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1 Introduction

Path integrals with complex weight appear in many branches of physics. Examples include

the Minkowski path integral, QCD with chemical potential, Chern-Simons gauge theory,

Yang-Mills theory in the theta vacuum and chiral gauge theories. Interest in quantum

theories with complex actions was also stimulated by the advent of PT symmetry [1, 2].

Despite the overwhelming significance of these theories, only partial progress has been

made towards their first-principle understanding partly due to the incapability of numerical

simulations based on Monte Carlo sampling to deal with complex weights, which impede

a probabilistic interpretation.

A promising approach for handling complex actions is to complexify the field space. In

a one-dimensional integral, the method of steepest descent (or stationary phase method)

is well known, in which one deforms an integration contour into a more general path on
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the complex plane so that it passes through a critical point (saddle) of the integrand. This

allows for an asymptotic evaluation of exponential integrals. The generalization of this

method to higher dimensions is provided by the Morse theory (or Picard-Lefschetz the-

ory) [3, 4], where contours of steepest descent are generalized to higher-dimensional curved

manifolds called Lefschetz thimbles. Recently, a direct application of the Picard-Lefschetz

theory to infinite-dimensional path integral in quantum field theory (QFT) was made by

Witten [5, 6]. He showed that Chern-Simons path integral can be defined nonperturbatively

for complex gauge fields by taking Lefschetz thimbles as integration cycles. This work has

provoked subsequent developments of numerical approaches to complex path integrals on

the basis of Picard-Lefschetz theory [7–14]. They are reminiscent of the complex Langevin

method [15–17], which is also based on the idea of field complexification, but there seem

to be fundamental differences [10, 14].

The Picard-Lefschetz theory also provides a useful framework for obtaining a visual

understanding of a subtle interplay between perturbative and nonperturbative saddles in

asymptotic series [18]. See [19–28] for related works in matrix models with applications

to quantum gravity, Dijkgraaf-Vafa theory, ABJM theory and non-critical string theory.

More recently, the relevance of Lefschetz thimbles is discussed in the context of semiclassical

expansion in asymptotically free QFTs [29–33]. For an inexhaustive list of references on

complex path integral and Lefschetz thimbles, see [34–45].

So far many of the works on Lefschetz-thimble approach to QFT seem to have been

centered around bosonic theories [5, 7–12, 32, 39]. On the other hand, in view of possi-

ble future applications of the Picard-Lefschetz theory to QCD and QCD-like theories, it

would be important to understand the behavior of Lefschetz thimbles for path integrals

with fermionic degrees of freedom. In [13, 14] Lefschetz thimbles in presence of a fermion

determinant were studied numerically. These works were specifically focused on the Hub-

bard model [13] and on lattice fermions with chemical potential [14], respectively. It would

be certainly worthwhile to extend these analyses to a more general setting.

In this paper, we investigate the structure of Lefschetz thimbles in a variety of fermionic

systems in zero and one dimension. We obtain complex critical points, determine associated

Lefschetz thimbles and discuss their Stokes jumps, in a fermionic model with discrete chiral

symmetry (with or without small mass term), in a fermionic model with continuous chiral

symmetry (with or without small mass term), and in a Chern-Simons-like theory with

fermions where a sign problem is caused by a topological term in the action. We expect

that examples worked out here and lessons learned therefrom will be of value in future

attempts to study the complex phase problem and spontaneous chiral symmetry breaking

in QCD and QCD-like theories on the basis of Picard-Lefschetz theory.

This paper is organized as follows. In section 2 a brief review of the Lefschetz-thimble

approach to path integrals is given. We use simple toy integrals to illustrate that zeros and

poles in the functional determinant in field theories do not obstruct the application of the

Picard-Lefschetz framework. In section 3 we study a zero-dimensional Gross-Neveu-like

model with discrete chiral symmetry. We investigate chiral symmetry breaking, Stokes

lines, monodromy and Lee-Yang zeros in the complex coupling space from a viewpoint

of Lefschetz thimbles. In section 4 a zero-dimensional Nambu-Jona-Lasinio-like model
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with continuous chiral symmetry is analyzed. We add a small mass term that breaks

chiral symmetry explicitly and find that the approach to chiral limit is singular in terms

of thimbles. In section 5 a one-dimensional theory with a topological term is considered.

Positions of infinitely many critical points are determined and the dependence of associated

Lefschetz thimbles on the coefficient of the topological term is elucidated. We conclude in

section 6.

2 General remarks

In this section we give a short summary of the Picard-Lefschetz approach to complex

integrals and discuss applicability of the method in presence of zeros and poles of the

integrand, which is commonly caused by functional determinant in QFTs. We aim to

provide a minimal background for later sections of this paper and to fix our notations and

terminology. A more in-depth review on this topic may be found in [5], to which we refer

the interested reader for further details.

In physics we frequently confront the need to evaluate integrals of the form∫
D dx e

− 1
g
f(x)

where g is a parameter (∼ ~ in quantum physics, ∼ kBT in statistical

mechanics, ∼ 1/N in N ×N matrix models and N -vector models, and so on). The domain

D is a subset of Rn for simplicity. When f(x) is real and g is small, an asymptotic estimate

of the integral is available by means of a saddle-point approximation. The saddle points

of f in D dominate the integral, while those that lie outside of D do not play a role. In

addition, for real f one can apply Monte Carlo sampling techniques by interpreting the

measure e
− 1
g
f(x)

as a probabilistic weight, which is useful especially when n is large.

Things change substantially once f becomes a complex function. Although the inte-

grand at small g > 0 is suppressed for large Re f and enhanced for small Re f , a naive

saddle-point approximation based on saddles of Re f fails because Im f causes a rapid os-

cillation of the integrand which lessens contributions from the vicinity of these saddles. A

viable asymptotic expansion should thus be done around a point where both Re f and Im f

are stationary, but such point might not exist on D. Moreover, the complex phase of the

integrand makes a numerical evaluation of the integral quite challenging.

As is widely known, for n = 1 the correct way of handling this analytically is to

promote f(x) to a holomorphic function on C, identify saddle points of f on C and deform

the original integration contour so that it passes through the saddle in the direction of

stationary phase: Im f is constant on the deformed path. However, in the presence of

multiple saddles it is far from trivial to see which one contributes to the integral and which

does not; this is even more so when considering multidimensional integrals, i.e., n > 1.

A lucid way to organize asymptotic expansions for complex integrals is provided by the

Picard-Lefschetz theory. For this to work we require that f(z) is a holomorphic function

on Cn and that all critical points of f are non-degenerate.1 The downward flow equation

1The presence of degenerate saddles that stem from a symmetry of the action does not necessarily

invalidate the Picard-Lefschetz theory, but requires a special treatment as we discuss in section 4.2.
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is then defined as

dzi(τ)

dτ
= −

(
∂f(z)

∂zi

)
, τ ∈ R . (2.1)

The essential property of (2.1) is that Im f is constant but Re f is monotonically decreasing

along the downward flow. (This is a Morse flow with Re f the Morse function.) Every

critical point of f is evidently a fixed point of the flow. For each critical point zσ (σ =

1, 2, . . . ) , we can define a Lefschetz thimble J (zσ) as the union of all flows that end at zσ
in the limit τ → +∞. This J (zσ) is a manifold of real dimension n due to the fact that

there are precisely n directions around zσ in which Re f is increasing. (For f(z) = z2, for

instance, Re f(z) = Re (x+ iy)2 = x2− y2 has one increasing direction and one decreasing

direction. This generalizes to higher dimensions thanks to the holomorphy of f .) Since

Re f is strictly decreasing along the flow, it must be that Re f(z) tends to +∞ in the limit

τ → −∞.2 This implies that e
− 1
g
f(z)

goes to zero at the ends of J (zσ). In other words,

J (zσ) gives an element of the relative homology Hn(Cn, (Cn)T ;Z) for very large T , where

(Cn)T := {z ∈ Cn |Re f(z) ≥ T} is the “good” regions in which the integrand decreases

rapidly. It then follows, that for any linear combination of Lefschetz thimbles
∑

σ nσJ (zσ)

with integer coefficients nσ ∈ Z, the integral∫
∑
σ nσJ (zσ)

dz e
− 1
g
f(z)

=
∑
σ

nσ

∫
J (zσ)

dz e
− 1
g
f(z)

(2.2)

is convergent and well-defined. Importantly, the converse is also true: {J (zσ)}σ actually

constitutes a basis of Hn(Cn, (Cn)T ;Z) so that any cycle of real dimension n without a

boundary which is suitable as an integration cycle for e
− 1
g
f(z)

can be decomposed into a

sum of Lefschetz thimbles. Therefore, as long as the original integration cycle D ⊂ Cn

belongs to Hn(Cn, (Cn)T ;Z), one can always express an integral over it in the form∫
D

dx e
− 1
g
f(x)

=

∫
∑
σ nσJ (zσ)

dz e
− 1
g
f(z)

=
∑
σ

nσ e
− i
g

Im f(zσ)
∫
J (zσ)

dz e
− 1
g

Re f(z)
. (2.3)

Now the integral on the r.h.s. has a real positive weight (albeit on a curved manifold J (zσ))

and is easily amenable to usual asymptotic analysis around saddles. At the same time the

complex phase problem is resolved if we could perform efficient Monte Carlo sampling on

the Lefschetz thimbles with nσ 6= 0.

Of course, this method would be useless if we do not know how to determine {nσ}σ.

Fortunately this is known at least for a finite-dimensional integral. Let us consider an

upward flow equation

dzi(τ)

dτ
=

(
∂f(z)

∂zi

)
, τ ∈ R (2.4)

in which the sign on the r.h.s. is flipped as compared to (2.1). As a result of this, along

the upward flow, Im f(z) is conserved as in (2.1) while Re f(z) is monotonically increasing.

