆Z) Γ (∆Z) sin
(
π(∆Z − d

2)
)

Γ (d− 1)

− 2
Γ (d− 1− 2∆Z) Γ (2∆Z) sin

(
π(d2 − 2∆Z)

)
Γ (d− 1)

.

(5.37)

Setting

∆Z =
d

2
− 1 + γ1ε+ γ2ε

2 + γ3ε
3 + . . . (5.38)

14Note that from the RG point of view it would be natural to add the term λ2X
3 to the superpotential,

which is also classically marginal in d = 4 and consistent with the O(N) symmetry. However, we note

that the theory with superpotential (5.32) has an additional global U(1) symmetry under which X can

be assigned charge +2 and Zi charge −1. This symmetry ensures that the term λ2X
3 is not generated.

Equivalently, one can also explicitly see that the beta function βλ2 vanishes at λ2 = 0. This follows

from general non-renormalization properties of the N = 1 Wess-Zumino models in d = 4, which imply

βλ2 = 3λ2γX , analogously to (5.2).
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and expanding in powers of ε, we can easily solve the equation dF̃ /d∆Z = 0 to obtain

γ1 =
1

N + 4
, γ2 = −N(N − 2)

4(N + 4)3
, γ3 = −N(N − 2)(N2 + 20N + 16)

4(N + 4)5
. (5.39)

One can check that this result precisely agrees with the one obtained from the RG analy-

sis [50, 92] (see eq. (5.33)) providing a non-trivial test of our proposal. Once the conformal

dimensions in the IR are known, one can plug them back in (5.23) to obtain the exact F̃ .

Using (5.39), we obtain in d = 4− ε

F̃ = (N + 1)F̃free chiral(ε)−
π

16

N

N + 4
ε2 − π

24

N(N + 2)(N + 10)

(N + 4)3
ε3 +O(ε4) . (5.40)

Expanding F̃free chir. to order ε3, this gives for ε = 1 and N = 1, 2, 3, . . . the val-

ues F̃ = 0.593, 0.876, 1.174, . . ., which are very close to the exact 3d results F =

0.595, 0.872, 1.174, . . . found in [51].

It is also interesting to solve (5.37) at large N and fixed d. Setting ∆Z = d
2 − 1 +

η1/N + η2/N
2 + . . ., and solving perturbatively at large N , we obtain

η1 = −
2 sin

(
πd
2

)
Γ(d− 2)

πΓ
(
d
2 − 1

)
Γ
(
d
2

)
η2 = 2η2

1

(
ψ(2− d

2
) + ψ(d− 2)− ψ(

d

2
− 1)− ψ(1) +

1

d− 2

)
.

(5.41)

where ψ(x) = Γ′(x)/Γ(x). This exactly matches the result of [50] obtained by large N

methods. In d = 3, it gives

∆Z =
1

2
+

4

π2N
+

32

π4N2
+ . . . , (5.42)

in agreement with [51]. By plugging (5.41) into (5.23), one can also obtain in principle

the large N expansion of F̃ for any d. In d = 4 − ε, this can be seen to reproduce the

large N expansion of (5.40) as expected. In d = 3, the result can be obtained directly from

F̃ = −N`(1−∆Z)− `(2∆Z − 1). Using (5.42), one gets [51]

F̃ =
N

2
log 2 +

4

π2N
+

64

3π4N2
+ . . . (5.43)

Note that in d = 2 the F̃ -maximization procedure cannot be carried out, since F̃d=2(∆)

is linear in ∆ (see eq. (5.26)). This suggests that the superpotential (5.32) does not give

a superconformal theory in d = 2, unless the conformal dimensions are completely fixed

by W and its symmetries. Consider, for instance the series of Dk theories which have

W = XZ2 + Xk−1 with k = 4, 5, . . . and c = 3(k−2)
k−1 [49]. We note that there is no k = 1

theory with W = XZ2, where the superpotential does not fix the dimensions. When

the superpotential has both terms, then the dimensions are fixed to ∆X = 1
k−1 and ∆Z =

k−2
2(k−1) . The correct central charge then follows from (5.27). We also note that the D4 theory

has a superpotential that is marginal in d = 4, so it can be studied using the 4−ε expansion.
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Another interesting theory is the case N = 2 of (5.32), where by a change of variables

the theory is equivalent to the model with superpotential W ∼ XY Z. This model is well-

known in d = 3 because it is related by the mirror symmetry to N = 2 supersymmetric

