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1 Introduction, summary and conclusions

The open/closed string duality in the special case of N coincident D3-branes in a flat

embedding of ten-dimensional Minkowski space contains an enormous amount of interesting

physics. In the open string description the low energy excitations of the D3-brane is

described by N = 4 Super-Yang-Mills (SYM) theory with gauge group U(N) while the

closed string description at low energies is provided by the supergravity solution for N

large and the coupling gsN large, gs being the string coupling. From this setting one

finds that the open/closed string duality essentially results in the celebrated AdS/CFT

correspondence [1–3] when taking a certain decoupling limit that decouples the low energy

excitations on the D3-branes.

One of the precursors of the AdS/CFT correspondence was the study of N coincident

D3-branes at low temperature [4]. At weak coupling gsN � 1 they are described to lead-

ing order by N = 4 SYM theory with free energy F = −1
6π

2N2V3T
4. At strong coupling

gsN � 1 and large N one can instead describe them using a non-extremal supergravity so-

lution in a near-extremal limit giving the free energy F = −1
8π

2N2V3T
4 thus with the only

difference to the open string description being a factor of 3/4. The correct interpretation

of this is provided by the AdS/CFT correspondence [5]. Namely, the free energy of SU(N)

N = 4 SYM theory at large N takes the form F = −f(λ)1
6π

2N2V3T
4 at any ’t Hooft

coupling λ = g2
YMN = 4πgsN due to the conformality of N = 4 SYM theory. At strong

coupling λ � 1 the dual description of N = 4 SYM theory is a black hole in AdS5 × S5
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being the near-extremal limit of the non-extremal D3-brane supergravity solution. Hence

the 3/4 factor is the prediction of the free energy of N = 4 SYM theory at strong coupling.

In this paper we are interested in studying a generalization of the above setting for the

open/closed string duality for N D3-branes with low temperature. Our object of study is

the effective action for theN D3-branes at finite temperature in a given thermal background

of type IIB supergravity. We call this action the thermal DBI action since it can be thought

of as a generalization of the DBI action to finite temperature. At weak coupling gsN � 1

one computes the thermal DBI action as the effective thermal action for the DBI action.

At strong coupling gsN � 1 the open/closed string duality reveals that the thermal DBI

action can be computed from the black hole thermodynamics of N coincident D3-branes

probing the type IIB supergravity background in the sense of the blackfold approach (see

refs. [6, 7] for the blackfold approach and more specifically refs. [8, 9] for the application

to D-branes).

The main focus of this paper is the thermal DBI action for N coincident D3-branes

in a flat embedding in ten-dimensional Minkowski space with a Kalb-Ramond potential

turned on. This corresponds to turning on an electromagnetic field on the D3-brane. We

compute the thermal DBI action in this setting at low temperature both at weak coupling

gsN � 1 and at strong coupling gsN � 1, finding

Ieff [T, γab, Bab] = −NTD3

∫
d4σ
√
−det(γab +Bab)×

×

(
1−

√
det(δab + γacBcb)

(γ00 + γijB0iB0j)2
f(4πgsN)

π2NT 4

6TD3
+O(T 8)

)
(1.1)

where f(4πgsN) takes the value 1 for gsN � 1 and 3/4 for gsN � 1. We also argue

that the dependence on the coupling gsN factorizes from the dependence on γab and Bab
at intermediate values of the coupling for the T 4 term. Thus, the low energy fluctuations

captured by the T 4 term has the same dependence on the electromagnetic field Bab at

weak and strong coupling. This could seem highly surprising since the DBI theory is not a

conformal theory and hence there are no immediate reasons that the coupling dependence

should factorize.

We investigate the origin of the factorization of the T 4 term in (1.1) as well. Consid-

ering the special case with γab = ηab and Bab being constant we can write the free energy

at low temperature as

F (T, ~E, ~B) = −f(4πgsN)
π2

6
V3N

2T 4 1− ~E2 + ~B2 − ( ~E · ~B)2

(1− ~E2)2
(1.2)

where we introduced the notation ~E = (B01, B02, B03) and ~B = (B23,−B13, B12). We now

employ a decoupling limit ls → 0 with gs, N , T , ~E and ~B fixed while the scalar fields on

the D3-branes should scale like l2s . Then at weak coupling gsN � 1 we find a finite action

for the decoupled theory that corresponds to the free energy (1.2) with f(4πgsN) = 1.

While this can be computed using a one-loop correction we find that this decoupled action

actually is N = 4 SYM theory on a background with metric Gab = MacMbdη
cd where
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we defined Mab = ηab + Bab, with gauge coupling g2
YM = 4πgs

√
− detM and θ-angle

θ = 2π ~E · ~B/(gs
√
−detM). Thus, the low energy fluctuations giving the T 4 term in (1.1)

do come from a conformal theory.

