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1 Introduction

The discovery of the Higgs boson at the Large hadron collider (LHC) in 2012 [1, 2] is one

of the biggest achievements of the standard model (SM). In spite of its success, the SM

does not include a candidate of the dark matter which has many evidences for existing in

our universe [3]. Hence, we need some extension of the SM to explain the dark matter as

an elementary particle.
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The inert two-Higgs doublet model [4, 5] is a simple extension of the SM with a

dark matter candidate. It was originally discussed in an analysis of electroweak symmetry

breaking in the two Higgs doublet model by Deshpande and Ma [4], and recently, it draws

attention as a model of dark matter [5]. In this model, an additional SU(2)L doublet scalar

field with Y = 1/2, which is called inert doublet, and a Z2 parity are introduced. Under

this parity, all of the SM fields are even and the inert doublet is odd. Then the lightest

neutral boson with the Z2 odd charge becomes the dark matter candidate. The Z2 odd

particles have electroweak interaction and scalar quartic interactions with the SM Higgs

boson. Thus, they are thermalized in the early universe, and the amount of the dark matter

in the present universe is generated as a thermal relic [6–8].

The Higgs sector in the inert doublet model sometimes appears in a part of beyond the

standard models, e.g., left-right Twin Higgs model [9–11], a composite Higgs model [12],

a radiative seesaw model [13–15] and models of neutrino flavor with non-Abelian discrete

symmetry [16–19]. Also, the inert doublet model is analyzed in contexts of strong first

order electroweak phase transition [20–24], Coleman-Weinberg mechanism driven by the

inert doublet [25], and inflation [26]. In spite of its simplicity, the inert doublet model has

rich phenomenology. In addition to the dark matter candidate, the model has a heavier

neutral scalar and a charged scalar boson. These Z2 odd particles can be probed directly at

the LHC Run II [27–31] and the ILC [32, 33]. The measurements of the branching fraction

of the Higgs decay e.g., diphoton signal and invisible decay will be a probe of the Z2 odd

sector [33–36]. Also, there is a possibility of the inert doublet dark matter to be probed

by indirect search [37–40]. Thus, the inert doublet model is well motivated dark matter

model in both theoretical and phenomenological points of view.

The direct detection experiments give an important constraint on the inert doublet

dark matter [5, 41, 42]. At the leading order, the inert doublet dark matter scatters with

the quarks at the tree level, and with the gluon at the one-loop level by exchanging the SM

Higgs boson. These contributions to the cross section for scattering of the dark matter on

nucleon can be calculated in the same manner as the singlet scalar dark matter model [43–

45]. It is proportional to λ2
A, where λA is the effective Higgs-dark matter coupling which

is defined in section 2. If λA is not so small, they give dominant contribution to the

cross section. However, if the dark matter mass mA is around a half of the SM Higgs

boson mass, λA should be suppressed because the SM Higgs boson s-channel exchange

diagrams significantly contribute to the annihilation cross section which determines the

relic amount of the dark matter. In this case, contributions which does not depends on

λA become important for the spin-independent cross section. For example, as shown in

ref. [46], one-loop electroweak correction for the scattering with the light quarks gives an

important correction.

In this paper, we revisit the radiative correction on the spin-independent cross section

in the inert two-Higgs doublet model for the dark matter mass to be around a half of

the Higgs boson mass. In particular, ref. [46] does not take into account for the effect

of various scalar quartic couplings. We take into account for the non-zero values of the

inert doublet couplings, which are equivalent to the mass difference between the dark

matter and other Z2 odd particles. They cannot be neglected in a viable parameter region
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in the light of the LEP II collider constraint [47, 48]. In addition to them, there is an

interesting coupling, namely the self-coupling of the Z2 odd particles, λ2. This coupling is

irrelevant for the phenomenology at the tree level, but we find it also plays the significant

role here. Furthermore, we also evaluate contributions from twist-2 quark operators and

two-loop diagrams of dark matter-gluon scattering. These contributions give the same

order corrections as the scattering with quark at the one-loop level.

This paper is organized as follows. We briefly review the inert two-Higgs doublet model

in section 2. In section 3, we review the calculation of the spin-independent cross section

at the tree level, and introduce our strategy to incorporate the loop corrections to it. In

section 4, we show our result. We conclude in section 5. The details of the loop calculations

are in the appendices.

2 Model

In this section, we briefly review the inert doublet model. In addition to the SM Higgs

field H, we introduced a new SU(2)L doublet scalar field Φ with Y = 1/2. We impose Z2

parity, under which the scalar fields behave as,

H → H, Φ → −Φ. (2.1)

Other quark and lepton fields are also invariant under the Z2 parity as the SM Higgs field.

Hence, Φ cannot have Yukawa interactions with the SM fermions. The generic potential of

H and Φ under the Z2 parity is,

−V (H,Φ) =−m2
1H

†H −m2
2Φ

†Φ− λ1(H
†H)2 − λ2(Φ

†Φ)2

− λ3(Φ
†Φ)(H†H)− λ4(Φ

†H)(H†Φ)−
(

λ5

2
(Φ†H)2 + h.c.

)

. (2.2)

We assume that Φ does not get any vacuum expectation value (VEV), then, the Z2 parity

which we have imposed is unbroken in the vacuum, and m2
1 is related to the Higgs VEV

and the coupling λ1 as,

m2
1 = −2λ1v

2, (2.3)

where v is the Higgs VEV, v2 = (
√
2GF )

−1 ≃ (246 GeV)2. GF is the Fermi constant.

Compared to the SM, we have additional five free parameters, m2
2, λ2, λ3, λ4 and λ5. For

the stability of this potential, the following relations are required [4]:

λ1 > 0, λ2 > 0, λ3 > −2
√

λ1λ2, λ3 + λ4 − |λ5| > −2
√

λ1λ2. (2.4)

We can always take λ5 as a real positive by a redefinition of the phase of Φ field. For

example, when arg λ5 = θ 6= 0, we redefine Φ as eiθ/2Φ. Therefore, the inert doublet Higgs

does not contribute to CP violation. Hereafter we take a basis in which λ5 is a real positive.

In this basis, we parametrize the component fields of H and Φ as follows,

H =

(

−iπ+
W

v+h+iπZ√
2

)

, Φ =

(

−iH+

S+iA√
2

)

, (2.5)
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where each component fields correspond to mass eigenstates. We can find mass eigenvalues

of each particles and interaction terms. The mass eigenvalues are,

m2
h = 2v2λ1, (2.6)

m2
H± = m2

2 +
1

2
λ3v

2, (2.7)

m2
S = m2

2 +
1

2
(λ3 + λ4 + λ5)v

2, (2.8)

m2
A = m2

2 +
1

2
(λ3 + λ4 − λ5)v

2. (2.9)

As we mentioned in the above, we take λ5 > 0 in this paper, hence A is the lightest neutral

Z2 odd particle, and it is the dark matter candidate.1

The three-point interaction terms for the Higgs boson and the Z2 odd particles are,

L ∋ − 1

2
(λ3 + λ4 − λ5)vhA

2 − λ3vhH
+H− − 1

2
(λ3 + λ4 + λ5)vhS

2. (2.10)

The Higgs coupling to the dark matter is important to study dark matter phenomenology,

and it is proportional to λ3 + λ4 − λ5. So we denote it as

λA ≡ λ3 + λ4 − λ5. (2.11)

We also introduce other short-handed notations,

∆mH± ≡ mH± −mA, (2.12)

∆mS ≡ mS −mA. (2.13)

We treat (mA, ∆mH± , ∆mS , λA) as input parameters and determined (m2
2, λ3, λ4, λ5)

from these input parameters. Note that λ2 is not related with these input parameters, and

irrelevant for the analysis at tree level. However, λ2 plays an important role at the loop

level as we will see later. The loop correction to the dark matter mass is small for the light

dark matter mass regime [51], so we keep using the above tree level relations among the

mass and couplings in this paper.

In the following of this paper, we assume almost all of the energy density of the dark

matter is comprised of the inert doublet dark matter which is generated as a thermal relic.

