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1 Introduction

Holographic duality has provided condensed matter physicists with a novel way to study

the properties of strongly correlated transport and dynamics in theories without quasipar-

ticles [1–3]. Charged black holes become dual to states of matter at finite charge density

and temperature. At finite density, however, it becomes crucial to include the effects of

momentum relaxation in order to obtain a finite direct electrical conductivity, σdc, at zero

frequency and momentum.1 These momentum relaxing effects may either be studied by

numerically constructing a charged black hole which breaks translational invariance [4–6],

or analytically, so long as the black hole breaks translation invariance only weakly [7–10],

translational invariance is broken via massive gravity [11–14], “helical lattices” [15, 16] or

“Q-lattices” [17–19].

In this paper we show, through a direct holographic computation, that the low-

frequency conductivity is given by a Drude peak in a wide class of holographic metals

where translational symmetry is weakly broken:

σ(ω) =
σdc

1− iωτ
. (1.1)

These metals have coherent transport without quasiparticles, in the language of [20]. Fur-

thermore, σdc and τ are identical to the results computed — independently of holography

— through the memory function formalism [21–23]. Memory functions have been used,

in conjunction with holographic methods, to evaluate conductivities in the past [7, 24],

as well as in non-holographic condensed matter models for strange metals as well [25–28].

1This follows directly from the fact that at finite density, one can generate an electrical current without

any energy in a translationally invariant theory by simply boosting to a reference frame with a relative

velocity to the rest frame of the metal.
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More recently it has been noted that exact computations of σdc — the direct current con-

ductivity at zero momentum and frequency — admit temperature scaling in agreement

with results found through memory functions [8, 9]. In fact, the correspondence hinted

at in these works is exact, including all other prefactors. A short computation within

the memory function framework necessitates the emergence of a Drude peak (though with

complications when magnetic fields and/or strong charge diffusion is present [29]). It is not

obvious from a purely holographic computation why this Drude peak should be universal,

and how it should arise — other than resorting to the argument that these metals should

be describable by the memory function formalism. We will address these points in this

paper.

We begin with a review of why the Drude peak is universal, via hydrodynamic argu-

ments, in section 2. We then describe how to the Drude peak arises within the memory

function formalism in section 3. Section 4 describes the holographic computation of σ(ω),

and a proof of equivalence with the results of section 3.

2 Hydrodynamics and the Drude peak

Drude peaks generically emerge from quantum field theories described by hydrodynam-

ics with a small amount of momentum relaxation. Unlike the historical model of Drude

physics (electrons scattering off of a lattice or impurities), quasiparticles need not exist

to observe (1.1). Consider the long-time equation for momentum relaxation in a charged

fluid, placed in an electric field in the x-direction:

∂tΠx + ∂xP = −Πx

τ
+QEx. (2.1)

Here Πx is the x-momentum density, P is the pressure, τ is the momentum relaxation time,

and Q is the charge density (at rest) of the fluid. As we are interested in zero-momentum

transport, at frequency ω this equation simplifies to

(

1

τ
− iω

)

Πx = QEx. (2.2)

To compute

σdc =
Jx
Ex

, (2.3)

we need to relate Jx to Πx.

At this point, let us specialize further to a relativistic quantum field theory, and work

in units where ~ = c = 1.2 All holographic models we will study will fall into this class of

theories. In such a theory, we find that at small velocities vx, the momentum density is

given by

Πx = (ǫ+ P )vx, (2.4)

2Note that, from the perspective of condensed matter physics, “c” here is the effective emergent speed

of light in the low energy Lorentz-invariant theory.
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where ǫ is the energy density of the fluid at rest and P is the pressure, and

Jx = Qvx. (2.5)

Combining these equations we can relate Jx to Πx, and find a Drude conductivity of the

form (1.1) with

σdc =
Q2τ

ǫ+ P
. (2.6)

This is a special limiting case of more general hydrodynamic results found in [26]. It is

valid when charge diffusion is negligible, and there is no magnetic field.