2An exception is when the flow meets another critical point. This is called the Stokes phenomenon [46]

but does not occur for generic case and we momentarily ignore this.
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For each critical point zσ of f , we define K(zσ) as the union of all upward flows which

end in zσ in the limit τ → +∞. Again this is a manifold of real dimension n. The

cycles {K(zσ)}σ may be seen as a dual of the Lefschetz thimbles {J (zσ)}σ in a homological

sense and there is a natural intersection pairing between J and K [5]. Actually {K(zσ)}σ
constitutes a basis of another relative homology Hn(Cn, (Cn)−T ;Z) for large T , where

(Cn)−T := {z ∈ Cn |Re f(z) ≤ −T} is the “bad” regions.

Of course, one cannot use K(zσ) as an integration cycle for e
− 1
g

Re f(z)
, because Re f →

−∞ at the ends of K(zσ) (i.e., for τ → −∞). Rather, the importance of K(zσ) lies in the

fact that nσ appearing in (2.3) can be computed as the number of (oriented) intersections

between D and K(zσ).3 While the calculation of {nσ} is tractable for low-dimensional toy

models, it becomes a formidable task in the case of infinite-dimensional QFTs. In recent

numerical Monte Carlo approaches to Lefschetz thimbles, only a single thimble associated

with the perturbative vacuum was taken into account on the basis of universality [7, 8, 11–

13]. Although numerical results so far look quite promising, the validity of this approach

still remains to be clarified.

In general applications of the Lefschetz thimble technique, we often face integrals that

are not of a pure exponential form, but rather
∫
D dx h(x) e

− 1
g
f(x)

with another function

h(x). When h(x) is just an observable in field theories, it does not affect the saddle point

analysis of the integral because f(x) grows extensively in the thermodynamic limit while h

is an O(1) quantity. In contrast, if h grows in the thermodynamic limit this has to be taken

into account in the saddle point analysis: examples of such h are the quark determinant

in QCD and the Vandermonde determinant in matrix integrals. In both cases h has zeros

and a simple rewriting h e
− 1
g
f → e

log h− 1
g
f

looks subtle. Moreover h may also have poles.

In the remainder of this section, we discuss how the Lefschetz-thimble approach works in

these cases.

Let us first consider the case when h is holomorphic on Cn. Then log h is defined except

at zeros of h.4 Although log h is ambiguous up to integer multiples of 2πi, the gradient

flow equations (2.1) and (2.4) are well-defined because the above ambiguity disappears by

taking derivatives of log h, and the thimbles can be defined in the same way as before,

provided that all the critical points of log h− 1
gf are non-degenerate. What is crucial here

is that the “good” regions must be modified, by incorporating the vicinity of zeros of h.

This can be explained most easily on examples.

As a trivial case, consider
∫
R dx x e−x

2/2. Of course this integral is identically zero, but

this is irrelevant for the purpose of illustration. Casting this into the form
∫
R dx e−f(x) with

f(x) = − log x+x2/2, we see that the critical points are located at x = ±1. The Lefschetz

thimbles {J (1), J (−1)} and the upward flow lines {K(1),K(−1)} can then be defined.

They are schematically shown in figure 1 (left panel). The three hatched areas are “good”

regions, which includes the vicinity of z = 0. The Lefschetz thimbles J (±1) run from one

good region to another, thus providing a basis of the relative homology H1(C,CT ;Z) for

3In 2n dimensions (Cn), two general hypersurfaces with dimension n intersect at isolated points. Consider

two lines on a plane, for example.
4Note that the set {z ∈ Cn |h(z) = 0} is typically of real dimension 2n− 2. The zeros of h thus form a

hypersurface in higher dimensions.
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J (1)J (−1)

K(1)K(−1)

J (−i)

J (i)

K(i)

K(−i)

Figure 1. Lefschetz thimbles J (solid lines) and their duals K (dashed lines) for simple one-

dimensional integrals. Orange blobs are critical points of the action. Hatched areas are “good”

regions where the integrand tends to zero. In both panels, the origin is a singularity of the flow.

very large T in accordance with the general argument. By contrast, K(±1) run from one

“bad” region z ∼ −i∞ to another z ∼ i∞, thus providing a basis of H1(C,C−T ;Z) for

very large T . Since K(±1) intersect with the real axis, the integral receives contributions

from both J (1) and J (−1). This is also intuitively obvious, for the original contour R
is a union of J (1) and J (−1). As a whole, the general framework of Lefschetz-thimble

approach does not seem to be obstructed by the presence of zeros of the integrand.

There is one side remark here. We noted above that Im f is conserved along a flow.

While this is generally true, it does not imply that Im f is constant over an entire up-

ward/downward flow cycle. For illustration, let us note that K(−1) is comprised of two

distinct flow lines: one is stretching from −1 to +i∞ and the other from −1 to −i∞. It is

easily seen that Im f is −π along the former and π along the latter, owing to the fact that

z = −1 sits right on the branch cut of logarithm. Thus we conclude that although Im f is

locally conserved along a flow, it can jump by a multiple of 2π at a point where two flows

meet. (See also [14]).

Next, let us turn to the case when h(z) is a meromorphic function with poles. An

example of this is given by a bosonic functional determinant in QFTs. It is useful to

once again employ a simple example to illustrate the general applicability of Lefschetz

thimbles. Consider an integral
∫
R+iε dz 1

z e−z
2/2 where the contour is slightly uplifted

from the real axis to avoid the pole at z = 0. Now, writing this as
∫
R+iε dz e−f(z) with

f(z) = log z + z2/2, we see that the critical points are located at z = ±i. The Lefschetz

thimbles {J (i), J (−i)} and the upward flow lines {K(i),K(−i)} can then be defined with

respect to the flow equations for f(z). They are shown in figure 1 (right panel). Compared

to the previous example, the geometrical structure of J and K are exchanged. Interestingly,

now, K(i) and K(−i) end at the origin because the area around z = 0 was turned into a

“bad” region by a pole. One can easily confirm that J and K again constitute the bases

of relative homology. (Note that J (i) and J (−i) are independent cycles, for they cannot

be continuously moved to each other across the singularity at z = 0.) Since K(i) intersects

with R + iε while K(−i) does not, the integral only receives contribution from J (i) and

– 6 –
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not from J (−i). In summary, the presence of a pole in the integrand does not undermine

the applicability of the Picard-Lefschetz theory.

We note that our discussion so far is concerned about mathematical aspects of the

formalism and does not immediately suggest feasibility of numerical algorithms for Lef-

schetz thimbles. Actually the fermion determinant in QCD at finite density has dense

zeros in the gauge configuration space and this could lead to a practical difficulty for the

Lefschetz-thimble approach [7].

3 Gross-Neveu-like model

As a toy model for discrete chiral symmetry breaking, let us consider a zero-dimensional

fermionic model similar to the Gross-Neveu (GN) model [47]. The partition function reads

ZN (G,m) =

∫
dψdψ exp

 N∑
a=1

ψa(i/p+m)ψa +
G

4N

(
N∑
a=1

ψaψa

)2
 , (3.1)

where ψa and ψa are 2-component Grassmann variables with N colors, G > 0 is a coupling

constant, m is a bare mass, and /p ≡
∑2

i=1 piγi is a constant 2 × 2 matrix that mimics

the effect of nonzero-momentum modes in higher dimensions. (As an explicit basis we use

γ1 = σ1, γ2 = σ2 and γ5 = σ3 in the following.) At m = 0, the action in (3.1) is invariant

under a Z2 chiral transformation ψ → γ5ψ. With a Hubbard-Stratonovich transformation,

ZN (G,m) =

√
N

πG

∫
dψdψdσ exp

(
N∑
a=1

ψa(i/p+m+ σ)ψa −
N

G
σ2

)
(3.2)

=

√
N

πG

∫
R

dσ detN (i/p+m+ σ) exp

(
−N
G
σ2

)
≡
√

N

πG

∫
R

dσ e−NS(σ) , (3.3)

where

S(σ) ≡ σ2

G
− log[p2 + (σ +m)2] with p2 ≡ p2

1 + p2
2 > 0 . (3.4)

The derivation of (3.3) is not only valid for G > 0 but also for complex G as long as

ReG > 0. Now, let us discuss the cases with m = 0 and m > 0 separately.

3.1 Massless case

3.1.1 Lefschetz thimbles

For m = 0, the minimum of the action S(σ) = σ2/G− log(p2 +σ2) takes place at σ = 0 for

0 < G ≤ p2 and at σ 6= 0 for G > p2. A continuous “chiral transition” occurs at G = p2.

In order to analyze this transition from the viewpoint of Lefschetz thimbles, we lift

σ ∈ R to a complex variable z ∈ C\{±ip}. The critical points of the action are obtained as

0 =
∂S(z)

∂z
=

2z

G
− 2z

p2 + z2
=⇒ z = 0, ±

√
G− p2 . (3.5)
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G = 0.7 e+0.1i, p = 1, m = 0G = 0.7 e−0.1i, p = 1, m = 0

Figure 2. Lefschetz thimbles (black lines) and upward flow lines (red dashed lines) on the complex

z-plane for the GN-like model in the chiral limit. The three orange blobs at z = 0 and z± =

±
√
G− 1 ≈ ±0.55i are the critical points of S(z), while the two red blobs at z = ±i are the points

where S(z) diverges. The background color scale describes ReS(z).

Let us denote z± ≡ ±
√
G− p2. Since the three critical points coalesce at G = p2 and it

makes the Lefschetz thimbles ill-defined, we will hereafter assume G 6= p2.

It can be easily checked that for G > 0

S(0)− S(z±) = −1 +
p2

G
− log

p2

G
≥ 0 , (3.6)

where the equality holds if and only if G = p2. Thus the nontrivial critical points z± always

have a lower action than z = 0 for G > 0, regardless of G ≷ p2.