The amount of thermal relic is controlled by the annihilation cross section of the dark

matter [6–8]. There are some comprehensive studies on viable parameter regions [42, 49–

53]. Because of its SU(2)L charge, AA → WW (∗) channel gives a significant contribution

to the annihilation cross section for the case of mA & mW [54], and it tends to be too large

to obtain the correct abundance ΩDMh2 = 0.1196± 0.0031 [55]. It is known that there are

two parameter regions to obtain the correct relic abundance [52, 53]. One region is the light

mass region with mA . 72 GeV, in which AA → WW ∗ becomes less significant because

it is well below energy threshold of two body WW mode. The other region is the heavy

1Some references assume S is the lightest Z2 odd particle. However, this is just a difference of the basis

of Φ. For example, if we define Φ′ ≡ iΦ, we can see S
′ = −A and A

′ = S. Hence, there is no physical

difference.

– 4 –



J
H
E
P
0
3
(
2
0
1
5
)
1
0
9

mass region with mA & 600 GeV, in which the annihilation cross section is suppressed by

its mass.2

Since the inert doublet dark matter couples with the SM Higgs field via the coupling

λA, the dark matter can scatter with nucleus and the direct detection experiment gives

an important constraint on the coupling λA [5, 41, 42]. Especially, this constraint gives a

large impact on the light mass region. This is because the amount of the relic abundance

is also controlled by the same coupling. As a result, the region with mA . 53 GeV is

already excluded by the LUX experiment, and viable region in the light mass range is

53 GeV . mA . 72 GeV [52, 53]. In this viable range, although the coupling λA is small,

the annihilation cross section is enhanced because of the propagator of the SM Higgs boson

in s-channel. However, the scattering of a nucleon and a dark matter does not hit the SM

Higgs pole, and thus the spin-independent cross section is just suppressed by the coupling

λA. Therefore the contributions which is independent of λA, i.e., the radiative corrections

on the spin-independent cross section becomes important in this mass range.

3 Spin-independent cross section

In this section, we formulate how to include radiative corrections to the spin-independent

cross section. To calculate the cross section of elastic scattering of dark matter and nucleon,

first, we construct the effective interaction of the dark matter and quark/gluon. The

relevant terms for our calculation are written as,

Leff. =
1

2

∑

q=u,d,s

ΓqA2(mq q̄q)−
1

2

αs

4π
ΓGA2Ga

µνG
aµν

+
1

2m2
A

∑

q=u,d,s,c,b

[

(∂µA)(∂νA)Γq
t2Oq

µν −A(∂µ∂νA)Γ′q
t2Oq

µν

]

, (3.1)

where Oq
µν is the quark twist-2 operator which is defined as,

Oq
µν ≡ i

2
q̄

(

∂µγν + ∂νγµ − 1

2
gµν/∂

)

q. (3.2)

In the effective Lagrangian given in eq. (3.1), we neglect higher twist gluon operators

because their contributions are suppressed by αs compared to the twist-0 gluon opera-

tor [57]. The coefficients Γ are determined by matching with UV Lagrangian, which will

be explained later. To calculate the scattering amplitude of nucleon, we also need matrix

elements of quark/gluon operators, which are given as,

〈N |mq q̄q|N〉 = mNfq, (3.3)

−9αs

8π
〈N |Ga

µνG
aµν |N〉 = mNfg, (3.4)

〈N |Oq
µν |N〉 = 1

mN

(

pµpν −
1

4
m2

Ngµν

)

(q(2) + q̄(2)). (3.5)

2Ref. [56] pointed out another parameter region in which some of diagrams of AA → WW cancel out.

However, this parameter region is severely constrained by the LUX experiment. See, ref. [52].
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fu 0.0110

fd 0.0273

fs 0.0447

u(2) 0.11 ū(2) 0.036

d(2) 0.22 d̄(2) 0.034

s(2) 0.026 s̄(2) 0.026

c(2) 0.019 c̄(2) 0.019

b(2) 0.012 b̄(2) 0.012

Table 1. Matrix elements for neutron. Left panel shows the matrix elements for quark twist-0

operators, which are taken from the default values of micrOMEGAs [62]. Right panel shows the

second moments for quark distribution function, which are evaluated at the scale of µ = mZ by

using the CTEQ parton distribution functions [60].

fg is related to fq as,

fg = 1−
∑

q=u,d,s

fq. (3.6)

This relation is derived by using the relation obtained from the trace anomaly [58],

mN = 〈N |Tµ
µ |N〉 =− 9αs

8π
〈N |Ga

µνG
aµν |N〉+

∑

q=u,d,s

〈N |mq q̄q|N〉. (3.7)

From this discussion, we can see 〈N |mq q̄q|N〉 and (αs/4π)〈N |Ga
µνG

aµν |N〉 are same order.

Thus, the calculation at the n-loop order requires the (n + 1)-loop order calculation for

diagrams with Ga
µνG

aµν . For q(2) and q̄(2), we can see that they are the second moments

of the quark and anti-quark parton distribution functions by using a discussion of operator

product expansion as,3

q(2) + q̄(2) =

∫ 1

0
dx(q(x) + q̄(x)). (3.8)

We use the CTEQ parton distribution functions [60] to evaluate them, and use the same

value used in [61].

We have checked that the spin-independent cross section of a dark matter and a proton

is the almost same as of the a dark matter and a neutron. Their difference is smaller than

a few percent in almost all of the parameter region. In the following of this paper, we

calculate the scattering cross section of a dark matter and a neutron. The matrix elements

which are used are summarized in table 1. By using the above matrix elements and the

coefficients Γ’s in the effective interaction given in eq. (3.1), the scattering amplitude of

the nucleon and the dark matter is given as,

iM = imN

[

∑

q

Γqfq +
2

9
ΓGfg +

3

4

∑

q

(Γq
t2 + Γ′q

t2)(q(2) + q̄(2))

]

, (3.9)

σSI =
µ2

4πm2
A

|M|2, (3.10)

where µ is the reduced mass, which is defined as µ ≡ mNmA/(mN + mA). Hence, what

we have to calculate is the effective coupling Γ’s.

3For example, see section 18.5 in Peskin-Schroeder’s textbook [59].
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h

q q

AA

(a)

Q

h

AA

(b)

Figure 1. The diagrams which contribute to the spin-independent cross section at the leading

order.

3.1 At the leading order

We start to give a brief review on the calculation at the leading order. We need to calculate

the elastic scattering cross section for the dark matter and nucleon system, σ(DM N →
DM N), where N stands for the nucleon. As described before, we construct the effective

Lagrangian with the gluon and the light quarks q = u, d, s by integrating out the heavy

quarks Q = c, b, t and the SM Higgs boson. We should take into account the one-loop

diagrams for the scattering with gluon, because their contributions are same order as the

tree-level scattering with the light quarks. The dark matter scatters with the SM quarks

at the tree level and the gluon at the one-loop level as shown in figure 1(a) and 1(b),

respectively. Their amplitudes are proportional to the effective Higgs-dark matter coupling

λA. From these processes, the following relevant operators for the spin-independent cross

section are generated,

A2q̄q, A2Ga
µνG

aµν . (3.11)

The coefficients of the effective Lagrangian given at the leading order is determined as,

Γq = ΓG =
λA

m2
h

, Γq
t2 = Γ′q

t2 = 0. (3.12)

Using these coefficients and eq. (3.10), we can calculate the amplitude of the process and

the spin-independent cross section as,

σSI =
1

4π

λ2
Aµ

2m2
Nf2

N

m2
Am

4
h

, (3.13)

where,

fN ≡ 2

9
+

7

9

∑

q

fq. (3.14)

3.2 At the next leading order

We move to calculate the loop corrections to the spin-independent cross section. We need

to consider the loop corrections to the four relevant operators for the spin-independent

cross section,

A2q̄q, A2Ga
µνG

aµν , (∂µA)(∂νA)Oq
µν , A(∂µ∂νA)Oq

µν . (3.15)

– 7 –
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h

q q

AA

(a)

W, Z W, Z

q q

AA

(b)

W, Z W, Z

H±, S

q q

A A

(c)

Q

h

AA

(d)

W,Z W,Z

H±, S

A A

(e)

W,Z W,Z

AA

(f)

Figure 2. The diagrams we calculate. The shaded region is one-loop correction.