At strong coupling the T 4 term in (1.1) and (1.2) is found by considering two super-

gravity brane bound states, one with ~E ‖ ~B and one with ~E ⊥ ~B. Then by rotational

invariance of the action and free energy one can infer (1.2) with f(4πgsN) = 3/4. Employ-

ing the same ls → 0 decoupling limit as at weak coupling on the two supergravity brane

bound state one sees that this corresponds to taking certain near-extremal limits of the two

supergravity solutions. In both cases this gives the type IIB background of the Poincaré

patch AdS5 black hole times S5 but in coordinates corresponding to having the boundary

metric Gab = MacMbdη
cd. Furthermore, from the dilaton one reads the gauge coupling

g2
YM = 4πgs

√
−detM and from the axion field the θ-angle θ = 2π ~E · ~B/(gs

√
−detM).

Thus, one finds again the AdS/CFT correspondence though in a different coordinate system

and with an axion/θ-term turned on.

In conclusion, the reason for the factorization of the dependence on the coupling gsN in

the T 4 term in (1.1) and (1.2) is that we can map the low energy fluctuations corresponding

to the the T 4 term with a general Bab field to the low energy fluctuations for Bab = 0.

Our results thus extend the manifestation of the AdS/CFT correspondence from the

open/closed string duality on D3-branes to the case where a constant electromagnetic field

is turned on on the brane. This opens up an interesting new avenue of research on the

open/closed string duality and its holographic manifestations, namely the question of what

happens when considering an electromagnetic field on the D3-branes that can vary along

the brane. Locally, when we are at distances that are small compared to the variation of

Bab, we show in this paper that it corresponds to the AdS/CFT correspondence. However,

when being at large distances, one finds a generalization of the AdS/CFT correspondence.

We investigate this in a forthcoming publication [10].

Looking at the free energy (1.2) it is interesting to note that if ~B = 0 or if ~E ‖ ~B then

the free energy diverges like 1/(1 − ~E2) as ~E2 → 1. Thus, we have a particular critical

behavior with a certain critical exponent corresponding to the fact that one obtains non-

commutative open string (NCOS) theory in this limit [11, 12]. Instead turning on ~E

and ~B but keeping them non-parallel, one finds that the free energy instead diverges as

1/(1− ~E2)2 as ~E2 → 1 thus the free energy diverges with a different critical exponent. It

could be interesting to explore further the physics behind this.

Beyond studying the physics of the open/closed string duality our computation of the

thermal DBI action (1.1) also finds applications in using branes to probe thermal back-

grounds of string theory. So far it has mostly been the DBI action that has been used to

probe string theory backgrounds. This has in particular led to important results in the

context of the AdS/CFT, AdS/QCD and more recently the AdS/CMT correspondences.

The success of using the DBI action to describe D-brane probes of zero-temperature String

Theory backgrounds have motivated the application of the DBI action as a probe of ther-

mal backgrounds, particularly in the thermal versions of the above-mentioned holographic

correspondences. However, as noted in [8], the DBI action does not accurately describe a

D-brane probing a thermal background. This is because the D-brane DOFs on the brane
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will be heated up by the temperature of the background. Hence the effective action for

D-branes in thermal backgrounds is modified. To accurately probe a thermal background

with a D-brane one should therefore employ the thermal DBI action which we find in this

paper both at weak and strong coupling.1

This paper has the following content. Since the paper is based on studying the

open/closed string duality on D3-branes we give a precise description in section 2 of the

setup that can be used for our study of the thermal DBI action both from open string

and closed string point of views. In particular, we turn on an electromagnetic field on N

coincident D3-branes by introducing a background Kalb-Ramond field.

In section 3 we consider the open string point of view which is valid at weak cou-

pling gsN � 1. This consists in analyzing the DBI action for a single D3-brane with an

electromagnetic field turned on. We study the action in the above-mentioned decoupling

limit ls → 0 and compare this to the action for N = 4 SYM theory on curved space, thus

identifying the action for the low energy fluctuations. We subsequently use this to compute

the free energy and the thermal DBI action. In appendix A we compute the same result

directly as a one-loop correction to the DBI action.

In section 4 we consider the closed string point of view which is valid at strong coupling

gsN � 1. We explain in detail how to obtain the thermal DBI action in case of an electric

field ~E turned on. Then we turn to the two most general cases ~E ‖ ~B and ~E ⊥ ~B. The

first one we obtain from a D3 ‖ (F1 ‖ D1) black brane bound state and the second from a

D3 ‖ (F1 ⊥ D1) black brane bound state. The second bound state is a new supergravity

solution in the literature, even in the extremal limit. We point out that it is related

to previously known solutions including one which describes supertubes. We employ the

T-duality transformations listed in appendix B.

