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1 Introduction

N = 1 flux compactifications of eleven-dimensional supergravity on eight-manifolds M

down to AdS3 spaces [1, 2] provide a vast extension of the better studied class of com-

pactifications down to 3-dimensional Minkowski space [3–5], having the advantage that

they are already consistent at the classical level [2]. They form a useful testing ground for

various proposals aimed at providing unified descriptions of flux backgrounds [6] and may

be relevant to recent attempts to gain a better understanding of F-theory [7]. When the

internal part ξ of the supersymmetry generator is everywhere non-chiral, such backgrounds

can be studied [8] using foliations endowed with longitudinal G2 structures, an approach

which permits a geometric description of the supersymmetry conditions while providing

powerful tools for studying the topology of such backgrounds.

In this paper, we extend the results of [8] to the general case when the internal part ξ of

the supersymmetry generator is allowed to become chiral on some locus W ⊂M . Assum-

ing that W 6= M , i.e. that ξ is not everywhere chiral, we show that, at the classical level,

the Einstein equations imply that the chiral locus W must be a set with empty interior,

which therefore is negligible with respect to the Lebesgue measure of the internal space.

As a consequence, the behavior of geometric data along this locus can be obtained from

the non-chiral locus U def.
= M \ W through a limiting process. The geometric information

along the non-chiral locus U is encoded [8] by a regular foliation F which carries a longi-

tudinal G2 structure and whose geometry is determined by the supersymmetry conditions

in terms of the supergravity four-form field strength. When ∅ 6= W ( M , we show that

F extends to a singular foliation F̄ of the whole manifold M by adding leaves which are

allowed to have singularities at points belonging to W. This singular foliation “integrates”

a cosmooth1 [11–14] singular distribution D (a.k.a. generalized sub-bundle of TM), de-

fined as the kernel distribution of a closed one-form ω which belongs to a cohomology class

f ∈ H1(M,R) determined by the supergravity four-form field strength. The set of zeroes

of ω coincides with the chiral locus W. In the most general case, F̄ can be viewed as a

1Note that D is not a singular distribution in the sense of Stefan-Sussmann [9, 10] (it is cosmooth rather

than smooth). See appendix D.
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Haefliger structure [15] on M . The singular foliation F̄ carries a longitudinal G2 structure,

which is allowed to degenerate at the singular points of singular leaves. On the non-chiral

locus U , the problem can be studied using the approach of [8] or the approach advocated

in [1], which makes use of two Spin(7)± structures. We show explicitly how one can trans-

late between these two approaches and prove that the results of [8] agree with those of [1]

along this locus.

While the topology of singular foliations defined by a closed one-form can be extremely

complicated in general, the situation is better understood in the case when ω is a Morse

one-form. The Morse case is generic in the sense that such 1-forms constitute an open

and dense subset of the set of all closed one-forms belonging to the cohomology class f.

In the Morse case, the singular foliation F̄ can be described using the foliation graph [16–

18] associated to the corresponding decomposition of M (see [18–20] and [21]–[29]), which

provides a combinatorial way to encode some important aspects of the foliation’s topology

— up to neglecting the information contained in the so-called minimal components of the

decomposition, components which should possess an as yet unexplored non-commutative

geometric description. This provides a far-reaching extension of the picture found in [8]

for the everywhere non-chiral case U = M , a case which corresponds to the situation

when the foliation graph is reduced to either a circle (when F has compact leaves, being

a fibration over S1) or to a single so-called exceptional vertex (when F has non-compact

dense leaves, being a minimal foliation). In the minimal case of the backgrounds consid-

ered [8], the exceptional vertex corresponds to a noncommutative torus which encodes the

noncommutative geometry [30, 31] of the leaf space.

The paper is organized as follows. Section 2 gives a brief review of the class of com-

pactifications we consider, in order to fix notations and conventions. Section 3 discusses a

geometric characterization of Majorana spinors ξ on M which is inspired by the rigorous

approach developed in [32–34] for the method of bilinears [35], in the case when the spinor

ξ is allowed to be chiral at some loci. It also gives the Kähler-Atiyah parameterizations

of this spinor which correspond to the approach of [8] and to that of [1] and describes the

relevant G-structures using both spinors and idempotents in the Kähler-Atiyah algebra

of M . In the same section, we give the general description of the singular foliation F̄ as

the Haefliger structure defined by the closed one-form ω. Section 4 describes the relation

between the G2 and Spin(7)± parameterizations of the fluxes as well as the relation be-

tween the torsion classes of the leafwise G2 structure and the Lee form and characteristic

torsion of the Spin(7)± structures defined on the non-chiral locus. The same section gives

the comparison of the approach of [8] with that of [1] along that locus. Section 5 discusses

the topology of the singular foliation F̄ in the Morse case while section 6 concludes. The

appendices contain various technical details.

Notations and conventions. Throughout this paper, M denotes an oriented, con-

nected and compact smooth manifold (which will mostly be of dimension eight), whose

unital commutative R-algebra of smooth real-valued functions we denote by Ω0(M) =

C∞(M,R). Given a subset A of M , we let Ā denote the closure of A in M (taken with

respect to the manifold topology of M). The large topological frontier (also called topolog-
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ical boundary) of A is defined as Fr(A)
def.
= Ā \ Int(A), where Int(A) denotes the interior of

A. The small topological frontier is fr(A)
def.
= Ā \ A. Notice that fr(A) ⊆ Fr(A) and that

fr(A) = Fr(A) when A is open, in which case we speak simply of the frontier of A. All fiber

bundles we consider are smooth.2 We use freely the results and notations of [8, 32–34],

with the same conventions as there. To simplify notation, we write the geometric product ⋄
of [32–34] simply as juxtaposition while indicating the wedge product of differential forms

through ∧. If D ⊂ TM is a singular (a.k.a. generalized) distribution on M and U is an

open subset ofM such that D|U is a regular Frobenius distribution (see appendix D), we let

ΩU (D) = Γ(U ,∧(D|U )∗) denote the C∞(U ,R)-module of D|U -longitudinal differential forms

defined on U . When dimM = 8, then for any 4-form ω ∈ Ω4(M) we let ω± def.
= 1

2(ω ± ∗ω)
denote the selfdual and anti-selfdual parts of ω (namely, ∗ω± = ±ω±). When M is eight-

dimensional, we let Ω4±(M) denote the spaces of selfdual and anti-selfdual four-forms,

respectively. We use the “Det” convention for the wedge product and the corresponding

“Perm” convention for the symmetric product. Hence given a local coframe ea of M ,

we have:

ea1 ∧ . . . ∧ eak def.
=

∑

σ∈Sk

ǫ(σ)eaσ(1) ⊗ . . .⊗ eaσ(k) ,

ea1 ⊙ . . .⊙ eak
def.
=

∑

σ∈Sk

eaσ(1) ⊗ . . .⊗ eaσ(k) ,
(1.1)

without prefactors of 1
k! in the right hand side, where Sk is the symmetric group on k

letters and ǫ(σ) denotes the signature of a permutation σ. This is the convention used, for

example, in [36]. We use Sym2
0(T

∗M) to denote the space of traceless symmetric covariant

2-tensors on M and Sym2
U ,0(D∗) to denote the space of traceless symmetric covariant 2-

tensors defined on U and which are longitudinal to the Frobenius distribution D|U , when D
is as above. By definition, a Spin(7)+ structure onM is a Spin(7) structure with respect to

the orientation chosen for M while a Spin(7)− structure is a Spin(7) structure with respect

to the opposite orientation.

2 Basics

We start with a brief review of the set-up, in order to fix notation. As in [1, 2], we consider

11-dimensional supergravity [37] on an eleven-dimensional connected and paracompact spin

manifold M with Lorentzian metric g (of ‘mostly plus’ signature). Besides the metric, the

classical action of the theory contains the three-form potential with four-form field strength

G ∈ Ω4(M) and the gravitino Ψ, which is a Majorana spinor of spin 3/2. The bosonic

part of the action takes the form:

Sbos[g,C] =
1

2κ211

∫

M

Rν − 1

4κ211

∫

M

(

G ∧ ⋆G+
1

3
C ∧G ∧G

)

,

where κ11 is the gravitational coupling constant in eleven dimensions, ν and R are the

volume form and the scalar curvature of g and G = dC. For supersymmetric bosonic

2The “generalized bundles” [11, 12] considered occasionally in this paper are not fiber bundles.
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classical backgrounds, both the gravitino and its supersymmetry variation must vanish,

which requires that there exist at least one solution η to the equation:

δηΨ
def.
= Dη = 0 , (2.1)

where D denotes the supercovariant connection. The eleven-dimensional supersymmetry

generator η is a Majorana spinor (real pinor) of spin 1/2 on M.

As in [1, 2], consider compactification down to an AdS3 space of cosmological constant

Λ = −8κ2, where κ is a positive real parameter — this includes the Minkowski case as

the limit κ → 0. Thus M = N ×M , where N is an oriented 3-manifold diffeomorphic

to R3 and carrying the AdS3 metric g3 while M is an oriented, compact and connected

Riemannian eight-manifold whose metric we denote by g. The metric on M is a warped

product:

ds2 = e2∆ds2 where ds2 = ds23 + gmndx
mdxn . (2.2)

The warp factor ∆ is a smooth real-valued function defined on M while ds23 is the squared

length element of the AdS3 metric g3. For the field strength G, we use the ansatz:

G = ν3 ∧ f + F , with F
def.
= e3∆F , f

def.
= e3∆f , (2.3)

where f ∈ Ω1(M), F ∈ Ω4(M) and ν3 is the volume form of (N, g3). For η, we use the

ansatz:

η = e
∆
2 (ζ ⊗ ξ) ,

where ξ is a Majorana spinor of spin 1/2 on the internal space (M, g) (a section of the

rank 16 real vector bundle S of indefinite chirality real pinors) and ζ is a Majorana spinor

on (N, g3).

Assuming that ζ is a Killing spinor on the AdS3 space (N, g3), the supersymmetry

condition (2.1) is equivalent with the following system for ξ:

Dξ = 0 , Qξ = 0 , (2.4)

where

DX = ∇S
X +

1

4
γ(XyF ) +

1

4
γ((X♯ ∧ f)ν) + κγ(Xyν) , X ∈ Γ(M,TM)

is a linear connection on S (here ∇S is the connection induced on S by the Levi-Civita

connection of (M, g), while ν is the volume form of (M, g)) and

Q =
1

2
γ(d∆)− 1

6
γ(ιfν)−

1

12
γ(F )− κγ(ν)

is a globally-defined endomorphism of S. As in [1, 2], we do not require that ξ has definite

chirality.

The set of solutions of (2.4) is a finite-dimensional R-linear subspace K(D, Q) of the

infinite-dimensional vector space Γ(M,S) of smooth sections of S. Up to rescalings by

smooth nowhere-vanishing real-valued functions defined on M , the vector bundle S has

– 4 –
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two admissible pairings B± (see [34, 38, 39]), both of which are symmetric but which are

distinguished by their types ǫB± = ±1. Without loss of generality, we choose to work with

B
def.
= B+. We can in fact take B to be a scalar product on S and denote the corresponding

norm by || || (see [32, 33] for details). Requiring that the background preserves exactly

N = 1 supersymmetry amounts to asking that dimK(D, Q) = 1. It is not hard to check [32]

that B is D-flat:

dB
(

ξ′, ξ′′
)

= B
(

Dξ′, ξ′′
)

+ B
(

ξ′,Dξ′′
)

, ∀ξ′, ξ′′ ∈ Γ(M,S) . (2.5)

Hence any solution of (2.4) which has unit B-norm at a point will have unit B-norm at

every point of M and we can take the internal part ξ of the supersymmetry generator to

be everywhere of norm one.

3 Parameterizing a Majorana spinor on M

3.1 Globally valid parameterization

Fixing a Majorana spinor ξ ∈ Γ(M,S) which is everywhere of B-norm one, consider the

inhomogeneus differential form:

Ěξ,ξ =
1

16

8
∑

k=0

Ě
(k)
ξ,ξ ∈ Ω(M) , (3.1)

whose rescaled rank components have the following expansions in any local orthonormal

coframe (ea)a=1...8 of M defined on some open subset U :

Ě
(k)
ξ,ξ =U

1

k!
B(ξ, γa1...akξ)e

a1...ak ∈ Ωk(M) .

The conditions:

Ě2 = Ě , S
(

Ě
)

= 1 , τ
(

Ě
)

= Ě (3.2)

encode the fact that an inhomogeneous form Ě
def.
= Ěξ,ξ is of the type (3.1) for some

Majorana spinor ξ which is everywhere of norm one. As a result of the last condition

in (3.2), the non-zero components of Ě have ranks k = 0, 1, 4, 5 and we have S
(

Ěξ,ξ

)

=

Ě
(0)
ξ,ξ = ||ξ||2 = 1, where S is the canonical trace of the Kähler-Atiyah algebra. Hence:

Ě =
1

16
(1 + V + Y + Z + bν) , (3.3)

where we introduced the notations:

V
def.
= Ě

(1)
, Y

def.
= Ě

(4)
, Z

def.
= Ě

(5)
, bν

def.
= Ě

(8)
. (3.4)

Here, b is a smooth real valued function defined on M and ν is the volume form of (M, g),

which satisfies ||ν|| = 1; notice the relation S(νĚξ,ξ) = b. On a small enough open subset

U ⊂M supporting a local coframe (ea) of M , one has the expansions:

V =U B(ξ, γaξ)e
a , Y =U

1

4!
B(ξ, γa1...a4ξ)e

a1...a4 ,

Z =U
1

5!
B(ξ, γa1...a5ξ)e

a1...a5 , b =U B(ξ, γ(ν)ξ) . (3.5)

– 5 –
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One finds [32] that (3.2) is equivalent with the following relations which hold globally onM :

||V ||2 = 1− b2 ≥ 0 , ||Y ±||2 = 7

2
(1± b)2 ,

ιV (∗Z) = 0 , ιV Z = Y − b ∗ Y ,
(ια(∗Z)) ∧ (ιβ(∗Z)) ∧ (∗Z) = −6〈α ∧ V, β ∧ V 〉ιV ν , ∀α, β ∈ Ω1(M) .

(3.6)

Notice that the first relation in the second row is equivalent with V ∧Z = 0, which means

that V and Z commute in the Kähler-Atiyah algebra of (M, g).

Remark. Let (R) denote the second relation (namely ιV Z = Y − b ∗ Y ) on the second

row of (3.6). Separating the selfdual and anti-selfdual parts shows that (R) is equivalent

with the following two conditions:

(ιV Z)
± = (1∓ b)Y ± . (3.7)

Proposition. Relations (3.6) imply that the following normalization conditions hold

globally on M :

||Y ||2 = 7
(

1 + b2
)

, ||Z||2 = 7
(

1− b2
)

. (3.8)

Proof. The first equation in (3.8) follows from the last relations on the first row of (3.6)

by noticing that ||Y ||2 = ||Y +||2 + ||Y −||2 (since 〈Y +, Y −〉 = 0). We have:

||ιV Z||2 = || ∗ ιV Z||2 = ||V ∧ (∗Z)||2 = ||V ||2|| ∗ Z||2 = ||V ||2||Z||2 , (3.9)

where in the middle equality we used the first equation on the second row of (3.6), which

tells us that ∗Z is orthogonal on V . The second equation in (3.8) now follows from (3.9)

and from the identity:

||ιV Z||2 = (1− b)2||Y +||2 + (1 + b)2||Y −||2 = 7
(

1− b2
)

= 7||V ||2 ,

where we used (3.7) and both relations in the first row of (3.6). �

The twisted selfdual and twisted anti-selfdual parts of Ě. The identity ν2 = 1

implies that the elements:

R± def.
=

1

2
(1± ν)

are complementary idempotents in the Kähler-Atiyah algebra:

(

R±)2 = R± , R±R∓ = 0 , R+ +R− = idΩ(M) . (3.10)

The (anti)selfdual part of a four-form ω ∈ Ω4(M) can be expressed as:

ω± = R±ω .

Notice that this relation also gives the twisted (anti)selfdual parts [32] of an inhomogeneous

form ω ∈ Ω(M). The identities:

Y R± = R±Y = Y ± , (1 + bν)R± = (1± b)R±

– 6 –
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allow us to compute the twisted selfdual part Ě+ and twisted anti-selfdual part Ě− of Ě:

Ě± = ĚR± =
1

16

[

(1± b+ V + Z)R± + Y ±] ∈ Ω(M) . (3.11)

The following decomposition holds globally on M :

Ě = Ě+ + Ě− .

3.2 The chirality decomposition of M

Let S± ⊂ S be the rank eight subbundles of S consisting of positive and negative chirality

spinors (the eigen-subbundles of γ(ν) corresponding to the eigenvalues +1 and −1). Since

γ(ν) is B-symmetric, S+ and S− give a B-orthogonal decomposition S = S+ ⊕ S−.

Decomposing a normalized spinor as ξ = ξ+ + ξ− with ξ±
def.
= 1

2(idS ± γ(ν))ξ ∈ Γ(M,S±),
we have:

||ξ||2 = ||ξ+||2 + ||ξ−||2 = 1

and:

b = B(ξ, γ(ν)ξ) = ||ξ+||2 − ||ξ−||2 .
These two relations give:

||ξ±||2 = 1

2
(1± b) . (3.12)

Notice that b equals ±1 at a point p ∈ M iff ξp ∈ S±
p . Since ||V ||2 = 1− b2, the one-form

V vanishes at p iff ξp is chiral i.e. iff ξp ∈ S+
p ∪S−

p . Consider the non-chiral locus (an open

subset of M):

U def.
=

{

p ∈M |ξ 6∈ S+
p ∪ S−

p

}

=
{

p ∈M |ξ+p 6= 0 and ξ−p 6= 0
}

= {p ∈M |Vp 6= 0} = {p ∈M ||b(p)| < 1} ,

and its closed complement, the chiral locus:

W def.
= M \ U =

{

p ∈M |ξp ∈ S+
p ∪ S−

p

}

=
{

p ∈M |ξ+p = 0 or ξ−p = 0
}

= {p ∈M |Vp = 0} = {p ∈M ||b(p)| = 1} .

The chiral locusW decomposes further as a disjoint union of two closed subsets, the positive

and negative chirality loci :

W = W+ ⊔W− ,

where:

W± def.
=

{

p ∈M |ξp ∈ S±
p

}

= {p ∈M |b(p) = ±1} =
{

p ∈M |ξ∓p = 0
}

.

The extreme cases W+ =M or W− =M , as well as W+ = W− = ∅ are allowed. However,

the case U = ∅ with both W+ and W− nonempty (then M = W+ ⊔ W−) is forbidden

(recall that b is smooth and hence continuous while M is connected). Since ξ does not

vanish on M , we have:

U± def.
= U ∪W± =

{

p ∈M |ξ±p 6= 0
}

.

– 7 –
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Remark. Since |b| ≤ 1 on M , the sets W± (when non-empty) consist of critical points of

b, namely the absolute maxima and minima of b on M . Hence the differential of b vanishes

at every point of W. In general W± can be quite ‘wild’ (they can be very far from being

immersed submanifolds of M).

3.3 A topological no-go theorem

Recall that M is compact. The following result clarifies the kind of topologies of the chiral

loci which are of physical interest.

Theorem. Assume that the supersymmetry conditions, the Bianchi identity and equa-

tions of motion for G as well as the Einstein equations are satisfied. There exist only the

following four possibilities:

1. The set W+ coincides with M and hence W− and U are empty. In this case, ξ is

a chiral spinor of positive chirality which is covariantly constant on M and we have

κ = f = F = 0 while ∆ is constant on M .