There are some remarks on this calculation. First, trace anomaly relation eq. (3.7) is

suffered from QCD correction at the next-leading order. However, we consider λA is not

so large, and assume corrections of the order of λAαs/4π can be neglected. Also, for the

contribution which is independent of λA, we only take into account the leading order of

αs. Thus, for the scattering with the gluon, we can still use eq. (3.7) even in the loop level

calculation. Second, we evaluate the effect of twist-2 operator Oq
µν at the scale µ = mZ .

Thus, we take into account q = u, d, s, c and b and evaluate the matrix element of Oq
µν by

using the parton distribution functions at µ = mZ .

The diagrams we need to calculate are shown in figure 2. The diagrams with gluons

are two-loop diagrams but contribute to the spin-independent cross section as the one-loop

order correction as we mentioned in section 3.1. There are some diagrams which are the

same order but not shown in figure 2. They are proportional to the Higgs coupling to the

dark matter, λA. We are interested in the case that this coupling is very small. Thus the

diagrams with this coupling give much smaller contributions than the diagrams shown in

figure 2, and do not need to be calculated. Here we parametrized the loop corrections to the

λA as δΓh(q
2
h), and denote the correction from the box and triangle diagrams as Γq

Box. Here

q2h is the momentum squared of the Higgs boson. What we need is the scattering amplitude

in the non-relativistic limit. In the limit of zero momentum transfer, the amplitudes of the

diagrams given in figure 2 are written as,

Figure 2(a) =
iδΓh(0)

m2
h

mqūu, (3.16)

Figure 2(b) + Figure 2(c) = iΓq
Boxmqūu+

i

m2
A

(Γq
t2 + Γ′q

t2)ū

(

(pq)/p− 1

4
p2/q

)

u, (3.17)

Figure 2(d) =
iδΓh(0)

m2
h

× 2

9

(

−9αs

8π
Ga

µνG
aµν

)

, (3.18)

Figure 2(e) + Figure 2(f) = iΓG
Box ×

2

9

(

−9αs

8π
Ga

µνG
aµν

)

. (3.19)
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In eq. (3.17), pµ and qµ is momentum of the dark matter and quark, respectively. We

have used equation of motion of quark, /qu = mqu. Γq
t2 + Γ′q

t2 can be read from the above

amplitudes, and Γq and ΓG is determined as,

Γq =
δΓh(0)

m2
h

+ Γq
Box, ΓG =

δΓh(0)

m2
h

+ Γg
Box. (3.20)

Here we treat the gluon field as the background field and neglect its higher twist operators.

For the detail of the calculation of Γ’s, see the appendices.

We need to discuss how to calculate the value of λA and renormalization condition.

In the tree level calculation, we set this coupling to reproduce the current relic abundance

of the dark matter in our universe. Now we need to take into account the one-loop effect.

Since our focus is mA ≃ mh/2 regime, the dominant contribution for the relic abundance

calculation is coming from the diagram shown in figure 3 because this diagram picks up the

Higgs resonance. Hence it is only the vertex correction that we should take into account,

and we can ignore other one-loop corrections, such as box diagrams, in the relic abundance

calculation. Therefore we can set λA by the following relation,

∣

∣λA + δΓh(m
2
h) + δλA

∣

∣

2
= |λrelic|2 , (3.21)

where δλA
is the counter-term. λrelic is the effective Higgs boson coupling to the dark

matter, and is determined as to reproduce the correct relic abundance. Since the annihila-

tion cross section determine the relic abundance, the square of the couplings appear in the

relation above. Thus, we have two solution for λA,

λA = ±|λrelic| − δΓh(m
2
h)− δλA

. (3.22)

This is crucial in σSI calculation at the loop level because there is interference between

the tree and the loop diagrams as we can see in eq. (3.10). Depending on the sign in

eq. (3.22), the interference is destructive or constructive, and we find two solutions for σSI.

This point was overlooked in ref. [46]. Now the value of λA is set by eq. (3.22). It is useful

to renormalize λA to make that δΓh(m
2
h) = −δλA

is satisfied. By using this condition, we

can take λA as ±|λrelic|.
We would like to mention on the stability condition here. Since λA = ±|λrelic|, there

are two parameter sets for (λ3, λ4, λ5) for each λA. These parameter sets have to satisfy

the stability condition given in eq. (2.4). For 53GeV < mDM < 71GeV, 100GeV < mS <

250GeV, and 100GeV < mH± < 250GeV, we find the first three conditions in eq. (2.4)

are always satisfied, and the last one is satisfied if λ2 & 0.001. This constraint on λ2 is

very weak and almost harmless.

It is useful to define “effective coupling” λeff.
A ≡ λA+δλ which is relevant for σSI, where

δλ is defined as,

δλ ≡ δΓh(0) + δλA
+

m2
h

fN

(

∑

q

Γq
Boxfq

)

+
2

9

m2
h

fN
ΓG
Boxfg +

3

4

m2
h

fN

∑

q

(Γq
t2 +Γ′q

t2)(q(2) + q̄(2)).

(3.23)
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h

DM

DM

b

b

Figure 3. The diagram giving the dominant contribution in the relic abundance calculation for

mDM ≃ mh/2. The shaded region contains tree and loop corrections. Other diagrams, such as box

diagrams, give a small correction to this diagrams for mDM ≃ mh/2.

Note that we determined δλA
= −δΓh(m

2
h) in the previous paragraph. By using λeff.

A ≡
λA + δλ, the spin-independent cross section at the next-leading order is written in the

similar way as the tree level formula eq. (3.13),

σSI =
1

4π

(λeff.
A )2µ2m2

Nf2
N

m2
Am

4
h

=
1

4π

(±|λrelic|+ δλ)2µ2m2
Nf2

N

m2
Am

4
h

. (3.24)

In the next section, we show our numerical results by using the relation we find in this

section. The analytic expressions and the details of the calculation are in the appendix.

When mDM > mh/2, it is kinematically forbidden to hit the pole of the Higgs prop-

agator, and the enhancement of the cross section due to the Higgs resonance does not

happen. The dominant contribution to the dark matter annihilation cross section does not

come from
√
s = m2

h but from
√
s ≃ 4m2

DM > m2
h for mDM > mh/2. Therefore we replace

δΓh(m
2
h) in the above equations into δΓh(4m

2
DM) for mDM > mh/2.

4 Results

We start by showing the tree level result on λA to find the mass region in which the loop

correction becomes significant. In figure 4, we show the absolute value of the Higgs boson

coupling to the dark matter, λA at the tree level as a function of the dark matter mass.

This coupling is determined by requiring to reproduce the current relic abundance of the

dark matter in our universe, and is the same as |λrelic| defined in eq. (3.21). It is calculated

by using micrOMEGAs [62]. Since we are interested in the small coupling regime, we focus

on 53GeV < mDM < 64GeV. In this plot, we take ∆mH± = ∆mS = 50GeV, but these

parameter dependence is very week as long as the mass difference is large enough to ignore

the co-annihilation process, namely ∆mS,H± & 20GeV.

We move to discuss on the effect of the loop correction. We show the value of δλ

for ∆mH± = ∆mS = 50GeV in figure 5. The three lines correspond to the different λ2

choices. We find δλ is the order of 10−3. Thus, the radiative correction becomes important

for |λrelic| . O(10−3), namely 55 GeV . mDM . 63 GeV, where the tree level coupling is

comparable or even smaller than the one-loop level value as we can see from figure 4.

Now δλ depends on the four parameters, λ2, mDM, ∆mH± , ∆mS . We show these

parameter dependence of δλ in figure 6. Here we take mH± = mS . This parameter choice

enhances the custodial symmetry in Z2 odd sector and suppress the contributions to the T

– 10 –
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Figure 4. The absolute value of the effective couplings as a function of the dark matter mass for

mH± = mS = mDM + 50GeV. This coupling is determined so as to reproduce the correct relic

abundance, and is the same as the λA determined at the tree level analysis.