An important fact is that ImS(z) = 0 at all these critical points. This means that we

are right on the Stokes ray: there are flow lines that connect distinct critical points [5, 46].

To avoid the Stokes ray and make Lefschetz thimbles well-defined, we endow G with a

phase factor eiθ with 0 < |θ| � 1 so that the degeneracy of ImS(z) among the critical

points is lifted.5 A more comprehensive analysis of Stokes phenomena for complex G will

be presented in section 3.1.2.

In figure 2 we show downward flow lines (i.e., Lefschetz thimbles) and their duals on

the complex z plane for p = 1 and G = 0.7 eiθ with θ = ±0.1. (Since G < p2, the system is

in a chirally symmetric phase.) The displayed flow lines were obtained by first plotting the

contours fulfilling ImS(z) = ImS(0) and ImS(z) = ImS(±
√
G− p2), and then discarding

components that are not connected to the critical points.

There are several remarks concerning figure 2. First of all, there are three Lefschetz

thimbles J (0), J (z+) and J (z−) and three upward flow lines K(0), K(z+) and K(z−), pass-

ing through each critical point. Among the three K’s, only K(0) intersects with the original

5It is not appropriate to rotate the entire action as S(z)→ eiθ S(z) because it allows the 2π-ambiguity

in the imaginary part of S(z) to induce an ambiguity in the real part of eiθ S(z), which renders the integral

ill-defined.
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G = 1.1 e+0.1i, p = 1, m = 0G = 1.1 e−0.1i, p = 1, m = 0

Figure 3. Same as figure 2 but with |G| = 1.1.

integration cycle R, which means that J (0) is the only Lefschetz thimble contributing to

ZN (G, 0).6 This is so even though S(z±) is lower than S(0).

Secondly, as we can see, J (z±) and K(0) jump as θ crosses zero. This is a phenomenon

called the Stokes jump. Since J (0) does not jump at θ = 0, the partition function ZN (G, 0)

itself is analytic at θ = 0.

Finally, it is worth an attention that the Lefschetz thimbles indeed provide a homologi-

cal basis of convergent integration cycles even in the presence of logarithmic singularities, in

agreement with our argument in section 2. Here what we call convergent integration cycles

are contours that start from and end in “good” regions (bright regions in figure 2) which are

the regions where ReS(z) grows to +∞. In the present case, there are four “good” regions:

(i) the vicinity of z = z+, (ii) the vicinity of z = z−, (iii) {z ∈ C |Re z � 1, Im z ∼ O(1)},
and (iv) {z ∈ C |Re z � −1, Im z ∼ O(1)}. As seen from figure 2, the three J ’s form a

basis in the space of cycles that start from and end in those four “good” regions. This is

the premise of the Lefschetz-thimble approach to complex integrals.

Next, we consider a chirally broken phase with G = 1.1 > p2 = 1. To avoid the Stokes

ray, we again attach a phase factor to G. The resulting Lefschetz thimbles are shown in

figure 3. Notably, J (0) has rotated almost 90 degrees in comparison to figure 2, and now

it connects the two singular points at z = ±i.
One can observe in figure 3 that all the three K’s (red lines) intersect with the real

axis, implying that ZN (G, 0) now receives contributions from all of J (0), J (z+) and J (z−).

Indeed it is visually clear that the union of the three thimbles is homologically equivalent

to R. Since S(z±) is lower than S(0) (recall 3.6), the nontrivial saddles will completely

dominate the behavior of ZN (G, 0) in the large-N limit, and fermions acquire a dynamical

mass that breaks discrete chiral symmetry. The second-order chiral transition in this model

along the G > 0 line thus occurs through a jump in the number of contributing thimbles

at G = p2. By contrast, we will see in section 3.1.2 that the chiral transition for G ∈ C is

generically first order and exhibits qualitatively new features.

6This is consistent with the general fact that Lefschetz thimbles associated with critical points that lie

on the initial integration cycle contribute with a unit coefficient [5].
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We shall analyze the Stokes jump in figure 3 in some details. Let us fix the orientation

of J (z±) as the direction of increasing Re z and of J (0) as the direction from z = −ip
to z = +ip. Then the homological jump of thimbles as θ is dialed from 0− to 0+ can be

summarized as J (z+)

J (z−)

J (0)

→
 1 0 1

0 1 1

0 0 1


J (z+)

J (z−)

J (0)

 . (3.7)

The meaning of this is that J (z+) in the left panel of figure 3 is equal to J (z+) +J (0) in

the right panel of figure 3, and so on. This actually implies that the real cycle R can be

expressed in two different ways, according to how we approach the θ → 0 limit of G eiθ:

R =

{
J (z+)− J (0) + J (z−) for θ = 0− ,

J (z+) + J (0) + J (z−) for θ = 0+ .
(3.8)

There are two remarks on (3.7) and (3.8).

• The fact that J (0) does not jump across the Stokes ray (as one can see in figures 2

and 3) has an intuitive explanation. From the definition of a downward flow and (3.6),

we have ReS(z) ≥ ReS(0) > ReS(z±) for ∀z ∈ J (0). This implies that the flow

along J (0) has no chance to touch z±, so J (0) is insensitive to the presence of J (z±)

and shows no Stokes jump at all. By the same token, one can explain why K(z±) do

not jump.

• The fact that the coefficients of J (z±) in (3.8) do not jump across θ = 0 can be

deduced in a simple way. For G > p2, the asymptotic behavior of ZN (G, 0) at N � 1

is dominated by the saddles z = z± since S(z±) < S(0). Recalling that ZN (G, 0)

is a holomorphic function of G at any finite N , it follows that the contributions

from J (z±) cannot jump discontinuously. By contrast, such an argument does not

constrain the exponentially smaller contribution from J (0), and indeed the coefficient

of J (0) does jump in (3.8). In short, the jump of coefficients can only occur for

thimbles associated with subleading saddle points.

Both arguments have been presented by Witten [5, Section 3] in the context of bosonic

integrals, and here we have highlighted their usefulness in a fermionic model.

3.1.2 Stokes lines and monodromy

So far we have described the Stokes phenomenon in the massless GN-like model for G > 0.

It has been shown that the thimbles can be made well-defined if G is given a small complex

phase eiθ with 0 < |θ| � 1. In this subsection, we study the Stokes phenomenon and some

technical issues for a generic coupling G ∈ C.7

7A complex four-fermion coupling appears in studies of the θ vacuum in QCD [48, 49].
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Figure 4. Stokes lines for the GN-like model with p = 1 and m = 0 (blue lines). The global

topology of Lefschetz thimbles and their duals changes across the Stokes lines: J (z±) and K(0)

jump across the horizontal line, while J (0) and K(z±) jump across the round curve. In the shaded

area, only J (0) contributes to ZN (G, 0). Outside the shaded area, all thimbles contribute. (The

points G = 0 and 1 are excluded because the action S(z) is singular at G = 0 and the critical points

merge at G = 1.)

The necessary condition for a Stokes jump to occur is that the imaginary part of the

action is degenerate for multiple critical points. In the present model with m = 0, this

condition reads

0
!

= Im
[
S(0)− S(z±)

]
= Im

[
− 1 +

p2

G
− log

p2

G

]
. (3.9)

This can be solved by G ∈ R>0 and by G ∈ { p2r eiϕ | r = sinϕ
ϕ and − π < ϕ ≤ π}. The

union of these sets is displayed in figure 4 as a blue line. When these lines are crossed,

some of the flow lines jump discontinuously. Which line jumps and which does not can

be deduced along the line of arguments at the end of the last subsection. From (3.6),

S(z±) < S(0) along the axis G > 0, hence J (z±) and K(0) jump across this line while

the others do not. It can also be checked numerically that ReS(0) is lower than ReS(z±)

along the kidney-shaped contour in figure 4. Therefore, this time, J (0) and K(z±) jump

across this contour. We verified these expectations numerically.

In the shaded area of figure 4, J (0) is the only thimble contributing to ZN (G, 0). The

structure of thimbles looks like figure 2. Outside the shaded area, J (0) and J (z±) all

contribute to ZN (G, 0) and their structure resembles figure 3. The boundary of the shaded

area is where a jump occurs in the number of contributing thimbles (1� 3).

It has to be emphasized that the boundary curve in figure 4 has nothing to do with the

chiral phase transition. Roughly speaking, inside the curve ZN (G, 0) ∼ e−NS(0), whereas

outside the curve ZN (G, 0) ∼ e−NS(0) + e−NS(z+) + e−NS(z−), at N � 1. In either case

ZN (G, 0) is entirely dominated by e−NS(0) since ReS(0) < ReS(z±) on the boundary curve;

a phase transition does not occur. It is known that the emergence of such subdominant

exponentials across a Stokes line occurs smoothly [46, 50], i.e., ZN (G, 0) is analytic around
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the Stokes lines. The correct identification of the chiral transition line will be made in

section 3.1.3.

So far we have tacitly assumed that ZN (G, 0) originally defined for G > 0 by the

integral (3.3) can be extended to complex G, but this requires some care. While (3.3)

is convergent for ReG > 0, it apparently diverges for ReG < 0. Nevertheless, one can

still expand (3.1) in Taylor series of G and evaluate the partition function in a polynomial

of order N in G, which is of course analytic over the entire complex G-plane. The right

procedure to fill this gap and define the integral (3.3) analytically for entire G ∈ C is as

follows8: as G varies on the complex plane, the “good” regions on the complex z-plane

also rotates simultaneously. In order for the integral to converge, the integration contour

(initially R) must have ends in those good regions, hence the contour should be rotated

hand-in-hand with the variation of G.