Finally, in section 5 we take the above-mentioned decoupling limit ls → 0 on the

closed string side in the form of certain near-extremal limits of the D3 ‖ (F1 ‖ D1) and

D3 ‖ (F1 ⊥ D1) black brane bound states. In this way we show that we obtain the Poincaré

patch black hole in AdS5 times S5 with the metric related by a change of coordinate to

the one obtained from the D3-brane solution.

2 Setup for computation of thermal DBI action

This paper is devoted to the study of the thermal DBI action at weak and strong coupling.

In this section we describe the precise setup for this study. We choose to focus on the D3-

brane since this is the most interesting case in view of the connection with the AdS/CFT

correspondence.2 Our main interest in this paper is to study the interplay between turning

1For work on using thermal effective actions for branes to probe thermal backgrounds see [8, 13] for the

construction of a thermal BIon solution which can be found using the strongly coupled thermal DBI action

for the D3-brane, see [14, 15] for an M5-M2-brane generalization and see [16] for k fundamental strings

probing AdS5 × S5 with a black hole corresponding to a solution of what one can call a strongly coupled

thermal Nambu-Goto action. Finally, see [17, 18] for the construction of thermal Giant Gravitons probing

thermal AdS5 × S5.
2It could be interesting to consider other Dp-branes as well in view of recent progress [19, 20].
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on a background Kalb-Ramond field which can be seen as a electromagnetic field on the D3-

brane, turning on a temperature and going from weak to strong coupling. For this reason

we choose for simplicity for our computations a setup in which the D3-brane world-volume

has a flat embedding in the background of ten-dimensional Minkowski space. Our results

can be readily generalized to the case of general embeddings and we comment briefly in

sections 3 and 4 on how this generalization looks.

In our setup we consider N coinciding D3-branes in the background of ten-dimensional

Minkowski space with metric ηµνdx
µdxν . The embedding of the D3-branes is described by

Xµ(σ) where σa, a = 0, 1, 2, 3, are the world-volume coordinates of the D3-branes. We put

the N coinciding D3-branes at the hyperplane x4 = x5 = · · · = x9 = 0. Thus, we choose

the following flat embedding of the D3-branes

Xa(σ) = σa , a = 0, 1, 2, 3 , Xi+3(σ) = 0 , i = 1, 2, 3, 4, 5, 6 (2.1)

Our type IIB supergravity background furthermore has zero dilaton field φ = 0 and zero

Ramond-Ramond field strengths. We turn on a Kalb-Ramond field Bµν in the directions

parallel to the brane world-volume while being zero along the transverse directions. From

the type IIB supergravity EOM’s we get that the Kalb-Ramond field obeys dB(2) = 0 in

our setup. Note that for the Kalb-Ramond field B(2) this background is pure gauge (at

least if it is topologically trivial). However, when adding D3-branes it is not pure gauge

anymore, as the B(2) is tied to the world-volume gauge field on the D3-branes. Notice also

that for this background there are no forces on the D3-branes in the transverse directions

hence the above is a consistent choice of embedding.

In putting the D3-branes at x4 = x5 = · · · = x9 = 0 we assume that the transverse

length scale of the D3-branes rs (i.e. the size in the x4, . . . , x9 directions) is always much

smaller than the length scale R over which the Kalb-Ramond field vary along the D3-

branes. This means that over distances rs � r � R we can treat the brane as an infinitely

thin stack of N D3-branes in a space-time in which one can find world-volume coordinates

such that the world-volume metric as well as the pull-back of the Kalb-Ramond field are

constant.

For the open string description we have gsN � 1 which means we are in the weak

coupling regime of the DBI action. In particular DBI describes N = 1 with gs � 1. In

this case the DBI action can be used to describe the brane over distances of order R since

we have assumed rs � R. When considering distances along the world-volume of order

rs � r � R we are considering the DBI action with flat embedding in flat space with a

constant Kalb-Ramond field.

For the closed string description we have gsN � 1 which means we are in the strong

coupling regime of the DBI action. In this case the stack of D3-branes backreact on the

supergravity background at distance scales rs (since rs grows large when gsN does). Thus,

we impose that the type IIB supergravity fields asymptote to the above chosen type IIB

background for
√

(x4)2 + · · ·+ (x9)2 →∞, i.e. arbitrarily far away from the brane. When

considering distances along the world-volume of order r � R the closed string description

is that of the supergravity background of N D3-branes that asymptotically has a constant

– 5 –
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Kalb-Ramond field. Since rs � R we can use the blackfold approach to describe the brane

system over distances of order R [6, 7].