QED with one flavor [90]. In general d, the conformal dimensions are fixed to be

∆X = ∆Y = ∆Z =
d− 1

3
. (5.44)

Indeed, note that all the anomalous dimensions in (5.39) vanish for N = 2, except for the

term which is linear in ε and, therefore, linear in d. The exact F̃ for this model is then simply

F̃ = 3F̃
(

∆ =
d− 1

3

)
. (5.45)

In d = 2, this corresponds to a superconformal N = (2, 2) model with F̃ = π
2 , or central

charge c = 3.
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[31] K. Lang and W. Rühl, The critical O(N) σ-model at dimensions 2 < d < 4: fusion

coefficients and anomalous dimensions, Nucl. Phys. B 400 (1993) 597 [INSPIRE].

[32] A. Petkou, Conserved currents, consistency relations and operator product expansions in the

conformally invariant O(N) vector model, Annals Phys. 249 (1996) 180 [hep-th/9410093]

[INSPIRE].

[33] A.C. Petkou, CT and CJ up to next-to-leading order in 1/N in the conformally invariant

0(N) vector model for 2 < d < 4, Phys. Lett. B 359 (1995) 101 [hep-th/9506116] [INSPIRE].

[34] A.M. Polyakov, Nonhamiltonian approach to conformal quantum field theory, Zh. Eksp. Teor.

Fiz. 66 (1974) 23 [INSPIRE].

[35] S. Ferrara, A.F. Grillo and R. Gatto, Tensor representations of conformal algebra and

conformally covariant operator product expansion, Annals Phys. 76 (1973) 161 [INSPIRE].

[36] R. Rattazzi, V.S. Rychkov, E. Tonni and A. Vichi, Bounding scalar operator dimensions in

4D CFT, JHEP 12 (2008) 031 [arXiv:0807.0004] [INSPIRE].

[37] S. Rychkov, Conformal bootstrap in three dimensions?, arXiv:1111.2115 [INSPIRE].

[38] S. El-Showk et al., Solving the 3D Ising model with the conformal bootstrap, Phys. Rev. D 86

(2012) 025022 [arXiv:1203.6064] [INSPIRE].

[39] F. Kos, D. Poland and D. Simmons-Duffin, Bootstrapping the O(N) vector models, JHEP 06

(2014) 091 [arXiv:1307.6856] [INSPIRE].

[40] F. Kos, D. Poland and D. Simmons-Duffin, Bootstrapping mixed correlators in the 3D Ising

model, JHEP 11 (2014) 109 [arXiv:1406.4858] [INSPIRE].

[41] M. Hasenbusch, Finite size scaling study of lattice models in the three-dimensional Ising

universality class, Phys. Rev. B 82 (2010) 174433 [arXiv:1004.4486].

[42] K.G. Wilson and M.E. Fisher, Critical exponents in 3.99 dimensions, Phys. Rev. Lett. 28

(1972) 240 [INSPIRE].

[43] M. Hogervorst, S. Rychkov and B.C. van Rees, Truncated conformal space approach in d

dimensions: a cheap alternative to lattice field theory?, Phys. Rev. D 91 (2015) 025005

[arXiv:1409.1581] [INSPIRE].

[44] K.G. Wilson and J.B. Kogut, The renormalization group and the ε-expansion, Phys. Rept. 12

(1974) 75 [INSPIRE].

[45] J. Le Guillou and J. Zinn-Justin, Accurate critical exponents from the epsilon expansion, J.

Physique Lett. 46 (1985) L137 [INSPIRE].

