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1 Introduction

With the discovery of the Higgs boson [1, 2], the Standard Model is a fully predictive

theory, with all of its parameters determined experimentally. This fact renders the total

Higgs boson production cross-section an excellent precision test of the theory. Theoretical

predictions for the inclusive cross-section therefore play an important role in measurements

of Higgs-boson observables in general and in the determination of the coupling strengths

of the Higgs boson in particular.

For this reason, obtaining a reliable theoretical estimate of the gluon-fusion cross-

section, the dominant production mechanism of a Higgs boson at the LHC, has been a

major objective in perturbative QCD for the last decades. The very large size of the

next-to-leading-order (NLO) perturbative corrections in the strong coupling αs indicated a

slow convergence of the αs expansion [3–6]. The smaller size of the next-to-next-to-leading

order (NNLO) corrections inspired some confidence that QCD effects beyond NNLO may

be smaller than ±10%, as indicated from the variation of the renormalization scale [7–

9]. On the basis of this belief, further refinements of the cross-section with electroweak

corrections and finite quark-mass effects (at a ∼ 5% level of precision) followed [10–15].

Currently, no full computation of the hadronic Higgs-boson cross-section is available

at next-to-next-to-next-to-leading order N3LO. It is possible to obtain some information

on the missing higher orders beyond NNLO in the so-called threshold limit where the

Higgs boson is predominantly produced at threshold and the additional QCD radiation

is soft. In this limit, soft QCD emissions factorize from the hard interaction and can be

resummed [16, 17]. After the completion of the NNLO corrections [7–9], it was observed

that the threshold approximation can be made to capture the bulk of the perturbative

corrections through NNLO. It is then tantalising to speculate if a similar approximation is
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sufficient to predict the value of the Higgs-boson cross-section at N3LO in QCD. Recently,

various approximate N3LO cross-section estimates were put forward which rely crucially

on the threshold assumption [18, 20–22]. Given these considerations, it is important to

quantify the reliability of the threshold approximation at N3LO.

Logarithmically enhanced threshold contributions at N3LO to the cross-section coming

from the emission of soft gluons have been computed almost a decade ago [18, 19]. A few

months ago, we completed the computation of the first term in the threshold expansion,

the so-called soft-virtual term, by computing in addition the constant term proportional

to δ(1− z) [23], which includes in particular the complete three-loop corrections to Higgs

production via gluon fusion [24, 25]. Recently, some further logarithmic corrections which

belong to the second order in the threshold expansion were conjectured in refs. [22, 26].

In this paper we compute for the first time the complete second order in the threshold

expansion. This result is an important step in the direction of the computation of the N3LO

cross-section for arbitrary values of z, a goal which has only been achieved so far at N3LO

for the three-loop corrections and the single-emission contributions at two loops [27–30]. We

combine the knowledge of the single-real emission contributions with the ultra-violet and

parton-density counterterms to obtain the exact result for the first three logarithmically-

enhanced terms beyond the soft-virtual approximation. Both results combined are not only

a major milestone towards the complete Higgs-boson cross-section at N3LO, but they also

constitute the most precise calculation of the Higgs-boson cross-section at N3LO beyond

threshold.

In a second part of our paper, we use our results and perform a critical appraisal of

the threshold approximation. We define a way to quantify the convergence of the trun-

cated threshold expansion, and we perform a numerical study of the convergence of the

threshold expansion at NLO, NNLO and N3LO. Given the widely accepted dominance of

the threshold limit in Higgs production at the LHC, our study is an important ingredient

to asses the reliability of the threshold approximation at N3LO in QCD.

This paper is organised as follows: in section 2 we present our results for the complete

second term in the threshold expansion and the exact results for the coefficients of the

first three leading logarithmically-enhanced terms in the threshold limit. In section 3 we

perform a critical appraisal of the threshold expansion, both in z-space and in Mellin-space.

In section 4 we draw our conclusions.

2 Analytic results for the N3LO partonic cross-section

2.1 The gluon-fusion cross-section

In this section we present the main results of our paper. We start by giving a short review

of the inclusive gluon-fusion cross-section and its analytic properties, and then we present

our results in subsequent sections.

The inclusive cross-section σ for the production of a Higgs boson is given by

σ = τ
∑

ij

(

fi ⊗ fj ⊗
σ̂ij(z)

z

)

(τ) , (2.1)
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where σ̂ij are the partonic cross-sections for producing a Higgs boson from the parton

species i and j, and fi and fj are the corresponding parton densities. We have defined

the ratios

τ =
m2

H

S
and z =

m2
H

s
, (2.2)

where mH denotes the Higgs-boson mass and s and S denote the squared partonic and

hadronic center-of-mass energies. The convolution of two functions is defined as

(A⊗B)(τ) =

∫ 1

0
dx dy A(x)B(y) δ(τ − xy) . (2.3)

In the rest of this section we only concentrate on the partonic cross-sections. If we work

in perturbative QCD, and after integrating out the top quark, the partonic cross-sections

take the form
σ̂ij(z)

z
=

π C2

8V

∞
∑

k=0

(αs

π

)k

η
(k)
ij (z) , (2.4)

with V = N2
c − 1 and Nc the number of SU(Nc) colours, and C ≡ C(µ2) and αs ≡ αs(µ

2)

denote the Wilson coefficient [31–33] and the strong coupling constant, evaluated at the

scale µ2. At leading order in αs only the gluon-gluon initial state contributes, η
(0)
ij (z) =

δig δjg δ(1 − z). The partonic cross-sections through NNLO, η
(1,2)
ij (z), can be found in

refs. [7–9].

Before presenting our results, let us discuss some general properties of the N3LO coef-

ficients η
(3)
ij (z) which will be useful in the remainder of this section. First, η

(3)
ij (z) does not

only contain the three-loop corrections to inclusive Higgs production, but also contributions

from the emission of up to three partons in the final state at the same order in perturbation

theory. So far, only the single-emission contributions at two loops are known for generic

values of z [27–30, 34–36], and only a few terms in the threshold expansion for the contri-

butions with up to two additional partons in the final state are known [23, 44, 45]. Each of

these contributions is ultra-violet (UV) and infra-red (IR) divergent, and the divergences

manifest themself as poles in the dimensional regulator ǫ.

While the first three leading poles at N3LO cancel when summing over all the contribu-

tions, the coefficient of ǫ−3 is non-zero. These remaining divergences cancel when suitable

UV and IR counterterms are included. We generically write

η
(3)
ij (z) = ∆

(3)
ij (z, ǫ) + χ

(3)
ij (z, ǫ) , (2.5)

where ∆
(3)
ij (z, ǫ) is the combined UV and IR counterterm and χ

(3)
ij (z, ǫ) is the (bare) con-

tribution from the different particle multiplicities at N3LO. Note that each term in the

right-hand side has poles at ǫ = 0, but the sum is finite. The counterterm is determined

completely from lower orders1 [46–48], as well as the QCD β function [37–40] and the

three-loop splitting functions [42, 43].