50 55 60 65 70

-0.0020

-0.0015

-0.0010

-0.0005

mDM@GeVD

∆
Λ

Figure 5. The value of δλ defined in eq. (3.23). The red, blue, and black lines are for λ2 = 0, 0.5,

and 1.0, respectively. Here we fixed mH± −mDM = mS −mDM = 50GeV.

parameter from Z2 odd sector. We find that δλ weakly depends on mDM, and is sensitive

to the value of ∆mS,H± and λ2. The dependence on ∆mS,H± is contrast to the tree level

analysis where |λrelic| is almost independent from ∆mS,H± as long as ∆mS,H± & 20GeV.

Another feature is the larger λ2 makes δλ to be zero. This means the terms proportional

to λ2 cancel the other loop contributions.

We show the spin-independent cross section both at the tree and loop levels as a

function of the dark matter mass in figure 7, with the current bound [63] and future

prospects [64–66]. The value of λ2 is different in each panels. We take ∆mH± = ∆mS =

50GeV as a benchmark. Since the sign of the tree level coupling, λA, is unknown, there

are two possibilities for the result at the loop level. The feature is highly depend on the

sign of λA, and we see that the spin-independent cross section at the loop level is both

larger and smaller than the one at the tree level value. For large λ2 region, the sign of the

loop correction to the effective coupling is flipped as we can see from the upper-left and

lower-right panels. In this benchmark, the loop corrections vanish when λ2 ≃ 1.45 because

the loop corrections depending on λ2 cancel the other loop corrections. From the figure,

– 11 –
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Figure 6. The value of δλ as a function of λ2 and mass difference between the dark matter and

other Z2 odd particles. Here we take mH± = mS . The dark matter mass of each panels are

mDM = 55GeV (left), 60GeV (middle), and 65GeV (right).

we can see the importance of the loop corrections in this dark matter mass region. For

λ2 = 0.3 case, for example, we have a chance to detect 62GeV dark matter in the future,

although it is impossible according to the tree level analysis. On the other hand, it might

be impossible for ∼58GeV dark matter to be detected, although it is possible according to

the tree level analysis. Thus the detectable dark matter mass range is modified due to the

loop correction, and it is also depend on the model parameters, especially the dark matter

self-interacting coupling λ2. Since we do not know the value of λ2, we can not give a strict

prediction on the spin-independent cross section in this dark matter mass region. We varied

the value of λ2 for 0 < λ2 < 1.45, where the perturbative calculation works well, and make

a plot in figure 8. The yellow region is the model prediction for ∆mS = ∆mH± = 50GeV.

So far we have chosen ∆mS = ∆mH± =50GeV. However, the choice of these mass

difference also play the significant role for σSI as we can see from figure 6. In this paragraph,

we vary these parameter keeping the custodial symmetric limit, ∆mS = ∆mH± . We make

plots the σSI in (mDM, λ2)-plain in figure 9, and in (mDM,mH±)-plain in figure 10. The

red region is basically beyond the discovery limit caused by atmospheric and astrophysical

neutrinos, and we can see that the dark matter mass range in which the dark matter is

possible to be detected in the future direct detection experiments is highly depending on

the model parameter.

Finally, we give an approximate formula for δλ which is defined in eq. (3.23). In the

case of m±
H = mS ,

δλ = −0.00409mDM

(

0.0000144− 7.77× 10−8mH± − 0.00334
1

mH±

)

+ λ2

(

0.00183− 7.87× 10−10m2
H± +m2

DM

(

−4.13× 10−8 − 0.00113

m2
H±

))

. (4.1)

By using the above expression and eq. (3.24), an approximate value of the cross section can

be obtained. We have checked its error is less than 2% in the range of 50 < mDM < 62.5 GeV

and 100 < mH± = mS < 250 GeV.
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Figure 7. The spin-independent cross section at tree level (black-solid line), and loop level (red-

solid and blue-solid lines). Since the sign of the tree level coupling, λrelic, is unknown, there are

two possibility for the result at loop level. If the couplings at tree and loop levels are constructive

(destructive), the effective coupling is blue (red) line. Here λ2 = 0 (upper-left), λ2 = 0.3 (upper-

middle), λ2 = 0.5 (upper-right), λ2 = 1.0 (lower-left), λ2 = 2.0 (lower-middle), and λ2 = 3.0

(lower-right). The current bound and future prospects are also shown. The blue-dashed line is the

current LUX bound. The green-dashed, red-dashed lines are the future prospect by XENON1T

and LZ, respectively, and the black-dashed line is the discovery limit caused by atmospheric and

astrophysical neutrinos.

5 Conclusion and discussion

In this paper, we discussed the spin-independent cross section σSI of nucleon and the dark

matter in the inert doublet model. We revisited the radiative corrections to the spin-

independent cross section with taking into account the effect of the non-zero values of the

inert doublet couplings, namely the mass differences among Z2 odd particles and the dark

matter self coupling λ2. The effect of these couplings were ignored in the previous work [46],

but we find they actually control the main contribution in the radiative corrections.

The sign of the tree level coupling is important for precise prediction of the spin-

independent cross section. Depending on its sign, the spin-independent cross section at the

one-loop level becomes bigger or smaller than the tree level prediction. When it becomes

bigger, the direct detect experiments have chance to detect the dark matter even if its mass

is a half of the Higgs mass. This feature can not found at the tree level analysis.

The unknown model parameters are the origin of the uncertainty for the model pre-

diction to the spin-independent cross section. Once the LHC experiment find the extra

scalars, S and H±, and determined their masses, the uncertainty will be reduced.
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Figure 8. The spin-independent cross section at tree level (black-solid line), and loop level (yellow

shaded region). Here we vary λ2 for 0 < λ2 < 1.45. The blue-dashed line is the current LUX bound.

The green-dashed, red-dashed lines are the future prospect by XENON1T and LZ, respectively, and

the black-dashed line is the discovery limit caused by atmospheric and astrophysical neutrinos. Here

we take ∆mH± = 50GeV, ∆mS = 50GeV.
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A Shorthand notations

In the appendices, we give explicit formulae for the loop corrections to the spin-independent

cross section. Electroweak gauge couplings are defined as,

gW =
e

s
, gZ =

e

sc
, gfL = gZ(T3,f − s2Qf ), gfR = −gZs

2Qf , (A.1)

where f runs through u, d, s, c, b and t.

B One-loop box type diagrams

We calculate one-loop box diagrams which contribute to the qA → qA process. We consider

only the light quarks. We expand the diagrams by the masses of the light quarks and keep

only its leading order. This calculation is for the spin-independent cross section, and we

can assume the momentum transfer is small, we take it zero. The sum of the diagrams we

calculate in this section give the contributions to Γq
Box, Γ

q
t2, and Γ′q

t2 through,

iΓq
Boxmq +

i

m2
A

(Γq
t2 + Γ′q

t2)

(

pµqµ/p−
1

4
p2q/

)

. (B.1)

The definitions of Γq
Box, Γ

q
t2, and Γ′q

t2 are given in eq. (3.1).
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Figure 9. The σSI in (mDM, λ2)-plain. The value of σSI is σSI < 10−49 cm2, 10−49 cm2 < σSI <

10−48 cm2, 10−48 cm2 < σSI < 10−47 cm2, 10−47 cm2 < σSI < 10−46 cm2, and 10−46 cm2 < σSI

in the red, orange, yellow, green, and cyan regions, respectively. In the left (right) panel, we take

∆mS = ∆mH± = 100 (200)GeV. In the upper (lower) panel, the sign of the |λrelic| is positive

(negative), see eq. (3.22).

B.1 Z boson contribution

We calculate the contributions from Z boson and its would-be NG boson depicted by

the diagrams in figure 11. In the followings, “crossed” means diagrams in which the

vertices which A attached are flipped. The box-diagrams without would-be NG bosons

(figure 11(b)) contribute to twist-2 operator.