3 Thermal DBI action at weak coupling and low temperature

In this section we compute the leading temperature dependent term in the effective action

for D3-branes at low temperature in the case of arbitrary electric and magnetic fields on the

brane at weak coupling gsN � 1. This corresponds to computing the one-loop correction

to the DBI action for D3-branes at low temperature.

We consider here the DBI action for a single D3-brane with the setup given in section 2.

Note that a single D3-brane means that N = 1 in the notation of section 2. This means in

particular that the background Ramond-Ramond fields and dilaton field are zero. Thus,

for this setup the DBI action takes the form

IDBI = −TD3

∫
d4σ
√
−det(γab +Bab + 2πl2sFab − 2(2π)2l4sψ̄Γa∂bψ) (3.1)

Note in particular that the Wess-Zumino term is absent since the Ramond-Ramond fields

are set to zero. Here γab is the induced metric

γab = ∂aX
µ∂bX

νηµν (3.2)

and Fab is the U(1) gauge field on the D3-brane Fab = ∂aAb − ∂bAa. Finally, for the

fermionic part of the action (3.1) ψ is a 10-dimensional Majorana-Weyl spinor and Γa
are the 10-dimensional gamma matrices.3 The field strength obeys dF = 0 on the world-

volume. The dual world-volume field strength Hab is the anti-symmetric world-volume

tensor defined here as
√
−γHab = − 1

TD32πl2s

∂L
∂Fab

(3.3)

The EOMs for the U(1) gauge field on the D3-brane are

∂a(
√
−γHab) = 0 , dF = 0 (3.4)

where the first equation is obtained from the action by varying the gauge field Aa.

Classical configuration. The classical configuration of the D3-brane is the one de-

scribed in the setup of section 2. Thus, we consider a flat embedding of the D3-brane

Xa(σ) = σa , a = 0, 1, 2, 3 , Xi(σ) = 0 , i = 4, 5, . . . , 9 (3.5)

The induced metric is thus γab = ηab. For the Kalb-Ramond field we have dB = 0.

Furthermore, for the pullback of the Kalb-Ramond field to the world-volume we have

dB = 0 here understood as an equation on the four-dimensional world-volume.

The goal in the following is to consider small open string fluctuations on the D3-

brane in the classical closed string background described above. Therefore, for the classical

3We rescaled the fermions with a 2πl2s factor for use below.
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configuration we impose F = 0. Instead the Kalb-Ramond field Bµν of the ten-dimensional

background is turned on such that (dB)µνρ = 0 with B being constant in the x4, x5, . . . , x9

directions transverse to the brane. One easily sees that the pullback of the Kalb-Ramond

field Bab = ∂aX
µ∂bX

νBµν obeys (dB)abc = 0 as well. The dual field strength becomes

Hab =
1

2

√
−detM(M−1)[ab] (3.6)

with the definition

Mab ≡ ηab +Bab (3.7)

and where [ab] means antisymmetrization (M−1)[ab] = 1
2((M−1)ab − (M−1)ba). Thus, the

pullback of the Kalb-Ramond field Bab is required to obey the following Born-Infeld non-

linear electromagnetic EOMs

∂aH
ab = 0 , ∂[aBbc] = 0 (3.8)

where here Hab is given by eqs. (3.6)–(3.7).

Quantum fluctuations and decoupling limit. We now consider open string quantum

fluctuations on top of the chosen classical background. For the embedding this means we

consider a static gauge Xa(σ) = σa, a = 0, 1, 2, 3, plus allowing for transverse fluctuations

of Xi(σ), i = 4, 5, . . . , 9. As is well-known from studying tree-level open string theory the

transverse fields of the D3-brane have fluctuations that scales like l2s where ls is the string

length. Thus, we can write Xi(σ) = 2πl2sΦ
i(σ), i = 4, 5, . . . , 9. The induced metric then

gives

γab = ηab + (2π)2l4s∂aΦ
i∂bΦ

i (3.9)

where a sum over i = 4, 5, . . . , 9 is understood.