3 Memory functions

Hydrodynamics does not give us an explicit expression for any thermodynamic quantities,

or τ . The thermodynamic functions such as ǫ and P are “intrinsic” to the quantum

field theory, and are approximately independent to the precise mechanism of momentum

relaxation (so long as τ−1 is small). On the other hand, τ is “extrinsic” and sensitive to the

precise way in which momentum can relax. The memory function analysis provides us with

a way of computing τ , given that we know the microscopic method by which momentum

can relax.

More precisely, in a time-reversal symmetric theory in which momentum is the only

almost conserved quantity, the memory matrix framework tells us that

σ(ω) =
χ2
JP

MPP (ω)− iωχPP
, (3.1)

where χPP is the momentum-momentum susceptibility, χJP is the current-momentum sus-

ceptibility, and MPP (ω) is the momentum-momentum component of the memory matrix.

If there are other long-lived conserved quantities, then a matrix generalization of this

equation applies [23]. For us, MPP (ω) is a small quantity and may thus be computed

perturbatively. In our relativistic field theories, one finds

χPP = ǫ+ P, (3.2a)

χJP = Q. (3.2b)

To derive these results, we note that the conjugate thermodynamic variable to momentum

Px is velocity vx. The susceptibility χαPx
is equal to 〈α〉/vx as vx → 0. (3.2) then follows

from (2.4) and (2.5). As ω → 0, one finds [7]

MPP (0) = lim
ω→0

Im
(

GR
ṖxṖx

(ω)
)

ω
≡ ǫ+ P

τ
, (3.3)

where Ṗx is the time derivative of the total x-momentum. We will argue in the course of

our holographic discussion that finite frequency corrections to the memory matrix will be

extremely small in the regime we are interested in. τ may thus be computed from this
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memory matrix component at ω = 0, and a simple calculation verifies that (1.1) and (2.6)

are recovered.

Now, let us specialize further to a quantum field theory with a translationally invariant

Hamiltonian H0, perturbed to

H = H0 −
∫

ddx h(x)O(x), (3.4)

where O is a Lorentz scalar operator in the original theory, and h(x) is a (real-valued)

static, spatially varying field. The quantum operator

Ṗx = i[Px, H] = −i

∫

ddx h(x)[Px,O(x)] =

∫

ddx h(x)(∂xO)(x). (3.5)

We then employ

GR
ṖxṖx

(ω) =

∫

ddkddq h(k)h(q)GR
∂xO∂xO(k,q, ω). (3.6)

The perturbative parameter that makes MPP small is τ−1 ∼ h2. At leading order in h, GR

is the Green’s function of a translationally invariant theory and so the integral identically

vanishes when k+ q 6= 0.

If we have a “lattice” or periodic potential where

h(x) = h0 cos(k0 · x), (3.7)

then we obtain

GR
ṖxṖx

(ω) =
h20
2
k20G

R
OO(k0, ω). (3.8)

In the case of disorder, the function h(x) will be random. It is common to take h(x) to be

a zero-mean Gaussian random function with mean and variance given by (E[· · · ] denotes
disorder averaging)

E[h(x)] = 0, (3.9a)

E[h(x)h(y)] = ε2δ(x− y). (3.9b)

We obtain [24]

GR
ṖxṖx

(ω) =

∫

ddkddq E[h(k)h(q)]k2xG
R
OO(k,q, ω) =

∫

ddkddq ε2k2xδ(k+ q)GR
OO(k,q, ω)

=

∫

ddk ε2k2xG
R
OO(k, ω). (3.10)

We approximate GR
ṖxṖx

by its average as fluctuations are suppressed in the large volume

limit [10]. More generally, if we assume that h(x) and its derivatives are non-vanishing

(almost) everywhere in space, we will find

GR
ṖxṖx

(ω) “ = ”