1There is a typo in eq. (2.8) of ref. [48]. The combination 3P
(0)
ik ⊗P

(1)
kj +3P

(1)
ik ⊗P

(0)
kj in the fourth line

should be replaced by 2P
(0)
ik ⊗ P

(1)
kj + 4P

(1)
ik ⊗ P

(0)
kj .
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The contributions arising from different multiplicities can be separated into six different

terms as

χ
(3)
ij (z, ǫ) = χ

(3,0)
ij (ǫ) δ(1− z) +

6
∑

m=2

(1− z)−mǫ χ
(3,m)
ij (z, ǫ). (2.6)

where the functions χ
(3,m)
ij (z, ǫ) are meromorphic with at most a simple pole at z = 1.

While the first term only contributes at threshold and contains the entirety of the three-loop

corrections, the second term receives contributions from all additional parton emissions.

The partonic cross-sections are convoluted with the parton luminosities, and the pole

at z = 1 in the gluon-gluon initial state introduces a divergence in the integrand as z →

1. The singularities are regulated in dimensional regularisation by expanding the factors

(1− z)−1−mǫ in terms of delta functions and plus-distributions.

(1− z)−1−mǫ = −
1

mǫ
δ(1− z) +

∞
∑

j=0

(−mǫ)j

j!

[

logj(1− z)

1− z

]

+

, (2.7)

where the plus-distribution is defined by its action on a test function φ(z).

1
∫

0

dz

[

logj(1− z)

1− z

]

+

φ(z) ≡

1
∫

0

dz
logj(1− z)

1− z
[φ(z)− φ(1)] . (2.8)

In order to expose the distributions, we write

χ
(3,m)
ij (z, ǫ) = χ

(3,m),sing
ij (z, ǫ) + χ

(3,m),reg
ij (z, ǫ) , (2.9)

with χ
(3,m),sing
ij (z, ǫ) the residue at z = 1 (divided by (z − 1)). The singular contribution is

only non-zero for the gluon-gluon initial state.

Similar to eq. (2.9), we can split the partonic cross-sections into a singular and a

regular part,

η
(3)
ij (z) = η

(3),sing
ij (z) + η

(3),reg
ij (z) , (2.10)

where the singular contribution is precisely the cross-section at threshold [18, 23] and the

regular term describes terms that are formally subleading and take the form of a polynomial

in log(1− z),

η
(3),reg
ij (z) =

5
∑

m=0

logm(1− z) η
(3,m),reg
ij (z) , (2.11)

where the η
(3,m),reg
ij (z) are holomorphic in a neighbourhood of z = 1. The coefficients of

these logarithms are the main subject of this paper, and in the rest of this section we show

how to explicitly determine some of the regular coefficients of the threshold logarithms.

2.2 Next-to-soft corrections

All the regular terms are formally subleading in the threshold expansion compared to the

soft-virtual term. If we want to compute these subleading corrections, we need to know
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the counterterms ∆
(3)
ij (z, ǫ) and all process with different multiplicities contributing to

χ
(3)
ij (z, ǫ). To date, however, only the counterterms and the single-emission contributions

are known for arbitrary values of z. Since the coefficients of the logarithms are holomorphic,

they admit a Taylor expansion around z = 1. In this section we discuss how to approximate

the coefficients of the logarithms by their threshold expansion around z = 1. In particular,

one of the main results of this paper is the complete computation of the first subleading

term in the threshold expansion, corresponding to the value at z = 1 of the coefficients

in eq. (2.11) and dubbed the next-to-soft term in the remainder of this paper. Note that

the next-to-soft term receives for the first time contributions from the quark-gluon (and

anti-quark-gluon) initial state besides the gluon-gluon initial state.

In ref. [23] the next-to-soft term of the triple-emission contribution was computed.

Hence, we are only missing the next-to-soft corrections to the double-emission contribution

at one-loop. We have recently completed the computation of all the relevant diagrams

contributing to the next-to-soft term. In the following we only present the results of the

computation, and details of the computation will be given elsewhere. Here it suffices to

say that, unlike the contribution to the soft-virtual term [23, 45], we also need to consider

contributions from regions where the virtual gluon can be collinear to one of the external

partons besides subleading corrections to the soft and hard regions. In the following we

present the next-to-soft cross-sections η
(3)
ij (z)

∣

∣

∣

(1−z)0
for values of the renormalization and

factorization scales equal to the Higgs mass. The corresponding expressions for arbitrary

scales can be derived easily from renormalization group and DGLAP evolution. We find

η(3)gg (z)
∣

∣(1−z)0
= − 8N3

c log5(1− z) +

(

353

9
N3

c −
20

9
N2

cNf

)

log4(1− z) (2.12)

+

[

(

56 ζ2 −
3469

54

)

N3
c +

205

18
N2

cNf −
4

27
NcN

2
f

]

log3(1− z)

+

{

(

−181 ζ3 −
2147

12
ζ2 +

2711

27

)

N3
c +

[(

545

48
ζ2 −

4139

216

)

N2
c +

1

4

]

Nf

+
59

108
NcN

2
f

}

log2(1− z)

+

{

(

77ζ4+362ζ3+
2375

18
ζ2−

9547

108

)

N3
c +

[(

−
223

12
ζ3 −

1813

72
ζ2 +

8071

324

)

N2
c

+ 3 ζ3 +
1

24
ζ2 −

17

4

]

Nf +

(

4

9
ζ2 −

163

324

)

NcN
2
f

}

log(1− z)

+

(

−186 ζ5 +
725

6
ζ2 ζ3 −

821

12
ζ4 −

32849

216
ζ3 −

11183

162
ζ2 +

834419

23328

)

N3
c

+

[(

19

8
ζ4+

1789

72
ζ3+

4579

324
ζ2−

527831

46656

)

N2
c −

1

4
ζ4−

149

72
ζ! −

5

24
ζ2+

5065

1728

]

Nf

+

(

−
5

27
ζ3 −

19

36
ζ2 +

49

729

)

NcN
2
f .
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η(3)qg (z)
∣

∣(1−z)0
=

(

587N3
c

768
−

247Nc

256
+

181

768Nc

−
9

256N3
c

)

log5(1− z) (2.13)

