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Abstract: We develop a generally applicable method for constructing functions, C , which

have properties similar to Zamolodchikov’s C-function, and are geometrically natural ob-

jects related to the theory space explored by non-perturbative functional renormalization

group (RG) equations. Employing the Euclidean framework of the Effective Average Ac-

tion (EAA), we propose a C -function which can be defined for arbitrary systems of grav-

itational, Yang-Mills, ghost, and bosonic matter fields, and in any number of spacetime

dimensions. It becomes stationary both at critical points and in classical regimes, and de-

creases monotonically along RG trajectories provided the breaking of the split-symmetry

which relates background and quantum fields is sufficiently weak. Within the Asymptotic

Safety approach we test the proposal for Quantum Einstein Gravity in d > 2 dimensions,

performing detailed numerical investigations in d = 4. We find that the bi-metric Einstein-

Hilbert truncation of theory space introduced recently is general enough to yield perfect

monotonicity along the RG trajectories, while its more familiar single-metric analog fails

to achieve this behavior which we expect on general grounds. Investigating generalized

crossover trajectories connecting a fixed point in the ultraviolet to a classical regime with

positive cosmological constant in the infrared, the C -function is shown to depend on the

choice of the gravitational instanton which constitutes the background spacetime. For de

Sitter space in 4 dimensions, the Bekenstein-Hawking entropy is found to play a role anal-

ogous to the central charge in conformal field theory. We also comment on the idea of a

‘Λ-N connection’ and the ‘N -bound’ discussed earlier.
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1 Introduction

One of the most remarkable results in 2-dimensional conformal field theory is Zamolod-

chikov’s c-theorem [1, 2]. It states that every 2D Euclidean quantum field theory with

reflection positivity, rotational invariance, and a conserved energy momentum tensor pos-

sesses a function C of its coupling constants, which is non-increasing along the renormaliza-

tion group trajectories and is stationary at fixed points where it equals the central charge

of the corresponding conformal field theory.

After the advent of this theorem many authors tried to find a generalization that would

be valid also in dimensions greater than two [3–12]. This includes, for instance, suggestions

by Cardy [3] to integrate the trace anomaly of the energy-momentum tensor 〈Tµν〉 over a

4-sphere of unit radius, C ∝ ∫
S4 d4x

√
g 〈T µ

µ 〉, the work of Osborn [4, 5], and ideas based
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on the similarity of C to the thermodynamical free energy [6], leading to a conjectural

‘F -theorem’ which states that, under certain conditions, the finite part of the free energy

of 3-dimensional field theories on S3 decreases along RG trajectories and is stationary at

criticality [7]. Cappelli, Friedan and Latorre [8] proposed to define a C-function on the

basis of the spectral representation of the 2-point function of the energy-momentum tensor.

While these investigations led to many important insights into the expected struc-

ture of the hypothetical higher-dimensional C-function, the search was successful only

recently [13, 14] with the proof of the ‘a-theorem’ [3, 12]. According to the a-theorem, the

coefficient of the Euler form term in the induced gravity action of a 4D theory in a curved,

but classical, background spacetime is non-increasing along RG-trajectories.

Clearly theorems of this type are extremely valuable as they provide non-perturbative

information about quantum field theories or statistical systems in the strong coupling

domain. They constrain the structure of possible RG flows on theory space, and they

rule out exotic behavior such as limit cycles, for instance (at least for a suitable class of

beta-functions [15]).

In this paper we describe and test a broadly applicable search strategy by means of

which generalized ‘C-like’ functions could be identified under rather general conditions,

in particular in cases where the known c- and the a-theorems do not apply. Our main

motivation is in fact theories which include quantized gravity, in particular those based

upon the Asymptotic Safety construction [16–24].

In a first step, we try to generalize only one specific feature of Zamolodchikov’s C-

function for a generic field theory in any number of dimensions, namely its ‘counting

property’: the sought-after function should roughly be equal to (or at least in a known

way be related to) the number of degrees of freedom that are integrated out along the RG

trajectory when the scale is lowered from the ultraviolet (UV) towards the infrared (IR).

Technically, we shall do this by introducing a higher-derivative mode-suppression factor in

the underlying functional integral which acts as an IR cutoff. We can then take advantage

of the well established framework of the effective average action (EAA) to control the scale

dependence [25–29].

In a generic theory comprising a certain set of dynamical fields, Φ, and corresponding

background fields, Φ̄, the EAA is a ‘running’ functional Γk[Φ, Φ̄] similar to the standard

effective action, but with a built-in IR cutoff at a variable mass scale k. Its k-dependence

is governed by an exact functional RG equation (FRGE).

The specific property of the EAA which will play a crucial role in our approach is the

following: for a broad class of theories, those that are ‘positive’ in a sense we shall explain,

the very structure of the FRGE implies that the EAA is a monotonically increasing function

of the IR cutoff:

∂kΓk[Φ, Φ̄] ≥ 0 ∀ (Φ, Φ̄) (1.1)

We shall refer to this property as the pointwise monotonicity of the EAA since it applies

at all points (Φ, Φ̄) of field space independently. Thus the EAA provides us with even

infinitely many monotone functions of the RG scale k, one for each field configuration
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(Φ, Φ̄). So one might wonder if those functions, or a combination thereof, deserve being

considered a generalization of Zamolodchikov’s C-function.

Unfortunately the answer is negative, for the following reason. The pointwise mono-

tonicity property refers to Γk when it is evaluated at dimensionful field arguments, and is

parametrized by dimensionful running coupling constants. However, the c-theorem and its

generalizations apply to the RG flow on theory space, T , a manifold which is coordinatized

by the dimensionless couplings. The latter differ from the dimensionful ones by explicit

powers of k fixed by the canonical scaling dimensions. As a consequence, when rewrit-

ten in terms of dimensionless fields and couplings, the property (1.1) does not precisely

translate into a monotonicity statement about the de-dimensionalized theory space analog

of Γk, henceforth denoted Ak. Rather, when the derivative ∂k hits the explicit powers of

k, additional canonical scaling terms arise which prevent us from concluding simply ‘by

inspection’ that Ak is monotone along RG trajectories.

Nevertheless, our main strategy will be to take maximum advantage of the pointwise

monotonicity of Γk as the primary input, and then try to get a handle on the monotonicity

violations that occur in going from Γk to Ak. We shall see that by evaluating the action

functionals on special field configurations this difficulty can be reduced to a far more

tractable level.

A related issue is that Γk, while having attractive monotonicity properties, does not

in addition also become stationary at fixed points, as a sensible generalization of the C-

function in 2D should. But, again for the above reason, this is not necessarily a drawback

since at an RG fixed point it is anyhow not the dimensionful couplings but rather the

dimensionless coordinates of theory space that are supposed to assume stationary values,

i.e. actually it is Ak that approaches a ‘fixed functional’, A∗.

When we look at Γk and Ak pointwise, or equivalently, at the infinitely many k-

dependent couplings they parametrize them independently, then there is a clash between

stationarity at fixed points and monotonicity along the RG flow: Ak is stationary at fixed

points, but not monotone, while for Γk the situation is the other way around. However,

by adopting the pointwise perspective we are expecting by far too much, namely that all

dimensionless couplings individually behave like a C-function. Presumably we can hope to

find at best a single, or perhaps a few, real valued quantities with all desired properties.

We shall denote such a hypothetical function by Ck in the following. Assuming it exists,

the quantity Ck is one function depending on infinitely many running couplings along the

RG trajectory, so the transition from Γk to Ck amounts to a tremendous ‘data reduction’.

Thus, within the EAA framework, the central question is whether there exists a kind

of ‘essentially universal’ map from k-dependent functionals Γk to a function Ck that is

monotone along the flow and stationary at fixed points. Here the term ‘universal’ is to

indicate that we would require only a few general properties to be satisfied, comparable to

reflection positivity, rotational invariance, etc. in the case of Zamolodchikov’s theorem. The

reason why we believe that there should exist such a map is that the respective monotonicity

properties of Γk and the C-function in 2D have essentially the same simple origin. They

both ‘count’ in a certain way the degrees of freedom (more precisely: fluctuation modes)

that are integrated out at a given RG scale intermediate between the UV and the IR.
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We begin by considering a class of Ck-candidates which are obtained by evaluating

Γk[Φ, Φ̄] at a particularly chosen pair of arguments (Φ, Φ̄) that will have an explicit depen-

dence on k in general. In the present paper we propose to use self-consistent background

field configurations for this purpose. We evaluate the EAA at a scale dependent point in

field space, namely Φ = Φ̄ ≡ Φ̄sc
k . By definition, a background field Φ̄ ≡ Φ̄sc

k is said to be

self-consistent (‘sc’) if the equation of motion for the dynamical field Φ that is implied by

Γk admits the solution Φ = Φ̄. With other words, if the system is put in a background

which is self-consistent, the fluctuations of the dynamical field, ϕ ≡ Φ − Φ̄, have zero

expectation value and, in this sense, do not modify this special background. As we shall

demonstrate in detail in section 2, the proposal Ck = Γk[Φ̄sc
k , Φ̄sc

k ] is indeed a quite promis-

ing candidate for a generalized C-function. It is stationary at fixed points and it is ‘close

to’ being monotonically decreasing along the flow.

The phrase ‘close to’ requires an explanation. Especially in quantum gravity, Back-

ground Independence is a central requirement [30, 31]. While in the causal dynamical

triangulation approach [32–36] or in loop quantum gravity [37–40], for instance, this re-

quirement is met by strictly not using a background spacetime structure at all, the EAA

framework uses the background field technique [41]. At the intermediate steps of the

quantization one does introduce a background spacetime, equipped with a non-degenerate

background metric in particular, but at the same time one makes sure that no observable

prediction will depend on it.1 This can be done by means of the Ward identities pertaining

to the split-symmetry [42–44] which governs the interrelation between ϕ and Φ̄. This sym-

metry, if intact, ensures that the physical contents of a theory is independent of the chosen

background structures. Usually, at the ‘off-shell’ level of Γk, in particular when k > 0, the

symmetry is broken by the gauge fixing and cutoff terms in the bare action. Insisting on

unbroken split-symmetry in the physical sector restricts the admissible RG trajectories the

EAA may follow [45].

The wording ‘close to’ used above has the precise meaning that in the idealized situation

of negligible split-symmetry violation the monotonicity of Ck is manifest for the entire

class of theories with pointwise monotonicity of the EAA. This can indeed be seen without

embarking on any complicated analysis, whose outcome could then possibly depend on

the type of theory under consideration. Instead, in reality where the breaking of split-

symmetry often is an issue, such an analysis is indeed necessary in order to check whether

or not the split-symmetry violation is strong enough to destroy the monotone behavior

of Ck. We believe that under weak conditions whose precise form needs to be found, the

monotonicity is not destroyed so that the proposed Ck indeed complies both with the

stationarity and the monotonicity requirement.

In the present paper, rather than attempting a general proof we investigate a concrete

system, asymptotically safe gravity in d dimensions, d = 4 in particular, determine its

RG flow, and explore the properties of the resulting function Ck. Clearly, for practical

reasons we can study the flow only on a truncation of the a priori infinite dimensional

1The construction in section 2 will force us to deal with a background metric and include it into the set

Φ̄ even when analyzing pure matter theories on a classical (for instance, flat) spacetime.
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theory space. Nevertheless, we shall be able to demonstrate that, provided the truncation

is sufficiently refined, the corresponding approximation to the exact Ck is indeed a non-

decreasing function of k. It will be quite impressive to see how non-trivially the various

components of the truncation ansatz for Γk must, and actually do conspire in order to

produce this result.

Concretely we shall explore Quantum Einstein Gravity (QEG) both within the familiar

(‘single-metric’) Einstein-Hilbert-truncation [17] in which the background metric appears

only in the gauge fixing part of the action, as well as within a more refined ‘bi-metric

truncation’ [43, 46] where the EAA can depend on it via a second Einstein-Hilbert term,

over and above the one for the dynamical metric. The beta-functions for this ‘bi-metric

Einstein-Hilbert truncation’ have been derived recently in [45, 47] and form the basis of

the present analysis.

We emphasize that the goal of the present investigation is not, or at least not primarily,

to reanalyze or reformulate the known c- and a-theorems within the EAA approach. (Work

along these lines has been reported in [48, 49].) Rather, we want to investigate the prop-

erties of a candidate for a generalized C-function which is distinguished and natural in its

own right, namely from the perspective of the EAA. As such it can be tentatively defined

under conditions that are far more general than those leading to the a- and c-theorems

(with respect to dimensionality, field contents, symmetries, etc.). We expect that after

restricting this generality appropriately Ck can be given properties similar to a C-function.

The long-term objective of this research program is to find out which restrictions precisely

lead to interesting properties of Ck. In the present paper we provide a first example where

this strategy can be seen to actually work, namely (truncated) QEG in 4 dimensions.

The structure of this paper is as follows. In section 2 we develop the general theory for

using the EAA and Ck as a counting device,2 after recalling some necessary background

material. Then, in section 3 we apply the resulting framework to the particularly important

case of asymptotically safe Quantum Einstein Gravity. Our setting will apply to an arbi-

trary dimensionality of spacetime; the numerical calculations needed to verify the claimed

properties of Ck are performed for the most interesting case of 4 dimensions though.

2 The effective average action as a ‘C-function’

In this section we develop a generally applicable framework for constructing functions Ck

which have properties similar to a C-function, and at the same time are ‘geometrically

natural’ objects from the perspective of the theory space explored by the EAA. To prepare

the ground, and to fix various notations, it is unavoidable to embark on some special aspects

of the EAA technique first.

2.1 Counting field modes

(A) We consider a general quantum field theory on a d dimensional Euclidean spacetime,

either rigid or fluctuating, that is governed by a functional integral Z =
∫ DΦ̂ e−S[Φ̂,Φ̄]. The

2A brief discussion and an application of the method to the example of black hole physics appeared

already in [50]. (See also ref. [51].)
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bare action S depends on a set of commuting and anticommuting dynamical fields, Φ̂, and

on a corresponding set of background fields, Φ̄. (Here and in the following we use a

compact notation, leaving implicit all field indices and possible sign factors depending on

the Grassmann parity of the field components.) We assume that the functional integral is

regularized in the UV in some way; we shall be more precise about this point in a moment.

In the case of a Yang-Mills theory, Φ̂ contains both the gauge field and the Faddeev-

Popov ghosts, and S is understood to include gauge fixing and ghost terms. Furthermore,

the corresponding background fields are part of Φ̄. As a rule, the fluctuation field ϕ̂ ≡ Φ̂−Φ̄

is always required to gauge-transform homogeneously, i.e. like a matter field. Henceforth

we regard ϕ̂ rather than Φ̂ as the true dynamical variable and interpret Z as an integral

over the fluctuation variables: Z =
∫ Dϕ̂ exp

(
−S[ϕ̂; Φ̄]

)
.

For conceptual reasons that will become apparent below, the set of background fields,

Φ̄, always contains a classical spacetime metric ḡµν . In typical particle physics applications

on a rigid (flat, say) spacetime for instance one would not be interested in how Z depends

on the background metric and one might set ḡµν = δµν throughout. But in quantum

gravity, when Background Independence is an issue, one wants to know Z ≡ Z[ḡµν ] for any

background. In fact, employing the background field technique to implement Background

Independence [41] one represents the dynamical metric as ĝµν = ḡµν + ĥµν and requires

split-symmetry at the level of observable quantities [45]. When the spacetime is dynamical,

ĝµν and ĥµν are special components of Φ̂ and ϕ̂, respectively.

Next we pick a basis in field space, {ϕω}, and expand the fields that are integrated

over. Then, symbolically, ϕ̂(x) =
∑

ω aω ϕω(x) where
∑

ω stands for a summation and/or

integration over all labels carried by the basis elements, and
∫ Dϕ̂ is now interpreted as

the integration over all possible values that can be assumed by the expansion coefficients

a ≡ {aω}. Thus, Z =
∏

ω

∫∞
−∞ daω exp

(
−S[a; Φ̄]

)
.

To be more specific, let us assume that the basis {ϕω} is constituted by the eigenfunc-

tions of a certain differential operator, L, which may depend on the background fields Φ̄,

and which has properties similar to the negative Laplace-Beltrami operator, −D̄2, appropri-

ately generalized for the types of (tensor, spinor, · · · ) fields present in ϕ̂. We suppose that

L is built from covariant derivatives involving ḡµν and the background Yang-Mills fields,

if any, so that it is covariant under spacetime diffeomorphism and gauge-transformations.