∫

ddk|h(k)|2k2xGR
OO(k, ω). (3.11)
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We have belabored this rather trivial discussion to emphasize the following — in the last

equation, the quotes around the equals sign arise because technically, we have neglected a

δ function enforcing momentum conservation in |h(k)|2.3 However, writing the equation in

the form (3.11) is convenient: we will see a similar equation with a “missing” δ function

arise holographically. Thus

ǫ+ P

τ
≡

∫

ddk |h(k)|2k2x × lim
ω→0

Im
(

GR
OO

(k, ω)
)

ω
. (3.12)

4 Holography

Now let us turn to holography. We assume that d > 1. We consider solutions of the

Einstein-Maxwell-dilaton (EMD) system with action

S =

∫

dd+2x
√−g

(

1

2κ2

(

R− 2(∂MΦ)2 − V (Φ)

L2

)

− Z(Φ)

4e2
FRSF

RS

)

, (4.1)

where gMN is the bulk metric (dual to the stress tensor of the boundary theory), AM is a

U(1) gauge field (dual to the electric current of the boundary theory), and Φ is a dilaton

field. These holographic models are known to give rise to rich families of boundary theories;

we focus on metallic phases in this paper.

Let us now, without proof, state some results about static, isotropic geometries that

solve the equations of motion associated with this EMD action. We use the conventions

and results of [10] in what follows. These solutions have metric

ds2 =
L2

r2

[

a(r)

b(r)
dr2 − a(r)b(r)dt2 + dx2

]

, (4.2)

where b(r) plays the role of an “emblackening factor”: in particular, near the black hole

horizon (of planar topology), located at finite r = rh, we find

b(r) ≈ 4πT (rh − r), (4.3)

where T is the Hawking temperature of the black hole, which also equals the dual field

theory’s temperature; a is finite near the horizon. Near the boundary (r = 0), a(0) =

b(0) = 1; Φ(r = 0) = 0, Z(0) = 1 and V (0) = −d(d + 1); the asymptotic geometry is

that of AdS. The UV of the continuum field theory is thus approximately conformal. The

profile of the gauge field is

A = p(r)dt (4.4)

where p(rh) = 0, and the asymptotic behavior near the boundary is

p(r) ≈ µ− rd−1

d− 1

e2Q
Ld−2

+ · · · . (4.5)

3For example, in the disorder case, using h(−k) = h(k) and E[h(k)h(q)] = ε2δ(k+q), (but without the

δ function) in (3.11), we obtain (3.10). Crudely, one should think of dividing |h(k)|2 by δ(0) in (3.11).
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µ is the chemical potential associated with the conserved charge. One finds that the object

C, defined as

C ≡ (ab)′

ard
+

2Qκ2
Ld

p (4.6)

is independent of r, where here and henceforth, primes denote r-derivatives. There is, of

course, much more that can be said about these geometries, but this is all we will need for

the present paper. Although we have assumed (for technical ease) that the UV geometry

is AdS, the remainder of the geometry may be completely arbitrary, so long as it may be

constructed as a solution of EMD theory.

Now, we will add to this geometry a fourth field: a neutral scalar ψ, dual to the

operator O sourced by the translation symmetry breaking field h(x). The action of ψ is

Sψ = −1

2

∫

dd+2x
√−g

(

(∂Mψ)
2 +B(Φ)ψ2

)

. (4.7)

If the operator O has (UV) dimension ∆ > (d+1)/2 (we choose this so that the operator O
is described by standard quantization in holography), then the near-boundary asymptotic

expansion of O is

ψ(r) = rd+1−∆ψ
(0)(x)

Ld/2
+ · · ·+ r∆

ψ(1)(x)

Ld/2
+ · · · (4.8)

and B(0) = ∆(∆ − d − 1)/L2. In general, B should be chosen non-trivially in order to

obtain results which match boundary theory expectations [9]. The boundary conditions

which imply that the Hamiltonian of the boundary theory is given by (3.4) are imposed by

setting

ψ(0)(x) = h(x). (4.9)

This will induce a small backreaction on the original EMD system, as the bulk stress tensor

of ψ is a source in Einstein’s equations. However, this source is O(h2), and following [8, 9]

we may treat the geometry at O(h) (thus the background metric is unperturbed) in order to

compute the conductivity at leading order in h (as will be clear in the derivation shortly).

