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1 Introduction

Intersection numbers on the moduli spaces of Riemann surfaces is a challenging and com-

plicated subject of enumerative geometry. While for closed Riemann surfaces an effective

description is known for more than twenty years [1, 2], a similar description of open in-

tersection numbers was not available. Recently, in the paper [3] the generating function

of open intersection numbers was described by the Virasoro constraints and an infinite

hierarchy of PDE’s, called there the “open KdV hierarchy.” This important development

makes it possible to apply to the subject the theory of matrix models, a power tool of

modern mathematical physics. In this paper we present a simple and natural description

of the generating function of the open intersection numbers.

Namely, let us consider a family of the Kontsevich-Penner models

τN = det(Λ)NC−1

∫
[dΦ] exp

(
−Tr

(
Φ3

3!
− Λ2Φ

2
+N log Φ

))
. (1.1)

From the Kontsevich proof of Witten’s conjecture [1, 2] we know that intersection theory

on the moduli spaces of closed Riemann surfaces is governed by a representative of this

family with N = 0:

τKW = τ0, (1.2)

which is a tau-function of the integrable KdV hierarchy. The main observation of this work

is that N = 1 case corresponds to the open intersection theory. Namely, the extended

generating function (which includes descendants of the boundary points), introduced and

studied in [4, 5], coincides with (1.1) for N = 1:

τo = τ1. (1.3)

Then, from matrix model theory it immediately follows that the extended open generating

function is a tau-function of the KP hierarchy. Moreover, the variable N in (1.1) plays
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the role of the discrete time. Thus, (1.1) describes a solution of the modified KP (MKP)

hierarchy, and, in addition to the KP (KdV) equations the tau-functions τo and τKW satisfy

the bilinear identity
∮

∞

eξ(t−t
′,z)z τo(t− [z−1])τKW (t′ + [z−1])dz = 0. (1.4)

We claim that the open KdV hierarchy equations, as well as other PDE’s, obtained or

conjectured in [3–5] for the generating function of open intersection numbers follow from

the equations of the MKP integrable hierarchy.

Virasoro constraints is a natural property of the matrix integrals. The Virasoro con-

strains, obtained for the tau-function τ1, are equivalent to the extended Virasoro con-

straints, derived in [5]. An advantage of our version of the Virasoro constraints is that

they belong to the symmetry algebra of the integrable hierarchy, thus, they are natural

from the point of view of integrability.

The present paper is organized as follows. Section 2 contains material on the

Kontsevich-Witten tau-function. In section 3 we establish a relation between the gen-

erating function of the open intersection numbers and the matrix model (1.1) for N = 1.

In section 4 we describe some general properties of the matrix integral (1.1) and identify

the equations of the MKP hierarchy with the equations, obtained in [3–5]. Section 5 is

devoted to concluding remarks. For the sake of simplicity in this paper we omit the genus

expansion parameter (denoted by u in [3–5]), since it can be easily restored by rescaling of

times.

2 Kontsevich-Witten tau-function

The closed intersection theory is governed by the Kontsevich-Witten tau-function. Let

Mp;n be the Deligne-Mumford compactification of the moduli space of genus p complex

curves X with n marked points x1, . . . , xn. Let us associate with a marked point a line

bundle Li whose fiber at a moduli point (X;x1, . . . , xn) is the cotangent line to X at xi.

Intersection numbers of the first Chern classes of these holomorphic line bundles
∫

Mp;n

ψm1

1 ψm2

2 . . . ψmn
n = 〈σm1

σm2
. . . σmn〉 (2.1)

are rational numbers, not equal to zero only if

n∑

i=1

(mi − 1) = 3p− 3. (2.2)

Their generating function1

F c (t) = 〈exp
(

∞∑

m=0

(2m+ 1)!! t2m+1σm

)
〉 (2.3)

1We use the variables tk, which are the standard variables of the KP hierarchy. From (2.3) it is clear

that they do not coincide with the variables, natural for the intersection theory. The difference between

two families of variables is given by the factor (2m+ 1)!! (see also footnote 2).
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is given by the Kontsevich-Witten tau-function which is a formal series in odd times t2k+1

with rational coefficients:

τKW (t) = exp (F c (t))

= 1 +
1

6
t1

3 +
1

8
t3 +

1

72
t1

6 +
25

48
t3t1

3 +
25

128
t3

2 +
5

8
t5t1 +

1

1296
t1

9

+
49

576
t1

6
t3 +

1225

768
t1

3
t3

2 +
35

48
t1

4
t5 +

1225

3072
t3

3 +
245

64
t5t3t1 +

35

16
t1

2
t7 +

105

128
t9 + . . .

