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1 Introduction and conclusions

Five-dimensional Yang-Mills theories are naively non-renormalizable. Therefore one would

be tempted to conclude that they would not generically exist as microscopic theories. Nev-

ertheless, on the contrary to this intuition, over the recent past it has become manifest

that, at least for supersymmetric theories, five-dimensional Yang-Mills theories can be at

fixed points [1], which are indeed ubiquitous.1 Moreover, in many cases, 5d Yang-Mills

theories exhibit amusing properties such as enhanced global symmetries. This is because

in 5d there is a topologically conserved current J ∼ ⋆ (F ∧ F ) under which instanton-like

solitons are electrically charged. These can combine with perturbative modes in such a way

that global symmetries are enhanced. The enhanced symmetry can be both a flavor-like

symmetry [1] or a Lorentz-like symmetry. The latter case is believed to happen in the

maximally supersymmetric 5d Yang-Mills theory, whose instanton sector is believed to act

as the KK tower which completes the theory by uplifting it to the (2, 0) 6d SCFT [4].

Recently, progress towards the understanding of the underlying mechanism for these en-

hancements has been made in [5] (see also [6]) by studying the quantization of gaugino

zero modes — hence directly related to the supersymmetry of the configuration — in the

instanton background.

It is natural to think of the instanton-like solitons as created by some local operator

inserting the soliton at a point in spacetime and imposing certain boundary conditions on

the fields [7]. The corresponding classical configuration has been described for the case of

SU(2) gauge theories a long time ago by Yang in [8]. In general, we consider 5d Yang-Mills

theory on R
5, for which we choose spherical coordinates

ds2 = dr2 + r2 dΩ2
5 . (1.1)

1This is easily seen upon engineering the gauge theory as a pq-web in string theory. See e.g.[2, 3] for

recent accounts.
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Then, the Yang monopole [8] is a gauge configuration with non-vanishing

I =
1

8π2
Tr

∫

S4

F ∧ F . (1.2)

The simplest way to achieve this is by imposing Frµ = 0 and F = ±⋆S4 F , where ⋆S4 is the

Hodge-dual operator with respect to the S4 part of the metric. In appendix A we review

the original construction by Yang.

Since we are interested in supersymmetric Yang-Mills theories, it is natural to ask

wether this configuration preserves any supersymmetry. Very recently, it has been argued

in [7] that the Yang monopole breaks all supersymmetries. In this note however we argue

that it is possible to find other embeddings of the Yang monopole into a five-dimensional

gauge theory in such a way that supersymmetry is preserved. This is possible by twisting

the supersymmetry transformation with a non-trivial SU(2)R connection. Essentially this

can be thought of as an uplifted version of the topological twist in four dimensions. The

supersymmetry spinors are then conformal Killing spinors chiral on the S4, thus allowing

for supersymmetric Yang monopoles. It turns out that the SU(2)R bundle in question is

actually a Yang monopole in itself — yet for the SU(2)R background, not to be confused

with the dynamical gauge field. Its second Chern class is non-trivial and it might be more

appropriate to think of the theory as defined on R
5 \ {0}. Similarly, the set-up can be

thought as a conformal transformation of the gauge theory on R × S4 into R
5, where, as

we will see below, the conformal Killing vector r ∂r plays a crucial role.2

It has been often the case that the topological twist allows to perform computations

which carry over to the physical theory. It remains for the future to explore wether this

supersymmetric version can offer insight into the dynamics of five-dimensional gauge the-

ories, in particular on the phenomenon of enhanced symmetries, both of Lorentz-type or

flavor-like.

2 Supersymmetric Yang monopoles in five-dim. gauge theories

Let us consider a supersymmetric five-dimensional gauge theories on R
5. Following [9] one

can construct supersymmetric Lagrangians on arbitrary curved manifolds M by coupling

the theory to a suitable supergravity. In the so-called rigid limit the gravitational dynamics

are frozen in such a way that we are automatically left with a supersymmetric version of

the gauge theory on M . Background parameters in the supersymmetric gauge theory

correspond to the various bosonic fields in the Weyl multiplet. They are fixed by imposing

the vanishing of the gravitino and dilatino variations. Since we are concerned with a

theory on flat space, that is, M = R
5, following this approach might at first seem far too

cumbersome. Yet as it will become clear below, it will allow us to find a supersymmetric

embedding of the Yang monopole.