2. The set W− coincides with M and hence W+ and U are empty. In this case, ξ is a

chiral spinor of negative chirality which is covariantly constant on M and we have

κ = f = F = 0 while ∆ is constant on M .

3. The set U coincides with M and hence W+ and W− are empty.

4. At least one of the sets W+ or W− is non-empty but both of these sets have empty

interior. In this case, U is dense in M and the union W = W+ ∪W− coincides with

the topological frontier Fr(U) = fr(U) = Ū \ U of U .

The proof of the theorem is given in appendix A.

Remarks.

• The theorem is a strengthening of an observation originally made in [2] in the case

when ξ is nowhere-chiral.

• The theorem holds in classical supergravity only. One may be able to avoid its

conclusions by considering quantum corrections.

• Cases 1 and 2 correspond to the classical limit of the compactifications studied

in [3–5]. Case 3 was studied in [2, 8].

The study of Case 4 is the focus of the present paper. Due to the theorem, we shall

from now on assume that we are in this case, i.e. that W is non-empty and that it coincides

with the frontier of U ; in particular, we can assume that the closure of U coincides withM :

M = Ū = U ⊔W , W = FrU .

In figure 1, we sketch the chirality decomposition in two sub-cases of Case 4, which cor-

respond to the assumptions that the one-form ω
def.
= 4κe3∆V is of Morse and Bott-Morse

type, respectively.
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(a) Sketch of the chiral loci in the Morse sub-case

of Case 4 of the Theorem. In this case, each of

W+ and W− is a finite set of points, with the

points of W+ indicated in red and those of W−

indicated in blue.
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(b) Sketch of W± in the Bott-Morse sub-case of

Case 4 of the Theorem. The connected compo-

nents of W are submanifolds of various dimen-

sions, shown respectively in red and blue for W+

and W−.

Figure 1. Sketch of chiral loci in two sub-cases of Case 4 of the Theorem, for the case of a two-

dimensional manifold M . The non-chiral locus U is the complement of W in M and is indicated

by white space, after performing appropriate cuts which allow one to map M to some region of

the plane which is not indicated explicitly. The figures should be interpreted with care in our case

dimM = 8.

3.4 The singular distribution D

The one-form V determines a singular (a.k.a. generalized) distribution D (generalized sub-

bundle of TM) which is defined through:

Dp
def.
= kerVp , ∀p ∈M .

This singular distribution is cosmooth (rather than smooth) in the sense of [11] (see

appendix D). Notice that D is smooth iff ξ is everywhere non-chiral — i.e. iff W = ∅,
which is the case studied in [8]; in that case, D is a regular Frobenius distribution. Since

in this paper we assume W 6= ∅, it follows that D is not a singular distribution in the sense

of Stefan-Sussmann [9, 10]. The set of regular points of D equals the non-chiral locus U
and we have:

rkDp = 7 when p ∈ U ,
rkDp = 8 when p ∈ W .

In particular, the restriction D|U is a regular Frobenius distribution on the non-chiral locus

U . As in [8], we endow D|U with the orientation induced by that of M using the unit norm

vector field n
def.
= V̂ ♯ = 1

||V ||V
♯, which corresponds to the D|U -longitudinal volume form:

ν⊤
def.
= ι

V̂
ν|U = nyν|U ∈ Ω7

U (D) .

Let ∗⊥ : ΩU (D) → ΩU (D) denote the corresponding Hodge operator along the Frobenius

distribution D|U :
∗⊥ ω = ∗

(

V̂ ∧ ω
)

= −ι
V̂
(∗ω) = τ(ω)ν⊤ , ∀ω ∈ ΩU (D) . (3.13)
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3.5 Spinor parameterization and G2 structure on the non-chiral locus

Proposition [8]. Relations (3.2) are equivalent on U with the following conditions:

V 2|U = 1− b2 , Y |U = (1 + bν)|Uψ , Z|U = V |Uψ , (3.14)

where ψ ∈ Ω4
U (D) is the canonically normalized coassociative form of a G2 structure on

the Frobenius distribution D|U which is compatible with the metric g|D induced by g and

with the orientation of D|U .
Let ϕ

def.
= ∗⊥ψ ∈ Ω3

U (D) be the associative form of the G2 structure on D|U mentioned

in the proposition. We have [8]:

ψ =
1

1− b2
V Z =

1

1− b2
(1− bν)Y ∈ Ω4

U (D) , (3.15)

ϕ =
1

||V || ∗ Z =
1√

1− b2
Zν ∈ Ω3

U (D) . (3.16)

On the non-chiral locus, one can parameterize Ě as [8]:

Ě|U =
1

16
(1 + V + bν)(1 + ψ) = P |UΠ , (3.17)

where:

P
def.
=

1

2
(1 + V + bν) ∈ Ω(M) , Π

def.
=

1

8
(1 + ψ) ∈ ΩU (D)

and where P |U and Π are commuting idempotents in the Kähler-Atiyah algebra of U .
Notice the relations:

ϕ = ∗⊥ψ = ∗
(

V̂ ∧ ψ
)

, ∗ϕ = −V̂ ∧ ψ , ∗ψ = V̂ ∧ ϕ (3.18)

and:

V ϕ = −ϕV = V ∧ ϕ , V ψ = ψV = V ∧ ψ . (3.19)

The selfdual and anti-selfdual parts of ψ. We have:

ψ± =
1

2
(ψ ± ∗ψ) = 1

2

(

ψ ± V̂ ∧ ϕ
)

∈ Ω(U) . (3.20)

Lemma. The four-forms ψ± ∈ Ω(U) satisfy the relations:

V̂ ψ±V̂ = ψ∓ , (3.21)

ψ+ψ− = ψ−ψ+ = 0 , (3.22)

ψ± =
Y ±

1± b
|U , (3.23)

||ψ+||2 = ||ψ−||2 = 7

2
. (3.24)
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Proof. Using ψ± = R±ψ, relation (3.22) follows immediately from the fact that ν com-

mutes with ψ. The last relation in (3.19) gives:

V̂ ψV̂ = ψ on U . (3.25)

Using the fact that V̂ and ν anti-commute in the Kähler-Atiyah algebra while ψ and

ν commute (because ν is twisted central), relation (3.25) implies (3.21). Separating Y

into its selfdual and anti-selfdual parts and using the fact that νY = Y ν = ∗Y , the last

equality in (3.15) implies (3.23), which implies (3.24) when combined with the first relation

in (3.8). �

Proposition. The inhomogeneous differential forms:

Π± def.
= R±|UΠ = ΠR±|U =

1

8

(

R±|U + ψ±) =
1

16

(

1± ν|U + 2ψ±) ∈ Ω(U)

satisfy Π = Π+ + Π− and V̂Π±V̂ = Π∓ and are orthogonal idempotents in the Kähler-

Atiyah algebra of U :
(

Π±)2 = Π± , Π±Π∓ = 0 .

Furthermore, we have:

Ě±|U = P |UΠ± . (3.26)

Notice that Π± are twisted (anti-)selfdual:

Π±ν = ±Π± .

Proof. Notice that ψ and R± commute since ψ and ν commute. The conclusion now

follows immediately using the properties of Π and R±. �

3.6 Spinor parameterization and Spin(7)± structures on the loci U±

Extending ψ± to U
±. Notice that P ∈ Ω(M) is globally defined on M while Π ∈ Ω(U)

is only defined on the non-chiral locus.

Proposition. The four-form ψ± has a continuous extension to the locus U±, which we

denote through ψ̄± ∈ Ω4(U±). Namely:

ψ̄± def.
=

1

1± b

(

Y ±|U±

)

∈ Ω4
(

U±) .

Furthermore, the idempotents Π± ∈ Ω(U) have continuous extensions to idempotents Π̄± ∈
Ω(U±), which are given by:

Π̄± def.
=

1

8

(

R±|U± + ψ̄±) =
1

16

(

1 + 2ψ± ± ν
)

∈ Ω
(

U±) (3.27)

and which are twisted (anti-)selfdual:

Π̄±R±|U± = Π̄± , Π̄±R∓|U± = 0 .
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Remarks.

1. Notice that (3.23) does not provide any information about the limit of ψ∓ along W±,
so ψ∓ (and hence also Π∓) will not generally have an extension to U±. However, (3.24)
tells us that ψ∓ is bounded on M . In particular, we have:

lim
b→±1

(

V ψ∓) = lim
b→±1

(

ψ∓V
)

= 0 . (3.28)

2. On the locus W± we have:

b|W± = ±1 , V |W± = Z|W± = Y ∓|W± = 0 , (3.29)

where the last relations follow from the last equation in (3.6) and from (3.23). The

remaining conditions in (3.6) are automatically satisfied.

3. Notice the relation:

Y ±|W± = 2ψ̄±|W± ,

which follows from the fact that b|W± = ±1.

Proof. Since Y ± ∈ Ω(M) is well-defined on M , the conclusion follows immediately from

relation (3.23) and from the fact that 1± b does not vanish on U±. The relations satisfied

by Π̄± on U± follow by continuity from the similar relations satisfied by Π± on U . �

While Π∓ does not generally have an extension to W±, the product PΠ∓ has zero limit

on W±:

Proposition. We have P |W± = R± as well as:

∃ lim
b→±1

PΠ∓= Ě∓|W± =0 , Ě±|W± = Π̄±|W± =
1

8

(

R±+ψ̄±) |W± =
1

16

(

1± ν+2ψ̄±) |W± .

(3.30)

Proof. The relation P |W± = R± is obvious. The other statements follow from (3.11)

and (3.26) using (3.29). �

The Spin(7)± structures on U
±.

Lemma. Let (ea)a=1...8 be a local coframe defined over an open subset U ⊂ M and let

η ∈ Γ(U, S). Then:

B
(

γaη, γbη
)

= gab||η||2 ,
where γa = γ(ea) and gab = 〈ea, eb〉.

Proof. Using the property (γa)t = γa and the fact that (γaγb)t = γbγa, compute:

B
(

γaη, γbη
)

=B
(

η, γaγbη
)

=B
(

η, γbγaη
)

=
1

2
B
(

η,
{

γa, γb
}

η
)

= gabB(η, η) = gab||η||2 . �

When η is non-vanishing everywhere on U , the proposition implies that the spinors γaη

form a linearly-independent set of sections of S above U . Taking η to have chirality ±1

and recalling that γa map S± into S∓ and that rkS+ = rkS− = 8, this gives:

– 12 –
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Corollary. Let (ea)a=1...8 be a local orthonormal coframe defined over an open subset

U ⊂ M and η ∈ Γ(U, S±) be a spinor of chirality ±1 which is nowhere vanishing on

U . Then (γaη)a=1...8 is a B-orthogonal local frame of S∓ above U . Every local section

ξ ∈ Γ(U, S∓) expands in this frame as:

ξ =
1

||η||2
8

∑

a=1

B(ξ, γaη)γ
aη .

Proposition. Let U be an open subset of M which supports an orthonormal coframe ea

of (M, g). Then:

1. If ξ+ is everywhere non-vanishing on U , then ξ− expands above U as ξ− =
∑8

a=1 L
+
a γ

aξ+ = γ(L+)ξ+, where L+
a are the coefficients of the one-form L+ =

L+
a dx

a = 1
1+b

V .

2. If ξ− is everywhere non-vanishing on U , then ξ+ expands above U as ξ+ =
∑8

a=1 L
−
a γ

aξ− = γ(L−)ξ−, where L−
a are the coefficients of the one-form L− =

L−
a dx

a = 1
1−b

V .

Proof. Assume that ξ+ (respectively ξ−) vanishes nowhere on U . The corollary shows

that ξ∓ expands as ξ∓ =
∑8

a=1 L
±
a γ

aξ± where:

L±
a =

1

||ξ±||2B
(

ξ∓, γaξ
±) . (3.31)

Recalling that S+ and S− are B-orthonormal while γa are B-symmetric, we find:

B
(

ξ+, γaξ
−) = B

(

ξ−, γaξ
+
)

=
1

2
B(ξ, γaξ) =

1

2
Va .

Using this and (3.12), equation (3.31) becomes L±
a = 1

1±b
Va. �

Remarks.

1. The “+” case of (3.31) was used in [1], where no explicit expression for L+ (which is

denoted by L in loc. cit.) was given.3

2. Notice that L+ and L− are not independent (they are proportional to each other)

and that each of them contains the same information as V and b.

Recalling (3.12), consider the unit norm spinors (of chirality ±1):

η± =
√

1 + ||L±||2ξ± =

√

2

1± b
ξ± ∈ Γ

(

U±, S±) . (3.32)

Using the fact that ||η±|| = 1 while B(η±, γa1...akη
±) vanishes unless k ≡4 0, we find:

Ěη±,η± =
1

16

(

1 + Φ± ± ν
)

∈ Ω
(

U±) , (3.33)

where:

Φ± def.
=

1

4!
B

(

η±, γa1...a4η
±) ea1...a4 = Ě

(4)
η±,η± =

2

1± b
Ě

(4)
ξ±,ξ± ∈ Ω4

(

U±) (3.34)

and where we noticed that B(η±, γ(ν)η±) = ±1.

3Notice that L+ is not a quadratic function of ξ, since it involves the denominator 1 + b and thus it is

not homogeneous under rescalings ξ → λξ with λ 6= 0.
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Proposition. The four-form Φ+ is selfdual while the four-form Φ− is anti-selfdual. They

satisfy the following relations on the locus U±:

Φ± = 2ψ̄± . (3.35)

In particular, the inhomogeneous form (3.33) coincides with the extension (3.27) of Π± to

this locus:

Ěη±,η± = Π̄±

and we have:

||Φ±||2 = 14 . (3.36)

Moreover, the restriction of Φ+ is the canonically-normalized calibration defining a Spin(7)

structure on the open submanifold U of M while the restriction of Φ− is the canonically-

normalized calibration defining a Spin(7) structure on the orientation reversal of U .

Proof. Recalling that ξ± = 1
2(1 ± γ(ν))ξ, the identities Ěξ,γ(ν)ξ = Ěξ,ξν and Ěγ(ν)ξ,ξ =

νĚξ,ξ of [32] and the fact that ν is involutive and twisted central give:

Ěξ±,ξ± =
1

4

(

Ěξ,ξ ± νĚξ,ξ ± Ěξ,ξν + νĚξ,ξν
)

=
1

4

(

Ěξ,ξ + π
(

Ěξ,ξ

))

(1± ν)

=
1

2
Ěev

ξ,ξ(1± ν) =
1

2

(

Ěev
ξ,ξ ± ∗τ

(

Ěev
ξ,ξ

))

.

Since the Hodge operator preserves Ω4(M) and since the reversion τ of the Kähler-Atiyah

algebra restricts to the identity on the space of four-forms, this implies:

Ě
(4)
ξ±,ξ± =

1

2

(

Ě
(4)
ξ,ξ ± ∗Ě(4)

ξ,ξ

)

=
1

2
(Y ± ∗Y ) = Y ± ,

where the superscript ± indicates the selfdual/anti-selfdual part. Substituting this

into (3.34) gives relation (3.35). The statements of the proposition regarding the restric-

tions of Φ± to the open submanifold U follow from the fact that η± is a Majorana-Weyl

spinor of norm one and of chirality ±1; it is well-known [40] that giving such a spinor on

an eight-manifold U induces Spin(7) structures on the underlying manifold or on its ori-

entation reversal, whose normalized calibrations are given by (3.34). In particular, (3.36)

holds on U since there it amounts to the condition that Φ± are canonically normalized. By

continuity, this implies that (3.36) also holds on W±. �

Remarks.

1. The proposition implies that the following relation holds on the non-chiral locus:

Ěξ,ξ|U = P |U
(

Ěη+,η+ + Ěη−,η−
)

.

This shows how the idempotent Ěξ,ξ|U which characterizes the normalized Majorana

spinor ξ on the locus U relates to the two idempotents Ěη±,η± |U = Π± which char-

acterize the Majorana-Weyl spinors η± and which encode the Spin(7)± structures

through the Kähler-Atiyah algebra. While Ěη+,η+ depends only on the positive chi-

rality spinor η+ and Ěη−,η− depends only on the negative chirality spinor η−, the
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idempotent P contains the quantities b and V , each of which involves both chirality

components of the spinor ξ:

b = ||ξ+||2 − ||ξ−||2 , V = 2B
(

ξ+, γmξ
−) em =

(

1− b2
)

B
(

η+, γmη
−) em .

The object P encodes in the Kähler-Atiyah algebra the SO(7) structure which cor-

responds to the distribution D on U . Finally, notice that the idempotent Π encodes

the G2 structure along the distribution D. Notice that P and Π commute, while P

and Π± do not commute.

2. Equation (3.35) implies that Φ± coincides with ±Y ± on the locus W± since b = ±1

there. Notice that (3.36) agrees via (3.35) with the last equations in (3.6).

Spinor parameterization on the loci U±. On the locus U , relations (3.14) and (3.35)

give:

Z|U =
1

2
V
(

Φ+ +Φ−) ,

Y |U =
1

2

[

(1 + b)Φ+ + (1− b)Φ−] .
(3.37)

In these relations, Φ+ and Φ− are not independent but related through:

Φ∓ = V̂ Φ±V̂

as a consequence of (3.21). Hence on the non-chiral locus we can eliminate Φ∓ in terms of

Φ± to obtain the following non-redundant parameterizations:

Z|U =
1

2

√

1− b2
(

V̂ Φ± +Φ±V̂
)

, Y |U =
1

2

[

(1± b)Φ± + (1∓ b)V̂ Φ±V̂
]

,

which give:

16Ě|U = P |U
(

Π± + V̂Π±V̂
)

= 1 + V +
1

2

[

(1± b)Φ± + (1∓ b)V̂ Φ±V̂
]

+
1

2

√

1− b2
(

V̂ Φ± +Φ±V̂
)

+ bν .

This imply the following parameterizations on the loci U±:

16Ě|U± = 1 + V +
1

2

[

(1± b)Φ± +
1

1± b
V Φ±V

]

+
1

2

(

V Φ± +Φ±V
)

+ bν ,

where it is understood that (see (3.28)):

lim
b→±1

V Φ∓ = lim
b→±1

Φ∓V = 0

and hence (see (3.30)):

16Ě|W± = Π̄±|W± =
1

16

(

1 + Φ± ± ν
)

|W± .

Up to expressing V and b through L±, this is the parameterization which corresponds to

the approach of [1].
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G structure Spin(7)+ Spin(7)− G2 (on D|U ) SO(7) (D|U )
spinor η+ η− η0 =

1√
2
(η++ η−) —

idempotent Π+= 1
16(1 + Φ++ ν) Π−= 1

16(1 + Φ−− ν) Π = Π++Π−= 1
8(1 + ψ) P = 1

2(1 + V + bν)

forms Φ+ = 2ψ+ Φ− = 2ψ− ϕ and ψ = ∗⊥ϕ b and V

extends to U+ U− U U

Table 1. Summary of various G structures and of their reflections in the Kähler-Atiyah algebra.