We may thus take

ψ =

∫

ddk h(k)ψ0(k, r)e
ik·x, (4.10)

with ψ0(k, r → 0) ∼ L−d/2rd+1−∆, and ψ0 obeying the linear equation of motion associated

with the action (4.7), subject to a regularity condition at r = rh, and the boundary

condition (4.9). A holographic calculation can explicitly determine the scale of h at which

this approximation breaks down [9].

The expectation value of O(x) in our state at finite density and temperature, and in

the background field h, is given by [30]

〈O(x)〉 = (2∆− d− 1)ψ(1)(x). (4.11)

If the asymptotic expansion of δAx near r = 0 is

δAx = δA(0)
x +

rd−1

d− 1
δA(1)

x + · · · , (4.12)

– 6 –
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then

σ(ω) =
Ld−2

iωe2
δA

(1)
x

δA
(0)
x

. (4.13)

We will use these facts to compute Green’s functions and conductivities in this section.

4.1 Drude peak

To compute the conductivity, we need to compute the response of our background EMD-

scalar solution to a perturbation δAxe
−iωt (at zero momentum) — equivalent in the bound-

ary theory to imposing a small electric field. The solution need only be found within linear

response theory, as is standard, but the computation below will proceed a bit different than

that in [8, 9], as we must explicitly consider finite ω effects. δAx can only consider spin 1

perturbations under the spatial SO(d) isometry of the metric. These perturbations are (in

axial gauge δgrx = 0):

δAx, δg̃tx ≡ r2

L2
δgtx, ∂xδψ, ∂2∂xδψ, . . .

By computing the full linear response problem (we discuss the remainder of the necessary

boundary conditions later), we can find the near boundary asymptotic behavior of δAx(r)

and compute σ(ω) from (4.13).

Linearizing the EMD system, one finds the equations of motion:

Ld

2κ2ard
δg̃′tx = QδAx − LdδPx, (4.14a)

e2Q
Ld−2

δg̃′tx =
(

br2−dZδA′
x

)′

+
r2−dZω2

b
δAx, (4.14b)

−kxωψ0(k, r)
2

brd
δg̃tx =

(

b

rd
ψ0(k, r)

2

(

δψ(k, r)

ψ0(k, r)

)′)′

+
ω2

brd
ψ0(k, r)δψ(k, r), (4.14c)

where we have defined

δPx ≡ b

rdω

∫

ddk kx|h(k)|2ψ0(k, r)
2

(

δψ(ω,k, r)

ψ0(k, r)

)′

. (4.15)

In these equations, δAx, δg̃tx and δPx are Fourier components at zero momentum and

finite (but small) ω; they are functions of r only. The equations of (4.14) are in order: the

rx-component of Einstein’s equations, the x-component of Maxwell’s equations, and the

ψ wave equation at momentum k; all of these equations have been integrated over all of

space. Up to the O(ω2) terms in the scalar EOM, the equations close to a finite set of

equations for δAx, δPx, and δg̃tx. Since we want to work at finite frequencies ω ≪ T , but

ωτ possibly ≫ 1, it requires some care to argue that we need only consider these three

perturbations.

We wrote coefficients of the form
∫

ddk |h(k)|2ψ0(k, r)
2 above. This is analogous

to (3.11) — there is a “missing” δ function. The reason this arises is that we have integrated

over all of space in order to isolate the zero momentum mode δPx — this induces an

“infinity” factor analogous to δ(0) in any term which does not vary in space: for example,

– 7 –
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the other two terms in (4.14a). Properly regulating this infinity, we recover the equations

above — provided that |h(k)|2 is understood to be “missing” a factor δ(0), as in section 3.