To be more explicit, let us consider a phase rotation of G by 2π on the complex

plane, starting from some G > 1 to avoid complications due to Stokes lines. Initially (with

G > 0), two of the good regions are located at Re z � 1 and Re z � −1, where the weight

exp(−z2/G) goes to zero. When G is dialed by π/2 and approaches the positive imaginary

axis, these good regions are rotated by π/4. When G is rotated by π, the good regions are

rotated by π/2: they are now specified by Im z � 1 and Im z � −1. As G returns to the

positive real axis, the good regions return to their initial position.

What is interesting here is that the two good regions are permutated by this rotation.

In other words, they are rotated by π when G is rotated by 2π, and so are the Lefschetz

thimbles: they return to themselves only after 4π rotation of G. Therefore the monodromy

of Lefschetz thimbles around G = 0 is of order 2. Related to this, note that although the

contour itself is homologically equivalent to R after a 2π-rotation of G, its orientation gets

reversed. Thus the integral over the contour flips sign when G is rotated by 2π. At the same

time, however,
√
G in front of (3.3) changes sign (i.e.,

√
G→

√
G eπi when G→ G e2πi) so

that the integral (3.3) returns to its initial value. Thus the orientation of a thimble must

be traced correctly to ensure the single-valuedness of the partition function for complex G.

3.1.3 Anti-Stokes lines and Lee-Yang zeros

Now that the partition function is well defined for complex coupling G, we can ask where

is the boundary between a chirally broken phase and a chirally symmetric phase in the

complex G-plane. Considering that S(z) has three critical points {0, z+, z−}, we would get

a nonzero condensate in the large-N limit if the following two conditions are both met:

1. J (z±) contribute to ZN (G, 0), and

2. ReS(z±) < ReS(0).

From the last subsection we know that the first condition is met for G outside the shaded

region in figure 4. The second condition is necessary for the symmetry-breaking saddles

z± to dominate the partition function at large N . In general, a line on which exchange of

8Pedagogical reviews of this procedure for the Airy integral can be found in [5, 23, 27].
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Figure 5. Anti-Stokes line for the GN-like model with p = 1 and m = 0 (green curve), overlaid

with Lee-Yang zeros for N = 40 (red bullets) and the Stokes line in figure 4 (blue curve).

dominance occurs between distinct saddles is called an anti-Stokes line, which should not

be confused with the Stokes lines. In the present case the anti-Stokes line is specified by

0
!

= Re
[
S(0)− S(z±)

]
= Re

[
− 1 +

p2

G
− log

p2

G

]
, (3.10)

and is shown in figure 5 for p = 1, together with the Stokes lines from figure 4.9 Chiral

symmetry is broken at large N for G outside the green anti-Stokes curve, and is restored

for G inside the curve.10 Since multiple saddles exchange dominance, the phase transition

along the anti-Stokes curve is generally first order, with the only exception at G = p2

where the transition is continuous. This point is quite special, as the Stokes curve and the

anti-Stokes curve intersect there.

Next, we would like to explore a connection between the anti-Stokes line and zeros

of the partition function. Since the seminal work by Lee and Yang [51, 52], it has been

widely recognized that zeros of a finite-volume partition function in a complex parameter

space, called Lee-Yang zeros, provides rich information on the phase transition in the

thermodynamic limit. See [53] for a review and [36, 54–57] for applications to Yang-

Mills theory and QCD. Connections between Stokes phenomenon and Lee-Yang zeros were

investigated in [34, 58, 59].

In the present model, it is straightforward to evaluate (3.1) or (3.3) in the chiral limit

to obtain a polynomial representation of the partition function:

ZN (G, 0) = p2N
N∑
k=0

(
N

k

)(
2k

k

)
k!

(
G

4Np2

)k
. (3.11)

9The anti-Stokes line actually extends into the interior of the Stokes curve, but this part is not shown

in figure 5 because J (z+) and J (z−) do not contribute to ZN (G, 0) there.
10It should be noted that a condensate for complex G is a complex quantity and does not admit a physical

interpretation as a dynamical mass of fermions.
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We have numerically computed zeros of ZN (G, 0) on the complex G-plane. The result

for N = 40 and p = 1 is presented in figure 5. Clearly all the zeros are distributed in

the vicinity of the anti-Stokes curve. For larger N , zeros are observed to align on the

anti-Stokes curve more and more densely. It is expected that they will form a continuous

cut in the large-N limit, marking a boundary between a chirally symmetric phase and a

chirally broken phase. The overall picture is quite consistent with the Lee-Yang picture of

a phase transition.

An important feature of the anti-Stokes curve in figure 5 is that it has a kink at G = 1.

It can be shown from (3.10) that the curve pinches the real axis at angle ±π/4. According

to a general theory of Lee-Yang zeros [53], a kink occurs when the transition for this point

is of higher order, and the angle π/4 implies that it is a second-order phase transition with

a mean-field critical exponent. This is exactly what happens in this model at G = 1.

This completes our analysis of the GN-like model in the chiral limit.

3.2 Massive case

When the fermion mass m is nonzero, the Z2 chiral symmetry is explicitly broken and the

“condensate” 〈σ〉 is nonzero for any G > 0. Although a sharp phase transition is absent

at m 6= 0, one can still find an interesting behavior of Lefschetz thimbles in the following.

Without loss of generality, we assume m > 0.

To apply the Picard-Lefschetz theory we complexify σ to z ∈ C. The critical points

(i.e., saddles) of S(z) are obtained as solutions to

0 =
∂S(z)

∂z
=

2z

G
− 2(z +m)

p2 + (z +m)2
. (3.12)

This equation always has three roots, one of which is real and the other two are either both

real or a complex-conjugate pair, depending on G, p and m. With a bit of algebra, we find

that the jump in the number of real roots (1� 3) occurs when

2(
√
D + 2m)2(

√
D −m)− 27Gm = 0 with D ≡ 3(G− p2) +m2 , (3.13)

under the condition that D ≥ 0 and m ≥ 0.

In figure 6 (left panel) we show the phase structure of the model, together with the

typical shape of S(σ) in each region. The domain having three (one) real saddles are

painted blue (white), respectively. Across the blue dashed line given by (3.13), the number

of saddles on R jumps. This is not a phase transition, but corresponds to the disappearance

(or emergence) of a metastable state. Figure 6 (right panel) schematically shows the

motion of critical points on the complex z-plane when the line of metastability is crossed

from below.

Now we are in a position to reveal the behavior of Lefschetz thimbles. We take points

A and B in figure 6 (left panel) as representatives of white and blue regions, respectively.

Figure 7 shows the Lefschetz thimbles with p = 1 at the point A. Interestingly, at m 6= 0 no

Stokes phenomenon occurs for G ∈ R and one can safely take G = 0.7 without a complex

factor. For this G, the chirally condensate vanishes at m = 0. We observe that, just
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G/p2

m

p

Figure 6. Left: phase diagram of the GN-like model. (The m < 0 part can be obtained by reflection

about the horizontal axis.) The red horizontal line represents a first-order phase transition line.

The blue dashed line is a limit of metastability (not a phase transition), i.e., below this line (in the

blue region), there are two local minima for the action. Above this line, the action has a single

minimum. Concerning the points A and B, see figures 7 and 8. Right: the behavior of saddle points

of S(z) when m is increased at fixed G > p2. As we move out of the blue region in the left panel

upward, two of the three saddles on the real axis merge and then migrate into the complex plane.

as we saw in figure 2, there is only one thimble (the real axis, R) which contributes to

the partition function. The saddle associated with this thimble gives rise to a condensate

〈σ〉 6= 0. The other two thimbles extend to the z → −∞ direction together, although they

went in the opposite directions in figure 2. Note that figure 7 will be horizontally reversed

for m < 0.

Figure 8 displays Lefschetz thimbles at the point B in figure 6 (left panel). This time

all the three critical points lie on the real axis and have ImS = 0, so G ∈ R is right

on the Stokes ray.11 As before we rotated the phase of G slightly to make the thimbles

well-defined. Figure 8 shows that now the three thimbles all contribute to the integral.

The overall structure of the thimbles is the same as in figure 3 at m = 0. Among the three

critical points, the right-most one has the lowest ReS and hence governs the partition

function and condensate at N � 1.

Between G = 0.7 and G = 1.5 there is a jump in the number of contributing thimbles.

This occurs when one traverses the blue dashed boundary in figure 6 (left panel). This is

not a phase transition, since the critical point that gives the dominant contribution always

sits on the positive real axis and moves smoothly with G. Rather, there appears a new

subleading contribution to the partition function, which is exponentially smaller than the

leading one at N � 1.

It is worth an emphasis that the three Lefschetz thimbles in figures 7 and 8 indeed form

a homological basis of cycles connecting “good” regions, in accordance with the general

argument in section 2.

11More generally, a Stokes phenomenon occurs everywhere in the shaded region of figure 6 (left panel),

since all critical points are real there.
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G = 0.7, p = 1, m = 0.05

Figure 7. Same as figure 2 but with G = 0.7 and m = 0.05, corresponding to the point A in

figure 6 (left panel).

G = 1.5 e+0.1i, p = 1, m = 0.05G = 1.5 e−0.1i, p = 1, m = 0.05

Figure 8. Same as figure 2 but with |G| = 1.5 and m = 0.05, corresponding to the point B in

figure 6 (left panel).

Finally we consider a special limit p → 0, in which the two singular points at z =

−m ± ip merge into a single singularity at z = −m. The situation is simpler than for

p 6= 0, because there are only two critical points at z± ≡ −m±
√
m2+4G
2 . The corresponding

thimbles are shown in figure 9. (Note that this is quite analogous to the example considered

in section 2.) The Lefschetz thimbles for z± are given by

J (z+) = {z ∈ R | z > −m} and J (z−) = {z ∈ R | z < −m} , (3.14)

They meet at the singular point z = −m and together constitute the integration cycle

R. In the limit m → 0, z± move to z = ±
√
G, hence chiral symmetry is spontaneously

broken in the large-N limit for any small G > 0, with 〈σ〉 = ±
√
G. Such a non-analytic

dependence on G cannot occur at any finite order of expansion in G and is a hallmark of

nonperturbative physics.