+

[

−
9155N3

c

27648
+

899Nc

1024
−

15805

27648Nc

+
229

9216N3
c

+

(

803N2
c

6912
−

11

72
+

253

6912N2
c

)

Nf

]

log4(1− z)

+

[

(

−
2791

576
ζ2 +

166903

41472

)

N3
c +

(

3839

576
ζ2 −

57691

13824

)

Nc

+

(

−
1241

576
ζ2 +

473

41472

)

1

Nc

+

(

193

576
ζ2 +

211

1536

)

1

N3
c

+

(

−
1837N2

c

2592
+

361

432
−

329

2592N2
c

)

Nf +

(

7Nc

864
−

7

864Nc

)

N2
f

]

log3(1− z)

+

{

(

1687

96
ζ3+

1729

576
ζ2 −

120073

41472

)

N3
c +

(

−
4241

192
ζ3−

1589

288
ζ2+

46025

13824

)

Nc

+

(

485

96
ζ3 +

541

192
ζ2 −

14087

41472

)

1

Nc

+

(

−
103

192
ζ3 −

29

96
ζ2 −

145

1536

)

1

N3
c

+

[(

−
185

288
ζ2 +

6427

10368

)

N2
c +

59

72
ζ2 −

215

288
+

(

−
17

96
ζ2 +

1313

10368

)

1

N2
c

]

Nf

+

(

−
11Nc

432
+

11

432Nc

)

N2
f

}

log2(1− z)

+

{

(

−
871

96
ζ4 −

283

72
ζ3 −

3755

1152
ζ2 +

1641013

248832

)

N3
c

+

(

3787

384
ζ4 +

2297

288
ζ3 +

20545

3456
ζ2 −

46859

9216

)

Nc

+

(

−
53

96
ζ4 −

85

18
ζ3 −

7039

3456
ζ2 −

340909

248832

)

1

Nc

+

(

−
91

384
ζ4 +

65

96
ζ3 −

83

128
ζ2 −

431

3072

)

1

N3
c

+

[(

125

144
ζ3 +

155

288
ζ2 −

157411

62208

)

N2
c −

55

36
ζ3 −

473

432
ζ2 +

9859

3456

+

(

95

144
ζ3 +

481

864
ζ2 −

20051

62208

)

1

N2
c

]

Nf+

(

29Nc

432
−

29

432Nc

)

N2
f

}

log(1− z)

+

(

1687

96
ζ5 −

505

48
ζ2 ζ3 −

649

2304
ζ4 +

34117

3456
ζ3 +

3691

1296
ζ2 −

1457441

995328

)

N3
c

+

(

−
1447

64
ζ5 +

2807

192
ζ2 ζ3 −

73

64
ζ4 −

4001

432
ζ3 −

5833

1296
ζ2 +

53237

995328

)

Nc

+

(

545

96
ζ5 −

55

12
ζ2 ζ3 +

2245

2304
ζ4 −

463

1152
ζ3 +

95

72
ζ2 +

422195

331776

)

1

Nc

– 6 –
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+

(

−
41

64
ζ5 +

31

64
ζ2 ζ3 +

43

96
ζ4 −

5

24
ζ3 +

1

3
ζ2 +

1699

12288

)

1

N3
c

+

[(

193

576
ζ4−

47

27
ζ3−

139

324
ζ2+

82171

248832

)

N2
c −

5

32
ζ4+

1723

864
ζ3+

229

324
ζ2−

17219

124416

+

(

−
103

576
ζ4 −

73

288
ζ3 −

5

18
ζ2 −

15911

82944

)

1

N2
c

]

Nf

+

[(

−
1

72
ζ3 −

125

3888

)

Nc +

(

1

72
ζ3 +

125

3888

)

1

Nc

]

N2
f .

The leading logarithms in the above equations can be compared with recent results in

the literature. The coefficients of log5(1 − z) and log4(1 − z) for the gluon-gluon channel

in eq. (2.12) are in agreement with the conjecture of ref. [22]. In ref. [22] a conjecture was

also formulated for the colour and flavour structure of the coefficient of log3(1 − z) up to

a rational parameter ξ
(3)
H . We confirm the validity of this conjecture for the coefficient of

log3(1 − z) as well and determine ξ
(3)
H = 896

3 . The log5(1 − z) coefficient for the quark-

gluon channel in eq. (2.13) agrees with the calculation of ref. [26]. The coefficients of the

remaining logarithms and the non-logarithmic terms in eqs. (2.12)–(2.13) are presented for

the first time in this publication.

2.3 Coefficients of leading logarithms with exact z dependence

In this section we obtain another approximation to eq. (2.11), namely we compute the

coefficients of the three leading logarithms in eq. (2.11) with exact z dependence. Indeed,

it turns out that the coefficients of these logarithms are uniquely determined at N3LO by

requiring the cancellation of the poles in ǫ, once the single-emission contributions and the

counterterms are known.

To be more concrete, we start from eq. (2.5) and (2.6), and expand all the contributions

in the dimensional regulator ǫ,

η
(3)
ij (z) =

0
∑

l=−3

5
∑

k=0

ǫl log(1− z)k∆
(3,l,k)
ij (z)

+
0
∑

l=−6

ǫl

[

χ
(3,0,l)
ij δ(1− z) +

6
∑

m=2

χ
(3,m,l)
ij (z)(1− z)−mǫ

]

+O(ǫ) . (2.14)

In order for η
(3)
ij (z) to be finite, all the poles in ǫ must cancel. This implies that the

coefficient of each power of log(1 − z) and of each plus-distribution multiplying a pole in

ǫ has to vanish separately, which allows us to derive a set of equations constraining the

individual contributions χ
(3,m,l)
ij (z) and ∆

(3,l,k)
ij (z). In particular, we get

∆
(3,l,k)
ij (z) +

6
∑

m=2

(−m)k

k!
χ
(3,m,l−k)
ij (z) = 0 , l < 0 , ∀k . (2.15)

At this point we note that the terms proportional to χ
(3,2,k)
ij (z) and χ

(3,3,k)
ij (z) only receive

contributions from single-emission subprocesses, and the computation of those contribu-

tions was recently completed for arbitrary values of z [27–30]. In particular, the computa-

tion of the single-emission processes at two loops of ref. [29] has all the logarithms log(1−z)

– 7 –
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resummed into factors of the form (1− z)−mǫ, which makes the determination of χ
(3,2,k)
ij (z)

and χ
(3,3,k)
ij (z) straightforward. Including this information we are able to solve the system

of equations (2.15) for the coefficients of the first three leading logarithms (log5,4,3(1− z))

for all partonic initial states. Parts of the coefficients of these logarithms, corresponding

to specific colour coefficients, had already been predicted in ref. [22], and we confirm these

results. Moreover, we have checked that only the gluon-gluon and quark-gluon initial states

give non-vanishing contributions at next-to-soft level, and the values of the coefficients for

z = 1 agree with the corresponding coefficients presented in the previous section. The

analytic results for the different partonic initial states are, for µR = µF = mH ,