We now consider the decoupling limit ls → 0 for a general Bab field. We find the

following expansion of the action (3.1) in this limit

I = I0 + I1 + I2 +O(l2s) (3.10)

where

I0 = −TD3

∫
d4σ
√
−detM , I1 = −TD32πl2s

∫
d4σHabFab (3.11)

and with

I2 = I2,F + I2,Φ + I2,ψ (3.12)

Here we record

I2,F = − 1

2πgs

∫
d4σ

1

4

√
−detM

[
(M−1)(ac)(M−1)(bd) − (M−1)[ac](M−1)[bd]

+
1

2
(M−1)[ab](M−1)[cd]

]
FabFcd (3.13)

I2,Φ = − 1

2πgs

∫
d4σ

1

2

√
−detM(M−1)(ab)∂aΦ

i∂bΦ
i (3.14)

I2,ψ =
1

πgs

∫
d4σ

1

2

√
−detM(M−1)abψ̄Γa∂bψ (3.15)

where (ab) means symmetrization (M−1)(ab) = 1
2((M−1)ab + (M−1)ba).

– 7 –



J
H
E
P
0
3
(
2
0
1
4
)
1
1
4

We notice from (3.11) that I0 is a constant depending on the given backgroundBab field.

This constant scales like l−4
s . Instead I1 scales like l−2

s and depends on the fluctuations of the

U(1) gauge field Fab. However, it follows from the Born-Infeld non-linear electromagnetic

EOM of (3.8) that I1 is a total derivative. Hence the open string dynamics of the D3-

brane in the decoupling limit ls → 0 is described by the action I2 of eqs. (3.12)–(3.15). For

Bab = 0 it is well-known that this action is N = 4 super-Yang-Mills theory (SYM) with

gauge group U(1) and gauge coupling g2
YM = 4πgs. Below we find an interpretation for the

action also for Bab 6= 0.

Interpretation of action for constant Bab field. We consider now the special case of

a constant Bab field. Using Mab as defined in (3.7) we can define the two matrices

(G−1)ab ≡ (M−1)(ab) , (E−1)a
b ≡ ηac(M−1)cb (3.16)

where (ab) means the symmetric part. These two matrices can be interpreted as an inverse

metric and inverse vierbein, respectively, since we have the identity

ηcd(E−1)c
a(E−1)d

b = (G−1)ab (3.17)

This identity follows from (M−1)(ab) = ηcd(M
−1)ca(M−1)db, or, equivalently,

MacMbd(M
−1)(cd) = ηab. One can easily derive the latter by noticing that it is the sym-

metric part of the equation MacMbd(M
−1)cd = Mab. From the above we can furthermore

find expressions for the vierbein and metric

Ea
b = Macη

cb , Gab = MacMbdη
cd (3.18)

where the metric is found from Gab = ηcdEa
cEb

d. We also note that
√
−G ≡

√
−detG = detE = −detM (3.19)

Using the above we see immediately

I2,Φ = − 1

2πgs
√
−detM

∫
d4σ

1

2

√
−G(G−1)ab∂aΦ

i∂bΦ
i (3.20)

I2,ψ =
1

2πgs
√
−detM

∫
d4σ
√
−G(E−1)a

bψ̄Γa∂bψ (3.21)

For the F 2 term we find

I2,F = − 1

2πgs
√
−detM

∫
d4σ

{
1

4

√
−G(G−1)ac(G−1)bdFabFcd +

1

8
~E · ~B εabcdFabFcd

}
(3.22)

where we introduced the notation ~E = (B01, B02, B03) and ~B = (B23,−B13, B12) so that
~E · ~B = 1

8ε
abcdBabBcd.

Consider instead the action for U(1) N = 4 SYM with a θ-angle term on curved space

with metric gµν and vierbein eµ
a

IN=4 = − 2

g2
YM

∫
d4σ
√
−g
{

1

4
gµρgνλFµνFρλ +

1

2
gµνDµΦiDνΦi − ψ̄Γaea

µDµψ

}
− θ

32π2

∫
d4σ εabcdFabFcd (3.23)
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where Dµ is the four-dimensional covariant derivative (including spin connection for the

fermions). If we choose a background with a constant metric, i.e with ∂µgνρ = 0, then this

action reduces to

IN=4 = − 2

g2
YM

∫
d4σ
√
−g
{

1

4
gµρgνλFµνFρλ +

1

2
gµν∂µΦi∂νΦi − ψ̄Γaea

µ∂µψ

}
− θ

32π2

∫
d4σ εabcdFabFcd (3.24)

Comparing now this action with the action I2 = I2,F + I2,Φ + I2,ψ given by (3.20)–(3.22)

we see that the action I2 is the action for N = 4 SYM on a background with metric gµν
and vierbein eµ

b given by

gµν ↔ Gab = MacMbdη
cd with µ↔ a, ν ↔ b

eµ
b ↔ Ea

b = Macη
cb with µ↔ a, b↔ b

(3.25)

We should furthermore make the following identification for the gauge coupling and θ angle

of N = 4 SYM

g2
YM = 4πgs

√
−detM , θ = 2π

~E · ~B
gs
√
−detM

(3.26)

In conclusion, we have shown that for an arbitrary constant Bab field the action (3.12)–

(3.15) is equivalent to the action of N = 4 SYM with a θ angle on a background with

constant metric given in terms of Bab by Gab = MacMbdη
cd and the gauge coupling and θ

angle by (3.26).