3.7 Comparing spinors and G structures on the non-chiral locus

Equation (3.20) gives:

Φ±|U = 2ψ± = ψ ± V̂ ∧ ϕ ,

i.e.:
(

Φ±|U
)

⊤ = ±ϕ ,
(

Φ±|U
)

⊥ = ψ . (3.38)

The relation ξ∓ = γ(L±)ξ± gives η∓ = γ(V̂ )η±, which shows that the everywhere normal-

ized spinor:

η0
def.
=

1√
2

(

η+ + η−
)

∈ Γ(U , S) (3.39)

is a Majorana spinor along D in the seven-dimensional sense, i.e. we have D(η0) = η0 where

D
def.
= γ(V̂ ) is the real structure of S, when the latter is viewed as a complex spinor bundle

over D (see [8]). The identity Ě
(4)
η±,η∓ = 0 implies the following spinorial expression for ψ:

ψ = Ě
(4)
η0,η0

=
1

4!
B(η0, γa1...a4η0)e

a1...a4 . (3.40)

The relation ξ∓ = γ(L±)ξ± gives η∓ = γ(V̂ )η±, which implies:

η0 =
1√
2

(

idS + γ
(

V̂
))

η+ =
1√
2

(

idS + γ
(

V̂
))

η− .

Notice that 1
2

(

idS +γ
(

V̂
))

is an idempotent endomorphism of S. As explained in [8],

the spinor η0 induces the G2 structure of the distribution D. The situation is summarized

in table 1.

Remarks.

1. None of the G structures in table 1 extends to M . In fact, the structure group

SO(8) of the frame bundle of M does not globally reduce, in general, to any proper

subgroup. As pointed out in [1], this is due to the fact that the action of Spin(8) on

the fibers Sp ≃ R16 of S (which is the action of Spin(8) on the direct sum 8s ⊕ 8c
of the positive and negative chirality spin 1/2 representations) is not transitive when

restricted to the unit sphere S15 ⊂ R16. As shown in loc. cit., one can in some sense

“cure” this problem by considering the manifold M̂
def.
= M × S1, using the fact that

Spin(9) acts transitively on S15. However, such an approach does not immediately

provide useful information on the geometry of M , in particular the geometry of the
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singular foliation F̄ discussed in the next subsection is not immediately visible in

that approach. It was also shown in loc. cit. that one can repackage the information

contained in the Spin(7)± structures into a generalized Spin(7) structure on M̂ in

the sense of [41, 42]. In particular, it is easy to check that relations (4.8) of [1] are

equivalent with some of the exterior differential constraints which can be obtained

by expanding equation (3.5) of [8] into its rank components — exterior differential

constraints which were discussed at length in [32] and in the appendix of [8]. As

shown in detail in [8], those exterior differential constraints do not suffice to encode

the full supersymmetry conditions for such backgrounds.

2. The fact that the structure group of TM does not globally reduce beyond SO(8) in

this class of examples illustrates some limits of the philosophy that flux compactifica-

tions can be described using reductions of structure group. That philosophy is based

on the observation that a collection of (s)pinors defines a local reduction of struc-

ture group over any open subset of the compactification manifold M along which

the stabilizer of the pointwise values of those spinors is fixed up to conjugacy in the

corresponding Spin or Pin group. However, such a reduction does not generally hold

globally on M , since the local reductions thus obtained can “jump” — in our class

of examples, the jump occurs at the points of the chiral locus W. The appropriate

notion is instead that of generalized reduction of structure group, of which the class of

compactifications considered here is an example. In this respect, we mention that the

cosmooth generalized distribution D can be viewed as providing a generalized reduc-

tion of structure group of M , which is an ordinary reduction from SO(8) to SO(7)

only when restricted to its regular subset U , on which D|U provides [8] an almost

product structure. We also mention that the conditions imposed by supersymmetry

can be formulated globally by using an extension of the language of Haefliger struc-

tures (see section 3.8), an approach which can in fact be used to give a fully general

approach to flux compactifications. It is such concepts, rather than the classical con-

cept of G structures [43], which provide the language appropriate for giving globally

valid descriptions of the most general flux compactifications.

3.8 The singular foliation of M defined by D

As in [8], one can show that the one-form:

ω
def.
= 4κe3∆V

satisfies the following relations which hold globally on M as a consequence of the super-

symmetry conditions (2.4):

dω = 0 , (3.41)

ω = f − db , where b
def.
= e3∆b .

As a result of the first equation, the generalized distribution D = kerV = kerω determines

a singular foliation F̄ of M , which degenerates along the chiral locus W, since that locus

coincides with the set of zeroes of ω. The second equation implies that ω belongs to the

cohomology class f ∈ H1(M,R) of f .
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Since D is cosmooth rather than smooth, the notion of singular foliation which is

appropriate in our case4 is that of Haefliger structure [15]. More precisely, F̄ can be

described as the Haefliger structure defined as follows. Consider an open cover (Uα)α∈I
of M such that each Uα is simply-connected and let ωα

def.
= ω|Uα ∈ Ω1(Uα). We have

ωα = dhα for some hα ∈ Ω0(Uα), where hα are determined up to shifts:

hα → h′
α + cα , cα ∈ R . (3.42)

For any α, β ∈ I and any p ∈ Uα ∩ Uβ, consider the orientation-preserving diffeomorphism

φαβ(p) ∈ Diff+(R) of the real line given by the translation:

φαβ(p)(x)
def.
= x+ hβ(p)− hα(p) ∀x ∈ R .

Then φαβ(p)(hα(p)) = hβ(p). The germ φ̂αβ(p) of φαβ(p) at hα(p) is an element of the

Haefliger groupoid Γ∞
1 and it is easy to check that φ̂αβ : Uα ∩ Uβ → Γ∞

1 is a Haefliger

cocycle on M :

φ̂βγ(p) ◦ φ̂αβ(p) = φ̂αγ(p) ∀α, β, γ ∈ I , ∀p ∈ Uα ∩ Uβ ∩ Uγ .

Moreover, the shifts (3.42) correspond to transformations:

φ̂αβ → φ̂
′
αβ = q̂β ◦ φ̂αβ ◦ q̂−1

α ,

where q̂α : Uα → Γ∞
1 are defined by declaring that q̂α(p) is the germ at p ∈ Uα of the

orientation-preserving diffeomorphism tα ∈ Diff+(R) given by the following translation of

the real line:

tα(x) = x+ cα ∀x ∈ R .

It follows that the closed one-form ω determines a well-defined element of the non-Abelian

cohomology ∈ H1(M,Γ∞
1 ), which is the Haefliger structure defined by ω. The singular

foliation F̄ which “integrates” D can be identified with this element.

The approach through Haefliger structures allows one to define rigorously the singular

foliation F̄ in the most general case, i.e. without making any supplementary assumptions on

the closed one-form ω. In general, such singular foliations can be extremely complicated

and little is known about their topology and geometry. However, the description of F̄
simplifies when ω is a closed one-form of Morse or Bott-Morse type. In section 5, we

discuss the Morse case, recalling some results which apply to F̄ in that situation.

4 Relating the G2 and Spin(7) approaches on the non-chiral locus

On the non-chiral locus U , we have the regular foliation F which is endowed with a longi-

tudinal G2 structure having associative and coassociative forms ϕ and ψ. We also have a

Spin(7)+ and a Spin(7)− structure, which are determined respectively by the calibrations

4Notice that this is not the notion of singular foliation considered in [44, 45], which is instead based on

Stefan-Sussmann (i.e. smooth, rather than cosmooth) distributions.
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Φ± = 2ψ± = ψ ± V̂ ∧ ϕ. Given this data, one can relate various quantities determined

by (D, ϕ) to quantities determined by Φ± as we explain below. We stress that the results

of this subsection are independent of the supersymmetry conditions (2.4) and hence they

hold in the general situation described above. We mention that the relation between the

type of G2 structure induced on an oriented submanifold of a Spin(7) structure manifold

and the intrinsic geometry of such submanifolds was studied in [46, 47].

4.1 The G2 and Spin(7)± decompositions of Ω4(U)

The group G2 has a natural fiberwise rank-preserving action on the graded vector bundle

∧(D|U )∗, which is given at every p ∈ U by the local embedding of G2 as the stabilizer G2,p in

SO(Dp) of the 3-form ϕp ∈ ∧3(D∗
p). Since SO(Dp) embeds into SO(TpM) as the stabilizer of

the 1-form Vp ∈ T ∗
pM , this induces a rank-preserving action of G2,p on ∧T ∗

pU which can be

described as follows. Decomposing any form ω ∈ ∧T ∗
pU as ω = ω⊥+V̂ ∧ω⊤, the action of an

element of g of G2 on ω is given by the simultaneous action of g on the components ω⊥ and

ω⊤, both of which belong to ∧D∗
p. The corresponding representation of G2 at p is equivalent

with the direct sum of the representations in which the components ω⊤ and ω⊥ transform

at p. In particular, F⊥,p and F⊤,p transform in a G2 representation which is equivalent

with the direct sum ∧3D∗
p ⊕∧4D∗

p. The group Spin(7) is embedded inside SO(TpM) in two

ways, namely as the stabilizers Spin(7)±,p of the selfdual 4-forms Φ±
p . Then (3.35) shows

that G2,p is the stabilizer of Vp in Spin(7)±,p. The action of G2,p on ∧T ∗
pM is obtained

from that of Spin(7)±,p by restriction. Hence the irreducible components of the action of

Spin(7)±,p on ∧k(T ∗
pM) decompose as direct sums of the irreducible components of the

action of G2,p on the same space. We have the following decompositions into irreps. (see,

for example, [48, 49]):

∧4T ∗
pM = ∧4

1,±T
∗
pM ⊕ ∧4

7,±T
∗
pM ⊕ ∧4

27,±T
∗
pM ⊕ ∧4

35,±T
∗
pM for Spin(7)±,p ,

∧4T ∗
pM = ∧4

1T
∗
pM ⊕ ∧4

7T
∗
pM ⊕ ∧4

27T
∗
pM for G2,p , (4.1)

∧3T ∗
pM = ∧3

1T
∗
pM ⊕ ∧3

7T
∗
pM ⊕ ∧3

27T
∗
pM for G2,p ,

where the numbers used as lower indices indicate the dimension of the corresponding irrep.

The last two of these decompositions imply similar decompositions into irreps. of G2,p for

the spaces of selfdual and anti-selfdual three- and four-forms:

(

∧4T ∗
pM

)±
= ∧4

1T
∗
pM ⊕ ∧4

7T
∗
pM ⊕ ∧4

27T
∗
pM for G2,p . (4.2)

Furthermore, we have:

(

∧4T ∗
pM

)±
= ∧4

1,±T
∗
pM ⊕ ∧4

7,±T
∗
pM ⊕ ∧4

27,±T
∗
pM for Spin(7)±,p ,

(

∧4T ∗
pM

)∓
= ∧4

35,±T
∗
pM for Spin(7)±,p ,

(4.3)

where the ± superscripts indicate the subspaces of selfdual and anti-selfdual forms while the

± subscripts indicate which of the Spin(7)p subgroups of SO(TpM) we consider. Comparing

these two decompositions, one sees immediately that the irreps of Spin(7)±,p appearing
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G2 representation 1 7 27

F⊥ ∈ Ω4
U (D) trg

(

ĥ
)

α1 ∈ Ω1
U (D) h(0) ∈ Sym2

U ,0(D∗)

F⊤ ∈ Ω3
U (D) trg(χ̂) α2 ∈ Ω1

U (D) χ(0) ∈ Sym2
U ,0(D∗)

Table 2. The G2 parameterization of F on the non-chiral locus.

in (4.3) decompose as follows under the G2 action on ∧4T ∗
pM which was discussed above:

∧4
k,±T

∗
pM = ∧4

kT
∗
pM , for k = 1, 7, 27

∧4
35,±T

∗
pM = ∧4

1T
∗
pM ⊕ ∧4

7T
∗
pM ⊕ ∧4

27T
∗
pM .

(4.4)

Let ω(k) ∈ Ωk(U) and ω[k]
± ∈ Ωk(U) denote the (pointwise) projections of a form ω on the

irreps of G2 and Spin(7)± respectively.

4.2 The G2 and Spin(7)± parameterizations of F

G2 parameterization. Recall from [8] that F |U = F⊥ + V̂ ∧ F⊤ and f |U = f⊥ + f⊤V̂ ,

where f⊤ ∈ Ω0(U), f⊥ ∈ Ω1
U (D), F⊤ ∈ Ω3

U (D) and F⊥ ∈ Ω4
U (D), with:

F⊥=F
(7)
⊥ +F

(S)
⊥ where F

(7)
⊥ =α1 ∧ ϕ∈Ω4

7(D) , F
(S)
⊥ =−ĥklek ∧ ιelψ∈Ω4

U ,S(D)

F⊤=F
(7)
⊤ +F

(S)
⊤ where F

(7)
⊤ =−ια2ψ∈Ω3

U ,7(D), F
(S)
⊤ =χkle

k ∧ ιelϕ∈Ω3
U ,S(D) .

(4.5)

Here α1, α2 ∈ Ω1
U (D), while ĥ = 1

2 ĥije
i ⊙ ej and χ = 1

2χije
i ⊙ ej are sections of the bundle

Sym2
U (D∗). We have F

(S)
⊤ = F

(1)
⊤ + F

(27)
⊤ with F

(1)
⊤ ∈ Ω3

1(D), F
(27)
⊤ ∈ Ω3

U ,27(D) and a

similar decomposition for F
(S)
⊥ . The last relations correspond to the decompositions of χ

and ĥ into their homothety parts tr(χ)g|D, tr
(

ĥ
)

g|D and traceless parts:

χ(0) def.
= χ− 1

7
tr(χ)g|D , h(0) = ĥ− 1

7
tr
(

ĥ
)

g|D .

Let h, χ̂ ∈ Sym2
U (D∗) denote the symmetric tensors defined through:

hij
def.
= ĥij −

1

3
trg

(

ĥ
)

gij , χ̂ij
def.
= χij −

1

4
trg(χ)gij ,

where:

trg(χ) = −4

3
trg(χ̂) , trg

(

ĥ
)

= −3

4
trg(h) .

The situation is summarized in table 2.

Spin(7)± parameterization. The discussion of the previous subsection gives the fol-

lowing decompositions of the selfdual and anti-selfdual parts of F :

F± = F
[1]
± + F

[7]
± + F

[27]
± ∈ Ω4±(U) , F∓ = F

[35]
± ∈ Ω4∓(U) .

Since the Hodge operator intertwines Spin(7)± representations, we have:
(

F
[k]
±

)

⊥
= ± ∗⊥

(

F
[k]
±

)

⊤
for k = 1, 7, 27 ,

(

F
[35]
±

)

⊥
= ∓ ∗⊥

(

F
[35]
±

)

⊤
.
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One can parameterize F
[k]
± through a zero-form F [1]

± ∈ Ω0(U), a 2-form F [7]
± ∈ Ω2(U), a

D-longitudinal traceless symmetric covariant tensor F [27]
± ∈ Sym2

U ,0(D∗) and a traceless

symmetric covariant tensor F [35]
± ∈ Sym2

0(T
∗U), which are defined by:

F
[1]
± =

1

42
F [1]
± Φ± ,

F
[7]
± =

1

96
Φ△1 F [7]

± ,

F
[27]
± =

1

24

(

F [27]
±

)

ij
ei ∧ ιejΦ∓ , (4.6)

F
[35]
± =

1

24

(

F [35]
±

)

ab
ea ∧ ιebΦ± .

The quantities F [k] with k = 1, 7, 35 can be recovered from F through the relation:

6(ιeaF )△3

(

ιebΦ
±) = gabF [1]

± +
(

F [7]
±

)

ab
+
(

F [35]
±

)

ab
. (4.7)

Define:

β1±
def.
=

(

F [7]
±

)

⊤
∈ Ω1

U (D) ,

β2±
def.
= n y F [35]

± =
(

F [35]
±

)

1j
ej ∈ Ω1

U (D) ,

σ±
def.
=

1

2

(

F [35]
±

)

ij
ei ⊙ ej ∈ Sym2

U (D∗) ,

(4.8)

where ea is a local orthonormal frame such that e1 = n
def.
= V̂ ♯ and j = 2, . . . , 8. The fact

that F
[7]
± is (anti-)selfdual implies:

(

F [7]
±

)

⊥
= ∓ιβ1±ϕ . (4.9)

Choosing an orthonormal frame with e1 = n = V̂ ♯ and recalling (3.38), relations (4.6)

and (4.8) give the following parameterization of F , which refines the parameterization used

in [1] by taking into account the decomposition into directions parallel and perpendicular

to V̂ :
(

F
[1]
±

)

⊤
= ± 1

42
F [1]
± ϕ ,

(

F
[1]
±

)

⊥
=

1

42
F [1]
± ψ ,

(

F
[7]
±

)

⊤
=

1

24
ιβ1±ψ ,

(

F
[7]
±

)

⊥
= ∓ 1

24
β1± ∧ ϕ ,

(

F
[27]
±

)

⊤
= ∓ 1

24
(F [27]

± )ije
i ∧ ιejϕ ,

(

F
[27]
±

)

⊥
=

1

24

(

F [27]
±

)

ij
ei ∧ ιejψ ,

(

F
[35]
±

)

⊤
= ± 1

24

[

ιβ2±ψ − 4

7
(trσ±)ϕ+

(

σ
(0)
±

)

ij
ei ∧ ιejϕ

]

,

(

F
[35]
±

)

⊥
=

1

24

[

β2± ∧ ϕ+
4

7
(trσ±)ψ +

(

σ
(0)
±

)

ij
ei ∧ ιejψ

]

.

(4.10)

To arrive at the above, we used the relations:

ϕ△1

(

F [7]
±

)

⊥
= ∓3ιβ1±ψ , ψ△1

(

F [7]
±

)

⊥
= ∓3β1± ∧ ϕ ,

which follow from (4.9) and the identities given in the appendix of [50].
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Spin(7)± representation 1 7 27 35

component F
[1]
± ∈ Ω4∓(U) F

[7]
± ∈ Ω4∓(U) F

[27]
± ∈ Ω4∓(U) F

[35]
± ∈ Ω4±(U)

U -tensors F [1]
± ∈ Ω0(U) F [7]

± ∈ Ω2(U) F [27]
± ∈ Sym2

U ,0(D∗) F [35]
± ∈ Sym2

0(T
∗U)

D-tensors F [1]
± ∈ Ω0(U) β1± ∈ Ω1

U (D) F [27]
± ∈ Sym2

U ,0(D∗)
β2± ∈ Ω1

U (D)

σ ∈ Sym2
U (D∗)

Table 3. The Spin(7)± parameterization of F on the non-chiral locus and its D-refined version.

Relating the G2 and Spin(7)± parameterizations of F . Relation (4.4) implies:

(

F
[k]
±

)

⊤
=
1

2

(

F
(k)
⊤ ±∗⊥F (k)

⊥

)

,
(

F
[k]
±

)

⊥
=

1

2

(

F
(k)
⊥ ±∗⊥F (k)

⊤

)

for k=1, 7, 27 ,

(

F
[35]
±

)

⊤
=
1

2
(F⊤ ∓ ∗⊥F⊥) ,

(

F
[35]
±

)

⊥
=

1

2
(F⊥ ∓ ∗⊥F⊤) .

(4.11)

Comparing (4.10) with (4.11) and using the G2 parameterization of F⊤ and F⊥ given

in (4.5), one can express the quantities in the last row of table 3 in terms of α1, α2 and ĥ, χ̂:

F [1]
± = −12trg

(

ĥ± χ̂
)

,

σ± = −12
(

ĥ∓ χ̂
)

,

F [27]
± = −12

(

ĥ(0) ± χ̂(0)
)

,

β1± = −12(α2 ± α1) ,

β2± = +12(α1 ∓ α2) .

(4.12)

These simple relations provide the connection between the G2 parameterization (4.5) and

the refined Spin(7)± parameterizations (4.10), thus allowing one to relate the G2 and

Spin(7)± decompositions of F .