(2.4)

In the Miwa parametrization it is equal to the asymptotic expansion of the Kontsevich

matrix integral [1, 2, 6–11] over the Hermitian matrix Φ:

τKW ([Λ]) =

∫
[dΦ] exp

(
−Tr

(
Φ3

3!
+

ΛΦ2

2

))

∫
[dΦ] exp

(
−Tr

ΛΦ2

2

) . (2.5)

This integral depends on the external matrix Λ, which is assumed to be a positive defined

diagonal matrix. The times tk are given by the Miwa transform of this matrix:

tk =
1

k
TrΛ−k. (2.6)

All tk can be considered as independent variables as the size of the matrices tends to

infinity and in this limit (2.5) gives the Kontsevich-Witten tau-function. After the shift of

the integration variable

Φ = X − Λ (2.7)

one has

τKW ([Λ]) = C−1

∫
[dX] exp

(
−Tr

(
X3

3!
− Λ2X

2

))
, (2.8)

where

C = eTr
Λ3

3

∫
[dΦ] exp

(
−Tr

ΛΦ2

2

)
. (2.9)

The Harish-Chandra-Itzykson-Zuber formula [12, 13] allows us to reduce the r.h.s.

of (2.5) to the ratio of determinants [6, 7]

τKW ([Λ]) =
detNi,j=1Φ

KW
i (λj)

∆ (λ)
. (2.10)

Here λj are the eigenvalues of the matrix Λ and

∆(z) =
∏

i<j

(zj − zi) (2.11)

is the Vandermonde determinant. The basis vectors ΦKW
i are given by the integrals

ΦKW
k (z) =

√
z

2π
e−

z3

3

∫
∞

−∞

dy yk−1 exp

(
−y3

3!
+

yz2

2

)

=

√
z

2π

∫
∞

−∞

dy (y + z)k−1 exp

(
−y3

3!
− y2z

2

)
.

(2.12)
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The coefficients of the basis vectors can be found explicitly, in particular [7, 11]

ΦKW
1 (z) =

∞∑

k=0

2k Γ
(
3k + 1

2

)

9k (2k)! Γ
(
1
2

)z−3k,

ΦKW
2 (z) = −

∞∑

k=0

6k + 1

6k − 1

2k Γ
(
3k + 1

2

)

9k (2k)! Γ
(
1
2

)z1−3k.

(2.13)

The first line of (2.12) allows us to find the Kac-Schwarz operators of the KW tau-

function [14, 15]. Indeed, we have:

ΦKW
k+1 (z) =

√
z

2π
e−

z3

3

(
1

z

∂

∂z

)∫
∞

−∞

dy yk−1 exp

(
−y3

3!
+

yz2

2

)
= aKW ΦKW

k (z), (2.14)

where

aKW =
1

z

∂

∂z
+ z − 1

2z2
. (2.15)

Thus, the operator aKW preserves the subspace spanned by the vectors ΦKW
i

aKW

{
ΦKW

}
⊂

{
ΦKW

}
(2.16)

and it is the Kac-Schwarz operator (see, e.g., [16] for more details).

To construct another Kac-Schwarz operator we use the identity

(
a2KW − z2

)
ΦKW
1 (z) = 0. (2.17)

From this identity and the recursion relation (2.14) it follows that

z2ΦKW
k = ΦKW

k+2 − 2(k − 1)ΦKW
k−1 . (2.18)

Thus,

bKW = z2 (2.19)

is also the Kac-Schwarz operator. The Kac-Schwarz operators (2.15) and (2.19) satisfy the

canonical commutation relation

[aKW , bKW ] = 2 (2.20)

and generate an algebra of the Kac-Schwarz operators for the KW tau-function.