We assume an eigenvalue equation Lϕω = Ω2
ωϕω with positive spectral values Ω2

ω > 0. The

precise choice of L is arbitrary to a large extent.

The only property of L we shall need is that it should associate small (large) distances

on the rigid spacetime equipped with the metric ḡµν to large (small) values of Ω2
ω. A first

(but for us not the essential) consequence is that we can now easily install a UV cutoff by

restricting the ill-defined infinite product
∏

ω to only those ω’s which satisfy Ωω < Ωmax.

This implements a UV cutoff at the mass scale Ωmax.

More importantly for our purposes, we also introduce a smooth IR cutoff at a variable

scale k ≤ Ωmax into the integral, replacing it with

Zk =
∏

ω

′
∫ ∞

−∞
daω e−S[a;Φ̄]e−∆Sk (2.1)
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where the prime indicates the presence of the UV cutoff, and

∆Sk ≡ 1

2

∑

ω

Rk(Ω2
k) a2

ω (2.2)

implements the IR cutoff. The extra piece in the bare action, ∆Sk, is designed in such a

way that those ϕω-modes which have eigenvalues Ω2
ω ≪ k2 get suppressed by a small factor

e−∆Sk ≪ 1 in eq. (2.1), while e−∆Sk = 1 for the others. The function Rk is essentially

arbitrary, except for its interpolating behavior between Rk(Ω2
ω) ∼ k2 if Ωω ≪ k and

Rk(Ω2
ω) = 0 if Ωω ≫ k.

The operator L defines the precise notion of ‘coarse graining’ field configurations. We

regard the ϕω’s with Ωω > k as the ‘short wavelength’ modes, to be integrated out first,

and those with small eigenvalues Ωω < k as the ‘long wavelength’ ones whose impact on the

fluctuation’s dynamics is not yet taken into account. This amounts to a diffeomorphism

and gauge covariant generalization of the standard Wilsonian renormalization group, based

on standard Fourier analysis on Rd, to situations with arbitrary background fields Φ̄ =

(ḡµν , Āµ, · · · ).

While helpful for the interpretation, for most practical purposes it is often unnecessary

to perform the expansion of ϕ̂(x) in terms of the L-eigenfunctions explicitly. Rather, one

thinks of (2.1) as a ‘basis independent’ functional integral

Zk =

∫
D′ϕ̂ e−S[ϕ̂;Φ̄]e−∆Sk[ϕ̂;Φ̄] (2.3)

for which the L-eigen-basis plays no special role, while the operator L as such does so, of

course. In particular the cutoff action ∆Sk is now rewritten with Ω2
ω replaced by L in the

argument of Rk:

∆Sk[ϕ̂; Φ̄] =
1

2

∫
ddx

√
ḡ ϕ̂(x) Rk(L) ϕ̂(x) (2.4)

Note that at least when k > 0 the modified partition function Zk depends on the respective

choices for L and Φ̄ separately.

(B) In this paper we propose to use the one-parameter family of partition function k 7→
Zk, for k ∈ [0, ∞), as a diagnostic tool to investigate the RG flow between different quantum

field theories. This is a quite general and flexible framework. There is considerable freedom

in choosing the cutoff operator, and even when L ≡ L(Φ̄) is fixed we may still choose Φ̄ in a

large variety of different ways so as to ‘project out’ different information from the partition

function. However, as we shall discuss in the next subsection, there exists a natural, almost

‘canonical’ choice of background configurations Φ̄.

(C) Our discussion in the following sections is based upon the key observation that Zk

enjoys a simple property which is strikingly reminiscent of the C-theorem in 2 dimensions.

Let us assume for simplicity that all component fields constituting ϕ̂ are commuting,

and that Φ̄ has been chosen k-independent. Then (2.3) is a (regularized, and convergent

for appropriate S) purely bosonic integral with a positive integrand which, thanks to the

– 7 –
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suppression factor e−∆Sk , decreases with increasing k. Therefore, Zk and the ‘entropy’

ln Zk, are monotonically decreasing functions of the scale:

∂k ln Zk < 0 (2.5)

The interpretation of (2.5) is clear: proceeding from the UV to the IR by lowering the

infrared cutoff scale, an increasing number of field modes get un-suppressed, thus contribute

to the functional integral, and as a consequence the value of the partition function increases.

Thus, in a not too literal sense of the word, ln Zk ‘counts’ the number of field modes that

have been integrated out already.

Before we can make this intuitive argument more precise and explicit we must introduce

a number of technical tools in the following subsections.

2.2 Running actions and self-consistent backgrounds

(A) Introducing a source term for the fluctuation fields turns the partition functions into

the generating functional

Zk[J ; Φ̄] ≡ eWk[J ;Φ̄] =

∫
D′ϕ̂ exp

(
−S[ϕ̂; Φ̄] − ∆Sk[ϕ̂; Φ̄] +

∫
ddx

√
ḡ J(x)ϕ̂(x)

)
(2.6)

Hence the Φ̄- and k-dependent expectation value 〈ϕ̂〉 ≡ ϕ reads

ϕ(x) ≡ 〈ϕ̂(x)〉 =
1√
ḡ(x)

δWk[J ; Φ̄]

δJ(x)
(2.7)

If we can solve this relation for J as a functional of Φ̄, the definition of the Effective Average

Action (EAA), essentially the Legendre transform of Wk, may be written as

Γk[ϕ; Φ̄] =

∫
ddx

√
ḡ ϕ(x)J(x) − Wk[J ; Φ̄] − ∆Sk[ϕ; Φ̄] (2.8)

with the solution to (2.7) inserted, J ≡ Jk[ϕ; Φ̄]. (In the general case, Γk is the Legendre-

Fenchel transform of Wk, with ∆Sk subtracted.)

The EAA gives rise to a source-field relationship which includes an explicit cutoff term

linear in the fluctuation field:

1√
ḡ

δΓk[ϕ; Φ̄]

δϕ(x)
+ Rk[Φ̄]ϕ(x) = J(x) (2.9)

Here and in the following we write Rk ≡ Rk(L), and the notation Rk[Φ̄] is used oc-

casionally to emphasize that the cutoff operator may depend on the background fields.

The solution to (2.9), and more generally all fluctuation correlators 〈ϕ̂(x1) · · · ϕ̂(xn)〉 ob-

tained by multiple differentiation of Γk, are functionally dependent on the background, e.g.

ϕ(x) ≡ ϕk[J ; Φ̄](x).
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(B) For the expectation value of the full, i.e. un-decomposed field Φ̂ = Φ̄ + ϕ̂ we employ

the notation

Φ = Φ̄ + ϕ with Φ ≡ 〈Φ̂〉 and ϕ ≡ 〈ϕ̂〉 . (2.10)

Using the complete field Φ instead of ϕ as the second independent variable, accompanying

Φ̄, entails the ‘bi-field’ variant of the EAA,

Γk[Φ, Φ̄] ≡ Γk[ϕ; Φ̄]
∣∣
ϕ=Φ−Φ̄

(2.11)

which, in particular, is always ‘bi-metric’: Γk[gµν , · · · , ḡµν , · · · ].

(C) Later on it will often be helpful to organize the terms contributing to Γk[ϕ; Φ̄] ac-

cording to their level which, by definition, is their degree of homogeneity in the ϕ’s. The

underlying assumption is that the EAA admits a level expansion of the form

Γk[ϕ; Φ̄] =
∞∑

p=0

Γ̌p
k[ϕ; Φ̄] (2.12)

where Γ̌p
k[c ϕ; Φ̄] = cp Γ̌p

k[ϕ; Φ̄] for c > 0. If Γk[ϕ; Φ̄] admits a Taylor expansion in ϕ

about ϕ = 0, this expansion exists, of course, with the level-(p) contribution Γ̌p
k being its

p-derivative term, but this is not guaranteed in general.

(D) We are interested in how the dynamics of the fluctuations ϕ̂ depends on the environ-

ment they are placed in, the background metric ḡµν , for instance, and the other classical

fields collected in Φ̄. It would be instructive to know if there exist special backgrounds

in which the fluctuations are particularly ‘tame’ such that, for vanishing external source,

they amount to only small oscillations about a stable equilibrium, with a vanishing mean:

ϕ ≡ 〈ϕ̂〉 = 0. Such distinguished backgrounds Φ̄ ≡ Φ̄sc are referred to as self-consistent (sc)

since, if we pick one of those, the expectation value of the field 〈Φ̂〉 = Φ = Φ̄ does not get

changed by any violent ϕ̂-excitations that, generically, can shift the point of equilibrium.

From eq. (2.9) we obtain the following condition Φ̄sc must satisfy (since J = 0 by

assumption):

δ

δϕ(x)
Γk[ϕ; Φ̄]

∣∣
ϕ=0,Φ̄=Φ̄sc

k
= 0 (2.13)

This is the tadpole equation from which we can compute the self-consistent background

configurations, if any. In general Φ̄sc ≡ Φ̄sc
k will have an explicit dependence on k. A tech-

nically convenient feature of (2.13) is that it no longer contains the somewhat disturbing

Rkϕ-term that was present in the general field equation (2.9). Self-consistent backgrounds

are equivalently characterized by eq. (2.7),

δ

δJ(x)
Wk[J ; Φ̄]

∣∣
J=0,Φ̄=Φ̄sc

k
= 0 (2.14)

which again expresses the vanishing of the fluctuation’s one-point function.
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Note that provided the level expansion (2.12) exists we may replace (2.13) with

δ

δϕ(x)
Γ̌1

k[ϕ; Φ̄]
∣∣
ϕ=0,Φ̄=Φ̄sc

k
= 0 (2.15)

which involves only the level-(1) functional Γ̌1
k. Later on in the applications this trivial

observation has the important consequence that self-consistent background field configu-

rations Φ̄sc
k (x) can contain only running coupling constants of level p = 1, that is, the

couplings parameterizing the functional Γ̌1
k which is linear in ϕ.3

(E) In our later discussions the value of the EAA at ϕ = 0 will be of special inter-

est. While it is still a rather complicated functional for a generic background where

Γk[0; Φ̄] = −Wk[Jk[0; Φ̄]; Φ̄], the source which is necessary to achieve ϕ = 0 for self-

consistent backgrounds is precisely J = 0, implying

Γk[0; Φ̄sc
k ] ≡ Γ̌0

k[0; Φ̄sc
k ] = −Wk[0; Φ̄sc

k ] (2.16)

Here we also indicated that in a level expansion only the p = 0 term of Γk survives putting

ϕ = 0.

So we can summarize saying that the value of Γk[0; Φ̄sc
k ] can contain only the running

couplings of the levels p = 0 and p = 1, respectively, the former entering via Γ̌0
k, the latter

via Φ̄sc
k .

2.3 FIDE, FRGE, and WISS

The EAA satisfies a number of important exact functional equations which include a func-

tional integro-differential equation (FIDE), the functional RG equation (FRGE), the Ward

identity for the Split-Symmetry (WISS), and the BRS-Ward identity.

(A) FIDE. The FIDE is obtained by substituting (2.8) in (2.6), using (2.9), and reads

e−Γk[ϕ;Φ̄] =

∫
D′ϕ̂ exp

(
−S[ϕ̂; Φ̄] − ∆Sk[ϕ̂; Φ̄] +

∫
ddx ϕ̂(x)

δΓk

δϕ(x)
[ϕ; Φ̄]

)
(2.17)

Here, as always, summation over field components and their tensor, spinor, internal symme-

try, etc. indices is understood. For the purposes of the present paper, the most important

property of (2.17) is that the last term on its r.h.s. , the one linear in ϕ̂, vanishes if the

background happens to be self-consistent, and at the same time the argument ϕ = 0 is

inserted on both sides of the FIDE:

exp
(
−Γk[0; Φ̄sc

k ]
)

=

∫
D′ϕ̂ exp

(
−S[ϕ̂; Φ̄sc

k ] − ∆Sk[ϕ̂; Φ̄sc
k ]
)

(2.18)

We shall come back to this identity soon.

3Notice that the k-derivative of Φ̄sc
k (x) is in general governed also by higher level couplings due to their

appearance in the beta-functions of the level p = 1 couplings.
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(B) FRGE. Another important exact relation satisfied by the EAA is the functional RG

equation (FRGE),

k∂kΓk[ϕ; Φ̄] =
1

2
STr

[(
Γ

(2)
k [ϕ; Φ̄] + Rk[Φ̄]

)−1
k∂kRk[Φ̄]

]
(2.19)

with the Hessian matrix of the fluctuation derivatives Γ
(2)
k ≡ δ2Γk/δϕ2. The supertrace

‘STr’ in (2.19) provides the additional minus sign which is necessary for the ϕ-components

with odd Grassmann parity, Faddeev-Popov ghosts and fermions.

(C) WISS. The EAA, written as Γk[Φ, Φ̄], satisfies the following exact functional equa-

tion which governs the ‘extra’ background dependence it has over and above the one which

combines with the fluctuations to form the full field Φ:

δ

δΦ̄(x)
Γk[Φ, Φ̄] =

1

2
STr

[(
Γ

(2)
k [Φ, Φ̄] + Rk[Φ̄]

)−1 δ

δΦ̄(x)
S

(2)
tot [Φ, Φ̄]

]
(2.20)

Here S
(2)
tot is the Hessian of Stot = S +∆Sk with respect to Φ, where S includes gauge fixing

and ghost terms. The equation (2.20) is the Ward identity induced by the split-symmetry

transformations δϕ = ε, δΦ̄ = −ε, hence the abbreviation WISS. It was first obtained

in [42] in the context of Yang-Mills theory. In quantum gravity, extensive use has been

made of (2.20) in ref. [43] were it served as a tool to assess the degree of split-symmetry

breaking and, related to that, the reliability of certain truncations of Quantum Einstein

Gravity (QEG).

For a discussion of the modified BRS-Ward identity enjoyed by the EAA we refer

to [42] and [17].

2.4 Pointwise monotonicity

Our search for a generalized C-type counting function which depends monotonically on

k along the RG trajectories will be based upon the following structural property of the

FRGE (2.19). From the very definition of the EAA by a Legendre transform it follows that

for all Φ̄ the sum Γk + ∆Sk is a convex functional of ϕ, and that Γ
(2)
k + Rk is a strictly

positive definite operator therefore which can be inverted at all scales k ∈ (0, ∞). Now

let us suppose that the theory under consideration contains Grassmann-even fields only.

Then the supertrace in (2.19) amounts to the ordinary, and convergent trace of a positive

operator so that the FRGE implies

k∂kΓk[ϕ; Φ̄] ≥ 0 at all fixed ϕ, Φ̄. (2.21)

Thus, at least in a class of distinguished theories the EAA, evaluated at any fixed pair

of arguments ϕ and Φ̄, is a monotonically increasing function of k. With other words,

lowering k from the UV towards the IR the value of Γk[ϕ; Φ̄] decreases monotonically.

We refer to this property as pointwise monotonicity in order to emphasize that it

applies at all points of field space, (ϕ, Φ̄), separately. In particular this means that the

argument of Γk[ϕ, Φ̄] is assumed to have no k-dependence of its own here.
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In presence of fields with odd Grassmann parity, fermions and Faddeev-Popov ghosts,

the r.h.s. of the FRGE is no longer obviously non-negative. However, if the only Grassmann-

odd fields are ghosts the pointwise monotonicity (2.21) can still be made a general property

of the EAA, the reason being as follows. At least when one implements the gauge fixing

condition strictly, it cuts-out a certain subspace of the space of fields Φ̂ to be integrated

over, namely the gauge orbit space. Hereby the integral over the ghosts represents the mea-

sure on this subspace, the Faddeev-Popov determinant. The subspace and its geometrical

structures are invariant under the RG flow, however. Hence the EAA pertaining to the

manifestly Grassmann-even integral over the subspace is of the kind considered above, and

the argument implying (2.21) should therefore be valid again. For a more explicit version

of this reasoning we refer to appendix A.

2.5 Monotonicity vs. stationarity

The EAA evaluated at fixed arguments shares the monotonicity property with a C-function.

One of the problems is however that Γk[ϕ; Φ̄] is not stationary at fixed points of the RG

flow. In order to see why, and how to improve the situation, some care is needed concerning

the interplay of dimensionful and dimensionless variables, to which we turn next.