The five dimensional supergravity theory including an SU(2)R gauge field that comes to

mind first is maybe theN = 1 theory of [10, 11]. Riemannian manifolds admitting solutions

2Indeed, it is straightforward to find (covariantly) constant Killing spinors for the theory on R×S4 upon

turning on an SU(2)R gauge field that vanishes along R.
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to the relevant supersymmetry equations were studied by Imamura and Matsuno [12] who

found that these geometries always include a non-vanishing Killing vector field κ. The

spinors are then essentially chiral with respect to this vector; /κǫi = ǫi. As we will show

shortly however κ = r ∂r arises naturally in the context of the Yang monopole. Since r ∂r is

not Killing but only conformal Killing, we need to turn to a different supergravity theory.

With this in mind, we will couple the gauge theory to the conformal N = 2 supergravity

of [13, 14].3 For simplicity, we will consider the case of a pure gauge theory. The vector

multiplet contains the gauge field Aµ, a real scalar M and a triplet of auxiliary scalars Yij ,

both in the adjoint representation, as well as a symplectic Majorana doublet of gauginos

Ωi. Further aspects of the theory are summarized in appendix B.

Let us now turn to the question whether the Yang monopole preserves any super-

symmetry. Upon setting the gauginos as well as the scalars M and Yij to zero, the only

non-trivial supersymmetry variation is [13, 14]

δΩi = −1

4
/F ǫi . (2.1)

Since the Yang monopole configuration is such that Frµ = 0 and F = ± ⋆S4 F , one finds

that the potentially preserved supersymmetry will satisfy

Γ5 ǫ
i = ± ǫi . (2.2)

where Γ5 = Γ1 Γ2 Γ3 Γ4 is the chirality projector on the S4 in tangent space indices. It

coincides with the Dirac matrix along the fifth direction which we take to be r. As we

mentioned in the previous paragraphs, it is this observations that let us reject the N = 1

theory of [10, 11]. It follows from equation (2.2) that any potential supersymmetry spinor

should be (anti-) chiral on the S4. Moreover, we need to impose the vanishing of the

gravitino and dilatino variations of [13, 14] which leads to further constraints on the spinor.

The Weyl multiplet contains an antisymmetric tensor T which we set to zero. We are thus

left with the constraints

Dµǫ
i − i γµ η

i = 0 , (2.3)

1

4
ǫiD +

1

64
/R
i
j ǫ

j = 0 . (2.4)

The covariant derivative including the SU(2)R gauge field V and its field strength R are

defined as

Dµǫ
i = ∇µǫ

i + (Vµ)
i
j ǫ

j , R j
mni = ∂mV

j
ni − ∂nV

j
mi − V k

mi V
j

nk + V k
ni V j

mk . (2.5)

By contracting (2.3) with γµ we find that ηi is given in terms of ǫi as ηi = − i

5
/Dǫi.

Substituting this back into (2.3), we find that ǫi is determined by the conformal Killing

spinor equation

Dµǫ
i − 1

5
γµ /Dǫi = 0 . (2.6)

Hence our task will be to find solutions to (2.6) satisfying Γ5ǫ
i = ±ǫi.

3For a summary, see also appendix B in [15].
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2.1 The physical theory: no SUSY Yang monopoles

Let us first consider setting to zero all background fields in the Weyl multiplet other than

the metric. In the rigid limit this gives rise to the standard supersymmetric gauge theory

on R
5, to which we will refer as the physical theory.

Since after all our theory is on R
5, in the absence of background fields it is natu-

ral to expect solutions corresponding to covariantly constant spinors. Introducing polar

coordinates for the S4 as

dΩ2
4 = dθ21 + sin2 θ1(dθ

2
2 + sin2 θ2(dθ

2
3 + sin2 θ3 dθ

2
4)) , (2.7)

it is straightforward to see that the covariantly constant spinors are

ǫq = e
θ1

2
Γ51 e

θ2

2
Γ12 e

θ3

2
Γ23 e

θ4

2
Γ34 ǫ0q (2.8)

with ǫ0q being a constant 4-complex-component spinor.4 One can easily check that these

spinors are chiral at the north pole while antichiral at the south pole, but in no way one

can find a spinor (not even including the superconformal spinors) which is chiral/antichiral

everywhere. Hence, in the physical theory, the Yang monopole is not supersymmetric [7].