η(3,3),reggg (z) =
Nf

N2
c

[

85

72
(z + 1)H1H0 +

680z3 − 768z2 − 1107z − 276

864z
H0

−
37

72
(z+1)H2

0 −
85

72
(z+1)H2−

(1−z)
(

2328z2 + 4505z + 1644
)

1728z
+

85

72
(z+1)ζ2

]

+
N2

f

Nc

[

−
25

216
(z + 1)H0 −

25(1− z)
(

4z2 + 7z + 4
)

1296z

]

+Nf

[

− 8(z + 1)H1H0 −
1564z3 − 1229z2 − 2903z − 1820

432z
H0

+
1

8
(51z + 11)H2

0 + 8(z + 1)H2 +
(1− z)

(

17492z2 + 9035z + 14900
)

1296z

−8(z + 1)ζ2

]

+NcN
2
f

[

25

216
(z + 1)H0 −

292z3 − 117z2 + 309z − 292

1296z

]

+N2
cNf

[

491

72
(z + 1)H1H0 −

7184z4 − 19370z3 + 11199z2 − 2377z + 8100

864(1− z)z
H0

+
1

36
(−211z − 31)H2

0 −
491

72
(z + 1)H2

+
168584z3 − 149895z2 + 172203z − 160268

5184z
+

491

72
(z + 1)ζ2

]

+N3
c

[

−
8
(

z2 + z + 1
)2

z(z + 1)
H−2 +

8
(

z2 + z + 1
)2

z(z + 1)
H−1H0 − 128(z + 1)H1H0

+
6259z4 − 13598z3 + 11190z2 − 7514z + 4477

27(1− z)z
H0

+
2
(

16z5 − 49z4 − 3z3 + 49z2 + 3z + 14
)

(1− z)z(z + 1)
H2

0 + 128(z + 1)H2

−
19980z3 − 19259z2 + 21100z − 19980

54z

+
4
(

15z4 − 30z3 − 47z2 − 16z − 13
)

z(z + 1)
ζ2

]

, (2.16)
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η(3,4),reggg (z) =
Nf

N2
c

[

85

288
(z + 1)H0 +

85(1− z)
(

4z2 + 7z + 4
)

1728z

]

+Nf

[

− 2(z + 1)H0 −
(1− z)

(

4z2 + 7z + 4
)

3z

]

+N2
cNf

[

491

288
(z + 1)H0 −

5804z3 − 2367z2 + 6207z − 5804

1728z

]

+N3
c

[

671z3− 641z2+751z− 671

9z
−
27z4− 86z3+81z2−22z+27

(1−z)z
H0

]

, (2.17)

η(3,5),reggg (z) = N3
c

8
(

−z3 + z2 − 2z + 1
)

z
, (2.18)

η(3,3),regqg (z) =
N2

c − 1

N3
c

{

37z2 − 74z + 24

256z
H2

0 +
33z2 − 66z − 416

1152z
H2

+
88z3 + 1813z2 − 2876z + 972

2304z
H0 −

(

33z2 − 66z − 416
)

1152z
H1H0

−

(

419z2 − 838z + 356
)

1152z
ζ2 −

1364z3 − 10401z2 + 21360z − 10424

13824z

+NcNf

[

−
665z2 + 398z − 1068

1728z
H0 +

1

6
(z − 2)H2

0

−
768z3 − 9403z2 + 16391z − 8414

5184z

]

+N2
c

[

−
1001z2 − 158z + 732

576z
H2

0 +
19
(

z2 + 2z + 2
)

144z
H−2

−
354z2 + 441z + 37

144z
H2 +−

19
(

z2 + 2z + 2
)

144z
H−1H0

+
354z2 + 441z + 37

144z
H1H0 +

1896z3 − 25061z2 + 20464z − 26652

3456z
H0

+
1213z2 − 204z + 1084

288z
ζ2 +

46448z3 − 19855z2 + 318062z − 347740

20736z

]

+N2
cN

2
f

7
(

z2 − 2z + 2
)

864z

+N3
cNf

[

−
593z2 + 230z + 2536

1728z
H0 +

1

6
(2− z)H2

0

+
1816z3 − 12011z2 + 29119z − 22598

5184z

]

+N4
c

[

26023z2 + 4802z + 19608

2304z
H2

0 −
125

(

z2 + 2z + 2
)

144z
H−2

+
5957z2 + 12670z + 3112

384z
H2 +

125
(

z2 + 2z + 2
)

144z
H−1H0
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−
5957z2 + 12670z + 3112

384z
H1H0

−
42712z3 − 17807z2 + 131476z − 315012

6912z
H0

−
22953z2 + 25846z + 19500

1152z
ζ2

−
394212z3 − 321247z2 + 3718820z − 3958688

41472z

]}

, (2.19)

η(3,4),regqg (z) =
N2

c − 1

N3
c

{

−
565z2 − 1130z + 648

4608z
H0 −

2165z2 − 4828z + 2892

9216z

−NcNf

253
(

z2 − 2z + 2
)

6912z

+N2
c

(

742z2 − 335z + 813

576z
H0 −

3064z3 − 17033z2 + 58726z − 52316

13824z

)

+N3
c Nf

803
(

z2 − 2z + 2
)

6912z

+N4
c

(

49168z3 + 8689z2 + 388000z − 455012

27648z

−
9929z2 + 4726z + 11056

1536z
H0

)}

, (2.20)

η(3,5),regqg (z) =
N2

c − 1

N3
c

z2 − 2z + 2

z

(

9

256
−N2

c

77

384
+N4

c

587

768

)

, (2.21)

η
(3,3),reg
qq̄ (z) =

(N2
c − 1)2

N4
c

{

10z3 − 39z2 + 39z − 16

48z
H0 −

(1− z)
(

121z2 − 206z + 121
)

288z

+Nc

[

−
73z2 + 292z + 196

384z
H2

0 +
13(z + 2)2

24z
H1H0 +

71z2 − 160z − 1092

384z
H0

−
13(z + 2)2

24z
H2 +

13(z+2)2

24z
ζ2 −

(1−z)(569z + 1301)

256z

]

+NcNf

11(1−z)3

216z

+N2
c

[

(1− z)
(

247z2 − 521z + 247
)

216z
−

34z3 − 93z2 + 93z − 28

48z
H0

]

+N2
cNf

[

−
(z + 2)2

48z
H0 −

(1− z)(z + 3)