(A) Let us assume that the space constituted by the functionals of ϕ and Φ̄ admits a

basis {Iα} so that we can expand the EAA as

Γk[ϕ; Φ̄] =
∑

α

ūα(k) Iα[ϕ; Φ̄] (2.22)

with dimensionful running coupling constants ū ≡ (ūα). They obey a FRGE in component

form, k∂kūα(k) = b̄α(ū(k); k), whereby the functions b̄α are defined by the expansion of

STr[· · · ] with respect to the basis:

1

2
STr



(
∑

α

ūα(k) I(2)
α [ϕ; Φ̄] + Rk

)−1

k∂kRk


 =:

∑

α

b̄α(ū(k); k) Iα[ϕ; Φ̄] (2.23)

Note that the statement of monotonicity in (2.21), when it holds true, translates into the

pointwise positivity of the sum
∑

α b̄αIα.

(B) Denoting the canonical mass dimension4 of the running couplings by [ūα] ≡ dα, their

dimensionless counterparts are defined by uα ≡ k−dα ūα. In terms of the dimensionless

couplings the expansion of Γk reads

Γk[ϕ; Φ̄] =
∑

α

uα(k)kdαIα[ϕ; Φ̄] (2.24)

4Our conventions are as follows. We use dimensionless coordinates, [xµ] = 0. Then [ds2] = −2 implies

that all components of the various metrics have [ĝµν ] = [ḡµν ] = [gµν ] = −2, and likewise for the fluctuations:

[ĥµν ] = [hµν ] = −2.

– 12 –



J
H
E
P
0
3
(
2
0
1
5
)
0
6
5

Now observe that since Γk is dimensionless the basis elements have dimensions
[
Iα[ϕ; Φ̄]

]
=

−dα. Purely by dimensional analysis, this implies that5

Iα[c[ϕ]ϕ; c[Φ̄]Φ̄] = c−dαIα[ϕ; Φ̄] for any constant c > 0. (2.25)

This relation expresses the fact that the nontrivial dimension of Iα is entirely due to that

of its field arguments; there are simply no other dimensionful quantities available after the

k-dependence has been separated off. Using (2.25) for c = k−1 yields

kdαIα[ϕ; Φ̄] = Iα[k−[ϕ]ϕ; k−[Φ̄]Φ̄] ≡ Iα[ϕ̃; ˜̄Φ] (2.26)

Here we introduced the sets of dimensionless fields,

ϕ̃(x) ≡ k−[ϕ]ϕ(x), ˜̄Φ(x) ≡ k−[Φ̄]Φ̄(x) (2.27)

which include, for instance, the dimensionless metric and its fluctuations:

h̃µν(x) ≡ k2hµν(x), ˜̄gµν(x) ≡ k2ḡµν(x) (2.28)

Note that the quantity (2.26), in whatever way we write it, is dimensionless. When we

insert the dimensionless fields rather than ϕ and Φ̄ into the basis functionals, the latter

loose their nonzero dimension:
[
Iα[ϕ̃; ˜̄Φ]

]
= 0.

Exploiting (2.26) in (2.24) we obtain the following representation of the EAA which is

entirely in terms of dimensionless quantities6

Γk[ϕ; Φ̄] =
∑

α

uα(k) Iα[ϕ̃; ˜̄Φ] ≡ Ak[ϕ̃; ˜̄Φ] (2.29)

Alternatively, one might wish to make its k-dependence explicit, writing,

Γk[ϕ; Φ̄] =
∑

α

uα(k) Iα[k−[ϕ]ϕ; k−[Φ̄]Φ̄] (2.30)

In the second equality of (2.29) we introduced the new functional Ak which, by definition,

is numerically equal to Γk, but its independent variables (arguments) are the dimensionless

fields ϕ̃ and ˜̄Φ. Hence the k-derivative of Ak[ϕ̃, ˜̄Φ] is to be performed at fixed (ϕ̃, ˜̄Φ), while

the analogous derivative of Γk[ϕ; Φ̄] refers to fixed dimensionful arguments. This leads to

the following two trivial but momentous equations:

k∂kAk[ϕ̃; ˜̄Φ] =
∑

α

k∂kuα(k) Iα[ϕ̃; ˜̄Φ] (2.31a)

k∂kΓk[ϕ; Φ̄] =
∑

α

{
k∂kuα(k) + dαuα(k)

}
kdα Iα[ϕ; Φ̄] (2.31b)

The extra term ∝ dαuα(k) in eq. (2.31b) arises by differentiating the factor kdα in (2.24).

It leads to the well-known canonical scaling term in the β-functions of the dimensionless

couplings.

5We use the notation c[ϕ]ϕ ≡ {c[ϕi]ϕi} for the set in which each field is rescaled according to its individual

canonical dimension.
6Here one should also switch from k to the manifestly dimensionless ‘RG time’ t ≡ ln(k) + const, but

we shall not indicate this notationally.
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(C) For the following it is crucial to recall that it is the dimensionless couplings u ≡ (uα)

that serve as local coordinates on theory space, henceforth denoted T . Its points are

functionals A which depend on dimensionless arguments: A[ϕ̃; ˜̄Φ] =
∑

α uα Iα[ϕ̃; ˜̄Φ]. The

RG trajectories are curves k 7→ Ak =
∑

α uα(k) Iα ∈ T that are everywhere tangent to

k∂kAk =
∑

α

βα(u(k)) Iα (2.32)

The functions βα, components of a vector field β on T , are obtained by translating

k∂kūα(k) = b̄α(ū(k); k) into the dimensionless language. This leads to the autonomous

system of differential equations

k∂kuα(k) ≡ βα(u(k)) = −dαuα(k) + bα(u(k)) (2.33)

Here bα, contrary to its dimensionful precursor b̄α, has no explicit k-dependence, thus

defining an RG-time independent vector field, the ‘RG flow’ (T , β).

If it has a fixed point at some u∗ then βα(u∗) = 0, and the ‘velocity’ of any trajectory

passing this point vanishes there,7 k∂kuα = 0. Hence by (2.32) the redefined functional Ak

becomes stationary there, that is, its scale derivative vanishes pointwise,

k∂kAk[ϕ̃; ˜̄Φ] = 0 for all fixed ϕ̃, ˜̄Φ . (2.34)

So the entire functional Ak approaches a limit, A∗ =
∑

α u∗
α Iα. The standard EAA instead

keeps running in the fixed point regime:

Γk[ϕ; Φ̄] =
∑

α

u∗
α kdα Iα[ϕ; Φ̄] when uα(k) = u∗

α . (2.35)

(D) This brings us back to the ‘defect’ of Γk we wanted to repair: while Γk[ϕ; Φ̄] was

explicitly seen to decrease monotonically along RG trajectories, it does not come to a halt

at fixed points in general. The redefined functional Ak, instead, approaches a finite limit

A∗ at fixed points, but can we argue that it is monotone along trajectories?

Unfortunately this is not the case, and the culprit is quite obvious, namely the dαuα-

terms present in the scale derivative of Γk, but absent for Ak: the positivity of the r.h.s. of

eq. (2.31b) does not imply the positivity of the r.h.s. of eq. (2.31a), and there is no obvious

structural reason for k∂kAk[ϕ̃; ˜̄Φ] ≥ 0 at fixed ϕ̃, ˜̄Φ. The best we can get is the bound

k∂kAk[ϕ̃; ˜̄Φ] ≥ −
∑

α

dαuα(k) Iα[ϕ̃; ˜̄Φ] (2.36)

which follows by subtracting the two eqs. (2.31) and making use of (2.26).

2.6 The proposal

The complementary virtues of Ak and Γk with respect to monotonicity along trajectories

and stationarity at critical points suggest the following strategy for finding a C-type func-

tion with better properties: rather than considering the functionals pointwise, i.e. with

7To keep the notation simple, we assume here that among the uα’s there are no ‘inessential’, aka

‘redundant’, couplings that would not have to approach fixed point values.
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fixed configurations of either the dimensionless or dimensionful fields inserted, one should

evaluate them at explicitly scale dependent arguments: Ck
?
= Γk[ϕk; Φ̄k] ≡ Ak[ϕ̃k; ˜̄Φk].

The hope is that the respective arguments ϕk ≡ k[ϕ]ϕ̃k, and Φ̄k ≡ k[Φ̄] ˜̄Φk can be given

a k-dependence which is intermediate between the two extreme cases (ϕ, Φ̄) = const and

(ϕ̃, ˜̄Φ) = const, respectively, so as to preserve as much as possible of the monotonicity

properties of Γk, while rendering Ck stationary at fixed points of the RG flow.

The most promising candidate of this kind which we could find is

Ck = Γk[0; Φ̄sc
k ] = Ak[0; ˜̄Φsc

k ] (2.37)

Here the fluctuation argument is set to zero, ϕk ≡ 0, and for the background we choose

a self-consistent one, Φ̄sc
k , a solution to the tadpole equation (2.13), or equivalently its

dimensionless variant

δ

δϕ̃(x)
Ak[ϕ̃; ˜̄Φ]

∣∣
ϕ̃=0, ˜̄Φ=˜̄Φsc

k

= 0 (2.38)

The function k 7→ Ck defined by eq. (2.37) has a number of interesting properties to which

we turn next.

(A) Stationarity at critical points. When the RG trajectory approaches a fixed point,

Ak[ϕ̃; ˜̄Φ] approaches A∗[ϕ̃; ˜̄Φ] pointwise. Furthermore, the tadpole equation (2.38) becomes

(δA∗/δϕ̃)[0; ˜̄Φ∗] = 0. It is completely k-independent, and so is its solution, ˜̄Φ∗. Thus Ck

approaches a well defined, finite constant:

Ck
FP−−→ C∗ = A∗[0; ˜̄Φ∗] (2.39)

Of course we can write this number also as C∗ = Γk[0; k[Φ̄] ˜̄Φ∗] wherein the explicit and the

implicit scale dependence of the EAA cancel exactly when a fixed point is approached.

(B) Stationarity at classicality. In a classical regime (‘CR’), by definition, b̄α → 0,

so that it is now the dimensionful couplings whose running stops: ūα(k) → ūCR
α = const.

Thus, by (2.22), Γk approaches ΓCR =
∑

α ūCR
α Iα pointwise. Hence the dimensionful

version of the tadpole equation, (2.13), becomes k-independent, and the same is true for

its solution, Φ̄sc
CR. So, when the RG trajectory approaches a classical regime, Ck looses its

k-dependences and approaches a constant:

Ck
CR−−→ CCR = ΓCR[0; Φ̄sc

CR] (2.40)

Alternatively we can write CCR = Ak[0; k−[Φ̄]Φ̄sc
CR] where it is now the explicit and implicit

k-dependence of Ak which cancel mutually.

We observe that there is a certain analogy between ‘criticality’ and ‘classicality’, in

the sense that dimensionful and dimensionless couplings exchange their roles. The dif-

ference is that the former situation is related to special points of theory space, while the

latter concerns extended regions in T . In those regions, Ak keeps moving as Ak[ · ] =
∑

α ūCR
α k−dα Iα[ · ]. Nevertheless it is thus plausible, and of particular interest in quantum

gravity, to apply a (putative) C-function not only to crossover trajectories in the usual

sense which connect two fixed points, but also to generalized crossover transitions where

one of the fixed points, or even both, get replaced by a classical regime.
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(C) Monotonicity at exact split-symmetry. If split-symmetry is exact in the sense

that Γk[ϕ; Φ̄] depends on the single independent field variable Φ̄+ϕ ≡ Φ only, and the the-

ory is such that pointwise monotonicity (2.21) holds true, then k 7→ Ck is a monotonically

increasing function of k. In fact, differentiating (2.37) and using the chain rule yields

∂kCk = (∂kΓk) [0; Φ̄sc
k ] +

∫
ddx

(
∂kΦ̄sc

k (x)
)( δ

δΦ̄(x)
− δ

δϕ(x)

)
Γk[ϕ; Φ̄]

∣∣
ϕ=0, Φ̄=Φ̄sc

k
(2.41)

In the first term on the r.h.s. of (2.41) the derivative ∂k hits only the explicit k-

dependence of the EAA. By eq. (2.21) we know that this contribution is non-negative. The

last term, the δ/δϕ-derivative, is actually zero by the tadpole equation (2.13). Including it

here it becomes manifest that the integral term in (2.41) vanishes when Γk depends on ϕ

and Φ̄ only via the combination ϕ + Φ̄. Thus we have shown that

∂kCk ≥ 0 at exact split-symmetry (2.42)

Note that the result for ∂kCk in (2.41) is much closer to what one needs to prove in

order to rightfully call Ck a ‘C-function’ than the inequality (2.36). In theories that require

no breaking of split-symmetry, for instance, the integral term in (2.41) is identically zero

and we know that ∂kCk ≥ 0 holds true.

The degree of split-symmetry violation varies over theory space in general. Split-

symmetry is unbroken at points u = (uα) where at most those coordinates uα are non-zero

that belong to basis functionals Iα[ϕ; Φ̄] which happen to depend on Φ̄ + ϕ only.

The breaking of split-symmetry is best discussed in terms of the functional Γk[Φ, Φ̄] ≡
Γk[Φ−Φ̄; Φ̄] for which perfect symmetry amounts to independence of the second argument:
δ

δΦ̄
Γk[Φ, Φ̄] = 0. In this language, Ck is written as Ck = Γk[Φ̄sc

k , Φ̄sc
k ], and its scale derivative

assumes the form

∂kCk = (∂kΓk) [Φ̄sc
k , Φ̄sc

k ] +

∫
ddx

(
∂kΦ̄sc

k (x)
) δΓk[Φ, Φ̄]

δΦ̄(x)

∣∣∣∣∣
Φ=Φ̄=Φ̄sc

k

(2.43)

Whether or not ∂kCk is always non-negative depends on the size of the split-symmetry

breaking the EAA suffers from. To prove monotonicity of Ck one would have to show on a

case-by-case basis that the second term on the r.h.s. of (2.43) never can override the first

one, known to be non-negative, so as to render their sum negative.

In fact, for the derivative δΓk/δΦ̄ in (2.43) we have an exact formal identity at our

disposal, the WISS of eq. (2.20). The equations (2.43) and (2.20) together with the FRGE

for the (∂kΓk)-term could be the starting point of future work on exact estimates.

In the next section of the present paper we shall investigate the monotonicity properties

of Ck in certain truncations of pure Quantum Einstein Gravity using a different strategy.

In this case it is easier to work directly with the definition of Ck, eq. (2.37), rather then

using the WISS.

2.7 The mode counting property revisited

Equipped with the EAA machinery, we now return to the heuristic argument about the

mode ‘counting’ property of Zk that was presented at the end of subsection 2.1. Trying to
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make it more precise, we shall now demonstrate that our candidate Ck ≡ Γk[0; Φ̄sc
k ] is really

a measure for the ‘number’ of field modes, since it is closely related to a spectral density.

In fact, after our preparations in the previous subsections this should not be too much

of a surprise. By virtue of the general identity (2.18), a special case of the FIDE satisfied

by the EAA, the exponential e−Γk[0,Φ̄sc
k ] equals precisely the partition function considered

Zk in subsection 2.1, provided the latter is specialized for a self-consistent background.

In order to present a picture which is as clear as possible let us make a number

of specializations and approximations. In particular we consider purely bosonic theories

again, and invoke the idealization of perfect split-symmetry. Then, by eq. (2.41), we have

∂kCk = (∂kΓk) [0; Φ̄sc
k ], and upon expressing (∂kΓk) via the FRGE we arrive at8

k∂kCk =
1

2
Tr

[(
Γ

(2)
k [0; Φ̄sc

k ] + Rk(L)
)−1

k∂kRk(L)

]
(2.44)

Now we consider a situation where the Hessian appearing in this equation itself qualifies

as a cutoff operator. When we choose L = Γ
(2)
k [0; Φ̄sc

k ] we obtain

k∂kCk =
1

2
Tr
[
(L + Rk(L))−1 k∂kRk(L)

]
=

1

2

∑∫

Ω2

k∂kRk(Ω2)

Ω2 + Rk(Ω2)
(2.45)

Here Ω2 denotes the eigenvalues of L, and
∑∫

indicates the summation and/or integration

over its spectrum, leaving the corresponding spectral density implicit. To proceed, we opt

for a particularly convenient cutoff function Rk, namely the sharp cutoff:9

Rk(Ω2) = lim
R̂→∞

R̂ Θ(k2 − Ω2) (2.46)

The limit R̂ → ∞ in (2.46) is to be understood in the distributional sense. It should be

taken only after the integration over Ω2 has been performed. If we formally use (2.46) in

the equation (2.45) this leads us to k∂kCk = 2
∑∫

Ω2 δ(1 − Ω2/k2) = 2k2Tr
[
δ(k2 − L)

]
, or

equivalently,

d

dk2
Ck = Tr

[
δ
(
k2 − Γ

(2)
k [0; Φ̄sc

k ]
)]

≥ 0 (2.47)

The equation (2.47) is quite remarkable and sheds some light on the interpretation

of Ck: its derivative equals exactly the spectral density of the Hessian operator evaluated

at the sc-background field configuration and for vanishing fluctuations, Γ
(2)
k [0; Φ̄sc

k ]. It is a

manifestly non-decreasing function of k therefore.