Figure 11(a)=
i

(4π)2
g2Z

mf

m2
Z

(

2gfLgfR−
1

4
(g2fL+g2fR)

)

, (B.2)

Figure 11(b)+(crossed)=
i

(4π)2
1

2
g2Zmf

×
(

(gfL−gfR)
2

2
fB1+m2

A(g
2
fL

+g2fR) (fB2−3fB3)+4m2
AgfLgfRfB2

)

+
i

(4π)2
g2Z

(

pµqµ/p−
1

4
p2q/

)

(g2fL+g2fR)2(fB2−fB3) (B.3)

Figure 11(c), 11(d)+(crossed)=− i

(4π)2
1

2
g2Z

m2
S−m2

A

v2
mf

(

fB1+2m2
AfB4

)

, (B.4)
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Figure 10. The σSI in (mDM,mH±)-plain. We take mS = mH± . The value of σSI is σSI <

10−49 cm2, 10−49 cm2 < σSI < 10−48 cm2, 10−48 cm2 < σSI < 10−47 cm2, 10−47 cm2 < σSI <

10−46 cm2, and 10−46 cm2 < σSI in the red, orange, yellow, green, and cyan regions, respectively.

From the left to the right panel, we take λ2 = 0, 0.5, and 1, respectively. In the upper (lower)

panel, the sign of the |λrelic| is positive (negative), see eq. (3.22).

Z Z

AA

(a)

Z Z

S

A A

(b)

πZ Z

S

A A

(c)

Z πZ

S

A A

(d)

Figure 11. For the box diagrams, we also have “crossed” diagrams in which the vertices A attached

are flipped.

and where p and q are four-momenta of the dark matter and the quark, respectively. Note

that we ignore the momentum transfer between the dark matter and the quark. The

definitions of fB1, fB2, and fB3 are given in appendix E.2, and their argument here is

(mZ ,mS ,mA).

B.2 W boson contribution

We calculate the contributions from W boson and its would-be NG boson depicted by the

diagrams in figure 12. In the followings, “crossed” means diagrams in which the vertices A

attached are flipped. The box-diagrams without would-be NG bosons contribute to twist-2
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Figure 12. For the box diagrams, we also have “crossed” diagrams in which the vertices A attached

are flipped.

operator.

Figure 12(a)=−1

8

i

(4π)2
g4W

mf

m2
W

, (B.5)

Figure 12(b)+(crossed)=
1

8

i

(4π)2
g4Wmf

(

fB1+m2
A (2fB2−6fB3)

)

+
i

(4π)2
g4W

(

pµqµ/p−
1

4
p2q/

)

(fB2−fB3) , (B.6)

Figure 12(c)+Figure 12(d)+(crossed)=− i

(4π)2
g2W

m2
H±−m2

A

v2
mf

(

fB1+2m2
AfB4

)

, (B.7)

and where p and q are four-momenta of the dark matter and the quark, respectively. Note

that we ignore the momentum transfer between the dark matter and the quark. The

definitions of fB1, fB2, and fB3 are given in appendix E.2, and their argument here is

(mW ,mH± ,mA).

C One-loop higgs vertex corrections

We calculate one-loop corrections to the dark matter coupling to the Higgs boson. We

interested in the case that the coupling is highly suppressed at the tree level. Hence we

take λA = 0, in our calculation. We denote q2 as the momentum of the Higgs boson,

and treat the Higgs boson as off-shell, because what we need is the difference between

q2 = m2
h case and q2 = 0 case. Hence we ignore terms independent from q2 in the following

calculations. The sum of the diagrams we calculate in this section gives −ivδΓh, where

δΓh is defined in eq. (3.1).

C.1 Z boson contribution

Up to the q2-independent terms, we find

Figure 13(a) (C.1)

=
2i

(4π)2
m2

Z

v2
m2

S −m2
A

v

(

F1(m
2
S , q

2) + (−m2
Z + 2m2

S + 2m2
A − 2q2)F2(m

2
S ,m

2
Z , q

2)
)

,

Figure 13(b) (C.2)

=
2i

(4π)2
m2

Z

v2
m2

Z

v

(

−2F1(m
2
Z , q

2) + (−m2
Z + 2m2

S + 2m2
A − 1

2
q2)F2(m

2
Z ,m

2
S , q

2)

)

,
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(e)
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S
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Figure 13. The diagrams for the vertex correction with neutral particles.

Figure 13(c)

=
2i

(4π)2
λ2

m2
S −m2

A

v
F1(m

2
S , q

2), (C.3)

Figure 13(d)

=
8i

(4π)2
m2

Z

v2
m2

Z

v
F1(m

2
Z , q

2), (C.4)

Figure 13(e)

= − i

(4π)2
m2

h

v

(

m2
S −m2

A

v

)2

F2(m
2
Z ,m

2
S , q

2), (C.5)

Figure 13(f)

= − 2i

(4π)2

(

m2
S −m2

A

v

)3

F2(m
2
S ,m

2
Z , q

2), (C.6)

Figure 13(g) + Figure 13(h)

=
2i

(4π)2
m2

Z

v2

(

m2
S −m2

A

v

)

(

F1(m
2
Z , q

2)− (m2
S −m2

A + q2)F2(m
2
Z ,m

2
S , q

2)
)

, (C.7)

Figure 13(i)

=
i

(4π)2
m2

h

v2

(

m2
S −m2

A

v

)

F1(m
2
Z , q

2), (C.8)

where F1 and F2 are defined in the appendix E.

C.2 W boson contribution

Up to the q2-independent terms, we find

Figure 14(a) + Figure 14(b) (C.9)

=
4i

(4π)2
m2

W

v2
m2

H±−m2
A

v

(

F1(m
2
H± , q

2)+(−m2
W+2m2

H±+2m2
A−2q2)F2(m

2
H± ,m

2
W , q2)

)

,
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Figure 14(c) + Figure 14(d) (C.10)

= − 4i

(4π)2
m4

W

v3

(

2F1(m
2
W , q2) +

(

m2
W − 2m2

H± − 2m2
A +

1

2
q2
)

F2(m
2
W ,mH± , q2)

)

,

Figure 14(e)

=
4i

(4π)2
λ2

m2
H± −m2

A

v
F1(m

2
H± , q

2), (C.11)

Figure 14(f)

=
16i

(4π)2
m4

W

v3
F1(m

2
W , q2), (C.12)

Figure 14(g) + Figure 14(h)

= − 2i

(4π)2
m2

h

v

(

m2
H± −m2

A

v

)2

F2(m
2
W ,mH± , q2), (C.13)

Figure 14(i) + Figure 14(j)

= − 4i

(4π)2

(

m2
H± −m2

A

v

)3

F2(m
2
H± ,m

2
W , q2), (C.14)

Figures 14(k) + 14(l) + 14(m) + 14(n)

=
4i

(4π)2
m2

W

v2
m2

H± −m2
A

v

(

F1(m
2
W , q2)−

(

m2
H± −m2

A + q2
)

F2(m
2
W ,mH± , q2)

)

, (C.15)

Figure 14(o)

=
2i

(4π)2
m2

h

v2
m2

H± −m2
A

v
F1(m

2
W , q2). (C.16)

D Gluon contribution at two-loop level

The effective operator A2
0G

a
µνG

aµν also give non-negligible contribution. Two-loop dia-

grams shown in figure 15 give contributions to this operator. The shaded region contains

quark loop diagram. There are also would-be Nambu-Goldstone (NG) bosons contribu-

tions, but we suppressed them in the figures. The last two diagrams in figure 15 are

proportional to λA which is much smaller than the other couplings, so we ignore their

contributions. In this subsection, we describe an evaluation of them by taking a method

which is used for a calculation of the cross section of wino dark matter-nucleon scatter-

ing [57, 61, 67]. Note that the operator with the gluon field strength at two-loop order

is the same as the operator without gluon field at one-loop order as we have discussed in

section 3.1.