2.2 The topologically twisted theory: SUSY Yang monopoles

Since we are interested in spinors which are, say, chiral on the S4, it is natural to consider

a 5d version of the topological twist. To that end, we use the ’t Hooft matrices to identify

the SU(2)R connection with the (anti-) self-dual part of the spin connection.

(Va)
j
i =

{

− i

4
η̄I bc ωabc (σ

I) j
i a, b, c = 1, 2, 3, 4; (V5)

j
i = 0

}

(2.10)

Then, one finds that the following spinors solve the conformal Killing spinor equation

ǫ1 = c
√
r











1

0

0

0











, ǫ2 = c
√
r











0

1

0

0











, c ∈ C. (2.11)

Imposing a reality condition on the spinor will further constrain the constant c. That is,

depending on the choice os sign in (B.7), c is an element of either R or ıR. In addition,

the dilatino equation (2.4) is satisfied for D = − 3

8 r2
. Note that in solving this equation it

is crucial that Vµ is independent on r, so that R5µ = 0.

The spinors (2.11), by construction, satisfy the desired condition Γ5 ǫ
i = ǫi, and hence

provide an unbroken supersymmetry for the Yang monopole.

4One can find another class of solutions of the full conformal Killing spinor equations. Here, the spinors

are of the form

ǫs = r Γ5 e
θ1

2
Γ51 e

θ2

2
Γ12 e

θ3

2
Γ23 e

θ4

2
Γ34 ǫ

0

s , (2.9)

with ǫ0s a constant 4-complex-component spinor; these spinors correspond to superconformal

supersymmetries.
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Note that we could supersymmetrize instead ASD configurations involving negative

chirality spinors by choosing Γ5ǫ
i = −ǫi. The construction would have been analogous

only that instead of η̄I ab we would have needed ηI ab.

There are some subtleties arising from the behaviour of our solution at r = 0. Indeed,

one finds that the
√
r dependence of ǫi implies that ǫi is continuous yet not differentiable at

r = 0. Similarly, ηi has a 1/
√
r dependence and is thus, at least naively, singular. One can

think of this behaviour in terms of a conformal transformation to R×S4. The spinors (2.11)

define the conformal Killing vector r ∂r. A conformal transformation and the coordinate

change r = eτ maps R
5 into R × S4. Then, the conformal Killing vector r ∂r becomes

the actual Killing vector ∂τ . In turn, on R × S4, it is easy to check that, upon turning

on the topological twist SU(2)R gauge field, constant (and covariantly constant, hence a

priori perfectly well defined) Killing spinors, chiral on the S4, can be found. From this

perspective, the r-dependence of the spinors on R
5 is set to

√
r by the conformal mapping.

Morover, the SU(2)R bundle has a non-vanishing second Chern class. I.e., in polar

coordinates R j
i ∧ R i

j = 3 sin3 θ1 sin
2 θ2 sin θ3dθ1 ∧ dθ2 ∧ dθ3 ∧ dθ4 and for any four-sphere

surrounding the origin,
∫

S4

R j
i ∧R i

j = 8π2. (2.12)

R j
i ∧R i

j is closed and by Poincaré’s lemma exact when considered on R
5, which is clearly

in contradiction with the non-trivial Chern class. By inspection one finds R j
i to be singular

at r = 0, yet not ill-defined — intuitively one can see this in the trivial r-dependence of the

connection. The behavior is actually that of the Yang monopole — see [16] — and we find

that our SU(2)R connection is a Yang monopole in itself. As in the case of the Yang (and

Dirac) monopole, one can deal with this behavior by either admitting singular connections

or considering the theory on R
5 \ {0}, which might be regarded as quantizing the theory

in the background Yang monopole for the SU(2)R gauge field.
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A The SU(2) 5d Yang monopole

Let us review the construction of [8]. To that matter, it is more convenient to write the S4

metric in the R
5 in polar coordinates in (1.1) as an S3 fibration over a disc parametrized

by the polar angle θ ∈ [0, π] as

dΩ2
4 = dθ2 + sin2 θ dΩ2

3 . (A.1)
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By using the stereographic projection for the S3, we write the metric of flat R5 as

ds2 = dr2 + r2 dΩ2
4 dΩ2

4 = dθ2 +
4 sin2 θ

(1 + ~ξ2)2
d~ξ2 . (A.2)