Let us integrate (2.47) over k2. Provided the RG effects are weak and Γk runs only very

slowly, the k-dependence of the resulting field Φ̄sc
k is weak, too, so that it may be a sensible

8Note that the equation (2.44) is of course insufficient to determine the function k 7→ Ck. We rather use

it to interpret a given Ck which was derived from a known solution to the full-fledged FRGE.
9See ref. [52] for a detailed discussion of the sharp cutoff. It is often used in quantum gravity since it

allows for an easy closed-form evaluation of the threshold functions Φp
n and Φ̃p

n that frequently appear in

QEG beta-functions [17].
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approximation to neglect the k-dependence of Γ
(2)
k [0; Φ̄sc

k ] in the δ-function of (2.47) relative

to the explicit k2. Under these special circumstances, the integrated version of (2.47) reads:

Ck = Tr
[
Θ
(
k2 − Γ

(2)
k [0; Φ̄sc

k ]
)]

+ const (2.48)

Thus, our conclusion is that, at least under the conditions described, the function Ck

indeed counts field modes, in the almost literal sense of the word, namely the eigenfunctions

of the Hessian operator which have eigenvalues not exceeding k2.

Regardless of the present approximation we define in general

Nk1,k2 ≡ Ck2 − Ck1 (2.49)

Then, in the cases when the above assumptions apply and (2.48) is valid, Nk1,k2 has a

simple interpretation: it equals the number of eigenvalues between k2
1 and k2

2 > k2
1 of

the Hessian operator Γ
(2)
k [0; Φ̄sc

k ], when the spectrum is discrete. When the assumptions

leading to (2.48) are not satisfied, the interpretation of Nk1,k2 , and Ck in the first place, is

less intuitive, but these functions are well defined nevertheless.

As an aside let us also mention that the function (2.48) is closely related to the

Chamseddine-Connes spectral action [53–56] in Noncommutative Geometry, where the

squared Dirac operator plays the same role as the Hessian operator above.

3 Asymptotically safe quantum gravity

In this section we make the above ideas concrete and apply them to an appropriately

truncated form of Quantum Einstein Gravity (QEG) which is asymptotically safe, that

is, all physically relevant RG trajectories start out in the UV, for k ‘ = ’ ∞, at a point

infinitesimally close to a non-Gaussian fixed point (NGFP). When k is lowered they run

towards the IR, always staying within the fixed point’s UV critical manifold, and ultimately

approach the (dimensionless) ordinary effective action.

3.1 The single- and bi-metric Einstein-Hilbert truncations

(A) In the following we study the C-function properties of Ck in pure, metric-based

quantum gravity in an arbitrary spacetime dimension. We rely on results obtained with the

so called single- and bi-metric Einstein-Hilbert truncations where the considered subspace

of theory space is spanned by the invariants
∫ √

g and
∫ √

gR only, with gµν- and ḡµν-

contributions disentangled in the bi-metric case.

In either case the ansatz for the EAA in this subspace is given by

Γk[g, ξ, ξ̄, ḡ] = Γgrav
k [g, ḡ] + Γgf

k [g, ḡ] + Γgh
k [g, ξ, ξ̄, ḡ]. (3.1)

It consists of a purely gravitational part, Γgrav
k [g, ḡ], and an essentially classical gauge

sector10 based on the coordinate condition
(
δβ

µ ḡαγD̄γ − ̟ḡαβD̄µ
)

hµν = 0 from which the

gauge fixing term Γgf
k [g, ḡ] and the corresponding ghost action Γgh

k [g, ξ, ξ̄, ḡ] ∝ ∫
ξ̄ M(g, ḡ)ξ

10For a single-metric extension of the ghost sector, see refs. [57–60].
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are derived. Here ξµ and ξ̄µ denote the diffeomorphism ghosts, and M(g, ḡ) is the Faddeev-

Popov operator [17].

We will mostly focus in the following on the Einstein-Hilbert truncation in a bi-metric

setting. In this case, Γgrav
k comprises two separate Einstein-Hilbert terms built from the

dynamical metric gµν and its background analog, ḡµν , respectively:

Γgrav
k [g, ḡ] = − 1

16πGDyn
k

∫
ddx

√
g
(
R(g) − 2ΛDyn

k

)

− 1

16πGB
k

∫
ddx

√
ḡ
(
R(ḡ) − 2ΛB

k

)
(3.2)

The couplings, GDyn
k , ΛDyn

k and GB
k , ΛB

k represent k-dependent generalizations of the clas-

sical Newton or cosmological constant in the dynamical (‘Dyn’) and the background (‘B’)

sector, respectively. Expanding eq. (3.2) in terms of the fluctuation field hµν = gµν − ḡµν

yields the level-expansion of the EAA:

Γgrav
k [h; ḡ] = − 1

16πG
(0)
k

∫
ddx

√
ḡ
(
R(ḡ) − 2Λ

(0)
k

)

− 1

16πG
(1)
k

∫
ddx

√
ḡ
[

− Ḡµν − Λ
(1)
k ḡµν

]
hµν

− 1

2

∫
ddx

√
ḡ hµν Γ

grav (2)
k [ḡ, ḡ]µν

ρσ
hρσ + O(h3) (3.3)

In the level-description, the background and dynamical couplings appear in certain com-

binations in front of invariants that have a definite level, i.e. order in hµν . The two sets of

coupling constants are related by

1

G
(0)
k

=
1

GB
k

+
1

GDyn
k

,
Λ

(0)
k

G
(0)
k

=
ΛB

k

GB
k

+
ΛDyn

k

GDyn
k

, (3.4a)

1

G
(p)
k

=
1

GDyn
k

for p ≥ 1,
Λ

(p)
k

G
(p)
k

=
ΛDyn

k

GDyn
k

for p ≥ 1. (3.4b)

Notice that the level-(0) couplings, G
(0)
k and Λ

(0)
k , multiply pure background invariants

and thus do not contribute to the dynamical field equations. They are, however, relevant

to the statistical mechanics of black holes, for instance [50].

In the present ansatz all couplings of higher level, p ≥ 1, are identical and agree with

the dynamical (‘Dyn’) ones. However, the level-(1) Newton and cosmological constants,

G
(1)
k ≡ GDyn

k and Λ
(1)
k ≡ ΛDyn

k , which enter the effective field equations and the tadpole

equation, differ in general from the level-(0) couplings.

(B) When the distinction of the different levels is artificially suppressed in the truncation

ansatz by hypothesizing perfect split-symmetry along the entire RG trajectory, i.e. if we

set G
(0)
k = G

(p)
k ≡ Gsm

k and Λ
(0)
k = Λ

(p)
k ≡ Λsm

k for all p and k, then the gravitational action

Γgrav
k [g, ḡ] reduces to a functional of a single metric:

Γgrav
k [g, ḡ] = − 1

16πGsm
k

∫
ddx

√
g
(
R(g) − 2Λsm

k

)
(3.5)

– 19 –



J
H
E
P
0
3
(
2
0
1
5
)
0
6
5

The second argument of the action functional, ḡ, has actually disappeared from the r.h.s.

of (3.5). This approximation, for obvious reasons, is referred to as the single-metric

Einstein-Hilbert truncation. In general split-symmetry is violated during the RG evolution,

and a detailed comparison with the more advanced bi-metric ansatz (3.3) has revealed that

there are even qualitative differences in the respective flows, especially in the crossover

regime [45].

(C) In the sequel we will analyze the RG flows obtained in three different RG studies. One

is based upon the single-metric ansatz (3.5), while the other two are bi-metric calculations

which employ the same, more general 4-parameter ansatz (3.3), but differ in various details

of the computational setting, the gauge choice in particular.

All three calculations use a gauge fixing action of the form

Γgf
k [g, ḡ] =

1

32πα G
Dyn/sm
k

∫
ddx

√
ḡ ḡµν

[
Fαβ

µ [ḡ] (gαβ − ḡαβ)
][

Fρσ
ν [ḡ] (gρσ − ḡρσ)

]
(3.6)

It depends on the gauge parameter α and the coefficient ̟ occurring in the gauge condition

Fαβ
µ [ḡ] hµν ≡ (

δβ
µ ḡαγD̄γ − ̟ḡαβD̄µ

)
hµν . Both α and ̟ are k-independent by assumption.

The single-metric results obtained in [17] are based on the choice (̟ = 1/2, α = 1),

whereas the bi-metric calculations performed in [47], henceforth denoted [I], and [45], in

the following referred to as [II], use (̟ = 1/d, α → 0), and (̟ = 1/2, α = 1), respectively.

In this paper, the investigation of Ck will be based upon the beta-functions derived in

refs. [17], [I], and [II], respectively.

(D) The beta-functions describing the flow on theory space pertain to the dimensionless

couplings gI
k ≡ kd−2GI

k and λI
k ≡ k−2ΛI

k for I ∈ {B, Dyn, sm, (0), (1), · · · }. In the bi-metric

case, the 4 independent RG differential equations are partially decoupled, displaying the

hierarchical structure [45]:

(
g

Dyn/(p)
k , λ

Dyn/(p)
k

)
→ g

B/(0)
k → λ

B/(0)
k , for p ≥ 1 (3.7)

In order to solve the system of differential equations one starts by finding solutions of

the Dyn or p ≥ 1-sector, and then substitutes them successively into the decoupled RG

equations of the B- or level-(0) couplings, depending on which ‘language’ one uses.

In [II] it was shown that the beta-functions obtained for the different gauge choices

in [I] and [II] yield the same qualitative results, with only minor numerical differences. In

particular, a UV-fixed point was found in both cases with remarkably stable properties un-

der the change of gauge. Quite surprisingly, its ‘Dyn’-coordinates agree quite well with the

results from the single-metric approximation; in fact the latter turned out to be unusually

reliable within this regime.

Since the RG flows in the single- and bi-metric truncations are qualitatively similar

their (projected) phase portraits in the gDyn-λDyn and gsm-λsm plane, respectively, share

the same overall structure, as depicted in figure 1. The integral curves in the upper half

plane (gDyn/sm > 0) are classified as type Ia, type IIa, or type IIIa trajectories, depending
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Type IIIa

Type Ia

Type IIa

g

λ

Figure 1. The schematic structure of the phase portrait on gsm-λsm or the projected gDyn-λDyn

plane as predicted by all three truncations considered. Here and in the following the arrows always

point in the direction of decreasing k.

on whether the cosmological constant λDyn/sm approaches −∞, 0, or +∞ in the IR,11

respectively [61]. The type IIa trajectory is a separatrix: it separates solutions with an

ultimately positive cosmological constant from those with a negative one at k = 0. Likewise

the trajectory gDyn/sm = 0 separates the upper and lower half plane, indicating that once

the Newton coupling is chosen positive, it remains so on all scales.

The type IIIa trajectories display a generalized crossover of the kind mentioned in

section 2.7, (B). It connects a fixed point in the UV to a classical regime in the IR. The

latter is located on its lower, almost horizontal branch where g, λ ≪ 1 [62, 63].

3.2 Gravitational instantons

(A) Let us now set up the tadpole equations which result from the truncation ansatz

Γk = Γgrav
k + Γgf

k + Γgh
k . To be consistent with the conventions in eq. (2.13) we must

introduce background fields also for the ghosts, at least for a moment. We decompose

them as ξµ = Ξµ + ηµ and ξ̄µ = Ξ̄µ + η̄µ where (Ξ, Ξ̄) and (η, η̄) denote their backgrounds

and fluctuations, respectively. Then the tadpole condition (2.13) amounts to the following

three coupled equations for ϕ ∈ {h, η, η̄}:

0 =
δ
(
Γgrav

k + Γgf
k + Γgh

k

)

δϕ(x)

∣∣∣∣∣∣
h=0,η=0,η̄=0; ḡ=ḡsc

k
, Ξ=Ξsc

k
, Ξ̄=Ξ̄sc

k

(3.8)

If we begin by solving the equations involving δ/δη and δ/δη̄ and take advantage of the

fact that Γgh
k ∝ ∫

(Ξ̄+η̄)M(Ξ+η) is bilinear in the ghosts we conclude immediately that the

only self-consistent background they admit for a non-degenerate M is the trivial one, Ξsc
k =

11The Einstein-Hilbert truncation is known to be inapplicable to type IIIa trajectories when λDyn/sm

approaches values of order unity. In this paper we assume that their classical regime (having λDyn/sm ≪ 1)

represents their true k → 0 limit. Even if ultimately this should turn out not to be the case, our treatment

of the NGFP→CR crossover will remain valid.
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0 = Ξ̄sc
k . As a consequence, the third equation, δΓk/δh

∣∣
···

= 0, receives no contribution

from Γgh
k since its h-derivative vanishes upon inserting the vanishing background ghosts

and η = 0 = η̄. Furthermore, the gauge fixing action, too, does not contribute since

Γgf
k ∝ ∫

(Fh)2, being bilinear in h, has a vanishing derivative at h = 0.

As a result, for every truncation ansatz of the above form, that is, for any choice of

the ‘gravitational’ piece Γgrav
k , the tadpole condition for Φ̄sc

k ≡
(
ḡsc

k , Ξsc
k , Ξ̄sc

k

)
= (ḡsc

k , 0, 0)

boils down to a single non-trivial equation, namely

δ

δhµν(x)
Γgrav

k [h; ḡ]

∣∣∣∣∣
h=0;ḡ=ḡsc

k

= 0 (3.9)

This equation determines the self-consistent metrics which can ‘live’ on a given spacetime

manifold, M, without being modified by the agitation of the quantum fluctuations.

For pure metric gravity, in truncations of the type Γk = Γgrav
k + Γgf

k + Γgh
k , the C-

function candidate Ck ≡ Γk[ϕ = 0; Φ̄sc
k ] which we motivated above for a generic theory

now becomes concretely Ck = Γk

∣∣
h=η=η̄=Ξ=Ξ̄=0,ḡ=ḡsc

k
. It involves only the ‘grav’-part of the

ansatz:

Ck = Γgrav
k [h = 0; ḡsc

k ] (3.10)

(B) In the special case of the Einstein Hilbert truncation the tadpole equation (3.9)

happens to have the same mathematical structure as the classical vacuum Einstein equation

in presence of a cosmological constant. The hµν-derivative of the bi-metric ansatz (3.3) for

Γgrav
k yields at hµν = 0:

Gµν(ḡsc
k ) = −Λ

(1)
k ḡsc

k µν , or Rµν(ḡsc
k ) = 2

d−2 Λ
(1)
k ḡsc

k µν (3.11)

In the single-metric approximation the tadpole equation is the same, except that Λ
(1)
k is

replaced with Λsm
k then. Thus ḡsc

k is always an Einstein metric, and upon contraction we

get from eq. (3.11):

R(ḡsc
k ) =

2 d

(d − 2)
Λ

(1)
k (3.12)

Inserting this expression for the curvature scalar into Γgrav
k yields the following representa-

tion of the EAA, evaluated for hµν = 0 and a self-consistent background geometry:

Ck = Γgrav
k [0; ḡsc

k ] = − 1

16π G
(0)
k

∫

M
ddx

√
ḡ
{

R(ḡ) − 2Λ
(0)
k

}∣∣∣
ḡ=ḡsc

k

= − 1

8π G
(0)
k

[ (
d

d−2

)
Λ

(1)
k − Λ

(0)
k

]
Vol(M, ḡsc

k ) (3.13)

Here Vol(M, g) ≡ ∫
M ddx

√
g denotes the Euclidean volume of the manifold M measured

with the metric written in the argument, gµν .