4.3 Relating the G2 torsion classes to the Lee form and characteristic torsion

of the Spin(7)± structures

Recall that the Lee form of the Spin(7)± structure determined by Φ± on U is the one-form

defined through:

θ±
def.
= ±1

7
∗
(

Φ± ∧ δΦ±)= −1

7
∗
[

Φ± ∧
(

∗dΦ±)]∈ Ω1(U) =⇒ Φ± ∧ δΦ± = ∓7 ∗ θ± , (4.13)

where we use the conventions of [51] and the fact that ∗Φ± = ±Φ±. Also recall from loc. cit.

that there exists a unique g-compatible connection ∇c with skew-symmetric torsion such

that ∇cΦ± = 0. This connection is called the characteristic connection of the Spin(7)±
structure. Its torsion form (obtained by lowering the upper index of the torsion tensor of

∇c) is given by:

T± = −δΦ±∓ 7

6
∗
(

θ± ∧ Φ±)= −δΦ±− 7

6
ιθ±Φ

± = ±∗
(

dΦ± − 7

6
θ± ∧ Φ±

)

∈ Ω3(U) (4.14)
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and is called the characteristic torsion of the Spin(7)± structure. The normalization

relation ||Φ±||2 = 14, i.e. Φ± ∧ Φ± = ±14ν implies Φ± ∧ ιθ±Φ
± = ±7 ∗ θ±. Thus

Φ± ∧ T± = ∓7
6 ∗ θ±, where we used (4.13) and (4.14). It follows that the Lee form is

determined by the characteristic torsion through the equation:

θ± = ±6

7
∗
(

Φ± ∧ T±
)

. (4.15)

Relation (4.14) shows that the exterior derivative of Φ± takes the form:

dΦ± =
7

6
θ± ∧ Φ± ∓ ∗T± = ±

[

∗
(

Φ± ∧ T±
)]

∧ Φ± ∓ ∗T± . (4.16)

Recall the relation (see [8]):

Dnψ = −3ϑ ∧ ϕ ,
where ϑ ∈ Ω1(D). Together with (3.38) and with the formula for the exterior derivative of

longitudinal forms (see appendix C. of [8]), this gives:

(

dΦ±)
⊤ = ± (H♯ ∓ 3ϑ− 3τ1) ∧ ϕ−

(

4

7
trA± τ0

)

ψ −A
(0)
jk e

j ∧ ιekψ ∓ ∗⊥τ3 ,
(

dΦ±)
⊥ = 4τ1 ∧ ψ + ∗⊥τ2 ,

which implies:
(

∗dΦ±)
⊤ = −τ2 − 4ιτ1ϕ ,

(

∗dΦ±)
⊥ = ∓ ι(H♯∓3ϑ−3τ1)ψ −

(

4

7
trA± τ0

)

ϕ+A
(0)
jk e

j ∧ ιekϕ∓ τ3 . (4.17)

Using this relation and (3.38), we can compute θ± from (4.13) and then determine T± from

equation (4.14). We find:

(θ±)⊤=−4

7
trA∓ τ0 , (θ±)⊥=−4

7
(H♯ ∓ 3ϑ− 6τ1), (4.18)

(T±)⊤=−2

3
ι(±H♯−3ϑ)ϕ∓ τ2, (T±)⊥=−1

6

(

4

7
trA±τ0

)

ϕ− 1

3
ι(H♯∓3ϑ+3τ1)ψ±A

(0)
jk e

j∧ιekϕ−τ3.

To arrive at the last two relations, we used the identities:

ιτ2ϕ = ιτ3ψ = 〈τ3, ϕ〉 = 0 ,

which follow from relations (B.13) and (B.14) given in appendix B of [8] upon using the

fact that τ3 ∈ Ω3
U ,27(D).

4.4 Relation to previous work

The problem of determining the fluxes f, F in terms of the geometry along the locus U+

was considered in reference [1], where the quantities denoted here by L+,Φ+ were denoted

simply by L,Φ. Using the results of the previous subsections, one can show that the

relations given in Theorem 3 of [8] are equivalent, on the non-chiral locus U , with equations

(3.16), (3.17) and (3.18) of [1]. This solves the problem of comparing the approach of loc.

cit. with that of [2, 8]. The major steps of the comparison with loc. cit. are given in

appendix C.

– 23 –



J
H
E
P
0
3
(
2
0
1
5
)
1
1
6

5 Description of the singular foliation in the Morse case

In this section, we consider the case when the closed one-form ω ∈ Ω1(M) is Morse. This

case is generic in the sense that Morse one-forms form a dense open subset of the set

of all closed one-forms belonging to the fixed cohomology class f — hence a form which

satisfies equations (3.41) can be replaced by a Morse form by infinitesimally perturbing b.

Singular foliations defined by Morse one-forms were studied in [21]–[29] and [52]–[57]. Let

Πf = im(perf) ⊂ R be the period group of the cohomology class f and ρ(f) = rkΠf be its

irrationality rank. The general results summarized in the following subsection hold for any

smooth, compact and connected manifold of dimension d which is strictly bigger than two,

under the assumption that the set of zeroes of ω (which in Novikov theory [58] is called

the set of singular points):

Sing(ω)
def.
= {p ∈M |ωp = 0}

is non-empty. Notice that Sing(ω) is a finite set since M is compact and since the zeroes

of a Morse 1-form are isolated. The complement:

M∗ def.
= M \ Sing(ω)

is a non-compact open submanifold of M . Below, we shall use the notations Fω for the

regular foliation induced by ω on M∗ and F̄ω for the singular foliation induced on M . In

our application we have n = 8 and:

Sing(ω) = W , M∗ = U , Fω = F , F̄ω = F̄ .

5.1 Types of singular points

Let indp(ω) denote the Morse index of a point p ∈ Sing(ω), i.e. the Morse index at p of a

Morse function hp ∈ C∞(Up,R) such that dhp equals ω|Up , where Up is some vicinity of p.

This index does not depend on the choice of Up and hp. Let:

Singk(ω)
def.
= {p ∈ Sing(ω)|indp(ω) = k} , k = 1, . . . , d

Σk(ω)
def.
= {p ∈ Sing(ω)|indp(ω) = k or indp(ω) = d− k} , k = 1, . . . ,

[

d

2

]

.

Thus Σk(ω) = Singk(ω) ∪ Singn−k(ω) for k < d
2 and Σd0(ω) = Singd0(ω) when d = 2d0

is even. In a small enough vicinity of p ∈ Singk(ω) (which we can assume to equal Up by

shrinking the latter if necessary), the Morse lemma applied to hp implies that there exists

a local coordinate system (x1, . . . , xd) such that:

hp = −
k

∑

j=1

x2j +
d

∑

j=k+1

x2j .

Definition. The elements of Σ0(ω) are called centers while all other singularities of ω

are called saddle points. The elements of Σ1(ω) are called strong saddle points, while all

other saddle points are called weak.
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Remark. Strong saddle points are sometimes called “conical points”. That terminology

can lead to confusion, since all singular points which are not centers are conical singularities

of the singular leaf to which they belong (see below), in the sense that the singular leaf can

be modeled by a cone (with one or two sheets) in a vicinity of such a singular point. In

other references, a “conical point” means any singularity which is not a center, i.e. what

we call a saddle point.

5.2 The regular and singular foliations defined by a Morse 1-form

The regular foliation Fω. The Morse 1-form ω defines a regular foliation Fω of the

open submanifold M∗, namely the foliation which, by the Frobenius theorem, integrates

the regular Frobenius distribution ker(ω)|M∗ . Following [27], we say that a singular point

p ∈ Sing(ω) adjoins a leaf L5 of Fω if the union {p} ∪L is connected; notice that a center

cannot adjoin any leaf of Fω. Let:

s(L)
def.
= {p ∈ Sing(ω)|p adjoins L} ⊂ Sing(ω) .

The set s(L) is contained in the intersection of Sing(ω) with the small topological frontier

fr(L) of L:

s(L) ⊆ fr(L) ∩ Sing(ω) . (5.1)

Notice that this inclusion can be strict; a beautifully drawn example illustrating this in

the two-dimensional case can be found in [29] (see figure 2(c) of loc. cit.). We have s(L) ∩
Σ0(ω) = ∅ and hence s(L) = ⊔[

d
2 ]

k=1sk(L), where:

sk(L)
def.
= s(L) ∩ Σk(L) .

Classification of the leaves of Fω.

• Compactifiable and non-compactifiable leaves. We say that a leaf L of Fω is com-

pactifiable if the set L ∪ Sing(ω) is compact, which amounts to the condition that

the small topological frontier fr(L)
def.
= L̄ \ L of L in M is a (possibly void) subset of

Sing(ω) and hence a finite set. With this definition, compact leaves of Fω are com-

pactifiable, but not all compactifiable leaves are compact. A non-compactifiable leaf

of Fω is a leaf which is not compactifiable; obviously such a leaf is also non-compact.

The closure of a non-compactifiable leaf is a set with non-empty interior [52, 55], so

the small frontier of such a leaf is an infinite set.

• Ordinary and special leaves. The leaf L is called ordinary if s(L) is empty and

special if s(L) is non-empty. An ordinary leaf is either compact or non-compactifiable.

Any non-compact but compactifiable leaf is a special leaf, but there also exist non-

compactifiable special leaves (see table 4).

5This should not be confused with the quantity L± discussed in subsection 4.4 (or with the quantity

denoted by L in [1]).
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type of L
compactifiable

non-compactifiable
compact non-compact

ordinary Y — Y

special — Y Y

Card(frL) finite infinite

Table 4. Classification of the leaves of Fω, where the allowed combinations are indicated by

the letter “Y”. A compactifiable leaf is ordinary iff it is compact and it is special iff it is non-

compact. A non-compactifiable leaf may be either ordinary or special. Non-compactifiable leaves

coincide [52, 55] with those leaves whose small frontier is an infinite set, while compactifiable leaves

are those leaves whose small frontier is finite.

The foliation Fω has only a finite number of special leaves, because the local form of

leaves near the points of Sing(ω) (see below) shows that at most two special leaves can

contain each such point in their closures (recall that we assume d ≥ 3). We shall see later

that each non-compactifiable leaf (whether special or not) covers densely some open and

connected subset of M∗. Notice that every singular point which is not a center adjoins

some special leaf. Hence:

Σk(ω) = ∪L=special leaf of Fω
sk(L) , ∀k = 1 . . .

[

d

2

]

. (5.2)

The singular foliation F̄ω. One can describe [18, 58] the singular foliation F̄ω of M

defined by ω as the partition ofM induced by the equivalence relation ∼ defined as follows.

We put p ∼ q if there exists a smooth curve γ : [0, 1] →M such that:

γ(0) = p , γ(1) = q and ω(γ̇(t)) = 0 ∀t ∈ [0, 1] .

The leaves of F̄ω are the equivalence classes of this relation; they are connected subsets of

M (which need not be topological manifolds when endowed with the induced topology).

Any such leaf is either of the form {p} where p ∈ Σ0(ω) is a center or is a topological

subspace of M of Lebesgue covering dimension equal to n− 1.

Remark. We stress that F̄ω is not generally a foliation of M in the ordinary sense

of foliation theory but (as explained in the previous section) it should be viewed as a

Haefliger structure. It is not even a C0-foliation, i.e. a foliation in the category of topological

manifolds (locally Euclidean Hausdorff topological spaces), because singular leaves of F̄ω

which pass through strong saddle points can be locally disconnected by removing those

points and hence are not topological manifolds.

Regular and singular leaves of F̄ω. A leaf L of F̄ω is called singular if it intersects

Sing(ω) and regular otherwise. The regular leaves of F̄ω coincide with the ordinary leaves

of Fω; notice that every center singularity is a singular leaf. On the other hand, each

singular leaf which is not a center is a disjoint union of a finite number of special leaves
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of Fω and of some subset s(L) def.
= L ∩ Sing(ω) of Sing(ω), which we shall call the set of

singular points of L. We have:

L \ s(L) = L1 ⊔ . . . ⊔ Lr ⊔ L′
1 ⊔ . . . ⊔ L′

t ,

where L1, . . . , Lr are compactifiable special leaves while L′
1, . . . , L

′
t are non-compactifiable

special leaves of Fω. We also have s(L) = sc(L) ∪ snc(L) (generally a non-disjoint union),

with:

sc(L) def.
= ∪r

i=1s(Li) , snc(L) def.
= ∪t

j=1

(

L′
j

)

.

The singular leaf L decomposes as:

L = Lc ⊔ Lnc , (5.3)

where the compact part and non-compact part of L are defined through:

Lc def.
= L̄1 ∪ . . . ∪ L̄r = L1 ⊔ . . . ⊔ Lr ⊔ sc(L)

Lnc def.
= L \ Lc =

(

L′
1 ⊔ . . . ⊔ L′

t

)

⊔ (s(L) \ sc(L)) . (5.4)

The set sc(L) consists of those singular points of L which lie on the compact part Lc.

Notice that both the compact and non-compact parts of L can be void and that a non-

compactifiable special leaf component L′
j of L can adjoin points from sc(L) as well as

from s(L) \ sc(L) simultaneously; furthermore, Lnc may meet itself at certain points of

s(L) \ sc(L).6 When L is a center leaf {p}, we define Lc def.
= s(L) = {p} and Lnc def.

= ∅.
Notice that any non-empty subset A of L determines L as the saturation of A with respect

to the equivalence relation ∼. If Sω denotes the union of Sing(ω) with all special leaves

of Fω, then the singular leaves of F̄ω (including the centers) coincide with the connected

components of Sω. Notice that fr(Li) = s(Li) = L̄i ∩ Sing(ω) for each compactifiable leaf

component Li, i = 1 . . . r. The compact sets L̄i meet themselves or each other only in

strong saddle points. In particular, we have:

L̄i1 ∩ L̄i2 = s(Li1) ∩ s(Li2) = s1(Li1) ∩ s1(Li2) ⊂ Σ1(ω) for 1 ≤ i1 < i2 ≤ r .

The following definition generalizes the notion of generic Morse function:

Definition. The Morse form ω is called generic if every singular leaf of F̄ω contains

exactly one singular point p ∈ Sing(ω).

5.3 Behavior of the singular leaves near singular points

In a small enough vicinity of p ∈ Singk(ω), the singular leaf Lp passing through p is modeled

by the locus Qk ⊂ Rn given by the equation hp = 0, where p corresponds to the origin

of Rn. One distinguishes the cases (see tables 5 and 6):

• k ∈ {0, n}, i.e. p is a center. Then Lp = {p} and the nearby leaves of Fp are

diffeomorphic to Sn−1.

6We thank I. Gelbukh for drawing our attention to these points.
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Name Morse index Local form of Lp Local form of regular leaves

Center 0 or n • = {p}

Weak saddle between 2 and n− 2

Strong saddle 1 or n− 1

Table 5. Types of singular points p. The first and third figure on the right depict the case d = 3

for centers and strong saddles, while the second figure attempts to depict the case d > 3 for a weak

saddle (notice that weak saddles do not exist unless d > 3). In that case, the topology of the leaves

does not change locally when they “pass through” the weak saddle point. Lp denotes the singular

leaf of F̄ω which passes through p.

• 2 ≤ k ≤ n − 2, i.e. p is a weak saddle point. Then Qk is diffeomorphic to a cone

over Sk−1 × Sn−k−1 and Rn \ Qk has two connected components while Qk \ {p} is

connected. Removing p does not locally disconnect Lp.

• k ∈ {1, n−1}, i.e. p is a strong saddle point. Then Qk is diffeomorphic to a cone over

{−1, 1}× Sn−2 and Rn \Qk has three connected components while Qk \ {0} has two

components. Removing p locally disconnects Lp. A strong saddle point p ∈ Σ1(ω)

is called splitting [27] (or blocking [54]) if it adjoins two different (special) leaves of

the regular foliation Fω and it is called non-splitting (or a transformation point [27])

if it adjoins a single (special) leaf of Fω (see table 6). If a singular leaf L contains

only one splitting point, then removing it disconnects L. If a singular leaf L contains

more than one splitting point, then removing it may not disconnect L (an example

of such behavior is given in [27, figure 7(b)]).

We have a decomposition Σ1(ω) = Σsp
1 (ω)⊔Σnsp

1 (ω) of the set of strong saddle points,

where:

Σsp
1 (ω)

def.
= {p ∈ Σ1(ω)|p is a splitting singularity}

Σnsp
1 (ω)

def.
= {p ∈ Σ1(ω)|p is a non− splitting singularity} .

Taking into account the local behavior of leaves near the various types of singular points,

we find that the decomposition (5.2) is disjoint for k 6= 1:

Σk(ω) = ⊔L=special leaf of Fω
sk(L) , ∀k = 2 . . .

[

d

2

]

.
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Singularity type Example of global shape for Lp

Splitting

Non-splitting

Table 6. Types of strong saddle points. The figures illustrate the two types through two simple

examples in the case d = 3. The figure in the first row uses different colors to indicate two different

special compactifiable leaves of Fω which are subsets of the same singular leaf of F̄ω, each of them

adjoining the same splitting singular point. The figure in the second row shows a single special

compactifiable leaf of Fω which adjoins a single non-splitting singular point.

while the decomposition for k = 1 may fail to be disjoint:

Σ1(ω) = ∪L=special leaf of Fω
s1(L) . (5.5)

More precisely:

Σnsp
1 (ω) = ⊔L=special leaf of Fω

snsp1 (L)

Σsp
1 (ω) = ∪L=special leaf of Fω

ssp1 (L) ,

where we defined:

snsp1 (L)
def.
= s1(L) ∩ Σnsp

1 (ω) , ssp1 (L)
def.
= s1(L) ∩ Σsp

1 (ω)

and where the second union may be non-disjoint. This is because two distinct special leaves

of Fω can meet each other only at a strong saddle point which is a splitting singularity.

5.4 Combinatorics of singular leaves

Definition. A singular leaf of F̄ω which is not a center is called a strong singular leaf if

it contains at least one strong saddle point and a weak singular leaf otherwise.

A weak singular leaf is obtained by adjoining weak saddle points to a single special

leaf of Fω. Such singular leaves are mutually disjoint and their singular points determine

a partition of the set Σ>1(ω)
def.
= ∪[

d
2 ]

k=2Σk(ω). The situation is more complicated for strong

singular leaves, as we now describe.