Given a Kac-Schwarz operator, there is an explicit formula for an operator from the

algebra W1+∞ such that the corresponding tau-function is an eigenfunction of this opera-

tor [16]. In particular, the above given Kac-Schwarz operators allow us to construct two

infinite series of operators, which annihilate the tau-function. One of them guarantees that

the tau-function does not depend on even times

ĴKW
k =

∂

∂t2k
, k ≥ 1, (2.21)

so that it is a tau-function of the KdV hierarchy.
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The second series is given by the Virasoro operators

L̂KW
k =

1

2
L̂2k −

1

2

∂

∂t2k+3
+

1

16
δk,0, k ≥ −1, (2.22)

which correspond to the Kac-Schwarz operators

lKW
k = −1

4

(
(bKW )k+1aKW + aKW (bKW )k+1

)
. (2.23)

The operators

L̂m =
1

2

∑

a+b=−m

abtatb +
∞∑

k=1

ktk
∂

∂tk+m
+

1

2

∑

a+b=m

∂2

∂ta∂tb
(2.24)

in (2.22) generate a family of the Virasoro operators from the W1+∞ algebra of the sym-

metries of the KP hierarchy.

To find corresponding eigenvalues it is enough to check that the operators (2.21)

and (2.22) satisfy the commutation relations:
[
ĴKW
k , ĴKW

m

]
= 0, k,m ≥ 1

[
L̂KW
k , ĴKW

m

]
= −mĴKW

k+m, k ≥ −1, m ≥ 1,
[
L̂KW
k , L̂KW

m

]
= (k −m)L̂KW

k+m, k,m ≥ −1.

(2.25)

Since all generators of the algebra can be obtained as commutators of some other generators,

the eigenvalues of all of them are equal to zero:

ĴKW
m τKW = 0, m ≥ 1 (2.26)

and

L̂KW
m τKW = 0, m ≥ −1. (2.27)

Then, for any function Z depending only on odd times t2m+1, we have

L̂kZ =

(
L̂2k +

1

8
δk,0

)
Z, k ≥ −1, (2.28)

where the operators

L̂m=
∞∑

k=1

(2k + 1) t2k+1
∂

∂t2k+2m+1
+

1

2

m−1∑

k=0

∂2

∂t2k+1∂t2m−2k−1
+

t21
2
δm,−1 +

1

8
δm,0, m≥−1

(2.29)

constitute the same subalgebra of the Virasoro algebra:
[
L̂n, L̂m

]
= 2(n−m)L̂n+m, m, n ≥ −1. (2.30)

Thus, the Virasoro constraints (2.27) are equivalent to the standard Virasoro constraints

for the KW tau-function

L̂mτKW =
∂

∂t2m+3
τKW , m ≥ −1, (2.31)

which follow from the invariance of the Kontsevich matrix integral.
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3 Open generating function

In [3] the intersection theory on the moduli spaces of Riemann surfaces with boundary was

investigated. In particular, open intersection numbers in the genus zero were constructed,

and the generalization to all higher genera was conjectured. This conjectural all-genera

generating function is uniquely specified by the so called open KdV equations and the

Virasoro constraints. In [4] it is proved that the open KdV equations and the corresponding

Virasoro constraints give equivalent descriptions of the (conjectural) intersection theory

on the moduli space of Riemann surfaces with boundary. In [5] the generating function

introduced in [3] was generalized to describe also the descendants on the boundary, and the

Virasoro constrains for this conjectural generalized (or extended) generating function were

proved. Namely, the generating function of open intersection numbers with descendants2

τo = exp(F o + F c), (3.1)

where F c = log(τKW ), satisfy the linear equations
(
L̂n + 2

∞∑

k=0

k t2k
∂

∂t2k+2n
+

3n+ 3

2

∂

∂t2n
+ 2t2 δn,−1 +

3

2
δn,0 −

∂

∂t2n+3

)
τo = 0 (3.2)

for n ≥ −1. These Virasoro operators can not be represented as a linear combination of

the operators (2.24) and the operators tk,
∂
∂tk

, thus it is obvious that they do not belong

to the W1+∞ symmetry algebra of the KP hierarchy.

According to [5] the open generating function τo is related to the KW tau-function by

the residue formula

τo(t) =
1

2πi

∮
dz

z
D(z) τKW (t−

[
z−1

]
) exp(ξ(t, z)), (3.3)

where ξ(t, z) =
∑

∞

k=1 tkz
k and we use the standard notation

t±
[
z−1

]
=

{
t1 ±

1

z
, t2 ±

1

2z2
, t3 ±

1

3z3
, . . .