This completes our analysis of the Lefschetz thimbles in the zero-dimensional

GN model.
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G = 0.4, p = 0, m = 0.1

Figure 9. Lefschetz thimbles and their duals for the GN-like model at p = 0.

4 Nambu-Jona-Lasinio-like model

4.1 Model setup

Next, we consider two zero-dimensional toy models having continuous chiral symmetries,

in analogy to the Nambu-Jona-Lasinio(NJL) model [60, 61]. The first model is defined by

the partition function

ZU(1) =

∫
dψdψ exp

(
N∑
a=1

ψa(i/p+m)ψa +
G

4N

{(
N∑
a=1

ψaψa

)2

+

(
N∑
a=1

ψaiγ5ψa

)2})
.

(4.1)

The definitions of symbols and variables are the same as in (3.1). In the chiral limit m = 0

the action is invariant under a UA(1) chiral rotation ψ → eiθγ5 ψ and ψ → ψ eiθγ5 . By

introducing auxiliary fields σ and π to bilinearize the action, we obtain

ZU(1) =
N

πG

∫
R2

dσdπ detN (i/p+m+ σ + iγ5π) exp

(
−N
G

(σ2 + π2)

)
(4.2)

=
N

πG

∫
R2

dσdπ e−NS(σ,π) , (4.3)

with

S(σ, π) ≡ − log
[
p2 + (σ +m)2 + π2

]
+
σ2 + π2

G
. (4.4)

With m = 0 this action enjoys an O(2) symmetry that rotates σ and π. If we set π = 0

by O(2) rotation, then the present model reduces to the GN-like model in section 3. This

will become important in the analysis of Lefschetz thimbles later.

The second model we consider is defined by the partition function

ZSU(2) =

∫
dψdψ exp

(
N∑
a=1

ψa(i/p+m)ψa

+
G

4N

{(
N∑
a=1

ψaψa

)2

+

3∑
A=1

(
N∑
a=1

ψaiγ5τ
Aψa

)2})
, (4.5)
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where ψ and ψ are two-component Grassmann variables with two flavors and N colors,

{τA} are the Pauli matrices, and the summation over flavor indices is implicitly assumed.

At m = 0, this model has an exact SUR(2) × SUL(2) chiral symmetry, which is broken

explicitly to SUV(2) by nonzero m.

Proceeding as before,

ZSU(2) =

(
N

πG

)2 ∫
R4

dσdπA detN (i/p+m+ σ + iγ5πAτ
A) exp

(
−N
G

(σ2 + π2
A)

)
(4.6)

=

(
N

πG

)2 ∫
R4

dσdπA
{
p2 + (m+ σ)2 + π2

A

}2N
exp

(
−N
G

(σ2 + π2
A)

)
. (4.7)

Under the chiral SUR(2) × SUL(2) ∼= O(4) symmetry, (σ, π1, π2, π3) rotates as a vector.

One can rotate any such vector to (σ, 0, 0, π3) by means of an unbroken SUV(2) ∼= SO(3)

rotation. The resulting integral over σ and π3 is essentially equivalent to the former

model (4.3) and does not entail a new feature. For this reason we focus on the first

model in the following.

4.2 Massless case

For simplicity we begin with the chiral limit m = 0 where the chiral symmetry is exact.

The task is to identify the Lefschetz thimbles for ZU(1) and to figure out how to decompose

the original integration cycle R2 of (4.3) into a sum of Lefschetz thimbles in C2. Upon a

complexification of variables, the action becomes

S(z, w) = − log(p2 + z2 + w2) +
z2 + w2

G
, (4.8)

whose domain is {(z, w) ∈ C2 | z2 + w2 6= −p2}. The set of singularities of logarithm

{(z, w) ∈ C2 | z2 +w2 = −p2} forms a surface of real dimension 2 in C2 rather than a set of

isolated points. It is equal to the O(2,C)-orbit of the singular points (z, w) = (±ip, 0) of the

massless GN-like model, where O(2,C) ≡ {g ∈ GL(2,C) | gTg = 1} is a complexification of

the O(2) group.

The downward flow equation reads

dz

dτ
=

2z

p2 + z2 + w2
− 2z

G
and

dw

dτ
=

2w

p2 + z2 + w2
− 2w

G
. (4.9)

An important property of this flow is that it is symmetric under an O(2) rotation of (z, w)

although it is not under a general O(2,C) rotation. This will play a pivotal role in the

construction of Lefschetz thimbles later.

The critical points may be obtained by solving (4.9) with dτz = dτw = 0. To avoid

accidental degeneracy of critical points, we assume G 6= p2. The set of critical points then

consists of two components:

C0 := {(0, 0)} and C1 := {(z, w) ∈ C2 | z2 + w2 = G− p2} . (4.10)

C1 is equal to the O(2,C)-orbit of the critical points
(
±
√
G− p2, 0

)
in the massless GN-like

model. It crosses the real plane R2 if G− p2 ∈ R>0 but has no crossing otherwise.
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We now discuss how to determine the Lefschetz thimbles and their duals associated

with C0 and C1. Since we are considering a two-dimensional integral, the thimbles should

be cycles of real dimension 2. As for C0 we can apply the standard procedure since it has

a Morse index 2, i.e., ReS(z, w) increases in two directions and decreases in the other two

directions around C0. Then the Lefschetz thimble J0 and its dual K0 associated with C0

can be defined as a union of downward and upward flows, respectively, flowing into C0.

Since the flow preserves O(2) symmetry, J0 may be simply obtained by rotating a Lefschetz

thimble in the GN-like model by O(2) action:

J0 =

{(
z

w

)
=

(
cos θ − sin θ

sin θ cos θ

)(
z′

0

) ∣∣∣∣∣ − π < θ ≤ π and z′ ∈ J (0)
∣∣
GN

}
, (4.11)

and the same goes for K0. So much for C0.

The prescription for C1 is a bit different. A general framework to handle a continuous

manifold of critical points was developed in [5, Section 3] and we shall outline how to

apply this framework to the present fermionic model with O(2,C) symmetry. First of all,

at a point of C1, the Hessian matrix of Re S has one positive eigenvalue, one negative

eigenvalue and two null eigenvalues. Therefore, the set of points that can be reached by

a downward/upward flow from any given point in C1 is of real dimension 1.12 Therefore

if we pick up a one-dimensional subset out of C1, the set of points that can be reached

by a downward flow from that subset of C1 forms a two-dimensional cycle, which gives an

element of H2(C2, (C2)T ;Z) for very large T , with (C2)T := {(z, w) ∈ C2 |ReS(z, w) ≥ T}.
This cycle could be employed as the Lefschetz thimble for C1, say, J1.

The next question is how to choose a one-dimensional subset in C1 in the first place. It

is known that if a critical orbit is “semistable”, then it has a middle-dimensional homology

of rank 1 [5]. In the current setup, the condition of semistability for C1 is that it should

include a point where µ := zw−zw vanishes. Since this condition is trivially met (µ = 0 at,

say, (
√
G− p2, 0) ∈ C1), C1 is semistable and consequently its one-dimensional homology

is of rank 1. This implies that the choice of a cycle in C1 is essentially unique up to

homologically equivalent ones. Adopting a canonical choice suggested in [5], we shall take

the set of points in C1 where µ = 0. It is given by
{

(z, w) =
√
G− p2(cos θ, sin θ) | − π <

θ ≤ π
}

. As this cycle is the O(2)-orbit of (
√
G− p2, 0), we shall call it a compact orbit.

It is pictorially shown as a blue circle in figure 10. The Lefschetz thimble J1 can now be

defined as a union of downward flow lines emanating from the compact orbit. Recalling

that the flow respects O(2) symmetry, J1 can be simply obtained as an O(2)-revolution

of the flow line emanating from (
√
G− p2, 0), which is nothing but J (z+) considered in

section 3. We thus conclude that

J1 =

{(
z

w

)
=

(
cos θ − sin θ

sin θ cos θ

)(
z′′

0

) ∣∣∣∣∣ − π < θ ≤ π and z′′ ∈ J (z+)
∣∣
GN

}
. (4.12)

Since µ is conserved along a flow,13 µ vanishes everywhere on J1.

12Note that no flow exists on C1, since all points on C1 have the same value of ReS.
13µ corresponds to the angular momentum if the Morse flow (4.9) is viewed as the Hamiltonian flow with

Hamiltonian ImS.
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J1
K1

aaaa
C1

Figure 10. A schematic illustration of relations between the O(2,C)-orbit C1, the Lefschetz thimble

J1 and its dual K1. The blue circle (red vertical line) represents a compact orbit (non-compact

orbit), respectively. The slant lines are upward(red)/downward(blue) flow lines.

The dual cycle K1 can also be constructed on the basis of [5]. Recall that we have

used a rotation by O(2) ⊂ O(2,C) to construct a compact orbit. Now, we shall use the

complementary part of O(2,C) to build a non-compact orbit of (
√
G− p2, 0):14 it is given

by
{

(z, w) =
√
G− p2(coshϕ, i sinhϕ) | − ∞ < ϕ < ∞

}
and is depicted in figure 10 as a

red vertical line. (Generally µ is nonzero and varies along the non-compact orbit.) Then

K1 can be defined as a union of upward flow lines emanating from the non-compact orbit;

see figure 10 for an illustration of this. By construction it is ensured that J1 and K1 crosses

exactly once, and thus intersection numbers {nσ} in (2.3) are well defined. This completes

our determination of J0,J1,K0 and K1 in the massless NJL-like model. It is intriguing

that the number of Lefschetz thimbles, 2, is fewer than in the GN-like model, which can

be attributed to the existence of O(2) chiral symmetry in the present model.