At each p ∈ Σ1(ω), consider the strong singular leaf L passing through p. The inter-

section of L \ {p} with a sufficiently small neighborhood of p is a disconnected manifold

diffeomorphic to a union of two cones without apex, whose rays near p determine a con-

nected cone Cp ⊂ TpM inside the tangent space toM at p (see the last row of table 5). The

set
•
Cp

def.
= Cp \ {0p} (where 0p is the zero vector of TpM) has two connected components,

thus π0(
•
Cp) is a two-element set. Hence the finite set:

Σ̂1(ω)
def.
= ⊔p∈Σ1(M)π0

( •
Cp

)
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is a double cover of Σ1(ω) through the projection σ that takes π0

( •
Cp

)

to {p}. Consider

the complete unoriented graph having as vertices the elements of Σ̂1(ω). This graph has a

dimer covering given by the collection of edges:

Ê =

{

π0

( •
Cp

)

|p ∈ Σ1(ω)

}

,

which connect vertically the vertices lying above the same point of Σ1(ω) (see figure 2). If

L is a special leaf of Fω and p ∈ Σ1(ω) adjoins L, then the connected components of the

intersection of L with a sufficiently small vicinity of p are locally approximated at p by one

or two of the connected components of
•
Cp. The second case occurs iff p is a non-splitting

strong saddle point (see table 6). Hence L determines a subset ŝ1(L) of Σ̂1(ω) such that

σ(ŝ1(L)) = s1(L) and such that the fiber of ŝ1(L) above a point p ∈ s1(L) has one element

if p is a splitting singularity and two elements if p is non-splitting. If L′ is a different special

leaf of Fω, then the sets ŝ1(L
′) and ŝ1(L) are disjoint, even though their projections s1(L)

and s1(L
′) through σ may intersect in Σ1(ω). Hence the special leaves of Fω define a

partition of Σ̂1(ω):

Σ̂1(ω) = ⊔L=special leaf of Fω
ŝ1(L) ,

which projects through σ to the generally non-disjoint decomposition (5.5). Viewing Ê as

a disconnected graph on the vertex set Σ̂1(ω), we let E denote the (generally disconnected)

graph obtained from Ê upon identifying all vertices belonging to ŝ1(L) for each special

leaf L of Fω, i.e. by collapsing ŝ1(L) to a point for each special leaf7 L. Let p : Ê → E
denote the corresponding projection. The graph E has one vertex for each special leaf of Fω

which adjoins some strong saddle point and an edge for each strong saddle point. Notice

that this edge is a loop when the strong saddle point is a non-splitting singularity, since a

non-splitting singularity adjoins a single special leaf. A strong singular leaf of F̄ω can be

written as:

L =
(

⊔r+t
α=1L

′′
α

)

⊔ s(L) , (5.6)

where L′′
α are special leaves of Fω (compactifiable or not). Its set of strong saddle singular

points s1(L) = ∪r+t
α=1s1(L

′′
α) is the projection through σ of the set ŝ1(L) def.

= ⊔r+t
α=1ŝ1(L

′′
α).

Let ÊL be the (generally disconnected) subgraph of Ê consisting of those edges of Ê which

meet ŝ1(L). Then s1(L) is obtained from ÊL by contracting each edge to a single point.

If all special leaves L of Fω are known, then ÊL uniquely determines the strong singular

leaf L. Indeed, ÊL contains the information about how the special leaves which form L
meet themselves and each other at the strong saddle points. Since L is connected and

maximal with this property, the graph EL obtained from ÊL by identifying to a single

point the vertices of each of the subsets ŝ1(L
′′
α) is a connected component of E . It follows

that the strong singular leaves of F̄ω are in one to one correspondence with the connected

components of the graph E — namely, their subgraphs ÊL are the preimages through p of

those components.

7If s1(L) is empty, this operation does nothing.
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p

σ

Σ1(ω)

Ê E

Figure 2. Example of the graphs Ê and E for a Morse form foliation F̄ω with two compact

strong singular leaves. The regular foliation Fω of M∗ has four special leaves, each of which is

compactifiable; they are depicted using four different colors. At the bottom of the picture, we

depict Σ1(ω) as well as the schematic shape of the special leaves in the case d = 3. The strong

singular leaves of F̄ω correspond to the left and right parts of the figure at the bottom; each of

them is a union of two special leaves of Fω and of singular points. Each special leaf corresponds to

a vertex of E .

In our application, the set Sing(ω) = W = W+ ⊔W− consists of positive and negative

chirality points of ξ, which are the points where b attains the values b = ±1. Relation (3.41)

implies that f satisfies:
∮

γ

f = 0

for any smooth closed curve γ ∈ L \ W and hence f restricts to a trivial class in singular

cohomology along each leaf L of F̄ :

ι∗(f) = 0 ∈ H1(L,R) ,
where ι : L →֒ M is the inclusion map while H1(L,R) is the first singular cohomology

group (which coincides with the first de Rham cohomology group when L is non-singular).

The pull-back of f to L \W is given by:

f |L\W = f⊥ = d⊥b .

Notice that f⊥ and b have well-defined limits (equal to fp and b(p) ∈ {−1, 1}) at each

singular point p ∈ L ∩ W of a singular leaf L. If p1, p2 ∈ L ∩ W are two singular points

lying on the same singular leaf L and γ : (0, 1) → L\W is a smooth path which has limits

at 0, 1 given by p1 and p2, then the integral
∫

γ
f is well-defined and given by:

∫

γ

f = e3∆(p2)b(p2)− e3∆(p1)b(p1) ,

where b(pi) ∈ {−1, 1}.
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5.5 Homology classes of compact leaves

Let Hω be the (necessarily free) subgroup of Hn−1(M,Z) generated by the compact leaves

of Fω and let c(ω)
def.
= rkHω denote the number of homologically independent compact

leaves. It was shown in [21] that Hω admits a basis consisting of homology classes [Li]

(i = 1, . . . , c(ω)) of compact leaves8 and that the homology class of any compact leaf L of

Fω expands in this basis as:

[L] =

c(ω)
∑

i=1

ni[Li] where ni ∈ {−1, 1} .

Furthermore [21, 23], there exists a system of Z-linearly independent one-cycles γi ∈
H1(M,Z) (i = 1, . . . , c(ω)) such that (γi, [Lj ]) = δij and such that γi provide a direct

sum decomposition:

H1(M,Z) = 〈γ1, . . . , γc(ω)〉 ⊕ ι∗(H1(∆)) ,

where ι : ∆ →֒ M is the inclusion map. Let Hω

def.
= Hω ∩ (ker perω)

⊥. Then [25] the

subgroup Hω is a direct summand in Hω while Hω is a direct summand in Hn−1(M,Z).

Furthermore, only the following values are allowed for rkHω:

rkHω ∈ {0, . . . ρ(ω)− 2} ∪ {ρ(ω)} .

5.6 The Novikov decomposition of M

What we shall call the “Novikov decomposition” is a generalization of the Morse decom-

position [59–61], which was introduced in [19, 20] (see also [18, 57]) and used extensively

in [21]–[29]; the name is motivated by analogy with “Morse decomposition”, due to the

role which this decomposition plays in the modern study of the topology of closed one-

forms [58]. Define Cmax to be the union of all compact leaves and Cmin to be the union

of all non-compactifiable leaves of Fω; it is clear that these two subsets of M are disjoint.

Then it was shown in [52, 55] that both Cmax and Cmin are open subsets of M which have

a common topological small frontier F 9 given by the (disjoint) union F0 ∪ Sing(ω), where

F0 is the union of all those leaves of Fω which are compactifiable but non-compact:

frCmax = frCmin = F
def.
= F0 ⊔ Sing(ω) .

Each of the open sets Cmax and Cmin has a finite number of connected components, which

are called the maximal and minimal components of the set M \F = Cmax ⊔Cmin. We let:

• Nmax(ω)
def.
= |π0(Cmax)| denote the number of maximal components

• Nmin(ω)
def.
= |π0(Cmin)| denote the number of minimal components.

8Such a basis is provided by the homology classes of the compact leaves corresponding to the edges of

any spanning tree of the foliation graph defined below.
9This should not be confused with the internal part of the flux which is denoted by the same letter.
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Indexing these by Cmax
j and Cmin

a (where j = 1, . . . , Nmax(ω) and a = 1, . . . , Nmin(ω)),

we have:

Cmax = ⊔Nmax(ω)
j=1 Cmax

j , Cmin = ⊔Nmin(ω)
a=1 Cmin

a (5.7)

and hence (since (5.7) are finite and disjoint unions) we also have:

Cmax = ∪Nmax(ω)
j=1 Cmax

j , Cmin = ∪Nmin(ω)
a=1 Cmin

a , (5.8)

F = frCmax = ∪Nmax(ω)
j=1 frCmax

j = frCmin = ∪Nmin(ω)
a=1 frCmin

a . (5.9)

Notice that the unions appearing in these equalities need not be disjoint anymore, in

particular the small frontiers of two distinct maximal components can intersect each other

and similarly for two distinct minimal components. Let:10

∆
def.
= M \ Cmax = Cmin = Cmin ⊔ F

be the union of all non-compact leaves and singularities. This subset has a finite number

(which we denote by v(ω)) of connected components ∆s:

∆ = ⊔v(ω)
s=1 ∆s . (5.10)

The connected components of F (which are again in finite number) are finite unions of

singular points and of non-compact but compactifiable leaves of Fω which coincide with

the ‘compact parts’ of the singular leaves of F̄ω (see (5.3)).

One can show [18, 53] that each maximal component Cmax
j is diffeomorphic to the open

unit cylinder over any of the (compact) leaves Lj of the restricted foliation Fω|Cmax
j

, through

a diffeomorphism which maps this restricted foliation to the foliation of the cylinder given

by its sections Lj × {t}:
Cmax
j ≃ Lj × (0, 1) . (5.11)

In particular, we have:

ρ
(

ω|Cmax
j

)

= 0 .

Being connected, each non-compactifiable leaf L of Fω is contained in exactly one

minimal component. It was shown in [55] (see also appendix of [52]) that L is dense in

that minimal component. Furthermore, one has [18, 52]:

ρ
(

ω|Cmin
a

)

≥ 2 , a = 1, . . . , Nmin(ω) .

In particular, any minimal component Cmin
a must satisfy b1(C

min
a ) ≥ 2.

Definition. The foliation Fω is called compactifiable if each of its leaves is compactifiable,

i.e. if it has no minimal components.

10∆ should not be confused with the warp factor.
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5.7 The foliation graph

Since each maximal component Cmax
j is a cylinder, its frontier consists of either one or two

connected components. When the frontier of Cmax
j is connected, there exists exactly one

connected component ∆sj of ∆ such that frCmax
j ⊂ ∆sj . When the frontier of Cmax

j has two

connected components, there exist distinct indices s′1 and s′′j such that these components

are subsets of ∆s′j
and ∆s′′j

, respectively. These observations allow one to define a graph

as follows [18, 57]:

Definition. The foliation graph Γω of ω is the unoriented graph whose vertices are the

connected components ∆s of ∆ and whose edges are the maximal components Cmax
j . An

edge Cmax
j is incident to a vertex ∆s iff a connected component of frCmax

j is contained in

∆s; it is a loop at ∆s iff frCmax
j is connected and contained in ∆s. A vertex ∆s of Γω is

called exceptional (or of type II ) if it contains at least one minimal component; otherwise,

it is called regular (or of type I ).

The terminology type I, type II for vertices is used in [27]. Since M is connected, it

follows that Γω is a connected graph. Notice that Γω can have loops and multiple edges as

well as terminal vertices. Let deg∆s denote the degree (valency) of ∆s as a vertex of the

foliation graph. A regular vertex ∆s can be of two types:

• A center singularity ∆s = {p} (with p ∈ Σ0(ω)), when deg∆s = 1. In this case, ∆s

is a terminal vertex of Γω.

• A compact singular leaf when deg∆s ≥ 2.

Every exceptional vertex is a union of minimal components, singular points and compact-

ifiable non-compact leaves of Fω. For any vertex ∆s of the foliation graph, we have [27]:

|∆s ∩ Σsp
1 (ω)| ≥ deg∆s + 2m∆s − 2 ,

where m∆s is the number of minimal components contained in ∆s. In particular, a regular

vertex with deg∆s > 2 is a compact singular leaf which contains at least one splitting

strong saddle singularity. The number of edges e(Γω) equals Nmax(ω) while the number of

vertices v(Γω) equals v(ω). Furthermore, it was shown in [28] that the cycle rank b1(Γω)

equals c(ω). Thus:

e(Γω) = Nmax(ω) , v(Γω) = v(ω) ≤ |Sing(ω)| , b1(Γω) = c(ω) .

The graph Euler identity e(Γω) = v(Γω) + b1(Γω)− 1 implies:

Nmax(ω) = c(ω) + v(ω)− 1 ≤ c(ω) + |Sing(ω)| − 1 ,

where we noticed that v(ω) ≤ |Sing(ω)| since each ∆s contains at least one singular point.

An example of foliation graph is depicted in figure 3.
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Figure 3. An example of foliation graph. Regular (a.k.a type I) vertices are represented by black

dots, while exceptional (a.k.a. type II) vertices are represented by green blobs. All terminal vertices

are regular vertices and correspond to center singularities. Notice that the graph can have multiple

edges as well as loops.

Constraints on the foliation graph from the irrationality rank of ω. When the

chiral locus W is empty (i.e. when ω is nowhere-vanishing) we have Sing(ω) = ∅ and

F̄ω = Fω is a regular foliation. Even though this doesn’t fit our assumption Singω 6= ∅,
one can define a (degenerate) foliation graph also in this situation (which was considered

in [8]). In this case, knowledge of the irrationality rank of f determines the topology of the

foliation Fω for any ω ∈ f. Namely, one has only two possibilities (see figure 4):

• ρ(f) = 1, i.e. f is projectively rational. Then there exists exactly one maximal com-

ponent (which coincides with M) and no minimal component. The foliation “graph”

consists of one loop and has no vertices; M is a fibration over S1 as a consequence

of Tischler’s theorem [62].

• ρ(f) > 1, i.e. f is projectively irrational. There exists exactly one minimal component

(which coincides with M) and no maximal component, i.e. Fω is a minimal foliation.

Then the foliation graph consists of a single exceptional vertex and every leaf of Fω

is dense in M . As explained in [8], the noncommutative geometry of the leaf space is

described by the C∗ algebra C(M/Fω) of the foliation, which is a non-commutative

torus of dimensions ρ(ω). Notice that this refined topological information is not

reflected by the foliation graph.

The situation is much more complicated when Sing(ω) is non-empty, in that knowledge

of ρ(ω) does not suffice to specify the topology of the foliation. In this case, knowledge of

ρ(f) allows one to say only the following:

• When ρ(f) = 1, then the foliation Fω is compactifiable for any ω ∈ f [18] and the

inequality (5.12) below requires c(ω) ≥ 1. Hence the foliation graph Γω has only
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(a) Foliation graph when W = ∅ and ρ(ω) = 1.
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(b) Foliation graph when W = ∅ and ρ(ω) > 1.

Figure 4. Degenerate foliation graphs in the everywhere non-chiral case.

regular vertices and must have at least one cycle. Except for this, nothing else can

be said about Fω only by knowing that ρ(f) = 1. Indeed, it was shown in [28] that

any compactifiable Morse form foliation Fω′ with c(ω′) ≥ 1 can be realized as the

foliation defined by a Morse form ω belonging to a projectively rational cohomology

class. It was also shown in loc. cit. that such a foliation can in fact be realized by a

Morse form of any irrationality rank lying between 1 and c(ω′), inclusively.

• When ρ(f) > 1, then Fω may be either compactifiable or non-compactifiable, hence

the foliation graph may or may not have exceptional vertices; when Fω is compacti-

fiable, then Γω has no exceptional vertices and has a number of cycles at least equal

to ρ(ω). Criteria for compactifiability of Fω can be found in [18, 21, 25] and are

given below.

Theorem [18, 21, 25]. The following statements are equivalent:

(a) Fω is compactifiable.

(b) The period morphism perf : π1(M) → R factorizes through a group morphism

π1(M) → K, where K is a free group.

(c) H⊥
ω

⊂ kerω.

(d) rkHω = ρ(ω).

The first criterion above is Proposition 2 in [18, section 8.2]. Since Hω ⊂ Hω, we have

rkHω ≤ rkHω = c(ω) and the theorem shows that compactifiability of Fω requires:

ρ(ω) ≤ c(ω) . (5.12)

Remark. By its construction, the foliation graph discards topological information about

the restriction of the foliation to the minimal components of the Novikov decomposition,

which are represented in the graph by exceptional vertices. As in the case Sing(ω) = ∅,
the C∗ algebra of the foliation should provide more refined information about the topology

of F̄ω than the foliation graph. To our knowledge, this C∗ algebra has not been computed

for foliations given by a Morse 1-form.

The oriented foliation graph. For each maximal component Cmax
j , the diffeomor-

phism (5.11) can be chosen11 such that the sign of the integral
∫

γj
ω is positive along any

11The sign of
∫
γj

ω does not depend on the choice of γ since ω vanishes on the leaves of Fω. If the sign

is negative, then it can be made positive by composing the diffeomorphism (5.11) with idLj
× R, where

R ∈ Diff−((0, 1)) is any orientation-reversing diffeomorphism of the interval (0, 1).

– 36 –



J
H
E
P
0
3
(
2
0
1
5
)
1
1
6

smooth curve γj : (0, 1) → Cmax
j which projects to the interval (0, 1). Identifying the

corresponding edge ej with this interval, this gives a canonical orientation ~ej of ej which

corresponds to “moving along ej in the direction of increasing value if hj”, where hj is

any locally-defined smooth function on an open subset of Cmax
j whose exterior derivative

equals ω. It follows that the foliation graph Γω admits a canonical orientation, which

makes it into the oriented foliation graph ~Γω.

Weights on the oriented foliation graph. Using the canonical orientation, the

integrals:

wj
def.
=

∫

γj

ω (5.13)

(whose value does not depend on the choice of γj as above) provide canonical positive

weights on ~Γω [18, 57]. These weights can be used [23] to describe the set of Morse 1-forms

ω which have the property that F̄ω = F̄ for a fixed singular foliation F̄ .

Expression for the weights in terms of b and f. In our application, the vector field

n = V̂ ♯ ∈ Γ(TU) is orthogonal to the leaves of F and satisfies:

nyω = 4κe3∆||V || = nyf − ∂nb ≥ 0 (5.14)

as a consequence of (3.41). Equality with zero in the right hand side occurs only at the

points of W = Sing(ω). It follows that the orientation of the edges of the foliation graph

is in the direction of n and that we can take γj to be any integral curve ℓj of the vector

field n|Cmax
j

. Relation (5.14) gives:

wj = bj(γj(1))− bj(γj(0)) +

∫

γj

f .

When Fω is compactifiable, this relation implies that the sum of weights along all edges of

a cycle of the oriented foliation graph ~Γω equals the period of f along the corresponding

homology 1-cycle α ∈ H1(M) of M :

∑

~ej in a cycle of ~Γω

wj =

∫

α

f .

5.8 The fundamental group of the leaf space

Even though the quotient topology of the leaf space M/F̄ω can be very poor, one can use

the classifying space G of the holonomy pseudogroup of the regular foliation Fω [63] to

define the fundamental group of the leaf space through [54]:

π1
(

M/F̄ω

) def.
= π1(BG) .

Notice that BG is an Eilenberg-MacLane space of type K(π, 1) [63], (i.e. all its homotopy

groups vanish except for the fundamental group) since Fω is defined by a closed one-form

and hence the holonomy groups of its leaves are trivial. One finds [54]:

π1
(

M/F̄ω

)

= π1(M)/Lω ,
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where Lω is the smallest normal subgroup of π1(M) which contains the fundamental group

of each leaf of Fω. Notice thatM \Sing(ω) is connected (sinceM is) and that the inclusion

induces an isomorphism π1(M \Sing(ω)) ≃ π1(M), since we assume dimM ≥ 3 and hence

Singω has codimension at least 3 inM . In particular, the period map of ω can be identified

with that of ω|M\Sing(ω). Since ω vanishes along the leaves of Fω, this map factors through

the projection π1(M) → π1(M/F̄ω), inducing a map per0(ω) : π1(M/F̄ω) → R.

A minimal component Cmin
a is called weakly complete [54] if any curve γ ⊂ Cmin

a

contained in Cmin
a and for which

∫

γ
ω vanishes has its two endpoints on the same leaf of

Fω; various equivalent characterizations of weakly complete minimal components can be

found in loc. cit. Let:

• N ′
min(ω) denote the number of minimal components which are not weakly complete

• N ′′
min(ω) denote the number of minimal components which are weakly complete

• Cmin
a1

, . . . , Cmin
ak

(where 1 ≤ a1 < . . . < aN ′′
min(ω) ≤ Nmin(ω)) denote those minimal

components of the Novikov decomposition which are weakly complete

• ωj
def.
= ω|Cm

aj
denote the restriction of ω to the weakly complete minimal component

Cmin
aj

• Πj(ω)
def.
= Π(ωj) denote the period group of ωj . Then Πj(ω) is a free Abelian group

of rank rkΠj(ω) = ρ(ωj) ≥ 2 [54].