– 30 –

http://dx.doi.org/10.1007/BF01015292
http://inspirehep.net/search?p=find+J+Theor.Math.Phys.,50,127
http://dx.doi.org/10.1007/BF01474081
http://inspirehep.net/search?p=find+J+ZEPYA,C50,285
http://dx.doi.org/10.1016/0550-3213(92)90028-A
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B377,371
http://dx.doi.org/10.1016/0550-3213(93)90119-A
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B402,573
http://dx.doi.org/10.1016/0550-3213(93)90417-N
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B400,597
http://dx.doi.org/10.1006/aphy.1996.0068
http://arxiv.org/abs/hep-th/9410093
http://inspirehep.net/search?p=find+EPRINT+hep-th/9410093
http://dx.doi.org/10.1016/0370-2693(95)00936-F
http://arxiv.org/abs/hep-th/9506116
http://inspirehep.net/search?p=find+EPRINT+hep-th/9506116
http://inspirehep.net/search?p=find+J+Zh.Eksp.Teor.Fiz.,66,23
http://dx.doi.org/10.1016/0003-4916(73)90446-6
http://inspirehep.net/search?p=find+J+AnnalsPhys.,76,161
http://dx.doi.org/10.1088/1126-6708/2008/12/031
http://arxiv.org/abs/0807.0004
http://inspirehep.net/search?p=find+EPRINT+arXiv:0807.0004
http://arxiv.org/abs/1111.2115
http://inspirehep.net/search?p=find+EPRINT+arXiv:1111.2115
http://dx.doi.org/10.1103/PhysRevD.86.025022
http://dx.doi.org/10.1103/PhysRevD.86.025022
http://arxiv.org/abs/1203.6064
http://inspirehep.net/search?p=find+EPRINT+arXiv:1203.6064
http://dx.doi.org/10.1007/JHEP06(2014)091
http://dx.doi.org/10.1007/JHEP06(2014)091
http://arxiv.org/abs/1307.6856
http://inspirehep.net/search?p=find+EPRINT+arXiv:1307.6856
http://dx.doi.org/10.1007/JHEP11(2014)109
http://arxiv.org/abs/1406.4858
http://inspirehep.net/search?p=find+EPRINT+arXiv:1406.4858
http://dx.doi.org/10.1103/PhysRevB.82.174433
http://arxiv.org/abs/1004.4486
http://dx.doi.org/10.1103/PhysRevLett.28.240
http://dx.doi.org/10.1103/PhysRevLett.28.240
http://inspirehep.net/search?p=find+J+Phys.Rev.Lett.,28,240
http://dx.doi.org/10.1103/PhysRevD.91.025005
http://arxiv.org/abs/1409.1581
http://inspirehep.net/search?p=find+EPRINT+arXiv:1409.1581
http://dx.doi.org/10.1016/0370-1573(74)90023-4
http://dx.doi.org/10.1016/0370-1573(74)90023-4
http://inspirehep.net/search?p=find+J+Phys.Rept.,12,75
http://inspirehep.net/record/225559


J
H
E
P
0
3
(
2
0
1
5
)
1
1
7

[46] J. Le Guillou and J. Zinn-Justin, Accurate critical exponents for Ising like systems in

noninteger dimensions, J. Physique 48 (1987) 19 [INSPIRE].

[47] H. Kleinert and V. Schulte-Frohlinde, Critical properties of φ4-theories, World Scientific,

River Edge U.S.A. (2001).

[48] S. El-Showk et al., Solving the 3d Ising model with the conformal bootstrap II. c-minimization

and precise critical exponents, J. Stat. Phys. 157 (2014) 869 [arXiv:1403.4545] [INSPIRE].

[49] C. Vafa and N.P. Warner, Catastrophes and the classification of conformal theories, Phys.

Lett. B 218 (1989) 51 [INSPIRE].

[50] P.M. Ferreira and J.A. Gracey, The β-function of the Wess-Zumino model at O(1/N2), Nucl.

Phys. B 525 (1998) 435 [hep-th/9712138] [INSPIRE].

[51] T. Nishioka and K. Yonekura, On RG flow of τRR for supersymmetric field theories in

three-dimensions, JHEP 05 (2013) 165 [arXiv:1303.1522] [INSPIRE].

[52] I.R. Klebanov and A.M. Polyakov, AdS dual of the critical O(N) vector model, Phys. Lett. B

550 (2002) 213 [hep-th/0210114] [INSPIRE].

[53] E. Sezgin and P. Sundell, Holography in 4D (super) higher spin theories and a test via cubic

scalar couplings, JHEP 07 (2005) 044 [hep-th/0305040] [INSPIRE].

[54] R.G. Leigh and A.C. Petkou, Holography of the N = 1 higher spin theory on AdS4, JHEP 06

(2003) 011 [hep-th/0304217] [INSPIRE].

[55] S. Giombi, I.R. Klebanov and B.R. Safdi, Higher spin AdSd+1/CFTd at one loop, Phys. Rev.

D 89 (2014) 084004 [arXiv:1401.0825] [INSPIRE].

[56] S. Giombi and X. Yin, The higher spin/vector model duality, J. Phys. A 46 (2013) 214003

[arXiv:1208.4036] [INSPIRE].

[57] S. Giombi and X. Yin, Higher spin gauge theory and holography: the three-point functions,

JHEP 09 (2010) 115 [arXiv:0912.3462] [INSPIRE].