Behaviors of the thimbles, (4.11) and (4.12), for varying G ∈ C can be learned from

section 3 with no additional calculation. Here is a summary:

• J0 and J1 jump on the Stokes lines in figure 4. No modification of the figure is

necessary. J0 jumps across the circular curve and J1 jumps across the horizontal

line, respectively.

• For G inside the shaded area of figure 4, J0 is the only thimble that contributes to

the partition function. J0 has no boundary (it extends to infinity in C2).

• For G outside the shaded are of figure 4, both J0 and J1 contribute to the partition

function. Notably, J0 is now a finite domain enclosed by a ring of logarithmic sin-

gularities, {(z, w) = ip(cos θ, sin θ) | − π < θ ≤ π}. This situation does not arise in a

bosonic model.

• For G inside the anti-Stokes line in figure 5, J0 is the dominant thimble at large N .

As G moves out across the anti-Stokes line, J0 is overtaken by J1 and spontaneous

14This could be replaced with any other point on the compact orbit.
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m = 0 m = 0.4 m = 1

Figure 11. Snapshots of the action S(σ, π) in (4.4) for varying m at G = 3 and p = 1. The number

of saddle points jumps from 3 to 1 at m ' 0.724.

breaking of the O(2) chiral symmetry sets in through a first-order transition (except

for the real axis, on which the transition is continuous).

To conclude, we found that the Lefschetz thimbles for the NJL-like model (4.3) are O(2)-

revolution of the thimbles for the GN-like model (3.3). As a result, much details of chiral

symmetry breaking are shared by these models. While what is presented above is formally

similar to Witten’s treatment of a bosonic SO(2)-symmetric model [5], we witnessed fairly

richer phenomena in the fermionic models due to the presence of logarithm in the action.

4.3 Massive case

At m 6= 0 the O(2) chiral symmetry is explicitly broken, and the NJL-like model becomes

qualitatively similar to the massive GN-like model: instead of a critical manifold (4.10),

there are only 3 critical points {(z, w) = (zi, 0) | i = 1, 2, 3} where {zi}3i=1 are the three

solutions to (3.12). Associated with them are 3 Lefschetz thimbles and their duals — no

subtlety that arose in section 4.2 for the choice of integration cycle appears in the massive

case. Interestingly, a comparison with the chiral limit shows that the number of Lefschetz

thimbles jumps from 2→ 3 when an arbitrarily small m 6= 0 is turned on. This phenomenon

also occurs in a bosonic model with symmetry [45].

The dependence of {zi}3i=1 on G and m has already been laid out in section 3.2 (espe-

cially in figure 6). Its implication for the current NJL-like model is as follows. (To avoid

complication we will assume G ∈ R>0 throughout section 4.3.) Roughly speaking, the

number of critical points of S(z, w) on R2 jumps as m is varied at fixed G (see figure 11),

and this occurs in parallel with a jump in the number of thimbles contributing to the in-

tegral (4.3). Namely, at large m just one thimble contributes, while at small m or large G

all the three thimbles contribute. In the latter case the Stokes phenomenon occurs among

the three thimbles, which is hard to visualize as it occurs in C2.

So far we have stressed similarities between the NJL-like model at m 6= 0 and the GN-

like model. However, the NJL-like model with sufficiently small m has a unique feature

that is absent in the GN-like model: quasi-fixed points of the flow. Namely, the flow

along the set {(z, w) ∈ C2 | z2 + w2 = G− p2} is extremely slow at small m, owing to the

approximate O(2,C) symmetry of the model. The nature of this quasi-stationary flow and

the behavior of thimbles at small m can be most easily revealed in the p = 0 limit, in which

a drastic simplification occurs as was shown for the GN-like model in section 3.2. Below is

a summary of the main characteristics of the NJL-like model at p = 0.
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Figure 12. The downward flow (4.13) of the NJL-like model in a plane with Im z = Imw ≡ 0.

The background color scale represents ReS(z, w). The red blob at (−m, 0) is a singularity of the

flow. The orange circle in the left panel and the orange blobs in the right panel are fixed points of

the flow.

• m = 0: the thimble J0 in (4.11) disappears at p = 0 as J (0)
∣∣
GN

no longer exists; see

figure 9. Therefore the p = 0 limit of J1 is the only thimble. From (3.14) and (4.12),

we find J1 = {(z, w) ∈ R2 | (z, w) 6= (0, 0)}, which is just a punctured plane.

• m > 0: the O(2,C)-symmetric critical manifold is torn down to two critical points

at (z, w) =
(−m±√m2+4G

2 , 0
)

=: (z±, 0), with the associated thimbles that we call

J+ and J−. Since (z±, 0) reside in the original integration cycle R2, both J+ and J−
contribute to the integral (4.3) with unit coefficients. As ReS(z+, 0) < ReS(z−, 0),

J+ gives a dominant contribution at N � 1.

Thus an arbitrarily small m 6= 0 splits the thimble as J1 → J+∪J−. Our goal is to identify

J± and the quasi-stationary flows on them. Let us recall that J+ and J− are unions of

downward flows that run into (z+, 0) and (z−, 0) in the τ → +∞ limit, respectively. The

flow equations at p = 0 read

dz

dτ
=

2(z +m)

(z +m)2 + w2
− 2z

G
, (4.13a)

dw

dτ
=

2w

(z +m)2 + w2
− 2w

G
. (4.13b)

It follows that if a flow starts from (z, w) ∈ R2, then the flow stays in R2 forever. Namely,

the condition Im z = Imw = 0 is conserved along the flow. In figure 12 we show a sketch

of the flow for (z, w) ∈ R2 at m = 0 (left panel) and m > 0 (right panel). At m = 0, there

is a ring of fixed points z2 + w2 = G which attracts all flows on the plane. This is exactly

the compact orbit in section 4.2. This R2 plane (with the origin excised) represents J1.

By contrast, for m > 0 only two critical points exist, see the right panel of figure 12.

Now there is a slow but non-vanishing flow along the orbit z2 + w2 ' G. It is clear from
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m = 0.4 (G = 2, p = 0)m = 0 (G = 2, p = 0)

Imw Imw

Re z Re z

Figure 13. Same as figure 12 but with Im z = Rew ≡ 0. The X-shaped white lines are points of

logarithmic singularity of the action.

the figure that (z+, 0) attracts all the flows on this plane, except for the real axis to the

left of (−m, 0) on which the flow is attracted to (z−, 0). Since J+ is by definition a union

of all flows that sink in (z+, 0), we conclude that the set

JA := R2 \ {(x, 0) |x ≤ −m} ⊂ C2 (4.14)

belongs to J+.

Next, returning to (4.13), we see that the condition Im z = Rew = 0 is also conserved

along the flow. Figure 13 shows the flow pattern in the (Re z, Imw) plane with Im z =

Rew = 0. At m = 0 the fixed points of the flow form a hyperbola (Re z)2 − (Imw)2 = G,

which is the non-compact orbit in section 4.2. For large |z| and |w| the fixed-point lines

asymptote to Re z = ±Imw, on which the action diverges logarithmically.

At m > 0, a slow but non-vanishing flow appears along the hyperbola (see the right

panel of figure 13). The critical point (z−, 0) is an attractive fixed point of all flows in the

wedge-shaped region

JB := {(z, w) ∈ C2 | Im z = 0, Rew = 0, Re z +m < Imw < −Re z −m} , (4.15)

which implies that JB is part of the Lefschetz thimble J−.15

In figure 14 we display a combination of flow plots in figures 12 and 13 at m = 0.4

within a three-dimensional subspace of C2 specified by Im z = 0. As the figure shows, JA
and JB intersect orthogonally. Such a singular behavior of thimbles is a typical signature of

the Stokes jump — G = 2 is exactly on the Stokes ray. Although the singularity of thimbles

can be smoothed out through complexification of G as G eiθ, it makes the thimbles extend

into the whole C2 space and impedes our visual understanding of the Stokes jump.

15It may seem puzzling that the non-compact orbit, which used to be part of the dual cycle (K1) at

m = 0, has suddenly become part of the Lefschetz thimble at m > 0. This is not problematic because

m > 0 ensures that ReS → +∞ in the far ends of the (vestige of) non-compact orbit passing through

(z−, 0). However, the increase of ReS is quite slow for small m, which leads to a subtlety in the m → 0

limit — see the discussion at the end of this section.
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Re z

Rew

Imw

Figure 14. The downward flow (4.13) in a 3-dimensional space with Im z ≡ 0. The parameters

are m = 0.4, G = 2 and p = 0 (same as for the right panels in figures 12 and 13).

To keep the discussion as simple as possible, we shall exploit a somewhat indirect

argument to deduce the behavior of thimbles as θ → 0±. First of all, since both J+ and

J− contribute to the partition function with unit coefficients, the sum of J+ and J− must be

homologous to the original integration cycle, R2. For this reason one cannot have J+ = JA
and J− = JB, as JA + JB % R2. Secondly, recall that a Lefschetz thimble associated

with a least dominant critical point do not jump at θ = 0, while a Lefschetz thimble

associated with the dominant critical point can jump with a multiple of subdominant

thimbles (cf. section 3.1 and (3.7)). This suggests that J+ jumps with a multiple of J− at

θ = 0± whereas J− does not jump at all. These considerations indicate that we have{
J+ = JA ± JB

J− = JB
at θ = 0− ⇒

{
J+ = JA ∓ JB

J− = JB
at θ = 0+ , (4.16)

where the sign in front of JB depends on one’s choice of orientation of the thimble. Taking

the upper sign, one finds that the thimble decomposition of the integration cycle also

changes discontinuously from R2 = J+ − J− at θ = 0− to R2 = J+ + J− at θ = 0+.

It is important that the contribution of JB is cancelled exactly between J+ and J−, thus

ensuring constancy of the integral at θ = 0. Moreover, this cancellation is necessary to keep

the partition function real, because the integral over JB is purely imaginary (see below).