Note that Γgrav
k evaluated at (h; ḡ) = (0; ḡsc

k ) depends on both the level-(0) and the

level-(1) couplings in a non-trivial way: the former enter via the action Γk|h=0 which has

a level-(0) component only, the latter via the tadpole equation which is entirely ‘level-(1)’.
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metric M V
Eucl. de Sitter S4 3π

Page P2 + P̄2 1.8π

S2 × S2 S2 × S2 2π

Fubini-Study P2(C) 9π/4

Table 1. Various 4-dimensional gravitational instantons and the related normalized volumes

V(M, g̊). (See [64] for a detailed account.)

Assuming the running dimensionful couplings are regular at the scale k considered,

eq. (3.13) shows that Ck is finite if, and only if, the spacetime manifold has finite volume.

The self-consistent background being an Einstein metric, its curvature structure and other

details play no role for the value of the action, it is only the volume that matters.

(C) Trying to find solutions to (3.11) that exist for all scales from ‘k = ∞’ down to

k = 0 the simplest situation arises when all metrics ḡsc
k , k ∈ [0, ∞) can be put on the same

smooth manifold M, leading in particular to the same spacetime topology at all scales, thus

avoiding the delicate issue of a topological change. This situation is realized, for example,

if the level-(1) cosmological constant is positive on all scales, which is indeed the case along

the type (IIIa) trajectories: Λ
(1)
k > 0, k ∈ [0, ∞).

In the following we focus on precisely this situation. The requirement of a finite

action is then met by a well studied class of Einstein spaces which exist for an arbitrary

positive value of the cosmological constant, namely certain 4-dimensional gravitational

instantons [64–66], see table 1 for some examples.

Let g̊µν be the metric of one such instanton, corresponding to a fixed reference value

of the cosmological constant, Λ̊, say. Then the tadpole equation (3.11), at any k, is solved

by the following rescaled metric [67, 68]:

ḡsc
k µν =

Λ̊

Λ
(1)
k

g̊µν (3.14)

As a result, the k-dependence of the total volume behaves as, for arbitrary d,

Vol(M, ḡsc
k ) = 8π

[
Λ

(1)
k

]−d/2 · V(M, g̊) (3.15)

Here we introduced the dimensionless constant

V(M, g̊) ≡ 1

8π
Λ̊d/2 Vol(M, g̊) (3.16)

which is characteristic of the instanton under consideration.12 The number V is manifestly

independent of k, and it is easy to see that it is also independent of Λ̊. The reason is that

g̊ depends on Λ̊ via the equation Rµν (̊g) = 2
d−2 Λ̊ g̊µν . This implies that upon rescaling Λ̊

by a constant factor, Λ̊ → c2Λ̊, the metric responds according to g̊µν → c−2g̊µν , and so the

volume behaves as Vol(M, g̊) → c−d Vol(M, g̊). In the definition of V, eq. (3.16), the factor

12It is closely related to the normalized volume ṽ(M, g) defined in the mathematical literature [65, 69, 70].
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c−d coming from the volume is therefore precisely canceled by a corresponding factor c+d

which is produced by its prefactor, Λ̊d/2 → cd Λ̊d/2.

Thus the value of V is a universal number which depends only on the type of the

instanton considered.13 For the round metric on Sd we find, for instance,

V(Sd) = π
(d−1)

2
[(d − 1)(d − 2)]d/2

2(d+4)/2Γ(d+1
2 )

(3.17)

Table 1 contains the corresponding V values for some more examples in d = 4.

(D) Using (3.15) in (3.13) we obtain the following two equivalent representations of Ck:

Ck = − 1

G
(0)
k

[
Λ

(1)
k

]d/2

[(
d

d−2

)
Λ

(1)
k − Λ

(0)
k

]
V(M, g̊)

= − 1

g
(0)
k

[
λ

(1)
k

]d/2

[(
d

d−2

)
λ

(1)
k − λ

(0)
k

]
V(M, g̊) (3.18)

In the second line of (3.18) we eliminated the dimensionful quantities G
(p)
k and Λ

(p)
k in favor

of their dimensionless analogs whereby all explicit factors of k dropped out.

We observe that the result (3.18) for the function k 7→ Ck has the general structure

Ck ≡ C (g
(0)
k , λ

(0)
k , λ

(1)
k ) = Y(g

(0)
k , λ

(0)
k , λ

(1)
k ) V(M, g̊) (3.19)

Here Y( · ) ≡ C ( · )/V stands for the following function over theory space:

Y(g(0), λ(0), λ(1)) = −

[(
d

d−2

)
λ(1) − λ(0)

]

g(0) [λ(1)]d/2
(3.20)

Equation (3.20) represents our main result. We shall study its properties below. In 4

dimensions we have in particular

Y(g(0), λ(0), λ(1)) = −2λ(1) − λ(0)

g(0) (λ(1))2
(d = 4) (3.21)

Several comments are in order here.

(1) The function C depends on both the RG trajectory and on the solution to the run-

ning self-consistency condition, along this very trajectory, that has been picked. In

eq. (3.19) those two dependencies factorize: the former enters via the function Y, the

latter via the constant factor V(M, g̊) that characterizes the gravitational instanton.

(2) The dependence on the RG trajectory, parametrized as k 7→ (
g

(0,1)
k , λ

(0,1)
k

)
, is obtained

by evaluating a scalar function on theory space along this curve, namely Y : T → R,(
g(0,1), λ(0,1)

) 7→ Y(g(0), λ(0), λ(1)). It is defined at all points of T where g(0) 6= 0 and

λ(1) 6= 0, and turns out to be actually independent of g(1).

13For a discussion of the topological properties of the normalized volume see [65, 69, 70].
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(3) We shall refer to Yk ≡ Y(g
(0)
k , λ

(0)
k , λ

(1)
k ) ≡ Ck/V(M, g̊) and Y( · ) ≡ C ( · )/V(M, g̊)

as the reduced Ck and C ( · ) functions, respectively.

(4) Denoting the collection of running couplings by u(k), we may write the scale deriva-

tive of Ck as k∂kCk = V(M, g̊)
(
βα

∂
∂uα

Y
)

(u(k)) which involves the directional deriva-

tive β · ∇ acting upon scalar functions on theory space. This motivates defining the

subset T+ of T on which Y : T → R has a positive directional derivative in the

direction of β:

T+ ≡
{

u ∈ T | βα(u) ∂
∂uα

Y(u) > 0
}

. (3.22)

The interpretation is that Ck increases monotonically with k along those (parts of)

RG trajectories that lie entirely inside T+, i.e. k∂kCk > 0 at all points of T+.

(5) Invoking the idealization of exact split-symmetry, i.e. assuming that the Newton

and cosmological constants of different levels are all equal (g
(p)
k ≡ gsm

k , λ
(p)
k ≡

λsm
k , p = 0, 1, 2, · · · ), we obtain Ck in the single-metric approximation. It reads

Ck = C (gsm
k , λsm

k ) = Ysm(gsm
k , λsm

k )V(M, g̊) with

Ysm(gsm, λsm) = −
(

2

d − 2

)
1

gsm (λsm)d/2−1
(3.23)

Note that it depends only on the dimensionless combination Gsm
k (Λsm

k )d/2−1 =

gsm
k (λsm

k )d/2−1 whose robustness properties under changes of the cutoff and the

gauge fixing has often been used to check the reliability of single-metric trunca-

tions [52, 71–74].

(6) In general, the beta-functions which govern the RG evolution of Γk may depend on

the topology of M, see [44] for an example. Within the truncation considered here

this is not the case, however, the reason being the universality of the heat-kernel

asymptotics which is exploited in the computation of the beta-functions [45, 47].

(7) Switching from the level language, which employs the couplings g(p) and λ(p), to the

B-Dyn language, based upon the couplings {gDyn, λDyn, gB
k , λB}, with

1

g(0)
=

1

gB
+

1

gDyn
,

λ(0)

g(0)
=

λB

gB
+

λDyn

gDyn
and g(1) = gDyn, λ(1) = λDyn ,

the function Y : T → R assumes the following form, for d = 4,

Y(gDyn, λDyn, gB
k , λB) = − 1

gDynλDyn
− 1

gBλDyn

[
2 − λB

λDyn

]
(3.24)

This representation is particularly convenient for part of the numerical analyses to

which we turn in the next section.
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3.3 Numerical results

Above we investigated the general properties of Ck and we derived its explicit form for the

Einstein-Hilbert truncation. In this subsection we will study the monotonicity properties

of Ck in 4 spacetime dimensions for solutions of the FRGE in both the single-metric [17]

and the two bi-metric approaches [I], [II]. We will focus on type IIIa trajectories (see

figure 1) which exhibit the aforementioned NGFP→CR crossover. Possibly those solutions

are relevant to real Nature even [62, 63]. For the corresponding discussion of type Ia and

type IIa trajectories we refer to appendix B.

(i) Returning to Ck for the bi-metric truncation given in eq. (3.19), the entire information

on the RG trajectory is contained in the factor

Yk ≡ Y(g
(0)
k , λ

(0)
k , λ

(1)
k ) = −2λ

(1)
k − λ

(0)
k

g
(0)
k [λ

(1)
k ]2

(3.25)

We are going to evaluate this function of k for a number of RG trajectories on the

4-dimensional theory space which we generate numerically.

(ii) Likewise we compute the reduced Ck-function predicted by the single-metric trunca-

tion, that is, we evaluate

Ysm
k ≡ Ysm(gsm

k , λsm
k ) = − 1

gsm
k λsm

k

(3.26)

for trajectories on the corresponding 2-dimensional theory space. We obtain them

numerically by solving a system consisting of 2 differential equations only.

(iii) We are also going to perform a hybrid calculation which is intermediate between the

2- and 4-dimensional treatment, in the following sense.

As a rule, the single-metric approximation to a bi-metric truncation is a valid descrip-

tion of the flow if split-symmetry is only weakly broken, i.e. there is no significant

difference between couplings at different levels: u
(0)
α = u

(1)
α = u

(2)
α = · · · . If we make

the corresponding identifications λ
(0)
k = λ

(1)
k = · · · ≡ λk and g

(0)
k = g

(1)
k = · · · ≡ gk

in (3.25) we obtain

Ysplit-sym
k ≡ Y (gk, λk, λk) = − 1

gkλk
(3.27)

Here (gk, λk) stands for (g
(0)
k , λ

(0)
k ) or, what should be the same, (g

(1)
k , λ

(1)
k ) ≡

(gDyn
k , λDyn

k ) as obtained from the bi-metric RG equations. If the trajectory re-

spects split-symmetry it does not matter from which level we take the couplings. If

split-symmetry is not perfect, it does however matter from which level they come,

and we obtain two, in general different functions:

Y
split-sym,(0)
k ≡ − 1

g
(0)
k λ

(0)
k

, Y
split-sym,(1)
k ≡ − 1

g
(1)
k λ

(1)
k

(3.28)
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It will be instructive to compare the two functions (3.28) for various representative

trajectories on 4-dimensional theory space. This will provide us with some insights

about what is more important in an approximate calculation of Ck: good control over

the details of the underlying RG trajectory, or precise (analytic) knowledge about

how Γk[0; Φ̄sc
k ] depends on the couplings from the various levels when split-symmetry

is broken.

Note that while (3.27) and (3.28) have the same structure as the single-metric re-

sult (3.26), there is a crucial difference: the former Yk-functions involve running couplings

obtained from the 4-dimensional bi-metric system of RG equations, whereas the latter,

Ysm
k , has the solutions to the 2-dimensional single-metric flow equations as its input.

Note also that by virtue of (3.24) the full-fledged bi-metric Yk may be written as

Yk = Y
split-sym,(1)
k + ∆Yk with ∆Yk ≡ − 1

gB
k λDyn

k

[
2 − λB

k

λDyn
k

]
(3.29)

The magnitude of the ∆Yk-term is a measure for the degree of split-symmetry violation

as ∆Yk = 0 when the symmetry is exact14 and Yk ≡ Y
split-sym,(p)
k for all p = 0, 1, 2, · · · .

3.3.1 Single-metric truncation

We begin the computation of the reduced single-metric Ck-function by numerically cal-

culating a number of type IIIa trajectories on the 2-dimensional gsm-λsm theory space,

and then evaluate Ysm
k for them. We find that the reduced Ck-functions thus obtained

always have the same qualitative properties: they become stationary (approach plateaus)

for k → ∞ and k → 0, but they are not on all scales monotonically increasing with k. For

all trajectories there exists a regime of scales where ∂kCk < 0. This negative derivative

typically occurs while the trajectory crosses over from the NGFP to its turning point close

to the GFP.

In figure 2 we display a representative single-metric example. For reasons of a clearer

presentation we plot here, and in all analogous diagrams that will follow, the inverse of

the reduced Ck function, along with its derivative. Furthermore, here and in the following,

the scale k is always measured in units of the Planck mass defined by the classical regime,

mPl ≡ 1/
√

GCR. The example of figure 2 shows the ‘wrong sign’ of the scale derivative

(∂kYsm
k < 0) for k in an interval between about 3 and 5 Planck masses, which is the typical

order of magnitude.

3.3.2 Bi-metric Einstein-Hilbert truncation

Turning now to the bi-metric Einstein-Hilbert truncation with its 4-dimensional theory

space we employ the two sets of RG equations from [I] and [II], respectively, and compare

the results they imply.

14Of course, this can also be seen directly. Reinstating dimensionful couplings, the two contributions

to ∆Yk = − 1

GB
k

Λ
Dyn

k

[
2 −

ΛB
k

Λ
Dyn

k

]
are proportional to 1/GB

k and ΛB
k /GB

k , respectively. Those quantities are

the prefactors of the monomials responsible for the extra background dependence of Γk, and so they must

vanish to achieve split-symmetry.
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Figure 2. The inverse of Ysm
k for a typical single-metric type IIIa trajectory. The inset shows its

k-derivative whose positive values indicate a violation of monotonicity.

Furthermore, we must distinguish two fundamentally different cases with respect to

the RG trajectories, namely trajectories which restore split-symmetry in the IR, and tra-

jectories which do not.

In either case we begin by numerically computing a type IIIa trajectory of the decou-

pled gDyn-λDyn subsystem. Then, when we ‘lift’ this 2D trajectory to a 4D one, we must

pick initial conditions for gB and λB, and it is at this point that we must decide about

restoring, or not restoring the symmetry. As we showed in detail in ref. [45], the require-

ment of split-symmetry implies uniquely fixed values for the couplings gB
k and λB

k in the

limit k ց 0, namely precisely the coordinates
(
gB

• (k), λB
• (k)

)
of the running UV-attractor.

We now discuss the cases with and without symmetry restoration in turn.

(A) Split-symmetry restoring trajectories. Opting for the symmetry restoring IR

values of the B-couplings, what remains free to vary is the underlying type IIIa trajectory

in the Dyn sector. We find that the qualitative properties of the resulting functions Yk

are the same for all trajectories of this type, and that these properties do not depend on

whether we use the RG equations from [I] or from [II]. The picture is always the following:

the reduced Ck-function Yk approaches plateau values in the fixed point and in the classical

regime, i.e. it becomes stationary there, and it is a strictly monotone function of k on all

scales in between, k∂kYk > 0.

Clearly the latter property is in marked contrast with the single-metric results. In

figure 3 we show Yk for a representative IIIa-trajectory. The plots were obtained with the

RG equations derived in [I]. Their analogs based on the equations from [II] are displayed

in figure 4. It is gratifying to see that there is hardly any difference between the results

from the two calculational schemes.

In eq. (3.29) we decomposed Yk as Yk = Y
split-sym,(1)
k + ∆Yk in order to make its

split-symmetry violating part explicit. For 1/Yk we have correspondingly 1/Yk = 1/

Y
split-sym,(1)
k +∆(1/Yk) with ∆(1/Yk) = −∆Yk/(Y

split-sym,(1)
k Yk) and exact split-symmetry

(∆Yk = 0) amounts to ∆(1/Yk) = 0, of course.
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Figure 3. The left plot shows 1/Yk and its scale derivative for a typical bi-metric type IIIa tra-

jectory that restores split-symmetry in the IR. It is based on the RG equations of [I]. For these

trajectories, Ck is always found to be perfectly monotone. The inset in the left plot shows k∂k1/

Yk, which is decomposed in the right plot into the derivative of the split-symmetric component

1/Y
split-sym,(1)
k (dashed, gray curve) and of ∆(1/Yk) (solid, gray curve). Neither of the two contri-

butions is negative definite separately, but their sum is (solid, dark red curve).
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Figure 4. The function 1/Yk as in figure 3, but now based on the RG equations of [II].