We remark here that since Bab is constant we are considering N = 4 SYM on flat

space. However, for a generic Bab field the metric is not conformally equivalent to ηab.

Hence in this sense the physics is different than N = 4 SYM on flat space with metric ηab.

However, note that N = 4 SYM on any background with a constant metric has PSU(2, 2|4)

symmetry.

Free energy at finite temperature for a constant Bab field. We would like to find

the one-loop correction to the thermal DBI action at weak coupling for a constant Bab
field. This can be found explicitly by computing the free energy of the decoupled theory

with action (3.12)–(3.15). However, one can also employ the equivalence of this action to

U(1) N = 4 SYM on flat space with vierbein (3.25). The free energy of U(1) N = 4 SYM

on flat space with metric ηab is given by

F (T ) = −π
2

6
V3T

4 (3.27)

at weak coupling g2
YM � 1. Consider a constant metric gµν as given by the map de-

fined in (3.25). Since the metric is constant we are still in flat space and we can view

the vierbein defined in (3.25) as the linear map between Minkowski space in coordinates

with metric ηab and coordinates with metric gµν . Transforming from ηab to gµν the tem-

perature T transforms to T/
√
−g00 where

√
−g00 is the norm of the vector ∂/∂t (with

t being the time coordinate of the gµν system). This corresponds to the norm of eat as

– 9 –



J
H
E
P
0
3
(
2
0
1
4
)
1
1
4

measured in the coordinates for ηab which in general includes both a rescaling and a boost

factor. The transformation of the free energy F (T ) can be read off from knowing that

F (T )/T is equal to the Euclidean action and is thus proportional to
√

det gE where gE is

the Euclidean metric. Since det gE = −det g where g is the Lorentzian signature metric

we see that F (T )/T transforms to
√
−gF ( T√

−g00
)
√
−g00

T and therefore F (T ) transforms to
√
−gF ( T√

−g00
). Hence (3.27) transforms to

F (T ) = −π
2

6

√
−gV3

(
T√
−g00

)4

(3.28)

where T is the temperature measured with respect to the time t for gµν and V3 is the

volume measured with respect to the spatial coordinates of gµν . To find the free energy

for the decoupled theory (3.12)–(3.15) one should now use the map (3.25) and insert the

metric as function of the Kalb-Ramond field Bab in the expression (3.28). We find

F (T, ~E, ~B) = −π
2

6
V3T

4 1− ~E2 + ~B2 − ( ~E · ~B)2

(1− ~E2)2
(3.29)

where we again used the notation ~E = (B01, B02, B03) and ~B = (B23,−B13, B12) thus

viewing Bab as consisting of an electric part ~E and a magnetic part ~B. Note that Ei = B0i

and Bi = 1
2ε
ijkBjk with i, j, k = 1, 2, 3 and ε123 = 1.

The free energy (3.29) is the free energy in the ensemble with constant Bab field, i.e.

with constant electric ~E and magnetic ~B fields. In section 4 we shall consider the T 4 term

for low temperature and strong coupling gsN � 1. For this purpose it will prove useful to

express the result (3.29) in an ensemble independent fashion. This is done by computing

the corresponding entropy

S = −
(
∂F

∂T

)
~E, ~B

(3.30)

thus giving

S =
2π2

3
V3T

3 1− ~E2 + ~B2 − ( ~E · ~B)2

(1− ~E2)2
(3.31)

As stated above, one can alternatively compute the free energy (3.29) by performing a

one-loop computation for the DBI action. This means one should expand the DBI action

around the classical configuration (3.5)–(3.8) to quadratic order. From the above one sees

easily that the quadratic action corresponds to the action of the decoupled theory (3.12)–

(3.15). In appendix A we perform this one-loop calculation in the special case of only

having an electric field, so with ~E = (E, 0, 0) and ~B = 0. The result is (A.11) which we

see is in perfect correspondence with the general formula (3.29).