This case highlights why it is imperative to sum up contributions of all thimbles in order

to obtain a correct result.

It is intriguing to ask what happens near the chiral limit. As m → 0+, JA converges

to J1 = {(z, w) ∈ R2 | (z, w) 6= (0, 0)}, which is the thimble at m = 0. However, according

to (4.16), neither J+ nor J− converges to J1 in the chiral limit because of the presence of

JB. Therefore we conclude that the description of the integral based on Lefschetz thimbles

is necessarily discontinuous between m > 0 and m = 0. A similar observation is made

in [45] for an O(2)-symmetric bosonic model. A unique feature of the fermionic model

in comparison to bosonic models is that one of the thimbles (J−) is framed by lines of

logarithmic singularity.
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Near the chiral limit (m�
√
G), a quasi-stationary flow along the orbit z2 + w2 ' G

emerges (see figures 12 and 13), reflecting the O(2,C)-symmetric degenerate minima of

the action at m = 0. The contribution from the vicinity of the compact orbit to the

integral over JA is O(1) and harmless in the chiral limit, since it is a compact domain. By

contrast, the non-compact orbit on JB (figure 13) extends to infinity and can give a large

contribution near the chiral limit. More explicitly, we find for the contribution from JB

Z
∣∣
JB

=
N

πG

∫
JB

dzdw
{

(z +m)2 + w2
}N

e−
N
G

(z2+w2) (4.17)

= i
N

πG

∫ ∞
0

dRR2N+1

∫ ∞
−∞

dΦ e−
N
G

(m2+2mR cosh Φ+R2) (4.18)

= 2i
N

πG
e−

N
G
m2

∫ ∞
0

dRR2N+1 e−
N
G
R2
K0

(
2NR

G
m

)
, (4.19)

where we changed the variables as z = −m−R cosh Φ and w = −iR sinh Φ. Using K0(x) =

−
(

log x
2 +γ

)
I0(x)+O(x2) for x� 1 [62], we conclude that Z

∣∣
JB

blows up as ∼ logm in the

chiral limit. As J+ and J− include JB (cf. (4.16)), this infrared divergence shows up in the

integral on each thimble, but it cancels out completely when the sum of both contributions

is correctly taken. We suspect that this is a generic phenomenon that occurs when an

explicitly broken continuous symmetry is handled with Picard-Lefschetz theory. It will be

interesting to look for a similar behavior of thimbles for models in higher dimensions.

5 Chern-Simons-like theory with fermions

5.1 Model setup

In sections 3 and 4 we have studied Lefschetz thimbles in zero-dimensional models with

chiral symmetry, in which the integration measure incurred a complex phase through a

complex-valued interaction coupling. To gain more insights into complex path integral, it

would be worthwhile to look into another model where a complex measure arises from an

entirely different mechanism. In this section, we elaborate on Lefschetz thimbles in an ex-

actly solvable 0+1-dimensional Chern-Simons(CS) theory with fermions [63, 64].16 Despite

its simplicity, the model captures essential aspects of three-dimensional CS gauge theory:

it has a CS-like topological term in the action with an integer-quantized coefficient, which

makes the integration measure complex and renders Monte Carlo techniques ineffective.

Nonetheless one can find a viable integration contour on the complex plane by following

the recipe of Picard-Lefschetz theory.

The model we consider is an Abelian gauge theory on S1, defined by

ZN (k) ≡
∫

dAdψdψ exp

(∫ β

0
dτ

{
N∑
a=1

ψa
[
σ1(∂τ + iA) +m

]
ψa + ikA

})
, (5.1)

where ψa(τ) is a fermion field with N flavors, A(τ) is a U(1) gauge field, m > 0 is a mass

term and σ1 is a Pauli matrix. A periodic (anti-periodic) boundary condition is imposed

16A bosonic version of this model was studied in [35].
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on A (ψa) along S1, respectively. Under a U(1) gauge transformation (ψa → eiϕ ψa and

A→ A− ∂τϕ), the fermion action is invariant, whereas the CS term transforms as

ik

∫ β

0
dτ A→ ik

∫ β

0
dτ (A− ∂τϕ) = ik

∫ β

0
dτ A+ ik[ϕ(0)− ϕ(β)] . (5.2)

In general, ϕ(0) − ϕ(β) has to be a multiple of 2π to ensure the single-valuedness of ψ.

The measure in (5.1) would then be invariant if k is an integer. This is an analog of the

quantization condition for the CS term in three-dimensional gauge theory.

Now, fixing the gauge as ∂τA = 0, A becomes constant along S1. By a suitable “non-

trivial” gauge transformation of the form ϕ(τ) = 2πnτ/β with n ∈ Z, one can bring any A

to the range [0, 2π/β], hence it is enough to integrate over A in this range. After integrating

out fermions, one gets

ZN (k) =

∫ 2π/β

0
dA detN

[
σ1(∂τ + iA) +m

]
eikβA (5.3)

=

∫ 2π/β

0
dA

∞∏
n=−∞

{
(ωn +A)2 +m2

}N
eikβA [ωn ≡ (2n+ 1)π/β ] . (5.4)

Note that while the integral measure at k = 0 is positive definite, the CS term causes a

complex phase problem at k 6= 0. Now, we regularize the divergent infinite product by

normalizing to a fermion determinant at A = m = 0:

ZN (k) =

∫ 2π/β

0
dA

∞∏
n=−∞

{
(ωn +A)2 +m2

ω2
n

}N
eikβA (5.5)

=
1

2N

∫ 2π/β

0
dA (cosβA+ coshβm)NeikβA (5.6)

=
1

2N

∫ 2π

0
dA e−NS(k̂,A) , (5.7)

where in the last step we set β = 1 for simplicity, and defined the “effective action”

S(k̂, A) ≡ − log (cosA+ coshm)− ik̂A with k̂ ≡ k

N
. (5.8)

In contrast to the GN-like and NJL-like models, the present model (5.7) has a compact

domain of integration, which is reminiscent of a link variable in U(1) lattice gauge theory.

At N � 1, the asymptotic behavior of the integral (5.7) is dominated by critical points of

S(k̂, A), which are away from the real axis when k̂ 6= 0 as we will see in section 5.3. This

is therefore a good testbed to see the importance of complex saddles.

When k ∈ Z, one can switch to another variable z ≡ eiA and rewrite (5.7) as

ZN (k) = − i

22N

∮
|z|=1

dz zk−1

(
z +

1

z
+ 2 coshm

)N
, (5.9)

whose value is determined by the residue of 1/z in the integrand. It then follows that ZN (k)

is identically zero for all k ∈ Z such that |k| > N . This peculiar feature suggests that the

behavior of Lefschetz thimbles will be qualitatively different for |k̂| > 1 and |k̂| < 1, which

will be confirmed in sections 5.4 and 5.5.
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Figure 15. A new integration cycle C for ZN (k). Red blobs are zeros of the fermion determinant.

5.2 Choice of the integration cycle

The original integral domain [0, 2π] of A is an interval with boundaries. In order to ex-

press the integration cycle as a sum of Lefschetz thimbles, we should replace [0, 2π] with

an element of the relative homology H1(C,CT ;Z) for very large T , with CT := {A ∈
C |ReS(k̂, A) ≥ T}. In short, we demand that ReS → +∞ at the ends of a legitimate

integration cycle.

For this we need to know where ReS → +∞ on the complex A-plane. From (5.8),

S(k̂, A) clearly diverges if cosA+ coshm = 0. This condition can be solved explicitly and

yields an infinite number of singularities on the complex A-plane:

A = ±im+ (2n+ 1)π , n ∈ Z . (5.10)

Then any contour emanating from and ending at these points gives an element of

H1(C,CT ;Z). To form such a contour we add two edges to the interval [0, 2π] as shown

in figure 15 and define the integration contour C of ZN (k) as the union of all three edges.

(Note that this definition does not depend on k.) Namely

ZN (k) =
1

2N

∫
C

dA e−NS(k̂,A) . (5.11)

It can be easily checked that contributions from the appended edges precisely cancel if

k ∈ Z, ensuring that ZN (k) thus defined coincides with the original one (5.7) when k ∈ Z.

Since C is an element of H1(C,CT ;Z) one can express it as a sum of Lefschetz thimbles, as

will be described later.

The reader may feel that the above choice of C is rather ad hoc: indeed figure 15

depicts just one of infinitely many ways to make the interval [0, 2π] into a closed cycle in

H1(C,CT ;Z). While different cycles will have different expressions as a sum of Lefschetz

thimbles, the partition function itself is identical as long as the contributions from appended

edges cancel exactly for all k ∈ Z. Hence we will not consider contours other than the one

in figure 15 in the following.

As a side remark, we note that (5.11) is actually giving an analytic continuation of

ZN (k) from k ∈ Z to k ∈ C. When k 6∈ Z, the integrals over added edges no longer cancel,

implying that different choices of C provide different analytic continuations of ZN (k). Such
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non-uniqueness of analytic continuation from Z to R or C has been well known in the

literature of replica trick in random matrix theory [65, 66].

5.3 Critical points

In understanding the asymptotic behavior of ZN (k) for N � 1, it is crucial to know

which critical point of S(k̂, A) contributes to the integral (5.11) and which does not. For

simplicity, we will henceforth assume that k̂ is real. The saddle point equation of S(k̂, A)

reads as

0 =
∂S(k̂, A)

∂A
=

sinA

cosA+ coshm
− ik̂ . (5.12)

Solutions are given by

A± = −i log
−k̂ coshm±

√
1 + k̂2 sinh2m

1 + k̂
+ 2nπ with n ∈ Z . (5.13)

The choice of the branch of the logarithm is immaterial when k ∈ Z. Their limiting

behaviors are as follows.