In the figures 3 and 4 we show how the scale derivative of 1/Yk decomposes into

the derivative of 1/Y
split-sym,(1)
k and of the symmetry violation term ∆(1/Yk). For all

trajectories of the class considered, and with the RG equations from both [I] and [II], we

always find that the scale derivative of neither 1/Y
split-sym,(1)
k , nor of ∆(1/Yk) is negative

definite separately, but their sum is!

When split-symmetry is intact, ∆Yk = 0, (violation of) monotonicity for 1/Y
split-sym,(1)
k

is equivalent to a (non-) monotone function 1/Yk. Now, for generic RG trajectories from

the bi-metric calculations [I] and [II] this condition is known to be approximately satisfied

only for k → ∞, i.e. in the vicinity of the NGFP. The trajectories considered in the

present paragraph are fine-tuned to fulfill the requirement of split-symmetry restoration

in the IR, so ∆Yk vanishes also there. But on all intermediate scales split-symmetry is

broken, the monotonicity of Ck is not guaranteed by any general argument, and in general

Yk 6= Y
split-sym,(1)
k . And indeed figures 3 and 4 show a strong violation of this equality.

In fact, the part Y
split-sym,(1)
k is seen to be non-monotone exactly in the regime where the

split-symmetry of the RG trajectory is known to be significantly broken.
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The status of split-symmetry violation displayed by an RG trajectory is thus also

reflected by the deviation of the pertinent Yk from its ‘split-symmetry enforced’ version

Y
split-sym,(1)
k . Quite remarkably, for the present class of trajectories a perfect compensation

of the split-symmetry violation the RG trajectories suffer from, and a nonzero correction

term ∆Yk takes place. Miraculously, the term ∆Yk modifies the non-monotone Y
split-sym,(1)
k

in precisely such a way that the total Yk is monotone.

This perfect compensation for all eligible trajectories strongly supports our hope that

the candidate Ck-function really qualifies as a ‘C-function’ since the structure of ∆Yk,

i.e. the way how it depends on the couplings, is a direct consequence of having set Ck =

Γk[0; Φ̄sc
k ]. It is indeed surprising to see that a function as simples as the ∆Yk of eq. (3.29)

can do the job of rendering Ck monotone for all physically relevant trajectories at once.

(B) Split-symmetry violating trajectories. We continue to use the bi-metric RG

equations from [I] and [II], but now we deliberately break split-symmetry by selecting a

generic trajectory in the gB-λB-subspace, one that would not hit the running UV-attractor

for k ց 0. After having generated solutions k 7→
(
gDyn

k , λDyn
k

)
of the two decoupled Dyn-

equations, again corresponding to a type IIIa trajectory, we solve the resulting B-equations

with initial values for (gB
k , λB

k ) that explicitly break split-symmetry even in the IR.

In figures 5 and 6 the numerical results for 1/Yk are displayed for the RG equations

of [I] and [II], respectively. They show the same qualitative behavior: while the function

Yk becomes stationary towards the NGFP-regime in the UV, the second plateau in the

IR, which we had found for trajectories restoring split-symmetry, is now destroyed by the

appearance of extrema in the function Yk, rendering it non-monotone. In the right panels

of figures 5 and 6 this is reflected by the changing sign of the derivative k∂kYk plotted there.

In order to visualize how sign flips of k∂kYk can come about it is helpful to define, and

to determine numerically, the following subset of the gB-λB-plane:

T B
+ (k) ≡

{(
gB, λB

)
∈ R

2 |
(
gDyn

k , λDyn
k , gB, λB

)
∈ T+ ⊂ T

}
(3.30)

The RG time-dependent set T B
+ (k) consists of all those points of the 4D theory space at

which the directional derivative is positive, βα∂Y/∂uα > 0, and which have
(
gDyn, λDyn

)
-

coordinates that agree with the current position of the selected ‘Dyn’ trajectory at time k,

i.e.
(
gDyn

k , λDyn
k

)
.

Using the same typical IIIa trajectory in the dynamical sector as above in the split-

symmetry restoring case, we now study the RG evolution in the gB-λB-plane, see figure 7.

To this end, we subdivide this plane into T B
+ (k), the shaded regions in the diagrams of

figure 7, and its complement, the white regions in figure 7. This subdivision is different

at each instant of RG time. We are particularly interested in those 4D trajectories k 7→(
gDyn

k , λDyn
k , gB

k , λB
k

)
that give rise to a monotonically increasing Ck-function, or in other

words, in trajectories whose projection on the B-plane is such that
(
gB

k , λB
k

)
∈ T B

+ (k) holds

true for all k.

From figure 7 it is now clear why the trajectory restoring split-symmetry in the IR,

starting at the UV-attractor located at P2, is so special: as the scale k changes, so does
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Figure 5. The left plot shows the function 1/Yk for a bi-metric trajectory of type IIIa that does not

restore split-symmetry in the IR. It is based on the RG equations of [I]. We observe a sign-change

of k∂k(1/Yk) at moderate values of k, indicating a violation of monotonicity. In the decomposed

form of k∂k(1/Yk), shown in the right plot, we see that the contribution 1/Y
split-sym,(1)
k is in fact

monotone, but the correction term ∆(1/Yk) is not, and neither is their sum. Not restoring split-

symmetry in the IR results in a violation of the monotonicity of Ck along the trajectory considered.
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Figure 6. The function 1/Yk as in figure 5, but now based on the RG equations of [II].

the region defined by T B
+ (k). In the IR, the domain T B

+ (k) defines a narrow band around

the running UV-attractor (P2), and this results in a monotonically increasing Ck. While

the distinguished split-symmetry restoring trajectory is safely within this band, most of

the split-symmetry breaking trajectories lie well outside T B
+ (k) at low k. Increasing k, we

move towards the UV, and T B
+ (k) extends especially to regions with negative λB, while its

boundary approaches, and ultimately touches the asymptotic position of the NGFP.

The crucial fact to notice is the following. At all scales, the symmetry restoring

trajectory is seen to stay within T B
+ (k), and this is in agreement with the results obtained

in paragraph (A). Since when k is increased sooner or later all trajectories converge to

this particular one,15 they are necessarily all pulled towards a regime T B
+ (k), if they are

not yet inside already. This can be observed in figure 7 by following the trajectory that

passes through the point P1 at some low scale. As P1 lies outside T B
+ (k) this implies that

∂kCk < 0 in the IR. Increasing k the trajectory is pulled towards the running UV-attractor

and between the first and second snapshot of figure 7 it crosses the boundary of T B
+ (k).

15See ref. [45] for a detailed demonstration of this behavior.
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Figure 7. This series of snapshots represents the gB-λB-plane at four RG times which increase

from the upper left to the lower right diagram. They are given by the maximum k-value of the

incomplete dynamical trajectory k 7→ (gDyn
k , λDyn

k ) shown in the respective inset. The shaded

regions correspond to T B
+ (k) at that particular time; hence every trajectory in the shaded (white)

region will give rise to a positive (negative) value of k∂kCk at the instant of time k. Furthermore,

two different B-trajectories that are evolved upward (towards increasing scales k) are shown at the

corresponding moments. The one passing the point P1 (P2) is split-symmetry violating (restoring).

The symmetry restoring trajectory starts its upward evolution close to P2, the position of the

running UV attractor [45]; we see that this trajectory never leaves the shaded area, and thus its

Ck-function is strictly monotone. This is different for the trajectory through P1: attracted by the

running UV-attractor, it is pulled into the shaded region, thus unavoidably crossing the boundary

of T B
+ (k), which causes a sign flip of ∂kCk, rendering Ck non-monotone.

At this moment the derivative of Ck crosses zero and from this point onward we have

∂kCk > 0. In the third snapshot the trajectory is already well inside T B
+ and it approaches

the symmetry-restoring one. Once close to this ‘guiding trajectory’ it remains in its vicinity

and together, for k → ∞, they approach the boundary of T B
+ (k) from its interior. This is

as it should be since we know that k∂kCk = 0 at the NGFP.
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Figure 8. The inverse of Y
split-sym,(0)
k and Y

split-sym,(1)
k is shown for a generic bi-metric type IIIa

trajectory that restores split-symmetry in the IR. On intermediate scales, the RG trajectory is not

split-symmetric, as is evident from the different graphs of the level-(1) (dark, solid) and the level-(0)

(light, solid) variants of Ysplit-sym
k . For comparison, the single-metric result Ysm

k is also included

(dashed curve).

(C) The hybrid calculation. In the hybrid calculation, we retain only the Ysplit-sym
k -

part of Yk, omitting the correction term ∆Yk. In figure 8 we show (the inverse of) its two

variants Y
split-sym,(0)
k and Y

split-sym,(1)
k which are obtained by extracting the couplings from,

respectively, the 0th and the 1st level of a bi-metric type IIIa trajectory. This particular

trajectory restores split-symmetry in the IR. Figure 8 shows that the graphs of the resulting

functions Y
split-sym,(0)
k and Y

split-sym,(1)
k are quite different, the former function is monotone,

the latter is not.

This observation once more tells us that the correction term ∆Yk is needed in order to

compensate for the split-symmetry violation that goes into Ck via the trajectories. In fact,

at intermediate scales, all trajectories suffer from this disease, both the symmetry restoring

and the non-restoring ones; the unmistakable symptoms are the substantial differences

among the levels.

This confirms our earlier findings: the correction term ∆Yk is indispensable. It is

needed in order to protect the sum Ysplit-sym
k + ∆Yk against the otherwise unavoidable

infection with the symmetry violation the trajectories must live with. This protection is

successful, i.e. Ck = (Ysplit-sym
k + ∆Yk)V has a monotone dependence on k, provided we do

not break split-symmetry by hand, that is, by selecting inappropriate initial conditions for

the background couplings.

(D) Testing pointwise monotonicity. We have seen in eq. (2.41) that for exact RG

trajectories k 7→ Γk the only source of obstructions for Ck to become a monotone function

is the second term on its r.h.s. , which measures to what extent Γk breaks split-symmetry.

In the case of exact RG solutions, we know that the first term on the r.h.s. is positive,

(∂kΓk) [0; Φ̄sc
k ] ≥ 0, since this is a special case of the pointwise monotonicity, (∂kΓk) [ϕ; Φ̄] ≥

0 ∀ (ϕ, Φ̄), ∀ k. However, the latter property might not always be true for approximate

solutions to the flow equation, those obtained by using truncations, for instance. Testing

pointwise monotonicity, (∂kΓk) [ϕ; Φ̄] ≥ 0, may therefore serve as a device to judge the
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k ]0 is evaluated for a typical

single-metric (left) and split-symmetry violating bi-metric (right) trajectory. In both cases, it is

seen to be negative for certain scales. This indicates a severe failure of the underlying approximation

since, at the exact level, (∂kΓk) is known to be positive at all field arguments and for any k.
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Figure 10. The quantity (∂kΓk) [0; Φ̄sc
k ] is now evaluated for a split-symmetry restoring bi-metric

trajectory. It always stays non-negative, even in those regimes where the single-metric or the

split-symmetry violating bi-metric (see inset) trajectories fail the pointwise monotonicity test.

validity of a truncation. We will come back to this method for arbitrary arguments (ϕ, Φ̄) in

ref. [75]. We focus here only on (∂kΓk) evaluated at the special arguments (ϕ, Φ̄) = (0, Φ̄sc
k ).

It turns out that the single-metric and the ‘unphysical’ bi-metric RG trajectories

(those without split-symmetry restoration) actually fail this pointwise monotonicity test.

As shown in figure 9, there are k-intervals on which (∂kΓk) [0; Φ̄sc
k ] is negative. On the

other hand, for the split-symmetry restoring bi-metric trajectories this quantity is positive

throughout, as it is at the exact level, see figure 10. These findings make it very clear that

the non-monotonicity displayed by our Ck-function candidate, when applied to single-metric

and symmetry violating bi-metric truncations, is not due to a defect of the proposed form

of Ck but rather originates in insufficient approximations. Only the symmetry-restoring,

bi-metric trajectories are close enough to the exact ones to render both (∂kΓk) [0; Φ̄sc
k ] and

the full ∂kCk positive.
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3.3.3 Summary and conclusion

To sum it up we can say that the expected monotonicity of Ck arises under the following

conditions: first, the bi-metric version of the Einstein-Hilbert truncation is used, and

second, the underlying RG trajectory is split-symmetry restoring. Violating either of these

conditions may destroy the monotonically increasing behavior of Ck. We saw that there are

cases where the split-symmetry violation of Γk is sufficiently small to leave the monotonicity

of Ck intact, the main example being the bi-metric type IIIa trajectories approaching the

UV attractor for k → 0.

We have seen that down-grading the bi-metric truncation ansatz to the level of a

single-metric approximation is paid by loosing the monotonicity property of Ck. As for

its dependence on the running couplings, the reduced Ck-function in the bi-metric trunca-

tion, Yk, differs from its single-metric counterpart Ysm
k by the correction term ∆Yk, which

vanishes when Γgrav
k is exactly split-symmetric. (In the single-metric approximation, this

is always the case, by decree.) We found that there is a numerically highly non-trivially

conspiracy and compensation between ∆Yk and those properties of the RG trajectories

which stem from the split-symmetry violation in the flow equation, and which could eas-

ily destroy the monotonicity of Ck. The fact that this does not happen for any of the

physically relevant trajectories is directly linked to the specific properties of our candidate

function, Ck = Γk[0; Φ̄sc
k ], its scale dependent argument in particular, since it determines

the structure of ∆Yk.

Taken together these findings strongly support the following conjecture: In the full

theory, QEG in 4 dimensions, or in a sufficiently general truncation thereof, the proposed

candidate for a generalized C-function is a monotonically increasing function of k along all

RG trajectories that restore split-symmetry in the IR and thus comply with the fundamental

requirement of Background Independence.

If the conjecture can be established we will have a particularly easy to apply diagnostic

tool for testing the reliability of truncations. Since then solutions to the untruncated flow

equation for sure have a monotone Ck, any truncation that violates the monotonicity

misses qualitatively important features of the RG flow and would therefore be judged an

insufficient approximation to the full flow. In this light we provisionally conclude that

the single-metric approximation is not fully reliable, while the bi-metric Einstein-Hilbert

truncation is superior as it keeps the monotonicity of Ck intact at least. Of course this

conclusion is fully consistent with all other results available on the bi-metric Einstein-

Hilbert truncation [45, 47, 76].

As split-symmetry is essential in this context, it might be helpful to recall its physical

contents. Split-symmetry and the corresponding Ward identity (WISS) are the technical

device by means of which Background Independence in the physical sector (‘on-shell’)

is imposed on the effective action and similar ‘off-shell’ quantities.16 The prototypical

example of a Background Independent theory is classical General Relativity [31]. Now,

even though we describe it by an effective action Γ[g, ḡ], we would like QEG to enjoy

Background Independence exactly at the same level as General Relativity.