Thermal DBI action at finite coupling. We note that one can argue for a general-

ization of the above argument for (3.28) to include higher order terms in the coupling gsN

and possibly even to finite coupling. Indeed, the generalization of (3.27) is [5]

F (T ) = −f(4πgsN)
π2

6
V3T

4 (3.32)
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where f(4πgsN) is a function only of the coupling gsN . That it has this form follows

simply from the fact that N = 4 SYM is conformal. It is known from computations in

thermal N = 4 SYM as well as using the holographically dual black hole in AdS5×S5 that

this function takes values [5, 21]

f(g) =

 1− 3
2π2 g + · · · for g � 1

3
4 + 45

32ζ(3)(2g)−
3
2 + · · · for g � 1

(3.33)

Above we argued that computing the one-loop correction to the thermal DBI action for

a constant Bab field is equivalent to computing the free energy of N = 4 SYM at finite

temperature with the background metric and vierbein given by (3.25). When raising the

coupling gsN in the decoupling limit ls → 0 of the DBI action this is still valid since the

background given by Bab remains the same. Thus, this implies that we can use N = 4

SYM to compute the T 4 correction to any order in the coupling gsN (with the Yang-Mills

coupling given by (3.26)). Therefore, we argue that the one-loop correction to the thermal

DBI action is factorized as F (T, ~E, ~B) = f(4πgsN)F (T, ~E, ~B)|gsN=0 and hence we have

F (T, ~E, ~B) = −f(4πgsN)
π2

6
V3T

4 1− ~E2 + ~B2 − ( ~E · ~B)2

(1− ~E2)2
(3.34)

This implies in particular that we have a prediction for the strong coupling limit gsN � 1

namely that we have a factor 3/4 in comparison to the weak coupling result (3.34). We

shall see below that this indeed is confirmed by explicit computation at strong coupling.

Thermal DBI action including one-loop contribution. We find the following ef-

fective action for a single D3-brane with a general embedding Xµ(σ) in a static thermal

background with local temperature T , world-volume metric γab = ∂aX
µ∂bX

νgµν and pull-

back of the Kalb-Ramond field Bab = ∂aX
µ∂bX

νBµν

Ieff = −TD3

∫
d4σ
√
−det(γab +Bab)

(
1−

√
det(δab + γacBcb)

(γ00 + γijB0iB0j)2

π2T 4

6TD3
+O(T 8)

)
(3.35)

This effective action - the thermal DBI action for a D3-brane - is valid for a general type

IIB supergravity background with static metric gµν and Kalb-Ramond field Bµν , but with

constant dilaton field and zero Ramond-Ramond fields. Note also that it requires working

in a static gauge such that γ0i = 0.

Note that we have not included a world-volume gauge field since this is an effective

action for the D3-brane for a given thermal type IIB supergravity background and hence

we have integrated out the degrees of freedom living on the brane such as the world-

volume gauge field, as well as the scalars and the fermions corresponding to other modes

of fluctuations of the D3-brane. Presumably one can trivially generalize this action to

a varying dilaton background by making the substitution TD3 → TD3e
−φ. Including the

coupling to Ramond-Ramond fields would consist in adding the standard topological Wess-

Zumino term to the action.
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In appendix A we argue that the generalization of the above effective action to the

effective action of a single Dp-brane in a static thermal background — the thermal DBI

action — is

Ieff = −TDp

∫
dp+1σ

√
−det(γab +Bab) ×(

1−
√

det(δab + γacBcb)

(−γ00 − γijB0iB0j)
p+1

2

(p− 1)! ζH
(
p+ 1, 1

2

)
4p−2πp/2Γ

(p
2

) T p+1

TDp
+O(T 2p+2)

)
,

(3.36)

where ζH is the Hurwitz zeta function defined as ζH(s, a) =
∞∑
n=0

(n+ a)−s.

4 Thermal DBI action at strong coupling

In this section we compute the thermal DBI action for D3-branes at strong coupling gsN �
1. This is done for finite values of the temperature T in the cases of parallel and orthogonal

electric and magnetic fields, i.e. ~E ‖ ~B and ~E ⊥ ~B, respectively. The framework for

computing the thermal DBI action, which is the effective action for N coincident D3-

branes in a thermal background of type IIB supergravity, is the blackfold approach [6, 7].

Using the blackfold approach to infer the effective D-brane action was first suggested in [8].

We begin in section 4.1 with finding the relevant solutions of type IIB supergravity

that can be used as input in finding the strong coupling thermal DBI action. This involves

two brane bound states, a D3 ‖ (F1 ‖ D1) and a D3 ‖ (F1 ⊥ D1) black brane bound state.

The latter solution is new. It is similar in nature to the black supertube solutions [22–25].

In section 4.2 we consider how to find the thermal DBI action with an electric field at

strong coupling. We go through this case first since it is simpler and hence can be used to

illustrate various important points in the procedure for the two general cases. In particular

we compare to the corresponding thermal DBI action with electric field at weak coupling

and we also make some general considerations on how to find the free energy corresponding

to the thermal DBI action in the correct thermodynamical ensemble.