• k̂ →∞: A+ → im+ (2n+ 1)π and A− → −im+ (2n+ 1)π. Thus they merge with

the singular points (5.10).

• k̂ → 1: A+ → +i∞ with A− ∼ O(1).

• k̂ = 0: A+ = 2nπ and A− = (2n+ 1)π.

• k̂ → −1: A+ → −i∞ with A− ∼ O(1).

• k̂ → −∞: A+ → −im + (2n + 1)π and A− → im + (2n + 1)π. Again, they merge

with the singular points (5.10).

It readily follows from (5.12) that the critical points at k̂ < 0 and k̂ > 0 are related by

complex conjugation.

5.4 Lefschetz thimbles for |k̂| < 1

Let us begin with the case k̂ = 0. The critical points are given by A = nπ with n ∈ Z as

noted above. For each critical point nπ there is an upward flow line K(nπ) and a downward

flow line J (nπ). However, S(0, nπ) = − log ((−1)n + coshm) is real for all n ∈ Z, implying

that a Stokes phenomenon occurs at k̂ = 0. To make the thimbles well-defined, k̂ must be

slightly shifted away from 0. Although critical points at small k̂ 6= 0 slightly deviate from

nπ, we continue calling the flow lines as J (nπ) and K(nπ) for simplicity of exposition.

In figure 16 we show flow lines for k̂ = −0.1 (left panel) and k̂ = +0.1 (right panel).

As anticipated, a Stokes jump across k̂ = 0 is observed for J (2nπ) and K((2n+ 1)π), but

not for J ((2n+ 1)π) and K(2nπ), which may be attributed to S(0, 2nπ) < S(0, (2n+ 1)π)

(cf. section 3.1). Notice also that K(nπ) can run to infinity whereas J (nπ) cannot, due

to the fact that the region |ImA| � 1 is a “bad” region with ReS(k̂, A) � −1. The fact
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Figure 16. Lefschetz thimbles (black lines) and their duals (red dashed lines) with k̂ = ±0.1 in

the complex A-plane. The background color scale represents ReS(k̂, A).

that the flow lines for k̂ > 0 and k̂ < 0 are simply related by complex conjugation can be

understood from the flow equation17

dA

dτ
=

sinA

cosA+ coshm
− ik̂ , (5.14)

in which the complex conjugation A ↔ A is equivalent to k̂ ↔ −k̂. By multiplying (−1)

to the both sides with the complex conjugation, we can also observe invariance of the flow

equation under A ↔ −A, and it explains the reflection symmetry of figure 16 about the

vertical axis for real k̂.

For later use, we fix the orientation of thimbles as the increasing direction of ImA for

J ((2n+ 1)π) and as the increasing direction of ReA for J (2nπ).

Now we turn to the question of how the cycle C in figure 15 can be expressed as a sum

of Lefschetz thimbles. This can be done by counting the intersection of C with upward

flow lines from each critical point in figure 16. The result is C = −J (−π) + J (0) + J (π)

for k̂ = −0.1 and C = J (0) for k̂ = +0.1. In the first case there are three contributing

thimbles; however, J (−π) and J (π) are 2π apart and their contributions cancel exactly

when k ∈ Z. Hence the partition function is solely given by the integral over J (0), both for

k̂ = −0.1 and for k̂ = +0.1. With ImS constant along J (0), the complex phase problem

has gone away.

When k 6∈ Z, the integrals over J (−π) and J (π) no longer cancel exactly. To leading

order at large N , the sum of their contributions is given by

ZN (k)
∣∣∣
−J (−π)+J (π)

∼ 1

2N
(e2πik−1) e−NS(k̂,A?) , (5.15)

where A? ≡ −π − i log k̂ coshm+
√

1+k̂2 sinh2m

1+k̂
is the critical point located near −π.

The description of Lefschetz thimbles for k̂ = ±0.1 in this subsection needs no qualita-

tive modification for −1 < k̂ < 1. However the situation drastically changes for k̂ outside

this domain.

17One should not confuse τ in (5.14) with the coordinate of S1 in (5.1).
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Figure 17. Same as figure 16 but with k̂ = ±3.

5.5 Lefschetz thimbles for |k̂| > 1

As one approaches k̂ = 1 from below, nothing dramatic happens for the critical points near

(2n+ 1)π, whereas the critical points with real parts equal to 2nπ run away to +i∞. As k̂

increases past 1, the latter suddenly change their real parts to (2n+ 1)π and then descend

from +i∞ gradually along the lines ReA = (2n + 1)π. Similarly, as k̂ decreases past −1,

critical points with real parts equal to 2nπ first run away to −i∞ and then crawl up the

lines ReA = (2n+ 1)π.

The singular nature of k̂ = ±1 can be viewed in another way. At k̂ = ±1 the structure

of “good” regions on the complex A-plane changes globally. For k̂ > 1, ReS → +∞ as

ImA → +∞, hence the area with ImA � 1 is a good region. Similarly, for k̂ < −1, the

area with ImA� −1 is a good region. The emergence of these good regions implies that

now the Lefschetz thimbles (J ) can extend to infinity.

In figure 17 we show J and K for k̂ = ±3. In each panel, there are four Lefschetz

thimbles, consisting of two short ones that connect two adjacent logarithmic singularities,

and two infinitely long ones. By carefully counting the intersection of C with the upward

flow lines, we conclude that for k̂ = −3 all the four thimbles contribute to ZN (k), while

for k̂ = 3 only the two long ones contribute. In both cases, the total contribution sums up

to zero for k ∈ Z, because each thimble can be paired with a “partner thimble” which is

separated by 2π and has an opposite orientation. This cancellation is indeed required from

the vanishing of the partition function as envisaged after (5.9). The case with |k̂| > 1 thus

offers a nice illustration of the fact that summing up contributions from multiple thimbles

is mandatory for obtaining a correct result.

6 Conclusion and perspective

In this work, we have reported applications of the Picard-Lefschetz theory to a variety of

fermionic models. While fermions can be integrated out from path integral, resulting effec-

tive actions are not entirely holomorphic and give rise to nontrivial behaviors of Lefschetz

thimbles that are unseen in bosonic models. Taking the Gross-Neveu-like model with a

complex four-fermion coupling as a test bed, we demonstrated how the partition function

– 30 –



J
H
E
P
0
3
(
2
0
1
5
)
0
4
4

could be defined as a complex contour integral and how multiple complex saddles may

be taken into account consistently using the Lefschetz-thimble techniques. The jumps of

thimbles across the Stokes line were delineated, and the discrete chiral symmetry breaking

was explained as an exchange of dominance between complex saddles. We also worked out

the link between symmetry breaking, anti-Stokes lines and Lee-Yang zeros.

Next, we outlined the determination of Lefschetz thimbles and their duals in the

Nambu-Jona-Lasinio model with continuous chiral symmetry, showing that the method

of [5] applies to fermionic systems with no extra difficulty. We then added a symmetry-

breaking perturbation and explained that the structure of thimbles may be largely inferred

from our former analysis of the Gross-Neveu-like model. It was uncovered that the number

of thimbles changes discontinuously when a nonzero fermion mass is turned on, and that

even for an infinitesimal mass, a smooth recovery of the symmetric limit is impeded by a

highly intricate cancellation of large contributions between different thimbles.

Finally we studied a 0 + 1-dimensional model that mimics the Chern-Simons theory

coupled to fermions. This model exhibits a “quantum phase transition” when the coefficient

of the topological term is dialed. We examined this transition in detail and found that the

global structure of Lefschetz thimbles undergoes a drastic change across the transition.

We believe that the methods and findings in this paper will have important implications

for future application of the Picard-Lefschetz theory to path integral for QFTs. First and

foremost, in QCD the two light quark flavors have small masses and there is an approximate

SU(2)×SU(2) chiral symmetry. Also in lattice QCD, chiral symmetry of lattice fermions is

usually broken explicitly by lattice artifacts. Our results for slightly broken chiral symmetry

in section 4.3 would serve as a useful guide in these situations. For example, it is strongly

suggested from our experience in toy models that summing up contributions of all thimbles

is mandatory when there is an exact or approximate symmetry. This should be properly

reflected in numerical implementation of the Lefschetz-thimble approach to QCD. It is

worth noting that our treatment on continuously degenerate saddles in section 4 can be

extended to other kinds of saddles in field theories, such as instantons, monopoles, vortices

and kinks which all have various flat directions in field space.

Yet another direction of research to which our work is of potential relevance, is semi-

classical analysis of QCD with adjoint quarks on R3 × S1. It was argued in [67, 68] that,

at sufficiently small S1, semiclassical expansion in this theory is well-defined and can be

continued infinitely through an order-by-order cancellation of nonperturbative ambiguities.

While it is tempting to conjecture that this offers a conceptual solution to the long-standing

renormalon problem in QCD on R4 [67, 68], we have to recall that there is a chiral phase

transition that separates a small-S1 phase from a large-S1 phase. So far not much work has

been done as to the fate of semiclassical expansion across the chiral transition. It should

be interesting to look into this issue using more sophisticated versions of our toy models.

Finally we touch on the fundamental limitations of this work. Since the focus was on

finite-dimensional integrals, we cannot tell exactly how our findings carry on to infinite-

dimensional path integrals in field theories; in the first place it is still an open question

whether a path integral in continuum QFTs can be decomposed into Lefschetz thimbles or
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not.18 Even if this proves possible, one has to figure out how to compute the coefficients

{nσ} in (2.3). In general this would be a formidable task in the presence of infinitely many

saddles in field theories.19 We stress that this difficulty is not specific to fermionic theories

but is common to any QFTs. In this paper we determined these numbers by plotting flow

lines and counting their intersections, but this is of course impossible in higher dimensions

and a novel approach is needed. After all, the Lefschetz-thimble approach to path integrals

is still in its infancy and we should be optimistic.
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