16For them, ‘Background Independence’ is not naively ‘independence of ḡµν ’.
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Let us contrast QEG with genuine bi-metric theories, in the original sense of the word,

that is, extensions of General Relativity employing two physically distinct metrics, g
(1)
µν and

g
(2)
µν , say. Depending on the structure of their action S[g

(1)
µν , g

(2)
µν , · · · ] they could differ, for

instance, in their coupling to matter, or their propagation properties. In an appropriate

limit, matter particles of a certain species could, for example, follow the geodesics of g
(1)
µν , or

of g
(2)
µν ; but it also can happen that trajectories are no geodesics at all and have no geomet-

ric interpretation. In a genuine bi-metric theory, these different cases are experimentally

distinguishable. The metrics have equal status in that both of them, independently, can

make their way into observables. In canonical quantization both g
(1)
µν and g

(2)
µν are turned

into operators. This is fundamentally different when one applies the background field tech-

nique to the quantization of a system with a bare action S[ĝ] depending on one metric only,

and introduces ḡµν only as a technical convenience, for coarse-graining and gauge-fixing

purposes in particular. Setting ĝµν = ḡµν + ĥµν we transfer the physical degrees of freedom

entirely from ĝµν to ĥµν which is made the new dynamical quantum field by replacing∫ Dĝµν with
∫ Dĥµν . From the functional perspective, ḡµν is merely an arbitrary shift on

which no observable consequence of the theory may depend. In canonical quantization,

ĝµν and ĥµν are operators, while ḡµν continues to be a classical c-number field. The logical

dissimilarity between dynamical and background metric gets slightly obscured at the level

of the expectation values hµν ≡ 〈ĥµν〉 and gµν ≡ 〈ĝµν〉 = ḡµν + hµν since Γk[h; ḡ] ≡ Γk[g, ḡ]

depends on two independent fields, two metrics in fact, if one uses the EAA in the ‘comma

notation’, Γk[g, ḡ]. Now, the role of the split-symmetry as encoded in the Ward identity

(WISS) of eq. (2.20), is to express the requirement that there is only one physical metric

and that no observable quantity may depend on how ḡµν was chosen. Setting for example

k = 0 and ignoring gauge fixing issues for a moment, invariance of the bare action under

{δĥµν = εµν , δḡµν = −εµν} ⇐⇒ {δĝµν = 0, δḡµν = −εµν} implies that Γ0[h; ḡ] can

depend on the sum ḡ + h ≡ g only, while Γ0[g, ḡ] ≡ Γ0[g] simply does not depend on its

second argument. In reality, because we use a ‘background-type’ gauge fixing condition,

Γ0[g, ḡ] does have a certain ḡ-dependence, again dictated by the WISS, but it disappears

upon going on-shell and cannot be seen in any experiment therefore.

3.4 Crossover trajectories and their mode count

(A) In subsection 2.6 we proved that the exact Ck is stationary at fixed points as well

as in classical regimes. The explicit Ck functions obtained from both the single- and the

bi-metric truncation indeed display this behavior. Looking at the two alternative formulas

for Ck in (3.18) it is indeed obvious that Ck becomes stationary when the dimensionless

couplings are at a fixed point of the flow, and when the dimensionful ones become scale

independent; this is the case in a classical regime (‘CR’) where by definition no physical

RG effects occur. If ΛI
CR and GI

CR are the constant values of the cosmological and Newton

constants there, this regime amounts to the trivial canonical scaling λI
k = k−2ΛI

CR and

gI
k = kd−2GI

CR.

(B) In subsection 2.6 we mentioned already the possibility of generalized crossover tran-

sitions, not only in the standard way from one fixed point to another, but rather from
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T

FP2

FP1

(a) Crossover: FP → FP.

T

CR

FP

(b) Crossover: FP → CR.

Figure 11. Crossover trajectories in theory space: from one fixed point to another, (a), and from

a UV fixed point to a classical regime, (b).

a fixed point to a classical regime or vice versa. Thereby Ck will always approach well

defined stationary values C∗ and CCR in the respective fixed point or classical regime. (See

figure 11 for a schematic sketch.)

In the case of an asymptotically safe RG trajectory, the initial point in the UV is a

non-Gaussian fixed point, by definition. For the corresponding limit C UV ≡ limk→∞ Ck

the bi-metric calculation yields C UV = C∗, with

C∗ = −

(
d

d−2

)
λ

(1)
∗ − λ

(0)
∗

g
(0)
∗

[
λ

(1)
∗

]d/2
V(M, g̊) (3.31)

This result simplifies to

C
sm
∗ = −

(
2

d − 2

) V(M, g̊)

gsm
∗ [λsm

∗ ]d/2−1
(3.32)

in the single-metric approximation. Note that C∗ diverges at the trivial (‘Gaussian’) fixed

point at which all dimensionless couplings vanish.

If the trajectory ends in an IR fixed point the corresponding limit C IR ≡ limk→0 Ck,

if it exists, is again given by the formula (3.31), C IR ≡ C∗, but for different fixed point

coordinates. If the trajectory is instead destined to enter a classical regime and to approach

k = 0 by an infinitely ‘long’, and boring, since purely canonical running on T , then the

value at the end point equals C IR = CCR where

CCR = −
(

2

d − 2

) V(M, g̊)

GCR [ΛCR]d/2−1
(3.33)

In writing down eq. (3.33) we assumed that the same values of GCR and ΛCR apply at all

levels, as required by split-symmetry.

Thus, for any of the above crossover types we expect a finite value of

N ≡ N0,∞ ≡ C
UV − C

IR (3.34)
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(C) Beside monotonicity and stationarity, Ck has another essential property in common

with a C-function: the limiting value C∗ has a genuine inherent interpretation at the fixed

point itself. It is a number characteristic of the NGFP which does not depend on the

direction it is approached, and in this role it is analogous to the central charge. The

interpretation of C∗ is best known for d = 4 and the single-metric approximation where,

apart from inessential constants, it is precisely the inverse of the dimensionless combination

g∗λ∗ = Gk→∞Λk→∞. Its physical interpretation is that of an ‘intrinsic’ measure for the size

of the cosmological constant at the fixed point, namely the limit of the running cosmological

constant in units of the running Planck mass (G
−1/2
k ). In numerous single-metric studies

the product g∗λ∗ has been investigated, and it was always found that g∗λ∗ is a universal

quantity, i.e. it is independent of the cutoff scheme and the gauge fixing, within the accuracy

permitted by the approximation. In fact, typically the universality properties of g∗λ∗ were

even much better than those of the critical exponents. Completely analogous remarks

apply to d 6= 4, and to the quantity (3.31) in the bi-metric generalization.

We interpret this number, with all due care, as a measure for the total ‘number of

field modes’ integrated out along the entire trajectory. Clearly C UV and C IR play a role

analogous to the central charges of the 2D conformal field theories sitting at the end points

of the trajectory in the case of Zamolodchikov’s theorem.

Within the Einstein-Hilbert truncation, our numerical results for C∗ at the NGFP in

d = 4 are as follows for the three calculations we compared:

C∗ = −V(M, g̊) ×





7.3 single-metric

4.3 bi-metric I

8.1 bi-metric II

(3.35)

Obviously, in all calculations C∗ is a negative number of order unity.

Let us now focus on the case depicted in figure 11b, which can be seen as a simple

caricature of the real Universe. We consider a family of de Sitter spaces along a type IIIa

trajectory which is known to possess a classical regime with ΛCR > 0. Assuming that this

regime represents the true final state of the evolution, we obtain

C
IR = − 3π

GCRΛCR
(3.36)

Note that this C IR is negative, too, and that −C IR equals precisely the well known semi-

classical Bekenstein-Hawking entropy of de Sitter space [77].

Thus, combining (3.35) and (3.36) for C UV and C IR, respectively, we arrive at the

following important conclusion: in an asymptotically safe theory of quantum gravity which

is built upon a generalized crossover trajectory from criticality (the NGFP) to classicality

the total number of modes integrated out, N = C UV−C IR, is finite according to the natural

counting device provided by the EAA itself.

In the special situation when GCRΛCR ≪ 1, like in the real world, we have |C IR| ≫ 1,

while |C UV| = O(1) according to the NGFP data of (3.35). As a consequence, the number

N is completely dominated by the IR part of the trajectory, N = C UV − C IR ≈ −C IR,
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and so we obtain

N ≈ +
3π

GCRΛCR
≫ 1 (3.37)

It is tempting to identify ΛCR and GCR with the corresponding values measured in

the real Universe. Because of their extremely tiny product GCRΛCR we find a tremendous

number of modes then: N ≈ 10120. Nevertheless, in sharp contradistinction to what

standard perturbative field theory would predict, this number is finite.

(D) Concerning the finiteness of N , the situation changes if we try to define the function

k 7→ Ck along trajectories of the type Ia, those heading for a negative cosmological constant

λDyn after leaving the NGFP regime, and of type IIa, the single trajectory which crosses

over from the NGFP to the Gaussian fixed point (GFP) at which all 4 couplings vanish.

In the type IIa case, eq. (3.31) yields ‘C∗ = −∞’ at the IR end point of the trajectory

so that the total number of modes diverges, ‘N = +∞’. Clearly this behavior can be seen

as the limit ΛCR → 0 of eq. (3.37) since the GFP has a vanishing cosmological constant.

The divergent value of N is the signal of a ‘topology change’ that occurs at Λ(1) = 0: while

the self-consistent backgrounds (of maximal symmetry, say) are spheres Sd for Λ(1) > 0,

it is flat space (Rd) if Λ(1) = 0. The Euclidean volume of the former is always finite, but

that of Rd is infinite.

While along the type IIa trajectory the divergence of Ck occurs only at the very end

of the RG evolution, i.e. in the limit k → 0, for type Ia trajectories Ck becomes singular

already at a finite scale k = ksing > 0. All trajectories of this type cross the hyperplane

λDyn = 0 at a nonzero scale, ksing. However, as eq. (3.24) shows, Y( · ) and C ( · ) are singular

on this plane,17 so that Ck diverges in the limit k ց ksing. The number of modes, Nksing,∞

is infinite then, which however by no means implies that all modes have been integrated

out already. In fact, there is a non-trivial RG evolution also between ksing and k = 0.

Along a type Ia trajectory, the tadpole equation has qualitatively different solutions

for k > ksing, k = ksing, and k < ksing, namely spherical, flat, and hyperbolic spaces,

respectively (Sd, Rd, and Hd, say). This topology change prevents us from smoothly

continuing the mode count across the λDyn = 0 plane. This is the reason why in this paper

we mostly focused on type IIIa trajectories. Some further details for the type Ia and IIa

cases can be found in appendix B, however.

4 Discussion and outlook

(A) The effective average action is a variant of the standard effective action which has

an IR cutoff built-in at a sliding scale k. As such, it possesses a natural ‘mode counting’

and monotonicity property which is strongly reminiscent of Zamolodchikov’s C-function

in 2 dimensions, at least at a heuristic level. For a broad class of systems, this property

(‘pointwise monotonicity’) is easy to demonstrate, the essential input being that in every

17One might be worried about the hyperplanes gDyn = 0 and gB = 0 on which Y( · ) is singular too, see

eq. (3.24). However, within the truncation considered there exist no trajectories that would ever cross or

touch those planes.

– 39 –



J
H
E
P
0
3
(
2
0
1
5
)
0
6
5

system with a well-defined RG flow the action Γk + ∆Sk is a strictly convex functional on

all scales, that is, the Hessian operator satisfies the positivity constraint Γ
(2)
k + Rk > 0,

k ∈ (0, ∞). Motivated by this observation, and taking advantage of the structures and tools

that are naturally provided by the manifestly non-perturbative EAA framework, we tried

to find a map from the functional Γk[Φ, Φ̄] to a single real valued function Ck that shares

two main properties with the C-function in 2 dimensions, namely monotonicity along RG

trajectories and stationarity at RG fixed points.

We do not expect such a map to exist in full generality. In fact, an essential part

of the research program we are proposing consists in finding suitable restrictions on, or

specializations of the admissible trajectories (restoring split-, or other symmetries, etc.), the

theory space (with respect to field contents and symmetries), the underlying space of fields

(boundary conditions, regularity requirements, etc.), and the coarse graining methodology

(choice of cutoff, treatment of gauge modes, etc.) that will guarantee its existence.

In the present paper we motivated and analyzed a specific candidate for a map of this

kind, namely Ck = Γk[Φ̄sc
k , Φ̄sc

k ] where Φ̄sc
k is a running self-consistent background, a solution

to the tadpole equation implied by Γk. We showed that the function Ck is stationary at fixed

points, and a non-decreasing function of k when the breaking of the split-symmetry which

relates fluctuation fields and backgrounds is sufficiently weak. Thus, for a concrete system

the task is to identify the precise conditions under which the split-symmetry violation does

not destroy the monotonicity property of Ck, and to give a corresponding proof then.

It would be interesting to work out the properties of this Ck-function for further con-

crete examples, but also to explore and test structurally different maps from Γk to Ck. A

new kind of map should in particular be devised if one wants to count the modes of fermionic

fields with the same weight as those of bosons. Because of the sign factors produced by the

super-trace in the flow equation, Ck = Γk[Φ̄sc
k , Φ̄sc

k ] rather counts bosons and fermions with

opposite signs, and so N equals the total number of bosonic modes integrated out minus

the number of fermionic ones. (The different count for bosons and fermion is reminiscent of,

but not precisely identical to the functional integral representing the Witten index instead

of the partition function. There, fermionic states of fermion number F contribute with the

weight (−1)F .) While the ‘boson minus fermion’ counting is at variance with the standard

c-theorem, the properties and potential applications of the present Ck with fermions should

be explored in more detail before dismissing it prematurely. As we stressed already, rather

then reproducing known results, our main goal consists in finding maps Γk → Ck that are

simple and ‘geometrically natural’ in the theory space and functional RG context.

(B) By means of a particularly relevant example, QEG in d > 2 dimensions, we demon-

strated that our approach is viable in principle and can indeed lead to interesting candidates

for ‘C-functions’ under conditions which are not covered by the known c- and a-theorems.

As exact proofs are not within reach for the time being, the practical problem is of course

the same as in all non-perturbative functional RG studies, namely the necessity to truncate

the theory space. Here, for asymptotically safe quantum gravity we computed Ck directly

from the RG trajectories obtained with both the single- and bi-metric Einstein-Hilbert

truncation, respectively.
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It is one of our main results that in the bi-metric truncation the function Ck has the

desired properties of monotonicity and stationarity, while the single-metric truncation is

too poor an approximation to correctly reproduce the monotonicity which we expect at

the exact (un-truncated) level. We demonstrated explicitly that the monotonicity property

obtains only for the RG trajectories which are physically meaningful, that is, those which

lead to a restoration of split-symmetry once all field modes are integrated out.

We studied generalized crossover trajectories from a fixed point in the UV to a clas-

sical regime in the IR, in which by definition the dimensionful cosmological and Newton

constants loose their k-dependence. In many ways they are analogous to a standard (fixed

point → fixed point) crossover. In quantum gravity they are of special importance as one

of the main challenges consists in explaining the emergence of a classical spacetime from

the quantum regime.

For the trajectories with positive cosmological constant (‘type IIIa’) the self-consistent

background configurations needed are gravitational instantons. The resulting Ck depends

on the instanton type via the normalized volume, a quantity of topological significance.

For the example of Euclidean de Sitter space, the sphere S4, for instance, we obtained the

‘integrated C -theorem’

N = C
UV − C

IR ≈ 3π/GCRΛCR (4.1)

This result is intriguing for several reasons. First of all, N , and also the values of C UV

and C IR separately, are well defined finite numbers, in marked contrast to expectations

based on the counting in perturbative field theory. The quantity N can be interpreted as

a measure for the ‘number of modes’ which are integrated out while the cutoff is decreased

from k ‘=’∞ to k = 0.

Hereby the notion of ‘counting’ and the precise meaning of a ‘number of field modes’

is defined by the EAA itself, namely via the identification Ck = Γk[Φ̄sc
k , Φ̄sc

k ]. Under spe-

cial conditions it reduces to a literal counting of the Γ
(2)
k -eigenvalues in a given interval.

Generically we are dealing with a non-trivial generalization thereof which, strictly speak-

ing, amounts to a definition of ‘counting’. As such it is the most natural one from the EAA

perspective, however.

The approximate equality N ≈ 3π/GCRΛCR is valid if GCRΛCR ≪ 1 in the classical

regime. In this limiting case, N ≈ |C IR| equals exactly the Bekenstein-Hawking entropy of

de Sitter space, and the contribution from the UV fixed point is negligible, |C UV| ≪ |C IR|.
Asymptotic Safety is crucial for this result, making C UV finite.

So we are led to the following interpretation of the entropy of de Sitter space: it equals

the number N of metric and ghost fluctuation modes that are integrated out between the

NGFP in the UV and the classical regime in the IR. Asymptotic Safety is ‘taming’ the

ultraviolet and renders this number perfectly finite. (In the real Universe, N ≈ 10120.)

(C) Future work along these lines will be in various different directions. Clearly one of the

goals will be to corroborate our result based on the bi-metric Einstein-Hilbert truncation

on larger theory spaces. This should also lead to a better understanding and to a physics

interpretation of the stationary values C∗ and CCR which replace the central charge of 2D
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conformal field theory. We found that CCR coincides with the familiar Bekenstein-Hawking

entropy,18 but this is likely to change beyond the Einstein-Hilbert truncation.

Ultimately one could hope to establish, perhaps even at some level of rigor, the ex-

istence of a C-function in 4D asymptotically safe Quantum Einstein Gravity by using a

combination of WISS and FRGE in order to derive bounds for the ‘disturbing’ term in the

equation (2.43) for ∂kCk.