With these notations, it was shown in [54] that π1(M/F̄ω) is isomorphic with a free product

of free Abelian groups:

π1
(

M/F̄ω

)

≃ Fω ∗Π1(ω) ∗ . . . ∗ΠN ′′
min(ω)(ω) ,

where ∗ denotes the free product of groups. Furthermore [22, 54], the free group Fω

factors as:

Fω ≃ π1(Γω) ∗ Z∗K(ω) ,

where π1(Γω) ≃ Z∗c(ω) is the fundamental group of the foliation graph and K(ω) is a non-

negative integer which satisfies K(ω) ≥ N ′
min(ω) and K(ω) + c(ω) +N ′′

min(ω) ≤ b′1(M).

Here, b′1(M) denotes the first noncommutative Betti number of M [52], whose defini-

tion is recalled in appendix E (which also summarizes some further information on the

topology of F̄).

5.9 On the relation to compactifications of M-theory on 7-manifolds

One way in which one may attempt to think about our class of compactifications is via a

two-step reduction of eleven-dimensional supergravity, as follows:

1. First, reduce eleven-dimensional supergravity along a leaf of the foliation down to a

supergravity theory in four dimensions; this would of course be a gauged supergravity

theory since the restrictions of F and f to a leaf are generally non-trivial.

2. Further reduce the resulting four-dimensional theory down to three dimensions, along

the “one-dimensional space” orthogonal to the leaf.

– 38 –



J
H
E
P
0
3
(
2
0
1
5
)
1
1
6

This way of thinking, which corresponds to an attempt at generalizing the well-known,

but much simpler case of “generalized Scherk-Schwarz compactifications with a twist”

(see, for example, [64]), turns out to be rather naive, for the following reasons:

• In the general case when W is nonempty and differs from M , there is no such thing

as a “typical leaf” of the regular foliation F of U = M \ W, in the sense that the

leaves of this foliation are not all diffeomorphic with each other. As explained above,

what happens instead is that the leaves of the restriction of F to each of the maximal

or minimal components of the Novikov decomposition of M are diffeomorphic with

each other, which means that for each component of the Novikov decomposition one

generally has a distinct diffeomorphism class of leaves. As such, it is unclear which

of these seven-manifolds one is supposed to reduce on in step 1 above. Furthermore,

the extended foliation F̄ also contains singular leaves, and it is not immediately clear

(from a Physics perspective) how to correctly reduce eleven-dimensional supergrav-

ity, in the presence of fluxes, on such singular seven-manifolds. One should also note

that the leaves of the restriction of F to a minimal component of the Novikov decom-

position are non-compact, so the reduction along such leaves cannot be understood

as a Kaluza-Klein reduction in the ordinary sense.

• In general, there is no nice “one-dimensional space” transverse to the leaves. As

explained above, the best candidate for such a space is a non-commutative space

whose “commutative parts” can be described by the foliation graph, but where some

unknown non-commutative pieces have to be pasted in at the exceptional vertices. It

is of course already unclear how to correctly reduce a four-dimensional supergravity

theory on a graph, let alone on a non-commutative space.

As pointed out in [8, subsection 4.4], many of the issues mentioned above already

appear in the much simpler case when ξ is everywhere non-chiral. In that situation, the

foliation graph is either a circle (and the Novikov decomposition is reduced to a single max-

imal component, all leaves being compact and mutually diffeomorphic, being the fibers of

a fibration over the circle) or a non-commutative torus of dimension given by the pro-

jective irrationality rank of ω (in which case the Novikov decomposition is reduced to

a single minimal component, all leaves being non-compact, mutually diffeomorphic and

dense in M). Only the first of these two cases has a chance at a meaningful interpreta-

tion as a “generalized Scherk-Schwarz compactification with a twist”, where the twist is

provided by the Ehresmann connection discussed in [8, appendix E], whose parallel trans-

port generates the defining diffeomorphism φaf which presents M as a mapping torus in

that case (see [8, subsection 4.2]). A proper analysis of that case (which is the simplest

of this class of compactifications) is already considerably more subtle than might seem at

first sight, for the following reason. As shown in [8, subsection 2.6], the restriction of ξ

to a leaf L of F induces the spinor η0 of equation (3.39) (see also [8, eq. (2.21)]) which,

as shown in loc. cit., is the normalized Majorana spinor (in the seven-dimensional sense)

along the seven-manifold L which induces its G2 structure and which should be used to

perform the compactification of eleven-dimensional supergravity on L— a reduction which
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would constitute the first step outlined above. Notice, however, that what one needs in

our case is not the standard N = 1 compactification of eleven-dimensional supergravity on

a 7-manifold with G2 structure which is usually considered in the literature following [65],

since the latter is a compactification down to four-dimensional Minkowski space — while

what would be needed in our case would be a compactification down to a space which is

related to AdS3 × S1. Also recall from [8, subsection 2.6] that η0 is a Majorana (a.k.a.

real) spinor on L (in the seven-dimensional sense) with respect to a real structure which

is dependent of the precise leaf L under consideration and not only of its diffeomorphism

class. In particular, the G2 structure depends on the leaf L (it varies from leaf to leaf) in

the complicated manner described by Theorems 1 and 2 of [8] and it is not invariant under

the parallel transport of the Ehresmann connection mentioned above, so proper analysis of

the second step of the reduction is considerably more involved than what one might expect

based on analogy with previous work on Scherk-Schwarz-like constructions.

A conceptually better (and more uniform) way to think of the “relation to seven-

dimensional compactifications” (beyond the results of [8] and of this paper, which can be

viewed as already providing such a relation since they express very explicitly the geometry

ofM in terms of the seven-dimensional geometry of the leaves of the foliation) is to consider

the “partial decompactification limit” in which the leaf space is “large”. The correct way

to formulate this mathematically employs the theory of adiabatic limits of foliations (see,

for example, [66]), which, in its most general form, concerns their behavior when the leaf

space (understood, in general, as a non-commutative space) is “large” in an appropriate

spectral sense. This relates to extending the ordinary adiabatic argument (which lies

behind a proper Kaluza-Klein formulation of the idea of “two-step reduction”) to the case

of foliations. Though this subject is well-outside the scope of the present paper, we mention

that such a way of formulating the problem leads to non-trivial mathematical questions

given the fact that the adiabatic limit of foliations is poorly understood for the case of

foliations which are not Riemannian, such as those which are of interest in our case (see

Remark 3 after Theorem 2 of reference [8]). The adiabatic limit for the general situation

when one has to deal with a singular foliation F̄ does not seem to have been investigated

in the Mathematics literature.

5.10 A non-commutative description of the leaf space?

Recall from [8] that the leaf space of F admits a very explicit description as a non-

commutative torus in the everywhere non-chiral case (the case U =M , when the foliation

graph is reduced either to a circle or to a single exceptional vertex). This leads to the

speculation [54] that the topological information which is lost when constructing the ex-

ceptional vertices of the foliation graph in the general case could be encoded by some sort

of non-commutative geometry, as expected from the fact that such vertices are constructed

by collapsing at least one minimal component of the Novikov decomposition to a single

point; since the minimal components are foliated by dense leaves, the C∗-algebra of their

leaf space must be non-commutative. Unfortunately, it is non-trivial to make this expec-

tation precise, because one also has to take into account the effect of the singular leaves of

F̄ , so progress on this question would first require giving a proper definition/construction
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of the C∗-algebras of singular foliations in the sense of Haefliger, a task which, to our

knowledge, has not yet been carried out in the mathematics literature. One may hope that

some modification of the construction of [44, 45] (which applies to singular foliations in the

sense of Stefan-Sussmann) would lead to a solution of this problem for the case of Haefliger

structures, a case which is logically orthogonal to that considered in loc. cit.

6 Conclusions and further directions

We studied N = 1 compactifications of eleven-dimensional supergravity down to AdS3
in the case when the internal part ξ of the supersymmetry generator is not required to

be everywhere non-chiral, but under the assumption that ξ is not chiral everywhere. We

showed that, in such cases, the Einstein equations require that the locusW where ξ becomes

chiral must be a set with empty interior and therefore of measure zero. The regular foliation

of [8] is replaced in such cases by a singular foliation F̄ (equivalently, by a Haefliger structure

on M) which “integrates” a cosmooth singular distribution (generalized bundle) D on M .

The singular leaves of F̄ are precisely those leaves which meet the chiral locus W, thus

acquiring singularities on that locus.

We discussed the topology of such singular foliations in the generic case when ω is a

Morse one-form, showing that it is governed by the foliation graph of [16–18]. On the non-

chiral locus, we compared the foliation approach of [8] with the Spin(7)± structure approach

of [1], giving explicit formulas for translating between the two methods and showing that

they agree. It would be interesting to study what supplementary constraints — if any —

may be imposed on the topology of F̄ (and on its foliation graph) by the supersymmetry

conditions; this would require, in particular, a generalization of the work of [18, 57].

The singular foliation F̄ is defined by a closed one-form ω whose zero set coincides

with the chiral locus. Along the leaves of F̄ and outside the intersection of the latter with

W, the torsion classes are determined by the fluxes [8]. For the singular leaves in the

Morse case, this leads to a more complicated version of the problems which were studied

in [67, 68] for metrics with G2 holonomy (the case of torsion-free G2 structures).

The backgrounds discussed in this paper display a rich interplay between spin geometry,

the theory of G-structures, the theory of foliations and the topology of closed one-forms [58].

This suggests numerous problems that could be approached using the methods and results

of reference [8] and of this paper — not least of which concerns the generalization to the

case of singular foliations of the non-commutative geometric description of the leaf space.

In this regard, we note that a complete solution of this problem requires extending the

construction of the C∗ algebra of regular foliations to the case of singular foliations in

the sense of Haefliger — a generalization which would be different from (and, in fact,

“orthogonal” to) that performed in [44, 45] for the case of singular foliations in the sense

of Stefan-Sussmann. This problem is unsolved already for the case of singular foliations

defined by a Morse one-form (the difficulty being in how to deal with the singular leaves).

It would be interesting to study quantum corrections to this class of backgrounds, with a

view towards clarifying their effect on the geometry of F̄ . As mentioned in the introduction,
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the class of backgrounds discussed here appears to be connected with the proposals of [6]

and [7], connections which deserve to be explored in detail.

One of the reasons why the class of backgrounds studied in this paper may be of wider

interest is because, as pointed out in [1], the structure group ofM does not globally reduce

to a a proper subgroup of SO(8). This is the origin of the phenomena discussed in this

paper, which illustrate the limitations of the theory of classical G-structures as well as

of the theory of regular foliations. In its classical form [43], the former does not provide

a sufficiently wide conceptual framework for a fully general global description of all flux

compactifications.
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A Proof of the topological no-go theorem

Lemma. If κ = 0, then F and f must vanish and ∆ must be constant on M . Further-

more, both ξ+ and ξ− must be covariantly constant on M (and hence ξ is also covariantly

constant) and b must be constant on M .

Proof. The scalar part of the Einstein equations takes the form [2]:

e−9∆
�e9∆ + 72κ2 =

3

2
||F ||2 + 3||f ||2 .

Integrating this by parts on M when κ = 0, implies12 that F and f must vanish while

∆ must be constant on M . In this case Q = 0 and D = ∇S so the supersymmetry

conditions (2.4) reduce to the condition that ξ is covariantly constant on M . Then (2.5)

implies that each of ξ+ and ξ− are covariantly constant and hence b is constant onM while

V, Y and Z are covariantly constant since ∇S is a Clifford connection in the sense of [69].

Notice that both ξ+ and ξ− can still be non-vanishing so we can still have |b| < 1, in which

case V is also non-vanishing and we still have a global reduction of structure group to G2

on M . �

Proof of the Theorem. The argument is based on the results of [1]. Let us assume that

IntW is non-empty. Then at least one of the subsets W+ and W− has non-empty interior

and we can suppose, without loss of generality, that IntW+ 6= 0. Let U be an open non-void

subset of W+. By the definition of W+, we must have ξ = ξ+ and thus b = +1 and V = 0

12This was first noticed in [2].
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at any point of W+ and hence of U . Since the one-form L of [1] (which we denote by L+)

is given in terms of V by expression (3.31), it follows that L+ vanishes at every point of

U . The second of equations (3.16) of [1] (notice that we can use the differential equations

of [1] on the subset U of W+ since U is open) shows that the following relation holds on U :

e−12∆ ∗ d ∗
(

e12∆
L+

1 + L2
+

)

− 4κ
1− L2

+

1 + L2
+

= 0

and since L+|U = 0 this gives κ = 0. The Lemma now implies that b is constant on M

and since the set W+ where b equals +1 is non-void by assumption, it follows that b = +1

on M i.e. that we must have W+ =M , which is Case 1 in the Theorem. Had we assumed

that IntW− were non-empty, we would have concluded in the same way that W− = M ,

which is Case 2 in the theorem.

The argument above shows that either Case 1 or Case 2 of the Theorem hold or that

both W+ and W− must have empty interior. If at least one of them is a non-empty set,

then we are in Case 4 of the Theorem. If both of them are empty sets, then U coincides

with M by the definition of U ,W+ and W− and we are in Case 3. In Case 4, the fact

that W± have empty interiors and the fact that they are both closed and disjoint implies

immediately that they are both contained in the closure of U and hence so is their union

W. Since M equals U ∪W, this implies that the closure of U equals M i.e. that U is dense

in M . By the definition of U and W we have W =M \ U and, since M is the closure of U ,
this means that W is the frontier of U . �

B The case κ = 0

For completeness, we briefly discuss the case κ = 0 (which corresponds to compactifications

down to Minkowski space R1,2).

B.1 When M is compact

In this case, the lemma of appendix A implies that F and f vanish while ξ (thus also V )

are covariantly constant on M and hence b (and thus the norm of V ) are constant on M ;

furthermore, ∆ is constant on M . The operator D of (2.4) reduces to ∇S while Q reduces

to zero. Since ∇S is a Clifford connection on S while ∇ν = 0, it follows that ∇S commutes

with γ(ν). Therefore, the supersymmetry equation ∇Sξ = 0 implies ∇Sξ± = 0. When

ξ is non-chiral, this shows that the space of solutions dimK(∇S , 0) must be at least two-

dimensional provided that it is non-trivial. In fact, existence of a non-trivial and non-chiral

solution of the supersymmetry equations (2.4) is equivalent with existence of two non-trivial

chiral solutions of opposite chirality. Due to this fact, the non-chiral case corresponds to

N = 2 (rather than N = 1) supersymmetry of the effective 3-dimensional theory. Notice

that this phenomenon is specific to the Minkowski case κ = 0, since the operator D does

not commute with γ(ν) when κ is non-vanishing. We thus distinguish the cases:

1. ξ has definite chirality at some point (and hence at every point) ofM , which amounts

to |b| = 1. Then the metric g of M has holonomy contained either in Spin(7)+ (when

– 43 –



J
H
E
P
0
3
(
2
0
1
5
)
1
1
6

ξ = ξ+, i.e. b = +1 and W = W+ = M , U = W− = 0, which is Case 1 of the

topological no-go theorem of subsection 3.3) or in Spin(7)− (when ξ = ξ−, i.e. b = −1

and W = W− =M , U = W+ = 0, which is Case 2 of the topological no-go theorem),

while V vanishes identically on M . As a consequence, the distribution D = kerV

has corank zero and coincides with TM ; the foliation F becomes a codimension

zero foliation consisting of a single leaf equal to M . These cases correspond to

the classical limit of the well-known compactifications of [3]. The holonomy equals

Spin(7)± iff. M is simply-connected (which is allowed in this case). Notice that this

class of Minkowski compactifications cannot be viewed as the κ → 0 limit of the

compactifications considered in [8] (which correspond to Case 3 of the topological

no-go theorem) or in this paper (which correspond to Case 4 of the topological no-go

theorem). In particular, one cannot take the limit κ → 0 of the formulas given in

Theorems 1, 2, 3 of [8] (which only apply to Case 3 or to the regular foliation F of

the non-chiral set U of Case 4), since one encounters division by zero.

Remark. One can also consider for example the case when K(∇S , 0) ⊂ Γ(M,S+)

has dimension 2, which corresponds to the classical limit of the compactifications

considered in [70]. In this case, M has holonomy contained in SU(4) ⊂ Spin(7)+,

i.e. it is a Calabi-Yau fourfold. One can turn on fluxes by considering the leading

quantum correction to the Bianchi identity for G in such a way as to preserve N = 2

supersymmetry [70] (in which case F must be a primitive (2, 2) form) or N = 1

supersymmetry (in which case F satisfies a weaker constraint, see [71, subsection 3.1]).

2. ξ is nowhere chiral on M , which amounts to |b| < 1 and thus ||V || 6= 0. Then

D = kerV is the (corank one) kernel distribution of a non-trivial covariantly constant

one-form. The metric g of M has holonomy contained in G2, the G2 group at every

point p ∈ M being contained in the subgroup of SO(TpM, gp) ≃ SO(8) consisting

of those proper rotations which preserve the one-form Vp ∈ T ∗
pM (rotations which

form the group SO(Dp, gp|Dp) ≃ SO(7)). The holonomy group at p coincides with the

intersection of the Spin(7)+ and Spin(7)− subgroups given by the stabilizers of ξ±p .
The regular foliation F has codimension one, the restriction of the metric to each leaf

having holonomy contained in G2. As explained above, such compactifications lead

to an effective action having N = 2 supersymmetry in 3 dimensions. They can be

viewed as the limit κ→ 0 of Case 3 of the topological no-go theorem (a case which was

studied in [8]), the supersymmetry enhancement arising at the value κ = 0. In fact,

when ||V || 6= 0, one can immediately take the limit κ→ 0 in the formulas of Theorems

1,2 and 3 of loc. cit., since κ appears at most linearly in those expressions (and hence

the limit is manifest). Using the fact that b = 0 while ∆ and ||V || are constant in

the limit of interest here, one immediately checks, for example, that Theorem 1 of [8]

reduces to a tautology (since F = 0) while Theorem 2 gives H = A = 0, which is

equivalent with the fact that V is covariantly constant (∇V = 0) as well as ϑ = 0

(in the notations of loc. cit.), which is equivalent with Dnϕ = Dnψ = 0 (which is

a consequence of the fact that D is the kernel distribution of a covariantly constant
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one-form) and τ 0 = τ 1 = τ 2 = τ 3 = 0, which shows that the G2 structure has trivial

torsion classes, thus corresponding, as expected, to a metric whose restriction to the

leaves of F has G2 holonomy. Since H = A = 0, it follows by Reinhart’s criterion

that F is a Riemannian foliation (the metric g is bundle-like for F). Notice that

such N = 2 Minkowski compactifications are different from the classical limit of the

Calabi-Yau fourfold compactifications considered in [70], which instead correspond

to the case when the two-dimensional space of solutions K(∇S , 0) consists of chiral

spinors of the same chirality and hence arise as a particular case of 1. above. In the

case discussed here K(∇S , 0) ⊂ Γ(M,S) is spanned by two chiral spinors of opposite

chirality. As in [70], one could turn on fluxes in such Minkowski compactifications

(while preserving N = 2 supersymmetry) by considering the quantum correction to

the Bianchi identity of G which is induced by 5-brane anomaly cancellation, leading

to a class of “first order corrected compactifications” which, in our opinion, deserve

further study.