24z

]

+N3
c

[

347z2 + 236z + 908

384z
H2

0 −
35(z + 2)2

24z
H1H0 −

1193z2 − 496z − 4308

384z
H0

+
35(z + 2)2

24z
H2 +

(1− z)
(

512z2 + 95z + 48419
)

2304z
−

35(z + 2)2

24z
ζ2

]
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+N3
cNf

19(1−z)3

216z

+N4
c

[

5z3 − 12z2 + 12z − 3

12z
H0 −

(1−z)
(

1309z2 − 2762z + 1309
)

864z

]}

, (2.22)

η
(3,4),reg
qq̄ (z) =

(N2
c − 1)2

N4
c

{

−
7(1− z)3

192z
+Nc

[

13(z + 2)2

96z
H0 +

13(1− z)(z + 3)

48z

]

−N2
c

7(1− z)3

48z
+N3

c

[

−
35(z + 2)2

96z
H0 −

35(1− z)(z + 3)

48z

]

+N4
c

35(1− z)3

192z

}

, (2.23)

η(3,3),regqq (z) =
(N2

c − 1)2

N4
c

{

Nc

[

−
73z2 + 292z + 196

384z
H2

0 +
13(z + 2)2

24z
H1H0 +

13(z + 2)2

24z
ζ2

+
71z2 − 160z − 1092

384z
H0 −

13(z + 2)2

24z
H2 −

(1− z)(569z + 1301)

256z

]

+N2
cNf

[

−
(z + 2)2

48z
H0 −

(1− z)(z + 3)

24z

]

+N3
c

[

347z2 + 236z + 908

384z
H2

0 −
35(z + 2)2

24z
H1H0 −

1193z2 − 496z − 4308

384z
H0

+
35(z + 2)2

24z
H2 +

(1− z)
(

512z2 + 95z + 48419
)

2304z
−

35(z + 2)2

24z
ζ2

]}

, (2.24)

η(3,4),regqq (z) =
(N2

c − 1)2

N4
c

{

Nc

[

13(z + 2)2

96z
H0 +

13(1− z)(z + 3)

48z

]

+N3
c

[

−
35(z + 2)2

96z
H0 −

35(1− z)(z + 3)

48z

]}

, (2.25)

η
(3,3),reg
qq′ (z) =

(N2
c − 1)2

N4
c

{

Nc

[

−
73z2 + 292z + 196

384z
H2

0 +
13(z + 2)2

24z
H1H0

+
71z2 − 160z − 1092

384z
H0 −

13(z + 2)2

24z
H2 +

13(z + 2)2

24z
ζ2

−
(1− z)(569z + 1301)

256z

]

+N2
cNf

[

−
(z + 2)2

48z
H0 −

(1− z)(z + 3)

24z

]

+N3
c

[

347z2 + 236z + 908

384z
H2

0 −
35(z + 2)2

24z
H1H0

−
1193z2 − 496z − 4308

384z
H0 +

35(z + 2)2

24z
H2

+
(1− z)

(

512z2 + 95z + 48419
)

2304z
−

35(z + 2)2

24z
ζ2

]}

, (2.26)
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η
(3,4),reg
qq′ (z) =

(N2
c − 1)2

N4
c

{

Nc

[

13(z + 2)2

96z
H0 +

13(1− z)(z + 3)

48z

]

+N3
c

[

−
35(z + 2)2

96z
H0 −

35(1− z)(z + 3)

48z

]}

. (2.27)

Note that η
(3,5),reg
qq̄ (z) = η

(3,5),reg
qq (z) = η

(3,5),reg
qq′ (z) = 0. We have written the results in

terms of harmonic polylogarithms [55]

H0 = log z ,

H1 = − log(1− z) ,

H−1 = log(1 + z) ,

H2 = Li2(z) ,

H−2 = −Li2(−z) .

(2.28)

3 Numerical results for the N3LO hadronic cross-section

In this section, we will study the numerical impact of the partonic N3LO corrections of

section 2 on the hadronic Higgs-boson production cross-section. We normalise all our

results to the leading-order hadronic cross-section, and we factor out the Wilson coefficient

(i.e., we set C = 1). We choose the Higgs-boson mass to be mH = 125GeV and compute

the cross-sections for a proton-proton collider with a center-of-mass energy of 14TeV. We

use the MSTW2008 NNLO parton densities for all orders and the corresponding value of

αs(MZ) [51]. We set the renormalisation and factorisation scales equal to the Higgs-boson

mass, µR = µF = mH .

3.1 Results in the threshold expansion

We start our numerical analysis by studying the behavior of the hadronic cross-section at

N3LO through the first two terms in the threshold expansion. For assessing the numerical

importance of the corrections, it is useful to substitute the number of colours and number

of light quark flavours by their physical values (Nc = 3, Nf = 5 respectively) into eq. (2.12)

and (2.13). We find,

η(3)gg (z)
∣

∣(1−z)0
= − 256 log5(1− z) (→ 115.33%)

+ 959 log4(1− z) (→ 101.07%)

+ 1254.029198 . . . log3(1− z) (→ −32.15%)

− 11089.328274 . . . log2(1− z) (→ −89.41%)

+ 15738.441212 . . . log(1− z) (→ −55.50%)

− 5872.588877 . . . (→ −14.31%) (3.1)

– 12 –



J
H
E
P
0
3
(
2
0
1
5
)
0
9
1

and

η(3)qg (z)
∣

∣(1−z)0
=

1283

72
log5(1− z) (→ −14.74%)

−
5215

2592
log4(1− z) (→ −0.33%)

− 114.569021 . . . log3(1− z) (→ 4.58%)

+ 513.562980 . . . log2(1− z) (→ 6.51%)

− 313.985230 . . . log(1− z) (→ 1.77%)

+ 204.620790 . . . (→ 0.83%). (3.2)

In parentheses we show the relative size of the correction which each term induces to the

hadronic cross-section relatively to the leading order contribution from η
(0)
gg = δ(1− z).