Our strategy is to show that the linearized fluctuations need only be computed to O(ω)

in order to compute the linear response problem to all orders in ωτ . This will imply that

we can focus on the ω → 0 limit of the equations of motion, where we need only solve a

linear response problem in three variables, instead of an infinite number.

Let us begin by studying the linearized equations of motion when ω = 0 exactly — we

will not worry about computing the conductivity just yet. In this case, the equations of

motion reduce exactly to

Ld

2κ2ard
δg̃′tx = QδAx − LdδPx, (4.16a)

e2Q
Ld−2

δg̃′tx =
(

br2−dZδA′
x

)′

, (4.16b)

δP ′
x = −δg̃tx

[

1

brd

∫

ddk|h(k)|2k2xψ0(k, r)
2

]

. (4.16c)

These equations are identical to those of massive gravity [13] in the limit ω → 0, with

the object in brackets in (4.16c) playing the role of the graviton mass. It is important to

remember that it is δPx which stays O(1) as ω → 0, and not δψ(ω,k, r), which is O(ω). Let

us exactly find — at leading order in h — all of the solutions of these equations; counting

derivatives we find there must be 4 linearly independent solutions. The first is spotted

by inspection (we will not normalize any of these linearly independent solutions with the

correct dimensions):

δAx = 1, δPx =
Q
Ld
, δg̃tx = 0. (4.17)

In fact, this is the only perturbation that, at leading order in h, couples to the ψ sector.

All modes will couple to this sector, but only at O(h2), which will prove to be subleading

in our computation of the conductivity. The remaining three modes are, at leading order,

modes of the translationally invariant theory with ψ = 0, and may also be written down

exactly. First there is a “diffeomorphism” mode

δg̃tx = 1, δAx = 0, δPx = 0. (4.18)

The next mode may be found by performing a Galilean boost to the static solution:

δAx = p+ ph, δg̃tx = 1− ab, δPx = 0 (4.19)

where ph is a constant, and we have conveniently chosen that δg̃tx(r = 0) = 0. We may

fix the value of ph by requiring that (4.16a) be satisfied at r = rh, and we find, using (4.3)

and (4.6) (along with the fact that C = 0 is fixed by the linearized equations of motion):

ph =
2πTLd

κ2rdhQ
=
Ts

Q , (4.20)

where s is the entropy density (we have converted between the area of the black hole horizon

and the entropy density of the dual field theory using the Bekenstein-Hawking formula).

– 8 –
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We may use the reduction of order method4 [31] to compute the final solution, by using

the fact that both (4.20), and the mode we are looking for, solve (at leading order) the

differential equation

2e2κ2Q2ard

L2d−2
δAx =

(

br2−dZδA′
x

)′

. (4.21)

and we find

δAx = (p(r) + ph)

r
∫

0

ds
sd−2

b(s)Z(s)(p(s) + ph)2
, δg̃tx =

r
∫

0

ds
2κ2Qa(s)sd

Ld
δAx(s), δPx = 0.

(4.22)

Note that, at leading order in h, this mode has a logarithmic divergence at r = rh in δAx

alone.

As σdc must be finite, and we must have δg̃tx(r = 0) = 0 (we are not sourcing any

temperature gradients), at ω = 0 the solution to the linearized equations of motion obeying

all boundary conditions turns out to be simply

δAx = δA0
x, δPx =

Q
Ld
δA0

x, δg̃tx = 0. (4.23)

We now wish to include corrections when ω ≪ T, µ, but work to all orders in ωτ . More

precisely, we set all subleading corrections in ω/T or ω/µ to vanish, and then to all orders

in ωτ . First, we need to discuss the boundary conditions at the black hole horizon. Both

δPx and δAx obey infalling boundary conditions:

δAx, δPx ∼ (rh − r)−iω/4πT . (4.24)