For reader’s convenience, we reproduce below some results of [8, Theorem 3] which are

relevant for this discussion, where we use arrows to indicate the limit κ = 0 with constant

∆ and constant b (as required by the lemma of appendix A). Solving the supersymmetry

conditions, i.e. finding at least one non-trivial solution ξ for (2.4) which is everywhere non-

chiral (and which can be taken to be everywhere of norm one) was shown in [8] to give the

following constraints:

• On the fluxes f ∈ Ω1(M) and F ∈ Ω4(M):

f = 4κV + e−3∆d(e3∆b) → 0,

F⊥ = α1 ∧ ϕ− ĥije
i ∧ ιejψ ,

F⊤ = −ια2ψ + χije
i ∧ ιejϕ ,

with:

α1 =
1

2||V ||(db)⊥ → 0 , α2 = − b

2||V ||(db)⊥ +
3||V ||
2

(d∆)⊥ → 0 , (B.1)

trg
(

χ̂
)

= κ− 1

2||V ||(db)⊤ → 0 , trg
(

ĥ
)

= 2κb− 3||V ||
2

(d∆)⊤ +
b

2||V ||(db)⊤ → 0 ,

where:

ĥij = h
(0)
ij +

1

7
trg(ĥ)gij , χij = χ

(0)
ij +

1

7
trg(χ)gij , trg(χ) = −4

3
trg

(

χ̂
)

.

In the above limit, the fluxes vanish by the no-go theorem and one finds χ = ĥ = 0.

• On the quantities H, trA and ϑ of the foliation F :

H♯ = 3(d∆)⊥ − b

||V ||2 (db)⊥ → 0 ,

trA = − 8κb

||V || + 12(d∆)⊤ − b(db)⊤
||V ||2 → 0 ,

ϑ =
b

2
(d∆)⊥ − 1 + b2

6||V ||2 (db)⊥ → 0 . (B.2)
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• On the torsion classes (notice that τ 3 is not constrained) of the leafwise G2 structure:

τ 0 =
4

7||V ||

[

2κ
(

3 + b2
)

− 3b

2
||V ||(d∆)⊤ +

1 + b2

2||V || (db)⊤
]

→ 0 ,

τ 1 = −3

2
(d∆)⊥ → 0 , τ 2 = 0 ,

τ 3 =
1

||V ||
(

χ
(0)
ij − h

(0)
ij

)

ei ∧ ιejϕ→ 0 . (B.3)

B.2 When M is non-compact

Even though our interest is specifically in the case when M is compact, it may be instruc-

tive to consider for the moment also the non-compact case (this is the only place in this

paper where we shall do so). Let us assume that M is non-compact but connected and

paracompact. In this case, the lemma of appendix A fails to hold (and hence non-vanishing

fluxes are allowed) but the first part of the proof of the topological no-go theorem (which

is independent of the lemma) still applies, showing the the condition κ 6= 0 still requires

that the closed sets W+ and W− have empty interior. When κ = 0, however, any of these

sets may acquire interior points. In that case, one has a background given by a warped

product of R1,2 with the non-compact Riemannian manifold (M, g) and we have f = db

on M . The geometry can be described as follows upon using the chirality decomposition

M = U ⊔ W+ ⊔ W− (we must of course assume that the warp factor ∆ is smooth on

M also in the Minkowski limit, in order to have a meaningful physical interpretation in

supergravity):

• The open submanifold U of M can support non-vanishing fluxes F |U and f |U and

carries a regular codimension one foliation F (the foliation which integrates the kernel

distribution of the one-form V |U ) endowed with a longitudinal G2 structure, whose

geometry is determined by the case κ = 0,13 of Theorems 2, 3 of reference [8].

This is the non-compact version of the solutions discussed at point 2 of the previous

subsection. Notice that both b and ∆ may be non-constant in the non-compact case

and hence the limit κ → 0 (which is again trivial to take) is slightly different from

that given in the previous subsection.

• Up to a conformal transformation, the restriction g|IntW+ has holonomy contained in

Spin(7)+, the type of the solution along IntW+ being, locally, the classical limit (the

limit when the effect of the tadpole term induced by 5-brane anomaly cancellation in

M-theory is neglected) of the non-compact version of the solution considered in [3];

in particular, the restriction F |W+ is self-dual while the restriction of f to W+ is

completely determined by the warp factor, as in loc. cit. These conclusions follow

either from the computations of [3] (computations which are local in nature and hence

13On the locus U , one can set κ = 0 directly in all expressions given in [8, Theorems 1, 2, 3] (in particular,

in the expressions reproduced above), since ||V || does not vanish anywhere on U and since those expressions

depend at most linearly on κ. Also notice that the one-form e3∆V is closed and that, when κ is nonzero,

it has the same kernel distribution as the one-form ω = 4κe3∆V . Since ω vanishes when κ = 0, it must of

course be replaced with e3∆V when considering the limit κ → 0 of the distribution D.
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apply on IntW+) or more directly by setting κ = 0, b = +1, V = L = 0 in the results

of appendix C, which gives F |W+ = F [27]|W+ and θ+ = −6d∆, T+ = ∗(Φ+ ∧ d∆) on

this locus (see the last remark in that appendix).

• The restriction of F |W− is anti-selfdual while g|IntW− is conformally of holonomy con-

tained in Spin(7)−, the type of the solution along IntW− being, locally, the classical

limit of the non-compact version of the solutions considered in [3], up to a change of

orientation of IntW−.

Notice that the one-form V vanishes along W+ and W− but that it does not vanish

anywhere on U . In general, the closures W± of the open submanifolds IntW± need not

themselves be manifolds, since the frontiers Fr(W±) = fr(W±) could be quite “wild”,

i.e. quite far from being immersed submanifolds of M . Globally, the geometry of M can

be described by saying that M admits14 a metric-compatible “cosmooth generalized G-

structure of type (G2, Spin(7)+, Spin(7)−), supported on (U , IntW+, IntW−)”, where the

of the Spin(7)± components are conformally parallel. As in subsection 3.8, one can pack this

information into a Haefliger structure, which amounts, geometrically, to adding “singular

leaves” to the foliation F , thus completing it to a singular foliation F̄ . Namely, F̄ will

contain supplementary leaves of codimension one which meet the frontier Fr(W) = fr(W)

(being singular there) as well as supplementary leaves of codimension zero (dimension

eight) which are given by the connected components of the open sets IntW±. The latter

are open submanifolds of M whose induced metric has Spin(7)± holonomy. When the

form ω is Morse, the sets W+ and W− are finite (and hence have empty interior) and the

second kind of supplementary leaves do not appear; in this case, one has a codimension

one Morse form foliation of the non-compact manifold M , which can again be described

using a foliation graph. The geometric description given above could be used, in principle,

to attempt a mathematical classification of all non-compact backgrounds given by warped

products AdS3 ×∆ M , but such a study lies well outside the scope of the present paper.

Remark. Note that F and f need not be “small” on the locus U in this class of non-

compact Minkowski reductions. The small flux approximation (with M non-compact)

along the locus IntW+ was studied in [1].

C Comparison with the results of [1]

Recall that the positive chirality component ξ+ of ξ is non-vanishing along the locus U+

and hence defines a Spin(7)+ structure on the open submanifold U of M . The locus U+

was studied in [1] using this Spin(7)+ structure. In this appendix, we show that the results

of [1] agree with those of [8] along the non-chiral locus U when taking into account the

relation between L and V given in subsection 3.6 and the relation between the G2 and

Spin(7)+ parameterizations of the fluxes given in subsection 4.2. Note that reference [1]

uses the notation Φ
def.
= Φ+ and L

def.
= L+. Accordingly, in this appendix we work only

14The concept of “generalized G-structure” requires some abstract mathematical development, which will

be taken up in a different publication.
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with the Spin(7)+ structure and we drop the “+” superscripts and subscripts indicating

this structure. Only the major steps of some computations (many of which were performed

using code based on the package Ricci [72] for Mathematica R©) are given below.

Equations for L (V ). Using the relation L = 1
1+b

V , equations [1, (3.16)] take the

following form when written in an arbitrary local frame of U :

d
(

e3∆V
)

= 0 , e−12∆ ∗ d ∗
(

e12∆V
)

− 8κb = 0 . (C.1)

These coincide with the equations discussed in the Remarks after Theorem 3 of [8].

Equations for fluxes in terms of L (V ). The first two and last of relations (4.6)

take the following coefficient form in the Spin(7)+ case, being equivalent with equa-

tions [1, (C.2)]:

F [1]
a1a2a3a4

=
1

42
Φa1a2a3a4F [1] ,

F [7]
a1a2a3a4

=
1

24
Φ[a1a2a3

aF [7]
a4]a

, (C.2)

F [35]
a1a2a3a4

=
1

6
Φ[a1a2a3

aF [35]
a4]a

.

Furthermore, the Spin(7)+ case of relation (4.7) has the following coefficient form, which

is equivalent with [1, (C.1)]:

Fa1a2a3a4Φ
a1a2a3

a5 = ga4a5F [1] + F [7]
a4a5

+ F [35]
a4a5

. (C.3)

Reference [1] uses the notations:

(

P 7
)pq

rs

def.
=

1

4

(

δp[rδ
q

s] −
1

2
Φrs

pq

)

, (C.4)

(

L⊗F [7]
)48

a1a2a3

= 6

(

L[a1
F [7]

a2a3]
+

1

7
Φa2a2a3

bLaF [7]
ab

)

⇐⇒
(

L⊗F [7]
)48

= 2L ∧ F [7] − 1

7
ιιLF [7]Φ ,

(

L⊗ F [27]
)48

a1a2a3

def.
= LaF [27]

aa1a2a3
i.e. L⊗ F [27] def.

= ιLF
[27] .

Using the relation L = 1
1+b

V and the identity ||V ||2 = 1− b2, one computes, for example:

||L||2= 1− b

1 + b
, 1 + ||L||2= 2

1 + b
, 1− ||L||2= 2b

1 + b
,

1− ||L||2
1 + ||L||2= b ,

L

1 + ||L||2=
1

2
V .
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Due to such identities, equations [1, (3.17)] take the form:

f = e−3∆d(e3∆b) + 4κV , (C.5)

1

12
F [1] =

||V ||
2(1 + b)

e−3∆
[

d
(

e3∆(1 + b)
)]

⊤ − κ(1 + 2b) ,

1

96
F [7]
pq = − 1

2(1 + b)
e−3∆

(

P 7
)rs

pq
Vr∂s(e

3∆(1 + b)) ,

1

24
F [35]
pq = − ||V ||

1 + b
∇(pV̂q) +

1 + b2

2(1 + b)||V || V̂(p∇q)b+
3(1− b)||V ||
2(1 + b)

V̂(p∇q)∆+ Tpq−

− 1

14(1+b)

[

3(1−b)||V ||
1 + b

(db)⊤+9(1−b)||V ||(d∆)⊤ + 8(1− b)(1 + 2b)κ

]

V̂pV̂q−

− 1

14(1 + b)

[

(1− b)||V ||
2(1+b)

(db)⊤ +
3

2
(15−2b)||V ||(d∆)⊤ −

(

1 + 15b− 2b2
)

κ

]

gpq ,

where the quantity Tab (which appears in the last equation of [1, (3.17)]) can be expressed as:

Tab
def.
= −1

4
Φ(a

cde
(

L⊗F [27]
)48

b)cd
Le =

1

4
Φ(a

cdeLfF
[27]
b)fcdLe =

1− b

2(1+b)
(ιe(aΦ)△3

[

(

ιeb)F
[27]

)

‖

]

.

(C.6)

In an orthonormal local frame with e1 = n, we have:

T11 = T1j = Tj1 = 0 , Tij =
1− b

2(1 + b)

(

ιe(iϕ
)

△⊥
2

(

ιej)F
[27]
⊤

)

= − 1− b

24(1 + b)
F [27]
ij .

The first equation in (C.5) coincides with a relation given in Theorem 3 of [8]. The second

equation in (C.5) can be written as:

F [1] = 12

[

3||V ||
2

(d∆)⊤ +
||V ||

2(1 + b)
(db)⊤ − κ(1 + 2b)

]

, (C.7)

while the third relation in (C.5) separates as follows into parts parallel and perpendicular

to n:

F [7]
⊤ = −6||V ||

[

3(d∆)⊥ +
(db)⊥
(1 + b)

]

,

F [7]
⊥ = 6||V ||

[

3ι(d∆)⊥ϕ+
1

1 + b
ι(db)⊥ϕ

]

. (C.8)

In an orthonormal frame as above, we find that the last equation in (C.5) amounts to:

F [35]
11 = 12

[

−3

2
||V ||(d∆)⊤ − κ(1− 2b) +

1 + b

2||V ||(db)⊤
]

,

F [35]
1i ei = 12

[

1 + b

2||V ||(db)⊥ − 3

2
||V ||(d∆)⊥

]

, (C.9)

1

2
F [35]
ij ei ⊙ ej =

12

7

[

3

2
||V ||(d∆)⊤ − 1 + b

2||V ||(db)⊤ + κ(1− 2b)

]

g − 12
(

h(0) − χ(0)
)

.
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Substituting the expressions for α1, α2 and ĥ, χ̂ given in Theorem 3 of [8], it is now easy

to check that relations (C.7)–(C.9) are equivalent with:

F [1] = −12tr
(

ĥ+ χ̂
)

,

F [7]
⊤ = −12(α1 + α2) ,

F [7]
⊥ = 12ι(α1+α2)ϕ ,

F [35]
11 = 12tr

(

ĥ− χ̂
)

, (C.10)

F [35]
1i ei = 12(α1 − α2) ,

1

2
F [35]
ij ei ⊙ ej = −12

(

ĥ− χ̂
)

,

which in turn are equivalent with (4.12) when F [k] are expressed in the Spin(7)+ parame-

terization using (4.8) and (4.9).

Remark. To arrive at equations (C.9), one uses the relations:

V̂(1;1) = 0 , V̂(1;j) =
1

2
Hj , V̂(i;j) = −Aij , (C.11)

which can be derived by using the local expressions given in appendix C of [8]. Notice that

the tensor 1
2V(a,b)e

a⊙eb = 1
2Va;be

a⊙eb = V̂(a;b)e
a⊗eb is the Hessian15 Hess

(

V̂
)

of V̂ , where

we remind the reader that we use conventions (1.1), which were also used in [8].

Equations for the Spin(7)+ structure in terms of V and of the fluxes. Refer-

ence [1] uses a one-form ω1 ∈ Ω1(M) and a three-form ω2 ∈ Ω3(M) which are given by [1,

eq. (3.18)]:

ω1
m=

κ

2
Lm+

3

4
∂m∆+

1

168

(

LmF [1]−LiF [7]
im

)

⇔ω1=
κ

2
L+

3

4
d∆+

1

168

(

F [1]L−ιLF [7]
)

, (C.12)

ω2
mpq=

1

192

(

L⊗F [7]
)48

mpq
+
1

4

(

L⊗F [27]
)48

mpq
⇔ω2=

1

192

(

2L∧F [7]− 6

7
ιιLF [7]Φ

)

+
1

4
ιLF

[27] .

These forms satisfy the equation (cf. [1, eq. (3.15)]):

∂[mΦpqrs] = −8Φ[mpqrω
1
s] −

4

15
εmpqrs

ijkω2
ijk ⇐⇒ dΦ = −8Φ ∧ ω1 + 8 ∗ ω2 , (C.13)

where to arrive at the coordinate-free relation we used the expression:

(

∗ω2
)

mpqrs
= − 1

5!
ǫmpqrsabc(ω

2)abc .

Defining θ′ ∈ Ω1(M) and T ′ ∈ Ω3(M) through:

ω1 def.
= − 7

48
θ′ , ω2 def.

= −1

8
T ′ , (C.14)

15We define the Hessian of an arbitrary one-form ω ∈ Ω1(M) to be the symmetric part of the tensor

H(ω)
def.
= ∇ω ∈ Γ(M,T ∗M ⊗ T ∗M) = Ω1(M) ⊗ Ω1(M). Thus H(ω)(X,Y ) = (∇Xω)(Y ) = X(ω(Y )) −

ω(∇XY ) and H(ω)ab = ωb;a = ea(ωb) − Ωc
abωc in any (generally non-holonomic) local frame ea of M ,

with the connection coefficients Ωc
ab defined through ∇eaeb = Ωc

abec. We have Hess(ω)ab = ω(a;b). When

f ∈ C∞(M,R), the tensor Hess(df) coincides with the usual Hessian of f .
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equations (C.13) take the form:

dΦ =
7

6
θ′ ∧ Φ− ∗T ′ . (C.15)

Relation (4.16) tells us that the Lee-form θ and the characteristic torsion form T of the

Spin(7)+ structure form the particular solution of this inhomogeneous equation which also

satisfies condition (4.15). It follows that (θ′, T ′) must differ from (θ, T ) through a solution

(θ0, T 0) of the homogeneous equation associated with (C.15), i.e. we must have:

θ′ = θ + θ0 , T ′ = T + T 0 with T 0 = −7

6
ιθ0Φ , (C.16)

where θ0 ∈ Ω1(M). Using (3.35), we find:

T 0
⊥ = −7

6

(

θ0⊤ϕ+ ιθ0⊥
ψ
)

, T 0
⊤ =

7

6
ιθ0⊥

ϕ (C.17)

and hence:

ω1
⊤ = − 7

48

(

θ⊤ + θ0⊤
)

, ω2
⊤ = −1

8

(

T⊥ +
7

6
ιθ0⊥

ϕ

)

ω1
⊥ = − 7

48

(

θ⊥ + θ0⊥
)

, ω2
⊥ = −1

8

[

T⊤ − 7

6

(

ιθ0⊥
ψ + θ0⊤ϕ

)

]

.

(C.18)

Using the refined Spin(7)+ parameterization given in table 3 and relations (4.12), equa-

tions (C.12) can be seen to be equivalent with:

ω1
⊤=

3

4
(d∆)⊤+

κ||V ||
2(1 + b)

− ||V ||
14(1 + b)

trg
(

ĥ+ χ̂
)

, ω2
⊤ =

||V ||
14(1 + b)

ι(α1+α2)ϕ , (C.19)

ω1
⊥=

3

4
(d∆)⊥+

||V ||
14(1+b)

(α1+α2) , ω2
⊥=

3||V ||
56(1+b)

ι(α1+α2)ψ+
||V ||

8(1+b)

(

h
(0)
ij +χ

(0)
ij

)

ei∧ιejϕ .

Combining (C.18) and (4.18), we find that equations (C.19) agree with the relations given

for the torsion classes of the G2 structure in Theorems 2 and 3 of [8] provided that:

θ0 = −1

7
θ . (C.20)

Conclusion. Combining the results of the paragraph above, we conclude that equa-

tions [1, (3.16), (3.17), (3.18)] are equivalent on the non-chiral locus with the results of

Theorems 2 and 3 of [8]. Furthermore, the results of section 4 and of this appendix provide

a complete dictionary which allows one to translate between the language of [8] and that

of [1] along the non-chiral locus.

Remark. When M is non-compact and κ = 0, setting V = L = 0 and b = +1 in the

relations above allows us to determine the nature of the solution along the locus IntW+.16

Doing so in (C.5) and (C.12) and using (C.2) gives f = 3d∆ and F [1] = F [7] = F [35] = 0

(thus F |W+ = F [27]|W+ is self-dual) and ω1 = 3
4d∆, ω2 = 0. Relations (C.16) and (C.20)

give θ′ = 6
7θ, so (C.14) implies θ = −6d∆. Relation (C.13) gives dΦ = −6Φ ∧ d∆,

hence (4.14) implies T = ∗(Φ∧d∆) on IntW+. It follows that the conformally transformed

metric e3∆g|IntW+ has holonomy contained in Spin(7)+ (the transformation rules of T and

θ under a conformal transformation can be found, for example, in [51, Proposition 4.1]).