D.1 Two-point functions in the gluon background field

First, we evaluate quark loop sub-diagrams in the two-loop diagrams shown in figure 16, 17

and 18. For this purpose, we calculate one-loop corrections for two-point functions of gauge

boson / pseudo-NG boson in the gluon background field by taking the Fock-Schwinger

gauge xµAa
µ = 0 for the gluon field, where xµ is the position four vector. In the following
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Figure 14. The diagrams for the vertex correction with charged particles.
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Figure 15. The diagram we calculate in this section. The shaded quark loop diagram. We

suppressed NG boson contributions. The last two diagrams are proportional to λA which is much

smaller than the other couplings, so we ignore their contributions.

of this paper, we only take into account gluon twist-0 operator and neglect higher twist

operators, i.e., a product of gluon field strength can be substitute as,

Ga
µρG

a
νσ → 1

12
(gµνgρσ − gµσgνρ)G

a
µνG

aµν . (D.1)

Thanks to these simplifications, two-point function of W boson and pseudo-NG boson πW
can be factorized as,

iΠ
(j)αβ
WW = −1

6

ig2s
16π2

Ga
µνG

aµν
(

A
(j)
W (q2)gαβ +B

(j)
W (q2)qαqβ

)

, (D.2)
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iΠ
(j)α
WπW

= −1

6

ig2s
16π2

Ga
µνG

aµνC
(j)
W (q2)qα, (D.3)

iΠ(j)
πW πW

= −1

6

ig2s
16π2

Ga
µνG

aµνD
(j)
W (q2), (D.4)

where j = 1, 2 and 3 express generation of quarks which give the contribution to the

two-point function. Also, for Z boson and πZ ,

iΠ
(f)αβ
ZZ = −1

6

ig2s
16π2

Ga
µνG

aµν
(

A
(f)
Z (q2)gαβ +B

(f)
Z (q2)qαqβ

)

, (D.5)

iΠ
(f)α
ZπZ

= −1

6

ig2s
16π2

Ga
µνG

aµνC
(f)
Z (q2)qα, (D.6)

iΠ(f)
πZπZ

= −1

6

ig2s
16π2

Ga
µνG

aµνD
(f)
Z (q2), (D.7)

where f = u, d, s, c, b and t. In Π
(i)α
WπW

(q2) and Π
(f)α
ZπZ

(q2), q is momentum of gauge boson

and its direction is out-going.

As noted in refs. [57, 61, 67], for the evaluation of the above two-point functions, we

have to be careful for double-counting. The loop integral in diagram 16(b), 16(c), 17(b),

17(c), 18(b) and 18(c) dominates when the internal momentum is around a mass of quark

emitting gluons. In these diagrams, if the quark emitting gluons is light quarks (i.e., up,

down or strange), the dominant contribution comes from a region in which the internal

momentum is smaller than QCD confinement scale. In such a region, perturbative calcula-

tion cannot be reliable, and the corresponding effect should be included in the evaluation

of 〈N |mq q̄q|N〉 [68]. Therefore, the diagrams in which up, down or strange quark emitting

two gluons should be removed in the evaluation of the above A, B, C and D function.

On the other hand, the loop integral in diagram 16(a), 17(a) and 18(a) dominates when

the internal momentum is around external momentum q, which is the order of mW or

mZ . Therefore, this diagram always should be took into account of all of the quarks. We

assume mc and mb is larger than QCD confinement scale, but much smaller than mW , mt,

mA. The charged gauge/pseudo-NG bosons obtain the contributions from up and down

quark as,

A
(1)
W (q2) =

g2W
2

1

q2
, B

(1)
W (q2) = −g2W

2

1

q4
, C

(1)
W (q2) = 0, D

(1)
W (q2) = 0. (D.8)

From charm and strange quark,

A
(2)
W (q2) =

g2W
2

1

q2
, B

(2)
W (q2) = 0, C

(2)
W (q2) =

g2W
2

1

2mW

2

q2
, D

(2)
W (q2) = 0. (D.9)

From top and bottom quark,

A
(3)
W =

g2W
2

(

1

q2 −m2
t

− 1

2

m2
t

(q2 −m2
t )

2

)

, B
(3)
W (q2) =

g2W
2

1

(q2 −m2
t )

2
, (D.10)

C
(3)
W (q2) =

g2W
2

1

2mW

4q2 − 3m2
t

(q2 −m2
t )

2
, D

(3)
W (q2) =

g2W
2

m2
t

2m2
W

5q2 − 4m2
t

(q2 −m2
t )

2
. (D.11)
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V V

f ′

f

(a)

V V

f ′

f

(b)

V V

f ′

f

(c)

Figure 16. One-loop corrections for two point function of gauge boson in gluon background field.

π V

f ′

f

q

(a)

π V

f ′

f

q

(b)

π V

f ′

f

q

(c)

Figure 17. One-loop corrections for two point function of gauge boson and pseudo-NG boson in

gluon background field.

π π

f ′

f

(a)

π π

f ′

f

(b)

π π

f ′

f

(c)

Figure 18. One-loop corrections for two point function of pseudo-NG boson in gluon background

field.

Neutral current couplings of quark f are defined as gfL = gZ(T3f − s2WQf ) and gfR =

−gZs
2
WQf . The neutral gauge/pseudo-NG bosons obtain the contributions from up, down

and strange quark as,

A
(f)
Z =

g2fL+g2fR
q2

, B
(f)
Z (q2) = −

g2fL+g2fR
q4

, C
(f)
Z (q2) = 0, D

(f)
Z (q2) = 0. (D.12)

From charm and bottom quark,

A
(f)
Z =

g2fL−4gfLgfR+g2fR
q2

, B
(f)
Z (q2) =

g2fL+g2fR
q4

, C
(f)
Z (q2) =

g2Z
2mZ

1

q2
, D

(f)
Z (q2) = 0.

(D.13)

– 22 –



J
H
E
P
0
3
(
2
0
1
5
)
1
0
9

From top quark,

A
(t)
Z (q2) = (g2tL + g2tR)

∫ 1

0
dx

(−w(1− w)

∆(w)
+

m2
t (2− 5w + 5w2)

[∆(w)]2
+

m4
t (−2 + 6w − 6w2)

[∆(w)]3

)

+
g2Z
4

∫ 1

0
dx

(

m2
t (−1 + 2w − 2w2)

[∆(w)]2
+

m4
tw(1− w)

[∆(w)]3

)

, (D.14)

B
(t)
Z (q2) = −(g2tL + g2tR)

∫ 1

0
dw

[

w2(1− w)2

[∆(w)]2
− 2m2

tw(1− w)(1− 3w + 3w2)

[∆(w)]3

]

, (D.15)

C
(t)
Z (q2) = −3g2Z

4

m2
t

mZ

∫ 1

0
dw

[

1− 2w + 2w2

2[∆(w)]2
− m2

t (1− 3w + 3w2)

3[∆(w)]3

]

, (D.16)

D
(t)
Z (q2) =

g2Z
4

m2
t

m2
Z

∫ 1

0
dw

[

−3w(1− w)

∆(w)
− 3m2

t (1 + w − w2)

[∆(w)]2
+

4m4
t (1− 3w + 3w2)

[∆(w)]3

]

,

(D.17)

where ∆(w) ≡ m2
t − w(1− w)q2.

D.2 Effective interaction for dark matter-gluon scattering

Next, by using the self-energy functions which have been evaluated so far, we evaluate the

ΓG
Box which is the coefficient of the effective operator A2Ga

µνG
aµν as defined in eq. (3.1). We

take the Feynman-’t Hooft gauge for electroweak gauge bosons, and find ΓG
Box is expressed

as,

−αs

4π
ΓG
Box =

∑

i

f
(i)
G,W +

∑

f

f
(f)
G,Z , (D.18)

f
(i)
G,W =

ig2W
12

g2s
16π2

∑

i

∫

ddℓ

(2π)d

[

3ℓ2 + 4ℓp− 4m2
H

[(ℓ+ p)2 −m2
H ][ℓ2 −m2

W ]2
A

(i)
W (ℓ2)

− m2
H −m2

A

m2
W

ℓ2 + 2ℓp

[(ℓ+ p)2 −m2
H ][ℓ2 −m2

W ]2
B̃

(i)
W (ℓ2)

]

,

(D.19)

f
(f)
G,Z =

ig2Z
24

g2s
16π2

∑

f

∫

ddℓ

(2π)d

[

3ℓ2 + 4ℓp− 4m2
S

[(ℓ+ p)2 −m2
S ][ℓ

2 −m2
Z ]

2
A

(f)
Z (ℓ2)

− m2
S −m2

A

m2
Z

ℓ2 + 2ℓp

[(ℓ+ p)2 −m2
S ][ℓ

2 −m2
Z ]

2
B̃

(f)
Z (ℓ2)

]

,

(D.20)

where B̃
(i)
W ≡ m2

WB
(i)
W −2mWC

(i)
W +D

(i)
W and B̃

(f)
Z ≡ m2

ZB
(f)
Z −2mZC

(f)
Z +D

(f)
Z . Xn and Yn

which are defined in the appendix E.3 are useful for the evaluations of two-loop diagrams.