}
. (3.4)

The series

D(z) = 1+
∑

k=1

dk
z3k

= 1+
41

24
z−3+

9241

1152
z−6+

5075225

82944
z−9+

5153008945

7962624
z−12+ . . . (3.5)

is uniquely defined by the equation

aKW

(
1

z
D(z)

)
= ΦKW

1 (z), (3.6)

where aKW is the Kac-Schwarz operator for the KW tau-function (2.15), thus (2.14) allows

us to identify

ΦKW
0 (z) =

1

z
D(z). (3.7)

2The function F o here is the extended open potential F o,ext of [5]. Below we continue to use the variables,

natural from the point of view of the integrable hierarchies and matrix models. Thus, the variables from [5]

are related to our variables as tBk = (2k + 1)!! t2k+1, s
B
k = 2k+1(k + 1)! t2k+2.
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One can easily recover the integral representation for this series. Namely, it is given by the

steepest descent expansion of the integral

D(z) =
z3/2√
2π

e−
z3

3

∫

C
d y y−1 exp

(
−y3

3!
+

yz2

2

)
, (3.8)

with a properly chosen contour C.

Let us consider the Kontsevich matrix integral (2.5) with (M + 1) × (M + 1) matrix

Λ = diag (y1, y2, . . . , yM ,−z). Then, in the Miwa variables the relation (3.3) yields

τo([Y ]) =
1

2πi

∮
dz

z
D(z) τKW ([Λ]) det

(
Y

Y − z

)
, (3.9)

where Y = diag (y1, y2, . . . , yM ). In particular, for M = 1 we have

τo([y]) = yΦKW
0 (y)

ΦKW
1 (−y)ΦKW

2 (y)− ΦKW
1 (y)ΦKW

2 (−y)

2y
. (3.10)

Since3

ΦKW
1 (−y)ΦKW

2 (y)− ΦKW
1 (y)ΦKW

2 (−y) = 2y, (3.14)

we have

τo([y]) = D(y) = yΦKW
0 (y). (3.15)

We conjecture, that the extended generating function of open intersection numbers τo
is a KP tau-function, fixed by the set of basis vectors:

Φo
j(z) = zΦKW

j−1 (z) =
z3/2√
2π

e−
z3

3

∫
d y yj−2 exp

(
−y3

3!
+

yz2

2

)
, j = 1, 2, 3, . . . (3.16)

so that it is given by the matrix integral

τo ([Λ]) = C−1 det(Λ)

∫
[dΦ] exp

(
−Tr

(
Φ3

3!
− Λ2Φ

2
+ logΦ

))
, (3.17)

3This relation is valid for the basis vectors of any KdV tau-function. Indeed, consider a KdV tau-function

τ(t) in the Miwa parametrization with 2× 2 diagonal matrix Λ = diag (y,−y). In this parametrization all

odd times (2.6) vanishes

t2k+1 =
1

2k + 1

(

1

y2k+1
−

1

y2k+1

)

= 0 (3.11)

and the tau-function is identically equal to 1. On the other hand, the same tau-function in this parametriza-

tion can be represented in terms of the basis vectors as a ratio of determinants of the form (2.10)

τ ([Λ]) =
Φ1(y)Φ2(−y)− Φ1(−y)Φ2(y)

(−2y)
(3.12)

so that for any tau-function independent of even times the basis vectors satisfy

Φ1(−y)Φ2(y)− Φ1(y)Φ2(−y) = 2y. (3.13)

– 7 –
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where C is given by (2.9). This matrix integral belongs to the family of the generalized

Kontsevich models [6, 7, 10, 11, 17, 18], and, for M (size of the matrix Φ) large enough,

has the following expansion

τo = 1 +
13

8
t3 + 2 t1t2 +

1

6
t1

3

+ 8 t6+
1

72
t1

6+
4

3
t2

3+
37

48
t3t1

3+
1

3
t1

4
t2+2 t1

2
t2

2+
37

4
t3t1t2+4 t4t1

2+8 t4t2+
481

128
t3

2+
65

8
t5t1

+
455

16
t7t1

2 +
61

576
t1

6
t3 +

2257

768
t1

3
t3

2 +
95

48
t1

4
t5 +

7665

128
t9 +

3965

64
t5t3t1 +

1

1296
t1

9 +
29341

3072
t3

3

+
14

9
t1

3
t2

3 +
1

3
t1

5
t2

2 +
1

36
t1

7
t2 +

8

3
t1t2

4 + 32 t1t4
2 + 64 t1t8 + 61 t6t3 +

28

3
t6t1

3

+ 60 t5t4 + 30 t5t2
2 +

2

3
t4t1

5 +
61

6
t3t2

3 +
245

4
t7t2 + 64 t6t1t2 +

125

4
t5t1

2
t2 + 32 t4t1t2

2

+
28

3
t4t1

3
t2 + 61 t4t3t2 +

61

2
t4t3t1

2 +
2257

64
t3

2
t1t2 +

61

24
t3t1

4
t2 +

61

4
t3t1

2
t2

2 + . . . , (3.18)

which coincides with the expansion of (3.3).