These boundary conditions arise from including the O(ω2) terms in the equations of motion,

and demanding that perturbations fall into the black hole horizon (in the boundary theory:

energy is dissipated). They are, at first glance, non-perturbative in ω, which is frustrating

for our purposes. However, things are not so bad. Let us fix rh − r to be arbitrarily small,

but send ω → 0. We may then Taylor expand

(rh − r)−iω/4πT = 1 +
iω

4πT
log

rh
rh − r

+ · · · . (4.25)

In a neighborhood of this fixed r, the Taylor expansion in ω must be a solution of the

equations of motion, but the ω-dependence of the equations of motions themselves only

comes in at O(ω2). We therefore conclude that the O(ω) coefficient must be a solution

to the equations of motion evaluated at ω = 0. As we are going to argue later that it is

sufficient to only compute δAx, δg̃tx and δPx to O(ω), this is a great simplification — as far

as our computation is concerned, (4.16) is exact. Imposing infalling boundary conditions

becomes equivalent to imposing the boundary conditions (up to O(ω) terms finite at the

4Suppose we have a differential equation f0y+(f1y
′)′ = 0, and y0(r) is an exact solution of this differential

equation. One can show that a linearly independent solution is y1(r) = y0(r)
∫

r

0
dsf1(s)

−1y0(s)
−2.

– 9 –
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horizon):

δAx(r → rh) = δA0
x

[

1 +
iω

4πT
log

rh
rh − r

]

+ · · · ,

δPx(r → rh) =
Q
Ld
δA0

x

[

1 +
iω

4πT
log

rh
rh − r

]

+ · · · .
(4.26)

We impose no specific boundary condition on δg̃tx at r = rh, other than no logarithmic

divergences.

Let us now go ahead and compute the O(ω) corrections to the linearized modes, at

leading order in h. Imposing infalling boundary conditions on δPx, (4.16c) implies

iω

4πT

Q
Ld
δA0

x

1

rh − r
≈ − δg̃tx

4πTrdh(rh − r)

∫

ddk|h(k)|2k2xψ0(k, rh)
2. (4.27)

Evidently, this equation is only consistent if δg̃tx(r = rh) ∼ ωh−2 is a finite number. Since

our boundary conditions are that δg̃tx(r = 0) = 0, we conclude that δg̃tx is not a constant

at leading order. (4.16b) then implies that δAx must have a component at O(h−2) as well.

It is consistent in every equation, at O(ω), to take δPx to be O(h0), so long as the O(ωh−2)

coefficients in δAx and δg̃tx obey the equations of motion associated with the translationally

invariant black hole. In fact, at O(ωh−2), we find that the boost mode (4.20) is the only

mode consistent with all of our boundary conditions: (4.18) is ruled out by δg̃tx(r = 0) = 0,

and (4.22) by the fact that the logarithmic divergence in δAx occurs at O(h0). Using (4.27)

we in fact find that the coefficient of the Galilean boost mode in δAx is:

δAx = δA0
x −

iωQτ
ǫ+ P

(p+ ph)δA
0
x +O(h0), (4.28)

where we have defined

ǫ+ P

τ
≡ Ld

rdh

∫

ddk|h(k)|2k2xψ0(k, rh)
2. (4.29)

In the next subsection, we show that this τ is equivalent to that defined via the memory

matrix; for now this is simply a definition of τ . Note that the logarithmic divergence in

δAx is not included, as it is O(h0).

Now, let us explain why we do not have to worry about any further terms, in so far

as computing the conductivity at leading order in our limit. Firstly, let us consider the

term that arises from the logarithmic divergence at O(h0) in δAx. This will indeed lead to

subleading corrections to the Galilean mode described above; however, these corrections,

by dimensional analysis, will scale as (ω/T )F(T/µ)δA0
x for some scaling function F , and

are subleading in our limit. A similar argument holds for the O(ω2h−2) term which arises

from the fact that when ωτ ≫ 1, the Galilean mode dominates the constant contribution

δA0
x: the correction due to infalling boundary conditions on this term ∼ ω2τ/T , and this

can be neglected in our limit. Similar arguments will hold for all further corrections at

higher orders in ω. In a nutshell, the linearized equations contain perturbations at most

∼ h−2, which implies that only the ωh−2 terms need to be included at leading order. The
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fact that the boost mode is the only important O(ω) contribution to δAx is suggestive of

the fact that this is “hydrodynamic” transport.