Besides its obvious relevance to the global structure of the RG flow, this will also allow

us to use the monotonicity of Ck as a powerful criterion and easy to apply practical test

for assessing the reliability of truncations or other approximations.

Furthermore, it would be interesting to find further examples, based on other theory

spaces which admit a simple map from Γk to some Ck. It also remains to clarify the

precise relationship between the existing c- and a-theorems on the one side, and the present

framework on the other. We shall come back to this question elsewhere [75].

In the existing work on the known (generalized) c-theorems in 2, 3, and 4 dimensions,

usually no reference is made to a (bare) action and fields it depends on; only the existence

of a local energy momentum tensor is assumed. In the present approach the emphasis

is instead on (effective) action functionals depending on a set of fields that is fixed from

the start. However, recalling the discussion (of the ‘reconstruction problem’) in ref. [79] it

becomes clear that this clash is much less profound than it seems: in the EAA approach to

Asymptotic Safety, Γk[ · ] should primarily be seen as a generating function (or functional)

for a set of n-point functions. Hereby the field arguments of the EAA serve a purely

technical purpose, and in general the relationship between those field arguments and the

fundamental physical degrees of freedom (dof) whose quantization would result in a given

RG trajectory is at best a highly indirect one.

The main reason is that in the case of an asymptotically safe theory Γk→∞, i.e. the

fixed point action is extremely complicated, highly non-linear, contains higher derivatives,

and is nonlocal probably. Furthermore, Γk→∞ is a gauge-fixed action, but it will not be

of the familiar form S + Sgauge-fixing + Sghost in general, with some invariant action S and

a quadratic, second derivative ghost action Sghost, as it is the case when one applies the

Faddeev-Popov trick. This is another issue that complicates the identification of the phys-

ical contents of the fixed point theory. In perturbation theory, Γk→∞ which is essentially

the same as the bare action S, contains only a few relevant field monomials and only second

derivative terms. As a result, there is basically a one-to-one relation between degrees of

freedom and fields. In Asymptotic Safety, rather than an ad hoc input, the theory’s bare

action, or what comes closest to it, Γk→∞, is the result of a complicated nonperturbative

evaluation of the fixed point condition. As the structure of propagating modes is crucially

affected by higher derivative and nonlocal terms, it is the fixed point condition that decides

about the nature of the underlying dof’s. To identify them, a phase-space functional in-

tegral of the form
∫ Dx

∫ Dπ exp (i
∫

πj ẋj − H[π, x]) must be found which reproduces the

18It is nevertheless intriguing that the Bekenstein-Hawking entropy appears here in a role analogous to

the central charge in conformal field theory. In fact the thermodynamics of 2-dimensional black holes,

or correspondingly dimensionally reduced ones, is closely related tot the Virasoro algebra and its central

charge [78].

– 42 –



J
H
E
P
0
3
(
2
0
1
5
)
0
6
5

RG trajectory obtained from the FRGE. We can then read off canonically conjugate pairs

xj , πj and the (local) Hamiltonian H[π, x] which governs their bare dynamics. To bring

the original functional integral [79]
∫ DΦ̂ e−Γk→∞ to this form, field redefinitions and the

introduction of further, or different fields will be necessary in order to remove nonlocal and

higher-derivative terms. It is quite conceivable that there is more than one set {πj , xj}
and Hamiltonian H that reproduces a given RG trajectory. In this case we would say

that the quantum theory defined by the latter has ‘dual’ descriptions employing different

(bare) actions and fields. As yet, not much work has been devoted to this ‘reconstruction

problem’, see however ref. [79] for a first step.

(D) To close with, we mention another intriguing aspect of the integrated C -theorem (4.1)

which deserves being investigated further, namely its connection to the hypothesis of the

‘N-bound’ which is due to Banks [80] and, in a stronger form, to Bousso [81]. In Bousso’s

formulation, the claim is that in any universe with a positive cosmological constant, con-

taining arbitrary matter that even may dominate at all times, the observable entropy Sobs

is bounded by Sobs ≤ 3π/GΛ ≡ N .

Here Sobs includes both matter and horizon entropy, but excludes entropy that cannot

be observed in a causal experiment. As for the notion of an ‘observable entropy’, it is

identified [81] with the entropy contained in the causal diamond of an observer, i.e. the

spacetime region which can be both influenced and seen by the observer. It is bounded by

the past and future light cones based at the endpoints of the observer’s world line.

Remarkably, while the number N equals the Bekenstein-Hawking entropy of empty

de Sitter space, the bound is believed to apply in presence of arbitrary matter, and for

arbitrary spacetimes with Λ > 0, which not even asymptotically need to be de Sitter.19

Given the methods developed in the present paper the intriguing possibility arises to

check whether the N -bound holds in asymptotically safe field theories and to tentatively

identify N with N ≡ C UV − C IR. In principle we have all tools available for a fully non-

perturbative test that treats gravity at a level well beyond the semi-classical approximation.

We would have to add matter fields to the truncation ansatz [82–85] and include for all

types of fields the corresponding (Gibbons-Hawking, etc.) surface terms that are needed

on spacetimes with a non-empty boundary [50, 86].

Originally the N -bound grew out of string theory based arguments which hinted at

the possibility of a ‘Λ-N-connection’ [80, 81]. It would be such that all universes with a

positive cosmological constant are described by a fundamental quantum theory which has

only a finite number of degrees of freedom, and that this number is determined by Λ.20

Is there a corresponding ‘Λ-N -connection’ in asymptotically safe field theory? For

pure gravity we can answer this question in the affirmative already now: the fundamental

quantum field theory is defined by the Asymptotic Safety construction with an RG trajec-

tory of the type IIIa, we get the required positive cosmological constant in the IR, ΛCR,

which in turn fixes the number of degrees of freedom, here to be interpreted as C UV −C IR,

by N = 3π/GCRΛCR < ∞. Recalling our discussion of the Ia and IIa trajectories in sec-

19In [81] the original requirement [80] of spacetimes that are asymptotically de Sitter has been dropped.
20For a similar discussion in Loop Quantum Gravity see ref. [87].
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tion 3.3 and appendix B we can now easily understand what is special about a strictly

positive Λ, and why the connection fails for a negative or vanishing classical cosmological

constant: in the latter cases, we found that N is not finite.
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A The special status of Faddeev-Popov ghosts

In subsection 2.4 we argued that Faddeev-Popov ghosts, even though they contribute with

a negative sign to the supertrace on the r.h.s. of the flow equation, do not destroy the point-

wise monotonicity of the EAA when they are the only fields present with odd Grassmann

parity. The reason was that the ghosts are merely a way of representing the Faddeev-Popov

determinant, det(M), the functional integral actually being Z =
∫ Dg det(M) e−Sgfe−S ,

wherein the gauge fixing term and the determinant effectively restrict the integration over

all metrics to an integral over the gauge orbit space of metrics modulo diffeomorphisms.

If we had parametrized the latter directly we were dealing with a purely Grassmann-even

integral [88], which when modified by an IR cutoff, obviously leads to a pointwise monotone

EAA as the gauge orbit space is independent of k. In this appendix, we briefly indicate

how this general argument can be made concrete.

We start out from the functional integral that has been gauge-fixed à la Faddeev-

Popov, but without IR cutoff yet. Then, after the usual background split, we perform a

partial21 TT-decomposition of the fluctuation field,

hµν = hT
µν +

(
D̄µVν + D̄νVµ − 2

d
ḡµνD̄αVα

)
+

1

d
ḡµνh (A.1)

with D̄µhT
µν = 0, ḡµνhT

µν = 0, h ≡ ḡµνhµν . Henceforth we interpret Dgµν as DhT
µνDhDVµ.

Furthermore, we write the Faddeev-Popov determinant as det (M[g, ḡ]) ≡ det (M) e−S1

with M ≡ M[ḡ, ḡ]. Diagrammatically speaking the action S1 contains the ghost-antighost-

graviton vertices and M−1 is the ‘free’ ghost propagator. Thus

Z[ḡ] =

∫
DhT

µνDhDVµ det(M)e−Sgfe−S̃ (A.2)

with S̃ ≡ S + S1 and the representation det(M) =
∫ DξDξ̄ exp

∫
ξ̄Mξ.

Next, consider the family of gauge fixing functions

Fµ = D̄νhµν − ̟D̄µh

= D̄2Vµ +

(
1 − 2

d

)
D̄µD̄νVν + R̄ν

µVν +

(
1

d
− ̟

)
D̄µh (A.3)

21It is ‘partial’ in that the vector field Vµ is not decomposed further here as this is usually done, setting

Vµ = V T
µ + D̄µσ with ḡµνD̄µV T

ν = 0.
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As for the parameter ̟, we choose the ‘un-harmonic’ gauge [89–91], setting ̟ = 1/d.

(The harmonic gauge has ̟ = 1/2 instead.) This gauge leads to a remarkable conspiracy

of the gauge fixing action, Sgf = 1
2α

∫
ddx

√
ḡ ḡµνFµFν , and the ghost action at hµν = 0,

Sgh =
∫

ddx
√

ḡ ξ̄µ Mµ
νξν . One finds that Sgf is a bilinear form in Vµ (and only Vµ!) whose

kernel is precisely the square of the inverse ghost propagator :22

Sgf =
1

2α

∫
ddx

√
ḡ Vµ Mµ

αMα
ν V ν (A.4)

In this gauge, Mµ
ν ≡ M[ḡ, ḡ]µν = D̄2δµ

ν − (1 − 2/d)D̄µD̄ν − R̄µ
ν . As a consequence, the

integral over the ghosts, producing the determinant det(M), when combined with e−Sgf ,

yields a Dirac δ-functional in the limit α → 0:

det(M)e− 1
2α

∫
V M2V → δ[V ] (A.5)

It satisfies
∫ DV δ[V ] → 1. That δ[V ] is indeed correctly normalized, up to a constant,

follows from det(M)
∫ DV e− 1

2α

∫
V M2V = det(M) det−1/2(M2) = det(M) det−1(M) = 1.

As a result, the limit α → 0 simplifies the integral for Z quite considerably: after

integrating over Vµ and using (A.5) we are left with

Z =

∫
DhT

µν Dh exp
(
−S̃[hT

µν + d−1ḡµνh; ḡµν ]
)

(A.6)

This functional integral is manifestly over fields of even Grassmann parity only. So when we

go through the usual procedure and define the associated EAA, the derivation of ∂kΓk ≥ 0

in the main part of this paper applies to it, provided the above exact compensation of the

ghost and Vµ contributions persists in presence of an IR cutoff. While this is not the case

for a generic cutoff, it has been shown [92] that if the cutoff operators Rk of the ghost and

metric fluctuations, respectively, are appropriately related, which always can be achieved,

the compensation does indeed persist. For further details the reader is referred to [92].

Thus we have shown that (at the very least) when the ghosts are the only Grassmann-

odd fields it is in principle always possible to set up the gauge fixing and ghost sector of

the EAA and its FRGE in such a way that ∂kΓk ≥ 0 holds true pointwise.

The various sets of beta-functions studied in this paper were not obtained using this

very special set-up for the gauge-fixing and ghost sector. However, as the truncations

considered here anyhow neglect all RG effects in this sector we have the freedom to use

any gauge at this level of accuracy since this should not lead to an extra error. A similar

remark applies to the choice of the cutoff operators.

B The trajectory types Ia and IIa

In this appendix we evaluate Ck = Γgrav
k [0; ḡsc

k ] along type Ia and IIa trajectories in d = 4

for the bi-metric Einstein-Hilbert truncation. The analysis parallels to some extent the

one in subsection 3.3 for the type IIIa case. Since in the Ia and IIa cases the cosmological

constant λ(1) turns zero or even negative at some scale the corresponding self-consistent

22This ‘magic’ property has been discovered by F. Saueressig et al. [92, 93].
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Figure 12. The function 1/Yk and its derivative are shown for a typical bi-metric type Ia trajectory

which restores split-symmetry in the IR. Due to the sign flip of λ
(1)
k near ksing ≈ 0.5mPl, the function

1/Yk has a zero there and Ck diverges. As long as (3.25) is still valid, to k > ksing, the function Yk

is seen to be monotone.
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Figure 13. The function 1/Yk for the bi-metric type Ia trajectory (separatrix) and its derivative.

Its properties are similar to the type IIIa results obtained in subsection 3.3. In particular Yk is seen

to be monotone. The asymptotic topology change of the self-consistent background in the limit

k → 0 is not directly visible in these plots. It can be checked though that Yk diverges for k → 0

(and that it does not in the IIIa case).

background undergoes a topological change, from S4 to flat Euclidean space R4 and to H4,

respectively. While for the separatrix, the type IIa trajectory, the change from S4 to R4

happens in the limit k → 0 only, the type Ia solutions have a negative λ(1) at finite scales

k < ksing already. At the transition point k = ksing equation (3.25) is no longer valid and

Yk diverges: limkցksing Yk = ∞. For k < ksing a different formula for Ck, employing a new

background configuration, could be derived. We shall not do this here and rather restrict

our attention to the subspace of T with λ(1) > 0.

The figures 12 and 13 depict the explicit k-dependence of 1/Yk for a representative

type Ia trajectory and the unique IIa trajectory, respectively, both for the case of restored

split-symmetry in the IR. The plots are based on the RG equations of [II]; the results with

those from [I] are quite similar. For the type Ia trajectory in figure 12 the singularity of Yk

occurs at about ksing ≈ 0.5mPl, and Yk is seen to be perfectly monotone above this scale.
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Along this trajectory, we integrated out Nksing,∞ = ∞ modes already before the end

of the trajectory. But as there is a nontrivial RG evolution also below ksing, there are still

further modes left to be integrated out. Using a hyperbolic background we could count

how many there are in some interval [k1, k2] with k1 < k2 < ksing. But clearly there is no

meaningful way of associating a finite number N0,∞ to the complete trajectory as this was

possible in the IIIa case.

For the symmetry-restoring bi-metric separatrix, the plot of 1/Yk is very similar to

the case of the IIIa-trajectories discussed in the main part of the paper, see figure 13. The

only difference is that 1/Yk vanishes exactly at k = 0, while 1/Yk was always nonzero for

the type IIIa solutions. So the separatrix is the marginal case where N = ∞ is reached

precisely at the IR-end point of the trajectory.

In a series of snapshots, figures 14 and 15 show the evolution of the RG trajectories in

the background sector, from the IR to the UV, on the basis of typical Ia and IIa dynamical

trajectories, respectively.

The shaded (white) regions partition the gB-λB-plane into subsets of positive (nega-

tive) slope k∂kYk. A crossing of the corresponding boundary indicates a violation of the

monotonicity of Ck. While in the case of the separatrix the requirement of split-symmetry

restoration in the IR is sufficient to assure this condition, a more careful study is needed for

type Ia trajectories. There λ(1) turns negative at finite scales k, and thus makes eq. (3.25)

inapplicable. In any case, trajectories that break split-symmetry at k = 0 are more vul-

nerable to monotonicity violation than those restoring it.
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Figure 14. The gB-λB-plane is shown in a series of subsequent ‘snapshots’ at different RG-times

which increase from the upper left to the lower right diagram. They are given by the maximum

k-value of the incomplete dynamical type Ia trajectory k 7→ (gDyn
k , λDyn

k ) shown in the respective

inset. The shaded regions corresponds to T B
+ (k) at that particular time, so that every trajectory in

the shaded (white) region will give rise to a positive (negative) value of k∂kCk at the instant of time

k. Furthermore, two different B-trajectories that are evolved upward (towards increasing scales k)

are shown at the corresponding moments. The one passing the point P1 (P2) is split-symmetry

violating (restoring). The symmetry restoring trajectory starts its upward evolution close to P2,

the position of the running UV attractor [45]. As long as k > ksing, which is assumed here to avoid

a topology change, this trajectory never leaves the shaded area, and thus its Ck-function is strictly

monotone. This is different for the trajectory through P1: attracted by the running UV-attractor,

it is pulled into the shaded regime, thus unavoidably crossing the boundary of T B
+ (k), which causes

a sign flip of ∂kCk, rendering Ck non-monotone.
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Figure 15. A series of snapshots as in figure 14, but for the type IIa trajectory. The results are

similar to those in subsection 3.3 for the type IIIa trajectories.
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