We are interested on finding self-dual or anti-self-dual configurations on the S4 with

spherical symmetry. That means we need to impose F = s ⋆S4 F for s = ±1. In the

following, for definitness, we will concentrate on s = −1. Setting Ar = Aθ = 0, it is

straightforward to see that this requires

∂θ Ai = −(1 + ~ξ2)

4 sin θ
ǫijk Fjk , (A.3)

where latin indices stand for the ξi coordinates. Following [8], we construct the matrix

Bij =
−4 (1− ~ξ2) δij − 8 ξi ξj + 8 ǫijk ξk

(1 + ~ξ2)2
. (A.4)

In terms of B we can construct two vectors ~b±

b−i = − i

2
Bj

i σj , b+i =
i

2
[BT ]ji σj , (A.5)

where σj are the Pauli matrices. Note that these vectors satisfy

∂ib
±

j − ∂jb
±

i + [b±i , b
±

j ] = 0 , [b±i , b
±

j ] = ± 4

(1 + ~ξ2)
ǫijk b±k . (A.6)

We can now construct the gauge field in terms of the b± and the equation it satisfies

from (A.3):

A±

i = f±(θ) b±i , ∂θf
± = ± 2

sin θ
f± (1− f±) . (A.7)

The solutions of (A.7) are

f± =
1∓ cos θ

2
. (A.8)

Hence f± define, respectively, the monopole on the north and south patches of the S4.

By replacing the Pauli matrices by a N -dimensional representation of SU(2) we can

embed the monopole into any SU(N). It is easy to check that the instanton number (1.2)

is proportional to N (N2 − 1).

B Conventions

Our conventions are essentially those of [13]. The dilatino and gravitino variations of the

“standard Weyl multiplet” are (after imposing T = 0)

δψµ = Dµǫ
i − ıγµη

i,

δχi =
1

4
ǫiD +

1

64
γmn(Ri

j)mnǫ
j .

(B.1)

– 6 –
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We denote the Dirac matrices in tangent space as Γa = Eµ
a γµ, and reserve γµ for Dirac

matrices in spacetime indices. In flat space, we choose for the former

Γa =

{(

0 − iσa

i σ̄a 0

)

a = 1, 2, 3, 4; Γ5 = Γ1 Γ2 Γ3 Γ4

}

; (B.2)

where

σa = (~σ, i1) , σ̄a = (~σ, −i1) . (B.3)

On spinors such that Γ5 ǫ = ±ǫ and one finds that

Γ5 ǫ = ǫ  Γab = i η̄Iab σ
I ; Γ5 ǫ = −ǫ  Γab = i ηIab σ

I ; (a, b = 1, 2, 3, 4) .

(B.4)

Here, ηIab, η̄Iab are the ’t Hooft symbols

ηIab = ǫIab4 + δIaδb4 − δIbδa4, η̄Iab = ǫIab4 − δIaδb4 + δIbδa4. (B.5)

SU(2)R indices are raised and lowered using the NW-SE conventions and ǫ12 = ǫ12 = 1.

The covarint derivative appearing in (B.1) are

Dµǫ
i = ∇µǫ

i + V i
µ jǫ

j , R j
µνi = ∂µV

j
νi − ∂νV

j
µi − V k

µi V j
νk + V k

νi V j
µk . (B.6)

Regarding the Pauli matrices, note that σI = (σI) j
i . The Wick rotation of the Lorentzian

theory in [13] is rather straightforward with the only subtlety arising from the symplectic

Majorana condition. From the gravitino variation (B.1) it follows that ǫi and ηi have to

sattisfy opposite reality conditions. It seems more natural to choose the upper signs in

(ǫi)⋆ = ±C ǫj ǫji, (ηi)⋆ = ∓C ηj ǫji, (B.7)

yet in principle the opposite sign would work just as well. The charge conjugation matrix

C satisfies

C ΓaC
−1 = (Γa)

T = (Γa)
⋆ . (B.8)

When using the above basis, we pick C = Γ13.
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