To compute σ(ω) we simply employ (4.5) to find the near boundary behavior of p(r).

We thus find

δA(0)
x (ω) = δA0

x

[

1− iωQτ
ǫ+ P

(

µ+
Ts

Q

)]

= δA0
x

[

1− iωτ(µQ+ Ts)

ǫ+ P

]

= δA0
x(1− iωτ),

(4.30a)

δA(1)
x (ω) = − e2Q

Ld−2

(

− iωQτ
ǫ+ P

)

δA0
x, (4.30b)

where we have used the thermodynamic identity

ǫ+ P = µQ+ Ts (4.31)

in the last step of (4.30a). Recall that δA
(1)
x /δA

(0)
x is related to σ(ω) by (4.13). It is

straightforward from here to obtain (1.1), σ(ω) = σdc/(1 − iωτ), and the expression (2.6)

for σdc in the limit where ω/T → 0 first, and ωτ is held finite.

That Drude physics arises is not particularly surprising for a few reasons. Intuitively,

we expect via the fluid-gravity correspondence [32] that a holographic system, weakly

perturbed by translational symmetry breaking, behaves in the same way as a fluid with

momentum relaxation would: see also [33]. Additionally, it was shown via matched asymp-

totic expansions in [12] that certain massive gravity theories contain Drude peaks in the

limit of weak graviton mass, at T = 0. Due to the equivalence between the holographic

set-ups above and massive gravity as ω → 0 [8] (with the caveat that the graviton mass

becomes a function of r), this result makes sense. It is pleasing nonetheless to see the

Drude peak emerge from a direct calculation for a wide range of holographic theories at

finite T .

4.2 Equivalence with the memory function approach

Our only remaining task is to show that the τ defined above is equivalent to the τ defined

in (3.12), defined in terms of the leading order imaginary behavior of GR
OO

(ω → 0). By

the holographic dictionary for retarded Green’s functions, we impose infalling boundary

conditions at the black hole horizon r = rh, as before. Near the black hole horizon:

ψ(k, r, ω → 0) ≈ ψ(k, r, ω = 0)

[

1 +
iω

4πT
log

rh
rh − r

]

. (4.32)

As before, at O(ω), ψ solves its ω = 0 equation of motion. Also note ψ(k, r, ω = 0) =

ψ0(k, r), with ψ0 the finite scalar profile we defined previously. We wish to “propagate”

this small imaginary piece from the horizon to the AdS boundary. This directly allows

us to compute Im(GR(ω))/ω by using the AdS/CFT dictionary at r = 0. We compute

the linearly independent solution to ψ’s equation of motion with the reduction of order

technique:

ψ1(k, r) ≡
ψ0(k, r)

Ld

r
∫

0

ds
sd

b(s)ψ0(k, s)2
. (4.33)

– 11 –



J
H
E
P
0
3
(
2
0
1
5
)
0
7
1

We assume that ψ0 has the same asymptotics as before: ψ0(k, r → 0) ≈ L−d/2rd+1−∆, and

have normalized ψ1 conveniently. The integral as written above is convergent so long as

∆ > (d + 1)/2, and we have assumed this property previously. In fact, this solution also

has the r → 0 asymptotics we wish: as b ≈ 1 near the AdS boundary, we find that

ψ1(k, r) ≈ L−d/2 r∆

2∆− d− 1
, (r → 0). (4.34)

Near the black hole horizon, ψ1 is divergent — this divergence implies that the imaginary

contribution to ψ is (for the purposes of our calculation) proportional to ψ1. As this

divergence is associated with near-horizon physics, its coefficient is completely independent

of the UV or intermediate scales in the geometry:

ψ1(k, r) ≈
rdh

4πTψ0(k, rh)Ld
log

rh
rh − r

+ finite, (r → rh). (4.35)

Comparing (4.32) and (4.35) we conclude that to order ω,

ψ(k, r, ω) ≈ ψ0(k, r) + iω
Ldψ0(k, rh)

2

rdh
ψ1(k, r) + O

(

ω2
)

. (4.36)

The function ψ0 is real. Therefore using (4.11), it is easy to conclude that

lim
ω→0

Im
(

GR
OO

(k, ω)
)

ω
=
Ldψ0(k, rh)

2

rdh
. (4.37)

Comparing (3.12), (4.29) and (4.37), we see that the conductivity of this metal, computed

directly via holography, is identical to the result computed with the memory function for-

malism, without using any holography. These results are valid in the limit when ω, τ−1

are vanishingly small compared to T and µ, the regime of validity where the approxima-

tion (3.1) holds.

4.3 Seebeck coefficient

Let us briefly discuss thermoelectric transport coefficients [34–38]. One such coefficient is

immediately computable given our discussion of the conductivity: the Seebeck coefficient

α, defined by

qx = αTEx, (4.38)

where qx is the heat flow density in the x direction. Using

qx = 〈T tx〉 − µ〈Jx〉, (4.39)

and reading off the expectation value of 〈T tx〉 in the linearized modes computed in this

section, it is straightforward to recover

α(ω) =
sQτ
ǫ+ P

1

1− iωτ
, (4.40)
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in agreement with hydrodynamics [26] and the memory function formalism (use that the

heat-momentum susceptibility χQP = sT ). We also expect that a calculation of the thermal

conductance κ̄, defined by

qx = −κ̄∂xT |Ex=0 , (4.41)

would find, in agreement with hydrodynamics and the memory function formalism,

κ̄(ω) =
s2Tτ

ǫ+ P

1

1− iωτ
. (4.42)

Computations of κ̄(ω) are a bit more involved [34–38] and we will not pursue them further.

5 Conclusion

In this work, we have demonstrated an exact correspondence between the memory func-

tion approach and a holographic approach to transport in a strongly correlated “strange”

metallic phase of matter without quasiparticles, in the limit of finite density and slow mo-

mentum relaxation. This result crispens the qualitative scaling agreements noted in special

cases earlier [8, 9]. We have also pointed out the emergence of a universal Drude peak in

these holographic models. These results are to be expected on physical grounds, but it is

nonetheless instructive to see them explicitly verified.

The reason that we add a fourth scalar field ψ, instead of say adding perturbations

to the dilaton, is that the EMD background is only corrected at O(h2); it would receive

corrections at O(h) if the dilaton had a component which breaks translational symmetry.

As in [8, 9], adding a new scalar simplifies the resulting computation of σ(ω). It would be

worthwhile to explicitly show that the correspondence with the memory matrix survives

even if we break translational symmetry through one of the EMD fields: for example, using

results of [6], it should be possible to do this for spatially-dependent chemical potentials.

One of the advantages to a holographic computation is that we are formally not re-

stricted to the limit of weak momentum relaxation. Approaches including massive gravity

and Q-lattices, which produce translation invariant geometries, allow for analytic control

in this limit. Perhaps techniques similar to ours can remain valid even in this limit of

strong momentum dissipation. While it is now clear that such approaches mimic more

conventional “lattices” or disorder when momentum relaxation is weak, it is less clear

whether this analogy remains when momentum relaxation is strong. It is possible that

more exotic phases of holographic matter, analogous to a quantum glass or many-body

localized phase [39], will arise when translational symmetry is explicitly broken strongly.

Alternately, efficient momentum relaxation without “glassy” physics may be responsible

for scaling properties of cuprate strange metals [40]; perhaps massive gravity/Q-lattice ap-

proaches are powerful tools for these problems. More work in this direction is warranted.
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