The Kac-Schwarz operator for the tau-function (3.17) is

ao = z aKW z−1 =
1

z

∂

∂z
− 3

2z2
+ z, (3.19)

so that

Φo
k+1(z) = aoΦ

o
k(z). (3.20)

Let us stress that, contrary to the case of the KW tau-function, this tau-function depends

both on odd and even times, since z2 is not a Kac-Schwarz operator anymore:

z2Φo
1(z) /∈ {Φo(z)} . (3.21)

Nevertheless, from (3.20) it immediately follows that the operators

lok = −z2k+2ao = −z2k+2

(
1

z

∂

∂z
− 3

2z2
+ z

)
(3.22)

for k ≥ −1 belong to the Kac-Schwarz algebra. The operators lok satisfy the Virasoro

commutation relations (with the trivial central charge):

[lok, l
o
m] = 2(k −m)l0k+m. (3.23)

Then, from the general properties of the Kac-Schwarz operators [16] it follows that the

tau-function τo is an eigenfunction of the corresponding operators:

L̂o
−1 = L̂−2 −

∂

∂t1
+ 2t2,

L̂o
0 = L̂0 −

∂

∂t3
+

1

8
+

3

2
,

L̂o
k = L̂2k −

∂

∂t2k+3
+ (k + 2)

∂

∂t2k
, k > 0,

(3.24)

where the operators L̂k are given by (2.24). These operators satisfy the commutation

relation of the Virasoro algebra
[
L̂o
k, L̂

o
m

]
= 2(k −m)L̂o

k+m, k,m ≥ −1. (3.25)

– 8 –
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From these commutation relations it follows that for k ≥ −1 the eigenvalues of these

operators are equal to zero, thus

L̂o
k τo = 0, k ≥ −1. (3.26)

The Virasoro constraints (3.26) can be reduced to the constraints (3.2) with the help

of relations
∂

∂t2k
τo =

∂k

∂tk2
τo (3.27)

proved in [5]. Thus, we see that up to the relations (3.27) the tau-function, given by the

matrix integral (3.17) and an extended generating function of [5] satisfy the same Virasoro

constraints.

The KP hierarchy for the generating function τo which, in particular, immediately

follows from the conjectural matrix integral representation (3.17), is described by the

bilinear identity ∮

∞

eξ(t−t
′,z) τo(t− [z−1])τo(t

′ + [z−1])dz = 0. (3.28)

The first non-trivial Hirota equation contained here is

(D4
1 + 3D2

2 − 4D1D3)τo · τo = 0. (3.29)

We use the symbols Di for the “Hirota derivatives” defined by

P (D)f(t) · g(t) := P (∂X)(f(t+X)g(t−X))|X=0, (3.30)

where P (D) is any polynomial in Di, so that (3.29) yields the KP equation in terms of

the tau-function

τo
∂4τo
∂t41

−4
∂τo
∂t1

∂3τo
∂t31

+3

(
∂2τo
∂t21

)2

+3τo
∂2τo
∂t22

−3

(
∂τo
∂t2

)2

−4τo
∂2τo
∂t1∂t3

+4
∂τo
∂t1

∂τo
∂t3

= 0. (3.31)

In the next section we will consider a more general integrable structure, equations of

which are directly related to the equations derived in [3–5].

4 MKP hierarchy

Let us consider a family of the Kontsevich-Penner models [2, 19]

τN = det(Λ)NC−1

∫
[dΦ] exp

(
−Tr

(
Φ3

3!
− Λ2Φ

2
+N log(Φ)

))
, (4.1)

which for N = 0 corresponds to the closed intersections and for N = 1 according to our

conjecture corresponds to the open ones. Here N is the independent parameter, which has

nothing to do with the size of the matrices.