We find that the formally most singular terms cancel against less singular ones. In

addition to the large cancellations among different powers of logarithms, we notice that

the formal hierarchy of their magnitude does not correspond to a similar hierarchy at the

hadronic cross-section level. These observations are the same as we had already noted in

ref. [23] for the leading terms of the soft expansion. For ease of comparison, we also recite

here the analogous decomposition of the leading terms in the soft expansion [23]

η(3)gg (z) ≃

[

log5(1− z)

1− z

]

+

216 . (→ 93.72%)

−

[

log4(1− z)

1− z

]

+

230 (→ 20.01%)

−

[

log3(1− z)

1− z

]

+

1824.362531 . . . (→ −39.90%)

+

[

log2(1− z)

1− z

]

+

7116.015302 . . . (→ −52.45%)

−

[

log(1− z)

1− z

]

+

6062.086738 . . . (→ −22.88%)

+

[

1

1− z

]

+

1466.478272 . . . (→ −5.85%)

+ δ(1− z) 1124.308887 . . . (→ 5.1%). (3.3)

The total contribution of η
(3)
gg (z)∣

∣(1−z)0
to the hadronic cross-section is about 25% of the

Born contribution, while the contribution of η
(3)
qg (z)∣

∣(1−z)0
is about −1.38% of the Born

contribution. This has to be contrasted with the leading soft contribution at N3LO from

η
(3)
gg (z)∣

∣(1−z)−1
which is only −2.25% of the Born. While the next-to-soft correction for

kinematics corresponding to threshold production should be suppressed, instead it turns

out to be much larger than the leading threshold contribution.

It is often preferred in the literature to perform the threshold expansion in Mellin

space. The Mellin transformation of a function f(z) is defined as

M [f ](N) =

∫ 1

0
dz zN−1 f(z) . (3.4)
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The Mellin transformation is invertible, and the inverse transformation reads

M−1 [g] (z) =

∫ c+i∞

c−i∞

dN

2πi
g(N)x−N , (3.5)

where the real part of c is chosen such that the poles of g(N) lie to the left of the inte-

gration contour. One of the main properties of the Mellin transformation is that it maps

convolutions as in eq. (2.3) to the product of the Mellin transformations,

M [A⊗B](N) = M [A](N)M [B](N) . (3.6)

It follows that the convolution of the partonic cross-sections with the parton densities

factorises and turns into an ordinary product in Mellin space. Hence, in order to compute

the Mellin transformation of the total hadronic cross-section, we need the Mellin transfor-

mations of the parton densities. To this effect, we fit the parton densities for a fixed scale

to a functional form of the type

fi(x) = xai(1− x)bi
(

ci,0 + ci,1x+ ci,2x
2 + . . .

)

,

for which we can easily compute the Mellin transformation using Euler’s Beta function,

M
[

xa(1− x)b
]

(N) =
Γ(N + a)Γ(1 + b)

Γ(1 + a+ b+N)
. (3.7)

For the partonic cross-section we perform an expansion around the threshold limit, which

in Mellin space corresponds to taking N → ∞. Through O( 1
N
), we find:

M
[

η(3)gg

]

(N) ≃ 36 log6N (→ 0.0013%)

+ 170.679 . . . log5N (→ 0.0226%)

+ 744.849 . . . log4N (→ 0.2570%)

+ 1405.185 . . . log3N (→ 1.0707%)

+ 2676.129 . . . log2N (→ 4.0200%)

+ 1897.141 . . . logN (→ 5.1293%)

+ 1783.692 . . . (→ 8.0336%)

+ 108
log5N

N
(→ 0.0105%)

+ 615.696 . . .
log4N

N
(→ 0.1418%)

+ 2036.407 . . .
log3N

N
(→ 0.9718%)

+ 3305.246 . . .
log2N

N
(→ 2.9487%)

+ 3459.105 . . .
logN

N
(→ 5.2933%)

+ 703.037 . . .
1

N
(→ 1.7137%). (3.8)

In parentheses we show the relative size of the correction which each term induces to the

hadronic cross-section relatively to the leading order contribution from η
(0)
gg = δ(1− z). In
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Mellin space the pattern of corrections in the threshold expansion is different from the one

observed in z-space. As it was also observed for the leading soft terms and parts of the next-

to-soft terms in ref. [22], we find that through O
(

1
N

)

the corrections are always positive.

Nevertheless, we observe that the formally leading logarithms contribute the least to the

hadronic cross-section. In total, the soft-virtual (SV) terms (lognN) contribute about

∼ 18% of the Born to the cross-section, while the next-to-soft (NS) terms (lognN/N)

contribute about ∼ 11% of the Born. We therefore conclude that, unlike common folklore

suggests, the threshold limit does in fact not dominate the cross-section at LHC energies,

but there is a sizeable contribution from terms beyond threshold.

As we have emphasised in ref. [23], there is an ambiguity in how to convolute an

approximate partonic cross-section with the parton densities. For example, we can recast

the hadronic cross-section in the form,

σ = τ1+n
∑

ij

(

f
(n)
i ⊗ f

(n)
j ⊗

σ̂ij(z)

z1+n

)

(τ) (3.9)

where

f
(n)
i (z) ≡

fi(z)

zn
. (3.10)

σ is independent of the arbitrary parameter n as long as the partonic cross-section is known

exactly. Mellin transforming eq. (3.9), we obtain

M
[ σ

τ1+n

]

(N) =
∑

ij

M
[

f
(n)
i

]

(N)M
[

f
(n)
j

]

(N)M

[

σ̂(z)

z1+n

]

(N)

=
∑

ij

M [fi] (N − n)M [fj ] (N − n)M

[

σ̂(z)

z

]

(N − n) .

(3.11)

If only a finite number of terms in the threshold expansion of the partonic cross-sections

are kept,

σ̂ij(z)

z1+n
≃ σ̂ij(z)|(1−z)−1 + σ̂ij(z)|(1−z)0 + n(1− z) σ̂ij(z)|(1−z)−1 +O(1− z)1 (3.12)

then the convolution integral is sensitive to varying the arbitrary parameter n. This am-

biguity is expected to be reduced when including higher-order terms in the threshold ex-

pansion. This effect was already observed at NNLO [49, 50], corresponding to expanding

around threshold the 1/z flux-factor as part of the partonic cross-section or evaluating

it unexpanded as part of the parton luminosity. A similar ambiguity appears to be re-

sponsible [53, 54] for the bulk of the difference in the numerical predictions for the Higgs

cross-section at N3LO in various approaches and implementations of threshold resumma-

tion [16, 17].

In the remainder of this section we analyse the impact of this truncation when we

use the results of section 2, which contains the most precise information on the threshold

expansion of the cross-section at N3LO to date. In order to quantify the trustworthiness

of the threshold approximation, we study the dependence of the result on the parameter n

defined through eq. (3.9), both in z and in Mellin-space.
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Figure 1. Soft-virtual and next-to-soft corrections at NLO, NNLO and N3LO normalised to the

Born cross-section in z−space as a function of the artificial parameter n in eq. (3.12).
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Figure 2. Soft-virtual and next-to-soft corrections at NLO, NNLO and N3LO normalised to the

Born cross-section in Mellin space as a function of the artificial parameter n in eq. (3.12).