16Some of the relations obtained extend to W+ by continuity.
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D Generalized bundles and generalized distributions

Let M be a connected and paracompact Hausdorff manifold. Recall that a generalized

subbundle F of a vector bundle E on M is simply a choice of a subspace of each fiber of

that bundle. A (local) section of F is a (local) section s of E such that s(p) ∈ Fp for

any point p lying in the domain of definition of s; such a section is called smooth when

it is smooth as a section of the bundle E. The set of smooth sections of E over any

open subset U of M forms a module over C∞(U,R) which we denote by C∞(U,F ). The

modules C∞(U,F ) need not be finitely generated; furthermore the module C∞(M,F ) of

global smooth sections of F need not be projective or finitely generated.17 We say that F

is algebraically locally finitely generated if every point of M has an open neighborhood U

such that C∞(U,F ) is finitely generated as a C∞(U,R)-module. A generalized subbundle

of E is called regular if it is an ordinary smooth subbundle of E. Some references for the

theory of generalized subbundles are [11, 12].

The rank of a generalized sub-bundle F is the map rkF : M → N which associates

to each point of M the dimension of the fiber of F at that point. The corank of F is the

function corankF
def.
= dimM − rkF :M → N. A point p ∈M is called a regular point for F

if the rank function is locally constant at p. The regular set of F is the open subset of M

consisting of all regular points, while its closed complement is the singular set of F ; this

is the set of points where the rank of the fiber of F ‘jumps’. Notice that F is regular iff

all points of M are regular for F , i.e. (since M is connected) iff the rank function of F is

constant on M .

F is called smooth if its fiber at any point p of M is generated as a vector space by

the values at p of some finite collection of smooth local sections of E (equivalently, if any

point of Fp is the value at p of a smooth local section of E). It is called cosmooth if, for

all p ∈M , the fiber Fp can be presented as the intersection of the kernels of the values at

p of the elements of a finite collection of smooth local sections of the bundle E∗ dual to

E; this amounts to the condition that F is the polar of a smooth generalized subbundle

of G of E∗, i.e. that each of its fibers Fp coincides with the subspace of Ep where all

linear functionals from Gp ⊂ E∗
p = HomR(Ep,R) vanish. It is easy to see that the rank

of a smooth generalized bundle is a lower semicontinuous function, while the rank of a

cosmooth generalized subbundle is upper semicontinuous. As a consequence, the set of

regular points of a generalized subbundle F is open and dense in M (hence the singular

set is nowhere dense) when F is either smooth or cosmooth. Also notice that F is both

smooth and cosmooth iff its rank function is constant on M i.e. iff F is regular.

It was shown in [11] that a generalized subbundle F of E is smooth iff there exists a

finite collection s1 . . . sN of smooth global sections of E such that Fp is the linear span of

s1(p), . . . , sN (p) for all p ∈ M ; furthermore, the number N of sections needed to generate

all fibers of F is bounded from above by (1+dimM)rkE. Hence any generalized subbundle

of E is pointwise globally finitely-generated in this manner.18

17When F is an ordinary subbundle of E, the module of global sections is finitely generated and projective

since we assume M to be connected, Hausdorff and paracompact.
18This, of course, does not imply that it is globally or locally algebraically finitely generated. See [11] for

a counter-example.
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A generalized subbundle of TM is called a singular (or generalized) distribution on

M while a generalized subbundle of T ∗M is called a singular (or generalized) codistribu-

tion on M . Notice that a regular generalized (co)distribution is the same as a Frobenius

(co)distribution (a subbundle of the (co)tangent bundle).

Remark. Given a smooth generalized codistribution which is algebraically locally finitely

generated, its polar need not be algebraically locally finitely generated. To see this, consider

the following:

Example. Let M = R and take the smooth generalized codistribution generated by the

one-form V = f(x)dx, where f ∈ C∞(R,R) is a smooth function which is everywhere non-

vanishing outside the interval [0, 1] and vanishing on [0, 1]. The dual D of this codistribution

has rank one on the interval [0, 1] and rank zero on its complement. For p = 0 ∈ [0, 1] and

I any open interval containing p, the space C∞(I,D) ⊂ C∞(I,R) consists of all functions

h ∈ C∞(I,R) whose open support supp(h)
def.
= {x ∈ R|h(p) 6= 0} is contained in the open

interval I+
def.
= I ∩ (0,+∞). Such functions form an ideal of C∞(I,R) which is not finitely

generated.

A generalized distribution D ⊂ TM with polar generalized codistribution Do ⊂ T ∗M
is called:

• Cartan integrable at a point p ∈M if there exists an immersed submanifold N of M ,

passing through p, such that TpN = Dp

• Cartan integrable, if it is Cartan integrable at every point of M

• Pfaff integrable, if the C∞(M,R)-module of global smooth sections C∞(M,Do) ⊂
Ω1(M) is globally generated by a finite number of exact forms (in particular, this

requires that Do is globally algebraically finitely generated). It is is easy to see

that Pfaff integrability implies that C∞(M,Do) is a differential ideal of the (graded-

commutative) differential graded ring (Ω(M), d,∧). This in turn implies (but gen-

erally is not equivalent with) Pfaff’s condition, which states that any finite set

ω1, . . . ,ωN of generators of C∞(M,Do) over C∞(M,R) has the property that dω ∧
ω1 ∧ . . . ∧ ωN = 0 for all ω ∈ C∞(M,Do).

Cartan integrability and Pfaff integrability are logically independent conditions when D is

not regular, i.e. there exist Pfaff integrable generalized distributions which are not Cartan

integrable and Cartan integrable generalized distributions which are not Pfaff integrable.

Furthermore, Pfaff’s condition is no longer equivalent with Pfaff integrability, unlike the

case when D is regular. Conditions for Cartan integrability of cosmooth generalized dis-

tributions were given in [73].

Almost all cosmooth generalized distributions arising in practice fail to be globally

Cartan integrable. Due to this fact, one usually adopts the following definition. A leaf of a

cosmooth distribution D is a maximal connected subset L ofM with the property that any

two points p, q of L can be connected by a smooth curve γ : [0, 1] →M (γ(0) = p, γ(1) = q)

such that the tangent vector of γ at each t ∈ (0, 1) lies inside the subspace Dγ(t). With this
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definition, the leaves can be singular (i.e. they need not be immersed submanifolds of M)

and Cartan integrability at a point insures existence of a leaf through that point which is

locally an immersed submanifold of dimension equal to dimDp. When D fails to be Cartan

integrable at p, the leaf through p is singular at p.

Remark. Our terminology agrees with that of [12] but differs from the notion used by

other authors. For example:

• A Stefan-Sussmann distribution (i.e. a singular distribution in the sense of [9]

and [10]) is what we call a smooth singular distribution. For such singular distri-

butions Stefan and Sussmann proved a generalization of the Frobenius integrability

theorem (see [13] and [14] for textbook treatments).

• What the authors of [44, 45] call singular distribution is what we call an algebraically

locally finitely generated smooth distribution. For such singular distributions, the

Stefan-Sussmann integrability theorem states (similarly to the Frobenius theorem)

that D is integrable iff it is locally involutive with respect to the Poisson bracket.19

• The integrability conditions for a non-regular cosmooth distribution (equivalently,

for a non-regular smooth codistribution) are much more complicated [73] than those

given by Stefan and Sussmann for smooth distributions.

The cosmooth singular distribution defined by V . Consider the codistribution

V ⊂ T ∗M on M which is generated at every point by V , i.e. Vp = RVp ⊂ TpM . This

distribution is smooth (since V is) as well as globally algebraically finitely generated by

the single smooth section V of T ∗M . Let D ⊂ TM be the polar of this codistribution.

Thus D is the generalized subbundle of TM defined by associating to a point p of M the

kernel of the one-form Vp (which coincides with the orthogonal complement in TpM of

the dual vector np = V ♯
p at that point). It follows that D is cosmooth (as the polar of a

smooth codistribution) but that it need not be algebraically locally finitely generated (see

the example above). Notice that D is smooth iff it is a regular Frobenius distribution,

which happens only when V is everywhere non-vanishing, i.e. when the Majorana spinor ξ

is everywhere non-chiral. The fiber Dp = kerVp ⊂ TpM of D at a point p ∈ M has rank

seven when Vp 6= 0 and rank eight when Vp = 0. Since D is cosmooth, its rank function

rkD = 8− rkV :M → N is upper semicontinuous; its value at p equals 7 when Vp 6= 0 and

equals 8 otherwise. Assuming that we are in Case 4 of the topological no-go theorem of

subsection 3.3, it follows that corankD equals 1 on the non-chiral locus U and vanishes on

the chiral locus W. The set of regular points of D coincides with U .

19For singular smooth distributions which are not algebraically finitely generated the integrability condi-

tion is more complicated — see [9, 10, 13, 14].
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E Some topological properties of singular foliations defined by a Morse

one-form

E.1 Some topological invariants of M

Let b′1(M) denote the first noncommutative Betti number [52] ofM , i.e. the maximum rank

of a quotient group of π1(M) which is a free group.20 Let H(M) denote the largest rank

of a subgroup of H1(M,Z) on which the cup product vanishes identically. It was shown

in [22] that b′1(M) ≤ H(M). Moreover, H(M) has the following properties which are useful

in computations [19, 74]:

1. H(M1 ×M2) = max(H(M1),H(M2)).

2. H(M1#M2) = H(M1) +H(M2) for dimMi ≥ 2, where # denotes the connected sum.

3. Let r = rk(ker∪), where ∪ is the cup product on H1(M,Z). Then:

b1(M) + b2(M)r

b2(M) + 1
≤ H(M) ≤ b1(M)b2(M) + r

b2(M) + 1
.

Since r ≤ b1(M), this gives H(M) ≤ b1(M).

4. One has H(Tn) = 1 and H(M2
g ) = g where Tn is the n-torus and M2

g an orientable

closed surface of genus g.

Combining the inequalities above gives:

b′1(M) ≤ H(M) ≤ b1(M) .

Notice that Hn−1(M,Z) is torsion free since it is isomorphic to H1(M,Z) ≃ Hom(π1(M,Z),

Z) by Poincaré duality — since M is a manifold, both groups are finitely generated and

thus free Abelian. If A ⊂ Hn−1(M,Z) is any subgroup, we let A⊥ ⊂ Htf
1 (M,Z) denote the

polar of A with respect to the intersection pairing ( , ) : Htf
1 (M,Z) × Hn−1(M,Z) → Z

(which is a perfect pairing).

E.2 Estimate for the number of splitting saddle points

Define:

D(ω)
def.
= 1 +

|Σsp
1 (ω)| − |Σ0(ω)|

2
∈ 1

2
Z ,

where the numbers appearing in the right hand side where defined in section 5. It was

shown in [27] that D(ω) ≥ 0, equality being attained iff ω is exact. When ω is not exact,

one further has D(ω) ≥ 1, i.e. D(ω) can never take the value 1
2 . All greater integer and

half-integer values can be realized for some Morse form ω belonging to any given nontrivial

cohomology class f ∈ H1(M,R) \ {0}.
20Such quotient groups are allowed to be non-Abelian.
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E.3 Estimates for c and Nmin

It was shown in [22] that:

c(ω) +Nmin(ω) ≤ b′1(M) (E.1)

and that every value of c(ω) between zero and b′1(M) is attained by some ω which is generic

and which has compactifiable foliation Fω (i.e. which has Nmin(ω) = 0). This inequality

implies the non-exact estimate c(ω) +Nmin(ω) ≤ H(M) of [28]. The latter reference also

gives the following estimate which is independent from (E.1):

c(ω) + 2Nmin(ω) ≤ b1(M) . (E.2)

Finally, the following inequality holds [27]:

c(ω) +Nmin(ω) ≤ D(ω) . (E.3)

This implies an older estimate of [74]. Notice that D(ω) can be smaller, equal to or

larger than b′1(ω) so (E.3) is independent of (E.1) unless one has more information about

the form ω.

E.4 Criteria for existence and number of homologically independent compact

leaves

Theorem [25]. The following statements are equivalent:

(a) Fω has at least one compact leaf L

(b) There exists a smooth non-constant function h ∈ C∞(M,R) (which need not be Morse!)

such that ω ∼ dh

(c) There exists a closed one-form α (which need not be Morse!) such that α ∧ ω = 0, α

has integer periods (i.e. [α] ∈ H1(M,Z)) and α is not identically zero. Moreover, L can

be chosen with [L] 6= 0 in Hn−1(M,Z) iff α can be chosen with [α] 6= 0 in H1(M,R).

Theorem [25]. The following statements are equivalent:

(a) Fω has c homologically independent compact leaves

(b) There exist c cohomologically independent (over R) closed one-forms αi with integer

periods, each of which satisfies αi ∧ ω = 0.

E.5 Generic forms

Recall that the Morse form ω is called generic if each singular leaf of Fω contains exactly

one singular point. Some special properties of such Morse forms are summarized in the

following:
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Proposition [27]. Let ω be a generic Morse one-form. Then:

1. D(ω) is an integer and satisfies D(ω) ≤ b′1(M). Furthermore, any value between 0

and b′1(M) can be realized on M by some generic Morse 1-form ω.

2. All regular (a.k.a. type I) vertices of Γω have degree at most 3 while each exceptional

(a.k.a. type II) vertex contains exactly one minimal component.

3. If each of the minimal components of ω is weakly complete, then equality holds

in (E.3).

E.6 Exact forms

Let the Morse one-form ω be exact, thus ρ(ω) = 0. In this particular case, we have

ω = dh for some globally-defined Morse function h ∈ C∞(M,R). Since M is compact

and connected, h attains its maximum and minimum on M and the image h(M) ⊂ R

is a closed interval [a1, aN ], where a1 < . . . < aN are the critical values of h. We have

Sing(ω) = ∪N
j=1Sj , where Sj

def.
= Sing(ω) ∩ h−1(aj) is the set of those critical points

of h having critical value aj . The leaves of the singular foliation F̄ω are the connected

components of the level sets h−1({x}), where x ∈ [a1, aN ]. The singular leaves are those

connected components of h−1(aj) which contain at least one point of Sj . Hence the foliation

Fω is compactifiable and its foliation graph projects onto the chain graph which has aj as

its vertices. The singular points belonging to S1 and SN are centers, while the remaining

critical points are saddle points. The geometry of such foliations is a classical subject in

Morse theory [59–61]. In this case, the form ω is generic iff h is generic in the sense of

Morse theory, i.e. iff |Sj | = 1 for all j = 1, . . . , N . In this case, M can be constructed by

successively attaching handles starting from the ball h−1([0, a1)).

E.7 Behavior under exact perturbations

Fix f ∈ H1(M) and let Ω(f)
def.
= {ω ∈ Ω(M)|dω = 0 and ω ∈ f} be endowed with the C∞

topology. Define:

• ΩM(f)
def.
= {ω ∈ Ω(f)|ω is Morse}

• ΩK(f)
def.
= {ω ∈ ΩM(f)|Fω has at least one compact leaf}

• Ωcf(f)
def.
= {ω ∈ ΩM(f)|Fω is compactifiable}

• Ωgen(f)
def.
= {ω ∈ ΩM(f)|Fω is generic}

Theorem [26]. We have:

1. ΩM(f) is open and dense in Ω(f) while Ωgen(f) is dense (but not necessarily open) in

Ω(f) (and hence also in ΩM(f)).

2. ΩK(f) and Ωcf(f) are open in Ω(f)

3. Ωcf(f) ∩ Ωgen(f) is open in Ω(f)

4. The restriction of the function c (which counts the number of homologically indepen-

dent compact leaves) to ΩK(f) is lower semicontinuous.
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Algebras, Commun. Math. Phys. 253 (2005) 385.

[40] D. Joyce, Compact manifolds with special holonomy, Oxford university press, Oxford, U.K.

(2000).

– 59 –

http://dx.doi.org/10.1070/RM1995v050n02ABEH002092
http://dx.doi.org/10.1007/BF01207728
http://dx.doi.org/10.1016/j.difgeo.2004.10.006
http://dx.doi.org/10.1556/SScMath.2009.1108
http://dx.doi.org/10.1016/j.geomphys.2010.10.010
http://dx.doi.org/10.1017/S0004972711002310
http://dx.doi.org/10.1007/s10587-013-0034-0
http://dx.doi.org/10.2478/s12175-013-0101-x
http://dx.doi.org/10.1007/s10587-009-0015-5
http://dx.doi.org/10.1216/RMJ-2013-43-5-1537
http://arxiv.org/abs/1212.6766
http://inspirehep.net/search?p=find+EPRINT+arXiv:1212.6766
http://dx.doi.org/10.1007/JHEP06(2013)054
http://arxiv.org/abs/1212.6918
http://inspirehep.net/search?p=find+J+JHEP,1306,054
http://dx.doi.org/10.1007/JHEP09(2013)156
http://arxiv.org/abs/1304.4403
http://inspirehep.net/search?p=find+J+JHEP,1309,156
http://dx.doi.org/10.1016/0370-2693(83)90797-9
http://inspirehep.net/search?p=find+J+Phys.Lett.,B121,241
http://dx.doi.org/10.1016/0370-2693(78)90894-8
http://inspirehep.net/search?p=find+J+Phys.Lett.,B76,409
http://dx.doi.org/10.1007/s002200050039
http://arxiv.org/abs/math/9511215
http://dx.doi.org/10.1007/s00220-004-1155-y


J
H
E
P
0
3
(
2
0
1
5
)
1
1
6

[41] F. Witt, Generalised G2 manifolds, Commun. Math. Phys. 265 (2006) 275 [math/0411642]

[INSPIRE].

[42] F. Witt, Special metric structures and closed forms, Ph.D. Thesis, University of Oxford,

Oxford, U.K. (2004) math/0502443 [INSPIRE].

[43] S.S. Chern, The geometry of G structures, Bull. Am. Math. Soc. 72 (1966) 167.

[44] I. Androulidakis and G. Skandalis, The holonomy groupoid of a singular foliation,

J. Reine Angew. Math. 626 (2009) 1 [math/0612370].

[45] I. Androulidakis and M. Zambon, Holonomy transformations for singular foliations,

Adv. Math. 256 (2014) 348 [arXiv:1205.6008].

[46] A. Gray, Vector cross products on manifolds, Trans. Am. Math. Soc. 141 (1969) 465

[Erratum ibid. 148 (1970) 625].

[47] M. Cabrera, Orientable Hypersurfaces of Riemannian Manifolds with Spin(7)-Structure,

Acta Math. Hung. 76 (1997) 235.

[48] M. Fernandez, A classification of Riemannian manifolds with structure group Spin(7),

Ann. Mat. Pura Appl. 143 (1986) 101.

[49] S. Karigiannis, Deformations of G2 and Spin(7) Structures on Manifolds,

Can. J. Math. 57 (2005) 1012 [math/0301218].

[50] S. Karigiannis, Flows of G2-structures, I, Q. J. Math. 60 (2009) 487 [math.DG/0702077].

[51] S. Ivanov, Connections with torsion, parallel spinors and geometry of Spin(7)-manifolds,

Math. Res. Lett. 11 (2004) 171. [math/0111216] [INSPIRE].

[52] P. Arnoux and G. Levitt, Sur l’unique ergodicité des 1-formes fermées singulieres,
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