Corresponding basis vectors

ΦN
j (z) = zNΦKW

j−N (z) =
zN+1/2

√
2π

e−
z3

3

∫
d y yj−1−N exp

(
−y3

3!
+

yz2

2

)
, j = 1, 2, 3, . . .

(4.2)

– 9 –



J
H
E
P
0
3
(
2
0
1
5
)
0
4
2

satisfy the recursive relation

aNΦN
j = ΦN

j+1, (4.3)

where

aN = zN aKW z−N =
1

z

∂

∂z
−
(
N +

1

2

)
1

z2
+ z (4.4)

is the Kac-Schwarz operator for τN . Thus, from the general relation between the Kac-

Schwarz operators and the operators from the algebra W1+∞ it immediately follows that

τN satisfies the string equation
(
L̂−2 −

∂

∂t1
+ 2Nt2

)
τN = 0. (4.5)

Moreover, it is straightforward to check that the operators z2aN and z4aN−2(N−1)z2

are also the Kac-Schwarz operators so that the tau-function satisfy the equations

L̂kτN = 0, k = −1, 0, 1, (4.6)

where

L̂−1 = L̂−2 −
∂

∂t1
+ 2Nt2,

L̂0 = L̂0 −
∂

∂t3
+

1

8
+

3N2

2
,

L̂1 = L̂2 −
∂

∂t5
+ 3N

∂

∂t2
,

(4.7)

and these three operators satisfy the commutation relations
[
L̂i, L̂j

]
= 2(i− j)L̂i+j . (4.8)

A complete family of the Virasoro and W-constraints can also be obtained by variation of

the matrix integral [17, 20, 21] and is derived in [22].

The functions of the family (4.1) with different N are related with each other by the

differential-difference equations of the KP/Toda type [17]. In particular, the tau-functions

τ0 and τ1 satisfy the MKP integrable hierarchy.4 It is given by the bilinear identity
∮

∞

eξ(t−t
′,z) z τo(t− [z−1])τKW (t′ + [z−1])dz = 0 (4.9)

valid for all t, t′. This bilinear identity is equivalent to an infinite series of PDE’s, the

simplest of which is (
D2

1 −D2

)
τo · τKW = 0. (4.10)

Since τKW = exp(F c) does not depend on even times, from the definition of the “Hi-

rota derivatives” (3.30) it immediately follows that all operators D2k in our case can be

substituted by ∂
∂t2k

. Then, equation (4.10) is equivalent to

∂F o

∂t2
= 2

∂2F c

∂t21
+

∂2F o

∂t21
+

(
∂F o

∂t1

)2

, (4.11)

4For more details on MKP hierarchy see, e.g., [23, 24] and references therein.
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which was derived in [4]. A combination of this equation and the next equation of the

MKP hierarchy
(
D3

1 − 4D3 + 3D1D2

)
τo · τKW = 0 (4.12)

leads to
∂F o

∂t3
=

∂F o

∂t1

∂F o

∂t2
+

∂2F c

∂t21

∂F o

∂t1
+

∂2F o

∂t1∂t2
− 1

2

∂3F o

∂t31
. (4.13)

This is the first equation of the open KdV hierarchy of [3].

On the next level we have two equations

(
6D4 − 8D1D3 + 3D2

2 −D4
1

)
τo · τKW = 0,

(
2D4 −D2

2 −D2
1D2

)
τo · τKW = 0,

(4.14)

from which, in particular, it immediately follows the first equation of (3.27)

∂

∂t4
τo =

∂2

∂t22
τo. (4.15)

We conjecture that other equations of the open KdV hierarchy and other equations of [3–5]

also follow from the bilinear identity (4.9) of the MKP hierarchy.

5 Concluding remarks

In this paper we present a description of the open intersection numbers by means of the

generalized Kontsevich model. It is more then natural to look for other elements of the

modern matrix model theory in this case and to apply these elements to the investigation

of the open intersection theory. These elements, in particular, include:

• Cut-and-join type operator5

• Givental decomposition

• (Quantum) spectral curve

• Topological recursion

The generating function of open intersection numbers should also describe the model of

the open topological string with the simplest possible target-space (a point). It would also

be interesting to establish the meaning of the whole family (4.1) from the point of view of

enumerative geometry. We also expect that other families of the generalized Kontsevich

models should be related to r-spin versions of the open intersection numbers. Some of the

above mentioned topics are considered in [22].

5An attempt to describe open intersection numbers in terms of the cut-and-join type operator is made

in [25].
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