In figure 1 we plot the soft-virtual and next-to-soft corrections at NLO, NNLO and

N3LO normalised to the Born cross-section in z−space as a function of the artificial pa-

rameter n in eq. (3.12). In figure 2 we plot the soft-virtual and next-to-soft corrections at

NLO, NNLO and N3LO normalised to the Born cross-section in Mellin space as a function

of the artificial parameter n in eq. (3.12). We also plot in both figures the known NLO
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NLO NNLO N3LO

z − space 63.42% 376.5% −1106.5%

Mellin− space 14.02% 32.71% 59.78%

Table 1. The ratio of the next-to-soft and the soft-virtual contribution in Mellin and z−space for

n = 0 at NLO, NNLO and N3LO.

and NNLO corrections as straight lines since they are insensitive to the value of n. The

full NLO corrections are about 110% of the Born and the full NNLO corrections are about

60%. The sensitivity of the ‘leading soft’ corrections to n is large at all perturbative orders

and in both spaces. This sensitivity is reduced when the next-to-soft terms are included,

where a plateau at NLO and NNLO is formed for values of n larger than about −1 and

up to very large positive values of n. While an improved convergence is visible, at N3LO

the sensitivity of the next-to-soft correction in n is enhanced in comparison to NLO and

NNLO and there is much less of a plateau. The increased sensitivity of the truncated

expansion to the artificial parameter n is a symptom of the fact that the threshold limit

is less dominant at higher orders. In table 1 we present the ratio of the NS over the SV

contribution in the gluon-gluon channel (this ratio is infinite in all other channels) both in

Mellin and z−space. We observe that the ratio increases at higher perturbative orders and

hence the soft approximation is increasingly untrustworthy. This behavior is particularly

pronounced in z−space.

Is it possible to use the soft-virtual [23] or the next-to-soft approximation presented

in this article in order to estimate precisely the N3LO corrections to the Higgs cross-

section? The fact that the soft expansion does not yet appear to be convergent, as we

discussed above, does not justify such attempts theoretically. Nevertheless, efforts have

been made in the literature to guess the full N3LO corrections from available or estimated

soft terms using empirical arguments based on the experience from the behavior of the

NLO and NNLO corrections. The level of precision which must be achieved with empirical

estimations should be better than the ∼ ±4% N3LO scale variation [48] which corresponds

to ±12% of the Born (the normalization of our plots). We do not believe that empirical

arguments should replace proper convergence criteria. However, if we entertain the idea

that a guess can be made by comparing the soft terms with the full result at NLO and

NNLO, we see that the next-to-soft approximation for n ∈ [−1, 3] is close to the full result

at NLO (110% of the Born) and NNLO (60% of the Born) in both z−space and Mellin

space, with an envelope of predictions ranging from 109% to 140% of the Born at NLO

and from 52% to 73% of the Born at NNLO. At N3LO, the variation of the cross-section

in both spaces for the same range of n is from −22% to 33% of the Born, which is larger

than the target precision at that order.

3.2 Results for the log5,4,3(1− z) terms in full kinematics

It is clear from the above that a reliable estimate of the N3LO correction of the Higgs cross-

section requires even more terms in the threshold expansion. As explained in sections 2,

we have been able to obtain the coefficients of the log5,4,3(1 − z) terms in a closed form,

valid for arbitrary values of z. These corrections are insensitive to the artificial parameter
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gg qg qq̄ qq qQ

log5(1− z) 111.908% −15.006% 0% 0% 0%

log4(1− z) 93.868% −0.780% 0.002% 0.002% 0.009%

log3(1− z) −39.201% 3.459% 0.004% 0.003% 0.017%

Table 2. The contribution of the log5,4,3(1 − z) in full kinematics to the hadronic cross-section

normalized to the Born, for each partonic channel.

n, and thus independent of whether we perform the computation in Mellin or z−space.

Their contribution to the hadronic cross-section from each partonic channel normalized to

the Born hadronic cross-section (setting the Wilson coefficient C = 1) is shown in table 2.

Comparing the effect of the full log5,4,3(1 − z) coefficients to the truncated ones in the

(1− z) expansion, as in eq. (3.1) and (3.2), we find that the full coefficients give systemat-

ically lower contributions to the hadronic cross-section. Knowing the exact log5,4,3(1− z)

coefficients, we can restrict the threshold approximation only to the coefficients of the

log2,1,0(1 − z) terms. This mixed approach would not have been justified if we had found

that the formal threshold expansion hierarchy was reflected in the results after the inte-

gration over the parton densities. However, this is not the case and it is therefore equally

justified (or unjustified) to include the full kinematic dependence of the coefficients of the

‘leading’ logarithms. We present in figure 3 the corresponding gluon-channel contribution

to the hadronic cross-section normalised to the Born cross-section, as a function of the

artificial exponent n. As expected from the comparison of the results of table 2 in full

kinematics and the results of eqs. (2.12) in the threshold expansion for the log5,4,3(1 − z)

terms, the inclusion of the full leading logarithms lowers the value of the N3LO correction.

The shape as a function of n, however, does not substantially change. This indicates that

the bulk of the n dependence is carried by the coefficients of the yet-unknown log2,1,0(1−z)

terms, and including the exact coefficients of log5,4,3(1− z) does not substantially improve

the convergence of the threshold expansion. It is unclear whether the inclusion of the yet

unknown full coefficients for the log2,1,0(1 − z) terms in the future will further reduce or

increase the cross-section. In figure 4, we include the full log5,4,3(1− z) terms exactly and

compute the remaining known N3LO terms as a threshold expansion in Mellin space. The

reduction of the cross-section is even more pronounced in this case. For example, setting

n = 0, the pure next-to-soft approximation in Mellin space yields a positive contribution

of about +29.5% of the Born, while including the exact contribution from log5,4,3(1 − z)

and expanding in Mellin space the remaining terms through next-to-soft yields a negative

N3LO correction of about −8.5% of the Born.

The changes that we observe by including the full coefficients of log5,4,3(1 − z) with

respect to pure next-to-soft approximations have to be compared with smaller scale varia-

tion uncertainty at N3LO [48], which is about ±12% of the Born cross-section. While in

this publication we have presented the most advanced theoretical calculation of the N3LO

corrections, we conclude that this is insufficient to reduce the theoretical uncertainty of the

Higgs-boson cross-section.
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Figure 3. The hadronic cross-section at N3LO where the log5,4,3(1− z) and δ(1− z) contributions

are computed in full kinematics while the remaining log2,1,0(1− z) terms are computed in the soft-

virtual and next-to-soft approximation in z−space as a function of the artificial parameter n. The

cross-section is normalized to the Born cross-section and only the dominant gg-channel is included.