For the convenience, we define XWq
n , XWt

n , XZq
n and X̃Zt

n as,

XWq
n ≡ Xn(m

2
A,m

2
H± ,m

2
W , 0), (D.21)

XWt
n ≡ Xn(m

2
A,m

2
H± ,m

2
W ,m2

t ), (D.22)

XZq
n ≡ Xn(m

2
A,m

2
S ,m

2
Z , 0), (D.23)

X̃Zt
n (w) ≡ Xn(m

2
A,m

2
S ,m

2
Z , w

−1(1− w)−1m2
t ). (D.24)
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Y Wq
n , Y Wt

n , Y Zq
n and Ỹ Zt

n (w) are also defined in the same manner. Finally, the contributions

to fG is written as,

f
(1)
G,W =− g2W g2s

12(16π2)2
g2W
2

(

3XWq
0 +4m2

AY
Wq
1 −4m2

H±X
Wq
1 +(m2

H±−m2
A)(X

Wq
1 +2m2

AY
Wq
2 )

)

,

(D.25)

f
(2)
G,W =− g2W g2s

12(16π2)2
g2W
2

(

3XWq
0 +4m2

AY
Wq
1 −4m2

H±X
Wq
1

+
2

m2
W

(m2
H±−m2

A)(X
Wq
0 +2m2

AY
Wq
1 )

)

, (D.26)

f
(3)
G,W =− g2W g2s

12(16π2)2
g2W
2

[

(3XWt
0 +4m2

AY
Wt
1 +(3m2

t−4m2
H±)X

Wt
1 )

− m2
t

2
(3XWt

1 +4m2
AY

Wt
2 +(3m2

t−4m2
H±)X

Wt
2 ) (D.27)

− m2
H±−m2

A

m2
W

(

−4+ 5m2
t

2m2
W

)

(XWt
0 +2m2

AY
Wt
1 +m2

tX
Wt
1 )

− (m2
H±−m2

A)

(

1− m2
t

m2
W

+
m4

t

2m4
W

)

(XWt
1 +2m2

AY
Wt
2 +m2

tX
Wt
2 )

]

.

For up, down and strange quarks (f = u, d, s),

f
(f)
G,Z=− g2Zg

2
s

24(16π2)2
(g2fL+g2fR)

[

(3XZq
0 +4m2

AY
Zq
1 −4m2

SX
Zq
1 )+(m2

S−m2
A)(X

Zq
1 +2m2

AY
Zq
2 )

]

.

(D.28)

For charm and bottom quarks (f = c, b),

f
(f)
G,Z = − g2Zg

2
s

24(16π2)2

[

(g2fL−4gfLgfR+g2fR)(3X
Zq
0 +4m2

AY
Zq
1 −4m2

SX
Zq
1 ) (D.29)

− m2
S−m2

A

m2
Z

[

−g2Z(X
Zq
0 +2m2

AY
Zq
1 )+

(

g2fL+g2fR
)

m2
Z(X

Zq
1 +2m2

AY
Zq
2 )

]

]

.

For top-quark,

f
(t)
G,Z = − g2Zg

2
s

24(16π2)2

3
∑

n=1

∫ 1

0
dw

(−1)nm
2(n−1)
t

wn(1− w)n

×
[

(

3X̃Zt
n−1(w) + 4m2

AỸ
Zt
n (w) +

(

3m2
t

w(1− w)
− 4m2

S

)

X̃Zt
n (w)

)

gAn(w)

− m2
S −m2

A

m2
Z

(

X̃Zt
n−1(w) + 2m2

AỸ
Zt
n (w) +

m2
t

w(1− w)
X̃Zt

n (w)

)

gBn(w)

]

. (D.30)

Here, gAn and gBn are functions which satisfy,

A
(t)
Z (q2)=

∫ 1

0
dw

(

gA1(w)

∆(w)
+

m2
t gA2(w)

[∆(w)]2
+

m4
t gA3(w)

[∆(w)]3

)

, (D.31)

B̃
(t)
Z (q2)=

∫ 1

0
dw

(

gB1(w)

∆(w)
+

m2
t gB2(w)

[∆(w)]2
+

m4
t gB3(w)

[∆(w)]3

)

, (D.32)
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where ∆(w)=m2
t − w(1− w)q2. Explicit form of gAn and gBn are given by,

gA1(w) = −(g2tL + g2tR)w(1− w), (D.33)

gA2(w) = (g2tL + g2tR)(2− 5w + 5w2) +
g2Z
4
(−1 + 2w − 2w2), (D.34)

gA3(w) = (g2tL + g2tR)(−2 + 6w − 6w2) +
g2Z
4
w(1− w), (D.35)

gB1(w) = −3g2Z
4

m2
t

m2
Z

w(1− w), (D.36)

gB2(w) = −(g2tL+g2tR)
m2

Z

m2
t

w2(1− w)2+
g2Z
4
(3−6w+6w2)+

g2Z
4

m2
t

m2
Z

(−3−3w+3w2), (D.37)

gB3(w) = (g2tL + g2tR)
m2

Z

m2
t

w(1− w)(2− 6w + 6w2) +
g2Z
4
(−2 + 6w − 6w2)

+
g2Z
4

m2
t

m2
Z

(4− 12w + 12w2). (D.38)

E Loop functions for radiative corrections

In this appendix, we summarize loop functions which are useful for the evaluation of the

radiative correction on the spin-independent cross section. Bi, B
′
i, Ci and Di functions

which appears in this appendix are the Passarino-Veltman functions [69] and the derivative

with respect to the momentum. Our convention is same as used by LoopTools [70]. The

explicit definitions of Passarino-Veltman functions are given as,

∫

d4ℓ

(2π)d
1

[ℓ2 −m2
Z ][(ℓ+ p)2 −m2

S ]
=

i

16π2
B0(p

2,m2
Z ,m

2
S), (E.1)

∫

d4ℓ

(2π)d
ℓµ

[ℓ2 −m2
Z ][(ℓ+ p)2 −m2

S ]
=

i

16π2
pµB1(p

2,m2
Z ,m

2
S), (E.2)

∫

d4ℓ

(2π)d
1

[ℓ2 −m2
Z ]

2[(ℓ+ p)2 −m2
S ]

=
i

16π2
C0(0, p

2, p2,m2
Z ,m

2
Z ,m

2
S), (E.3)

∫

d4ℓ

(2π)d
ℓµ

[ℓ2 −m2
Z ]

2[(ℓ+ p)2 −m2
S ]

=
i

16π2
pµC2(0, p

2, p2,m2
Z ,m

2
Z ,m

2
S), (E.4)

∫

ddℓ

(2π)d
1

[ℓ2 −m2
Z ]

3[(ℓ+ p)2 −m2
S ]

=
i

16π2
D0(0, 0, p

2, p2, 0, p2,m2
Z ,m

2
Z ,m

2
Z ,m

2
S), (E.5)

∫

ddℓ

(2π)d
ℓµ

[ℓ2 −m3
Z ]

3[(ℓ+ p)2 −m2
S ]

=
i

16π2
pµD3(0, 0, p

2, p2, 0, p2,m2
Z ,m

2
Z ,m

2
Z ,m

2
S). (E.6)

E.1 One-loop vertex

The functions F1 and F2 which are used in the appendix C are defined as,

F1(m
2, q2) = B0(q

2,m2,m2), (E.7)

F2(m
2
1,m

2
2, q

2) = −C0(q
2,m2

A,m
2
A,m

2
1,m

2
1,m

2
2). (E.8)
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E.2 One-loop box diagrams

The functions fB1, fB2, fB3 and fB4 which are used in the appendix B are defined as,

fB1(m1,m2,mA) ≡
∫ 1

0
dx

x

m2
1x+m2

2(1−x)−m2
Ax(1− x)