[58] S. Giombi and X. Yin, Higher spins in AdS and twistorial holography, JHEP 04 (2011) 086

[arXiv:1004.3736] [INSPIRE].

[59] S. Giombi and I.R. Klebanov, One loop tests of higher spin AdS/CFT, JHEP 12 (2013) 068

[arXiv:1308.2337] [INSPIRE].

[60] V.E. Didenko and E.D. Skvortsov, Exact higher-spin symmetry in CFT: all correlators in

unbroken Vasiliev theory, JHEP 04 (2013) 158 [arXiv:1210.7963] [INSPIRE].

[61] V.E. Didenko, J. Mei and E.D. Skvortsov, Exact higher-spin symmetry in CFT: free fermion

correlators from Vasiliev theory, Phys. Rev. D 88 (2013) 046011 [arXiv:1301.4166]

[INSPIRE].

[62] M.A. Vasiliev, Consistent equation for interacting gauge fields of all spins in

(3 + 1)-dimensions, Phys. Lett. B 243 (1990) 378 [INSPIRE].

[63] M.A. Vasiliev, More on equations of motion for interacting massless fields of all spins in

(3 + 1)-dimensions, Phys. Lett. B 285 (1992) 225 [INSPIRE].

[64] M.A. Vasiliev, Higher spin gauge theories in four-dimensions, three-dimensions and

two-dimensions, Int. J. Mod. Phys. D 5 (1996) 763 [hep-th/9611024] [INSPIRE].

[65] M.A. Vasiliev, Higher spin gauge theories: star product and AdS space, hep-th/9910096

[INSPIRE].

– 31 –

http://inspirehep.net/record/258037
http://dx.doi.org/10.1007/s10955-014-1042-7
http://arxiv.org/abs/1403.4545
http://inspirehep.net/search?p=find+EPRINT+arXiv:1403.4545
http://dx.doi.org/10.1016/0370-2693(89)90473-5
http://dx.doi.org/10.1016/0370-2693(89)90473-5
http://inspirehep.net/search?p=find+J+Phys.Lett.,B218,51
http://dx.doi.org/10.1016/S0550-3213(98)00236-3
http://dx.doi.org/10.1016/S0550-3213(98)00236-3
http://arxiv.org/abs/hep-th/9712138
http://inspirehep.net/search?p=find+EPRINT+hep-th/9712138
http://dx.doi.org/10.1007/JHEP05(2013)165
http://arxiv.org/abs/1303.1522
http://inspirehep.net/search?p=find+EPRINT+arXiv:1303.1522
http://dx.doi.org/10.1016/S0370-2693(02)02980-5
http://dx.doi.org/10.1016/S0370-2693(02)02980-5
http://arxiv.org/abs/hep-th/0210114
http://inspirehep.net/search?p=find+EPRINT+hep-th/0210114
http://dx.doi.org/10.1088/1126-6708/2005/07/044
http://arxiv.org/abs/hep-th/0305040
http://inspirehep.net/search?p=find+EPRINT+hep-th/0305040
http://dx.doi.org/10.1088/1126-6708/2003/06/011
http://dx.doi.org/10.1088/1126-6708/2003/06/011
http://arxiv.org/abs/hep-th/0304217
http://inspirehep.net/search?p=find+EPRINT+hep-th/0304217
http://dx.doi.org/10.1103/PhysRevD.89.084004
http://dx.doi.org/10.1103/PhysRevD.89.084004
http://arxiv.org/abs/1401.0825
http://inspirehep.net/search?p=find+EPRINT+arXiv:1401.0825
http://dx.doi.org/10.1088/1751-8113/46/21/214003
http://arxiv.org/abs/1208.4036
http://inspirehep.net/search?p=find+EPRINT+arXiv:1208.4036
http://dx.doi.org/10.1007/JHEP09(2010)115
http://arxiv.org/abs/0912.3462
http://inspirehep.net/search?p=find+EPRINT+arXiv:0912.3462
http://dx.doi.org/10.1007/JHEP04(2011)086
http://arxiv.org/abs/1004.3736
http://inspirehep.net/search?p=find+EPRINT+arXiv:1004.3736
http://dx.doi.org/10.1007/JHEP12(2013)068
http://arxiv.org/abs/1308.2337
http://inspirehep.net/search?p=find+EPRINT+arXiv:1308.2337
http://dx.doi.org/10.1007/JHEP04(2013)158
http://arxiv.org/abs/1210.7963
http://inspirehep.net/search?p=find+EPRINT+arXiv:1210.7963
http://dx.doi.org/10.1103/PhysRevD.88.046011
http://arxiv.org/abs/1301.4166
http://inspirehep.net/search?p=find+EPRINT+arXiv:1301.4166
http://dx.doi.org/10.1016/0370-2693(90)91400-6
http://inspirehep.net/search?p=find+J+Phys.Lett.,B243,378
http://dx.doi.org/10.1016/0370-2693(92)91457-K
http://inspirehep.net/search?p=find+J+Phys.Lett.,B285,225
http://dx.doi.org/10.1142/S0218271896000473
http://arxiv.org/abs/hep-th/9611024
http://inspirehep.net/search?p=find+EPRINT+hep-th/9611024
http://arxiv.org/abs/hep-th/9910096
http://inspirehep.net/search?p=find+EPRINT+hep-th/9910096