4 Conclusions

In this paper we have presented new results for Higgs-boson production at N3LO beyond

threshold. More precisely, we have computed for the first time the full next-to-soft correc-

tions to Higgs-boson production, as well as the exact results for the coefficients of the first

three leading logarithms at N3LO. Our results constitute a major milestone towards the

complete computation of the Higgs-boson cross-section via gluon-fusion at N3LO.

Having at our disposal the formally most accurate result for the threshold expansion

available to date, we are naturally lead to the question of how reliable phenomenological

predictions based on this result would be. In a second part of our paper we therefore per-

formed a critical appraisal of the threshold approximation. Unfortunately, the convergence

of the threshold expansion appears to become less reliable with each further order in the

perturbative expansion, as formally subleading terms are not suppressed in comparison to

leading terms. In this context, we make the alarming observation that the ratio of the

next-to-soft over the soft-virtual corrections increases from NLO to NNLO and to N3LO

showing that the threshold approximation deteriorates when applied to higher orders in

the perturbative QCD expansion.

A second problem in using the threshold expansion is that there is an ambiguity in

defining the convolution integral for the hadronic cross-section from the threshold expan-
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Figure 4. The hadronic cross-section at N3LO where the log5,4,3(1− z) and δ(1− z) contributions

are computed in full kinematics while the remaining log2,1,0(1 − z) terms are computed in the

soft-virtual and next-to-soft approximation in Mellin space as a function of the artificial parameter

n in eq. 3.12. The cross-section is normalized to the Born cross-section and only the dominant

gg-channel is included.

sion of the partonic cross-sections. We have introduced in eq. (3.9) a way to quantify

this ambiguity by introducing a parameter n such that the hadronic cross section is in-

dependent of n if no approximation is made. The truncation of the threshold expansion,

however, introduces a dependence on n, and the size of this dependence is a measure for

the convergence of the threshold expansion. We have performed a numerical study of the

n-dependence by including terms beyond the strict threshold limit, both in z-space and

in Mellin-space. We observe that in all cases the numerical dependence on n is decreased

when including corrections beyond threshold, in agreement with the expectations. At NLO

and NNLO, a plateau (numerically close to the true value) forms when next-to-soft terms

are included. At N3LO, however, we observe that no plateau is visible, indicating that

empirical estimations of the N3LO cross-section based on the experience from NLO and

NNLO may fail. In fact, by including our exact results with full kinematic dependence

of the coefficients of the first three leading logarithms we observe that the hadronic cross-

section shifts significantly to lower values than what one obtains with the next-to-soft

approximation.

Based on these considerations, we conclude that it is not possible at this point to

obtain a reliable prediction for the Higgs-boson cross-section at N3LO, and that further

theoretical developments are needed to achieve this goal. This is left for future work.
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[47] M. Höschele, J. Hoff, A. Pak, M. Steinhauser and T. Ueda, Higgs boson production at the

LHC: NNLO partonic cross sections through order ǫ and convolutions with splitting functions

to N3LO, Phys. Lett. B 721 (2013) 244 [arXiv:1211.6559] [INSPIRE].

[48] S. Buehler and A. Lazopoulos, Scale dependence and collinear subtraction terms for Higgs

production in gluon fusion at N3LO, JHEP 10 (2013) 096 [arXiv:1306.2223] [INSPIRE].

[49] S. Catani, D. de Florian and M. Grazzini, Higgs production in hadron collisions: soft and

virtual QCD corrections at NNLO, JHEP 05 (2001) 025 [hep-ph/0102227] [INSPIRE].

[50] R.V. Harlander and W.B. Kilgore, Soft and virtual corrections to proton proton → H + x at

NNLO, Phys. Rev. D 64 (2001) 013015 [hep-ph/0102241] [INSPIRE].

[51] A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC,

Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].

[52] C. Anastasiou, S. Buehler, F. Herzog and A. Lazopoulos, Inclusive Higgs boson cross-section

for the LHC at 8TeV, JHEP 04 (2012) 004 [arXiv:1202.3638] [INSPIRE].

[53] G. Sterman and M. Zeng, Quantifying Comparisons of Threshold Resummations,

JHEP 05 (2014) 132 [arXiv:1312.5397] [INSPIRE].

[54] M. Bonvini, S. Forte, G. Ridolfi and L. Rottoli, Resummation prescriptions and ambiguities

in SCET vs. direct QCD: Higgs production as a case study, JHEP 01 (2015) 046

[arXiv:1409.0864] [INSPIRE].

[55] E. Remiddi and J.A.M. Vermaseren, Harmonic polylogarithms,

Int. J. Mod. Phys. A 15 (2000) 725 [hep-ph/9905237] [INSPIRE].

– 24 –

http://dx.doi.org/10.1016/j.physletb.2013.03.003
http://arxiv.org/abs/1211.6559
http://inspirehep.net/search?p=find+EPRINT+arXiv:1211.6559
http://dx.doi.org/10.1007/JHEP10(2013)096
http://arxiv.org/abs/1306.2223
http://inspirehep.net/search?p=find+EPRINT+arXiv:1306.2223
http://dx.doi.org/10.1088/1126-6708/2001/05/025
http://arxiv.org/abs/hep-ph/0102227
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0102227
http://dx.doi.org/10.1103/PhysRevD.64.013015
http://arxiv.org/abs/hep-ph/0102241
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0102241
http://dx.doi.org/10.1140/epjc/s10052-009-1072-5
http://arxiv.org/abs/0901.0002
http://inspirehep.net/search?p=find+EPRINT+arXiv:0901.0002
http://dx.doi.org/10.1007/JHEP04(2012)004
http://arxiv.org/abs/1202.3638
http://inspirehep.net/search?p=find+J+JHEP,1204,004
http://dx.doi.org/10.1007/JHEP05(2014)132
http://arxiv.org/abs/1312.5397
http://inspirehep.net/search?p=find+EPRINT+arXiv:1312.5397
http://dx.doi.org/10.1007/JHEP01(2015)046
http://arxiv.org/abs/1409.0864
http://inspirehep.net/search?p=find+EPRINT+arXiv:1409.0864
http://dx.doi.org/10.1142/S0217751X00000367
http://arxiv.org/abs/hep-ph/9905237
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9905237

	Introduction
	Analytic results for the N**3LO partonic cross-section
	The gluon-fusion cross-section
	Next-to-soft corrections
	Coefficients of leading logarithms with exact z dependence

	Numerical results for the N**3LO hadronic cross-section
	Results in the threshold expansion
	Results for the log**(5,4,3)(1-z) terms in full kinematics

	Conclusions