= − ∂

∂m2
1

B0(m
2
A,m

2
1,m

2
2), (E.9)

fB2(m1,m2,mA) ≡
∫

xyz

y(1−z)
(

m2
1y+m2

2z−m2
Az(1−z)

)2

=
1

m2
1

∂

∂m2
1

B0(m
2
A,m

2
1,m

2
2)+

1

m2
1

B′
0(m

2
A,m

2
1,m

2
2)

+
1

m4
1

(

B1(m
2
A,m

2
2,m

2
1)−B1(m

2
A,m

2
2, 0)

)

, (E.10)

fB3(m1,m2,mA) ≡
∫

xyz

y2
(

m2
1y+m2

2z−m2
Az(1−z)

)2

=
1

m2
1

∂

∂m2
1

B0(m
2
A,m

2
1,m

2
2)+

1

m2
1

B′
0(m

2
A,m

2
1,m

2
2)

+
1

m4
1

−2
m2

2−m2
A

m6
1

(

B1(m
2
A,m

2
1,m

2
2)−B1(m

2
A, 0,m

2
2)
)

+ 2
m2

A

m6
1

(

B11(m
2
A,m

2
1,m

2
2)−B11(m

2
A, 0,m

2
2)
)

, (E.11)

fB4(m1,m2,mA) ≡
∫

xyz

yz
(

m2
1y+m2

2z−m2
Az(1−z)

)2 (E.12)

= − 1

m2
1

B′
0(m

2
A,m

2
1,m

2
2)+

1

m4
1

(

B1(m
2
A,m

2
1,m

2
2)−B1(m

2
A, 0,m

2
2)
)

.

Here,
∫

xyz is defined as,

∫

xyz
f(x, y, z) ≡

∫

x+y+z=1
f(x, y, z) ≡

∫ 1

0
dz

∫ 1−z

0
dyf(1− y − z, y, z). (E.13)

E.3 Loop functions for dark matter-gluon scattering

Here, we summarize some loop functions which are useful for the evaluation of the coefficient

of effective interaction between dark matter and gluon.

E.3.1 Definitions of X, Y functions

We define the following two types of loop functions:

∫

d4ℓ

(2π)4
1

[(ℓ+ p)2 −m2
S ][ℓ

2 −m2
Z ]

2[ℓ2 −m2
t ]
n
=

i

16π2
Xn(p

2,m2
S ,m

2
Z ,m

2
t ), (E.14)

∫

d4ℓ

(2π)4
ℓµ

[(ℓ+ p)2 −m2
S ][ℓ

2 −m2
Z ]

2[ℓ2 −m2
t ]
n
=

i

16π2
pµYn(p

2,m2
S ,m

2
Z ,m

2
t ). (E.15)
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E.3.2 X, Y in B, C, D-function

X and Y functions which are defined in the previous subsection are rewritten by Passarino-

Veltman functions [69]:

X0(m
2
A,m

2
S ,m

2
Z ,m

2
t ) = C

(Z)
0 , (E.16)

X1(m
2
A,m

2
S ,m

2
Z ,m

2
t ) = − C

(Z)
0

m2
t −m2

Z

+
B

(t)
0 −B

(Z)
0

(m2
t −m2

Z)
2
, (E.17)

X2(m
2
A,m

2
S ,m

2
Z ,m

2
t ) =

C
(t)
0 + C

(Z)
0

(m2
t −m2

Z)
2
+

−2B
(t)
0 + 2B

(Z)
0

(m2
t −m2

Z)
3

, (E.18)

X3(m
2
A,m

2
S ,m

2
Z ,m

2
t ) =

D
(t)
0

(m2
t −m2

Z)
2
+

−2C
(t)
0 − C

(Z)
0

(m2
t −m2

Z)
3

+
3B

(t)
0 − 3B

(Z)
0

(m2
t −m2

Z)
4
, (E.19)

Y1(m
2
A,m

2
S ,m

2
Z ,m

2
t ) = − C

(Z)
2

m2
t −m2

Z

+
B

(t)
1 −B

(Z)
1

(m2
t −m2

Z)
2
, (E.20)

Y2(m
2
A,m

2
S ,m

2
Z ,m

2
t ) =

C
(t)
2 + C

(Z)
2

(m2
t −m2

Z)
2
+

−2B
(t)
1 + 2B

(Z)
1

(m2
t −m2

Z)
3

, (E.21)

Y3(m
2
A,m

2
S ,m

2
Z ,m

2
t ) =

D
(t)
3

(m2
t −m2

Z)
2
+

−2C
(t)
2 − C

(Z)
2

(m2
t −m2

Z)
3

+
3B

(t)
1 − 3B

(Z)
1

(m2
t −m2

Z)
4
, (E.22)

where B
(X)
i , C

(X)
i and D

(X)
i are

B
(X)
i ≡ Bi(m

2
A,m

2
X ,m2

S), (E.23)

C
(X)
i ≡ Ci(0,m

2
A,m

2
A,m

2
X ,m2

X ,m2
S), (E.24)

D
(X)
i ≡ Di(0, 0,m

2
A,m

2
A, 0,m

2
A,m

2
X ,m2

X ,m2
X ,m2

S). (E.25)

E.3.3 C, D in B0 and ∂B0/∂q
2

All the external lines should satisfy the on-shell condition when we use LoopTools. For

this technical reason, LoopTools-2.12 cannot evaluate C
(Z/t)
0/2 and D

(t)
0/3 directly. In this

case we need to convert this function to other functions. In this subsection, we express

C
(Z/t)
0/2 and D

(t)
0/3 as combinations of B0 and ∂B0/∂q

2.

C
(Z)
0 =

∂

∂m2
Z

B0(m
2
A,m

2
Z ,m

2
S)

=
1

m4
Z+m4

S+m4
A−2m2

Zm
2
S−2m2

Am
2
Z−2m2

Am
2
S

(E.26)

×
[

(m2
S−m2

Z+m2
A)(−B0(m

2
A,m

2
Z ,m

2
S)+B0(0,m

2
Z ,m

2
Z)+2)−2m2

S log
m2

S

m2
Z

]

.

C
(Z)
2 =

∂

∂m2
Z

B1(m
2
A,m

2
Z ,m

2
S)=

∂

∂m2
A

B0(m
2
A,m

2
Z ,m

2
S). (E.27)

D
(Z)
0 =

1

2

∂2

∂(m2
Z)

2
B0(m

2
A,m

2
Z ,m

2
S)

– 27 –



J
H
E
P
0
3
(
2
0
1
5
)
1
0
9

=
2m2

Sm
2
A

(m4
Z+m4

S+m4
A−2m2

Zm
2
S−2m2

Am
2
Z−2m2

Am
2
S)

2

×
[

−B0(m
2
A,m

2
Z ,m

2
S)+B0(0,m

2
Z ,m

2
Z)+

m2
Z−m2

S−m2
A

2m2
A

log
m2

S

m2
Z

−m6
A−3(m2

Z+m2
S)m

4
A+3(m2

Z−m2
S)

2m2
A−(m2

Z+m2
S)(m

2
Z−m2

S)
2

4m2
Zm

2
Sm

2
A

]

. (E.28)

D
(Z)
3 =

1

2

∂2

∂(m2
Z)

2
B1(m

2
A,m

2
Z ,m

2
S)

=
1

2

∂

∂m2
A

∂

∂m2
Z

B0(m
2
A,m

2
Z ,m

2
S)

=
m2

Z+m2
S−m2

A

(m4
Z+m4

S+m4
A−2m2

Zm
2
S−2m2

Am
2
Z−2m2

Am
2
S)

2
(E.29)

×
(

(m2
S−m2

Z+m2
A)(−B0(m

2
A,m

2
Z ,m

2
S)+B0(0,m

2
Z ,m

2
Z)+2)−2m2

S log
m2

S

m2
Z

)

+
1

2

1

m4
Z+m4

S+m4
A−2m2

Zm
2
S−2m2

Am
2
Z−2m2

Am
2
S

×
(

−B0(m
2
A,m

2
Z ,m

2
S)+B0(0,m

2
Z ,m

2
Z)+2−(m2

S−m2
Z+m2

A)
∂

∂m2
A

B0(m
2
A,m

2
Z ,m

2
S)

)

.
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