J
H
E
P
0
3
(
2
0
1
5
)
1
1
7

[66] M.A. Vasiliev, Nonlinear equations for symmetric massless higher spin fields in (A)dSd,

Phys. Lett. B 567 (2003) 139 [hep-th/0304049] [INSPIRE].

[67] X. Bekaert, S. Cnockaert, C. Iazeolla and M.A. Vasiliev, Nonlinear higher spin theories in

various dimensions, hep-th/0503128 [INSPIRE].

[68] H. Casini, Strong subadditivity of entanglement entropy and quantum field theory, talk at RG

Flows, Entanglement, and Holography Workshop, University of Michigan, U.S.A. September

2012.

[69] E. Witten, Multitrace operators, boundary conditions and AdS/CFT correspondence,

hep-th/0112258 [INSPIRE].

[70] L. Fei, S. Giombi and I.R. Klebanov, Critical O(N) models in 6− ε dimensions, Phys. Rev.

D 90 (2014) 025018 [arXiv:1404.1094] [INSPIRE].

[71] D.J. Gross and A. Neveu, Dynamical symmetry breaking in asymptotically free field theories,

Phys. Rev. D 10 (1974) 3235 [INSPIRE].

[72] A. Hasenfratz, P. Hasenfratz, K. Jansen, J. Kuti and Y. Shen, The equivalence of the top

quark condensate and the elementary Higgs field, Nucl. Phys. B 365 (1991) 79 [INSPIRE].

[73] J. Zinn-Justin, Four fermion interaction near four-dimensions, Nucl. Phys. B 367 (1991)

105 [INSPIRE].

[74] M. Moshe and J. Zinn-Justin, Quantum field theory in the large-N limit: a review, Phys.

Rept. 385 (2003) 69 [hep-th/0306133] [INSPIRE].

[75] H. Kleinert, J. Neu, V. Schulte-Frohlinde, K.G. Chetyrkin and S.A. Larin, Five loop

renormalization group functions of O(n) symmetric φ4 theory and ε-expansions of critical

exponents up to ε5, Phys. Lett. B 272 (1991) 39 [Erratum ibid. B 319 (1993) 545]

[hep-th/9503230] [INSPIRE].

[76] S.J. Hathrell, Trace anomalies and λφ4 theory in curved space, Annals Phys. 139 (1982) 136

[INSPIRE].

[77] L.S. Brown and J.C. Collins, Dimensional renormalization of scalar field theory in curved

space-time, Annals Phys. 130 (1980) 215 [INSPIRE].

[78] I.T. Drummond and G.M. Shore, Conformal anomalies for interacting scalar fields in curved

space-time, Phys. Rev. D 19 (1979) 1134 [INSPIRE].

[79] A.B. Zamolodchikov, Conformal symmetry and multicritical points in two-dimensional

quantum field theory (in Russian), Sov. J. Nucl. Phys. 44 (1986) 529 [Yad. Fiz. 44 (1986)

821] [INSPIRE].

[80] L. Karkkainen, R. Lacaze, P. Lacock and B. Petersson, Critical behavior of the 3D

Gross-Neveu and Higgs-Yukawa models, Nucl. Phys. B 415 (1994) 781 [Erratum ibid. B 438

(1995) 650] [hep-lat/9310020] [INSPIRE].

[81] L. Fei, S. Giombi, I.R. Klebanov and G. Tarnopolsky, Three loop analysis of the critical O(N)

models in 6− ε dimensions, Phys. Rev. D 91 (2015) 045011 [arXiv:1411.1099] [INSPIRE].
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