Finally in section 4.3 we employ the black brane bound states found in section 4.1

to get the thermal DBI action for D3-branes with two general configurations of constant

electric and magnetic fields, namely the electric and magnetic fields being either parallel

or orthogonal. We use this to compare to the weak coupling result for the thermal DBI

action.

4.1 Supergravity solutions for black D3-branes with ~E ‖ ~B and ~E ⊥ ~B

In this section we find the solutions of type IIB supergravity describing black D3 ‖ (F1 ‖
D1) and D3 ‖ (F1 ⊥ D1) brane bound states. We use the following bosonic action for type

IIB supergravity in the string frame

IIIB =
1

2κ2

∫
d10x

√
−g
[
e−2φ

(
R+ 4(∇φ)2 − 1

12
H2

(3)

)
− 1

2
F 2

(1) −
1

12
F 2

(3) −
1

4 · 5!
F 2

(5)

]
+

1

4κ2

∫
A(4) ∧H(3) ∧ dA(2) (4.1)
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where 2κ2 = (2π)7g2
s l

8
s , gµν is the ten-dimensional string frame metric, φ is the dilaton,

Bµν the Kalb-Ramond field, χ, A(2) and A(4) are the Ramond-Ramond 0-form, 2-form

and 4-form potentials, respectively, and we have the Kalb-Ramond and Ramond-Ramond

field-strengths

H(3) = dB(2) , F(1) = dχ , F(3) = dA(2) − χH(3) , F(5) = dA(4) −A(2) ∧H(3) (4.2)

In addition to the EOMs derived from this action one should impose self-duality of the

Ramond-Ramond five-form field strength F ∗(5) = F(5).

Black F1-D3 and D1-D3 brane bound states. We begin with reviewing the black

F1-D3 and D1-D3 brane bound states. Consider first the black F1-D3 brane bound state

with string frame metric [26]

ds2 =
1√
DH

[
−fdt2 + dx2

1 +D(dx2
2 + dx2

3)
]

+

√
H√
D

[
f−1dr2 + r2dΩ2

5

]
(4.3)

with dilaton, Kalb-Ramond field and Ramond-Ramond fields given by

e2φ = D−1 , B(2) = sin θ(H−1 − 1) cothαdt ∧ dx1 (4.4)

A(2) = tan θ(H−1D − 1)dx2 ∧ dx3 = sin θ cos θD(H−1 − 1)dx2 ∧ dx3 (4.5)

A(4) = cos θ(H−1 − 1) cothαdt ∧ dx1 ∧ dx2 ∧ dx3 (4.6)

where we defined

H = 1 +
r4

0 sinh2 α

r4
, f = 1− r4

0

r4
, D−1 = cos2 θ + sin2 θH−1 (4.7)

Turning now to the black D1-D3 brane bound state we have the string frame metric

ds2 =
1√
H

[
−fdt2 + dx2

1 +D(dx2
2 + dx2

3)
]

+
√
H
[
f−1dr2 + r2dΩ2

5

]
(4.8)

with dilaton, Kalb-Ramond field and Ramond-Ramond fields given by

e2φ = D , B(2) = tan θ(H−1D − 1)dx2 ∧ dx3 (4.9)

A(2) = − sin θ(H−1 − 1) cothαdt ∧ dx1 (4.10)

A(4) = cos θD(H−1 − 1) cothαdt ∧ dx1 ∧ dx2 ∧ dx3 (4.11)

along with identical definitions (4.7).

Black D3 ‖ (F1 ‖ D1) brane bound state. The black D3 ‖ (F1 ‖ D1) solution can

be found by T-dualizing the F1-D3 brane bound state solution (4.3)–(4.7). The general

T-duality map used for this is recorded in appendix B. We first perform a T-duality along

x2. Then we rotate the (x1, x2) plane with angle ϕ. And then we T-dualize again along

the rotated x2 coordinate. This gives the black D3 ‖ (F1 ‖ D1) brane bound state solution

ds2 =
1√
DH

[
−fdt2 + dx2

1 +DE(dx2
2 + dx2

3)
]

+

√
H√
D

[
f−1dr2 + r2dΩ2

5

]
(4.12)
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with dilaton, Kalb-Ramond field and Ramond-Ramond fields given by

e2φ = D−1E (4.13)

B(2) = sin θ(H−1 − 1) cothαdt ∧ dx1 + cosϕ sinϕE(DH−1 − 1)dx2 ∧ dx3 (4.14)

χ = − tan θ sinϕ(DH−1 − 1) (4.15)

A(2) = − cos θ(H−1 − 1)
[

sinϕ cothαdt ∧ dx1 + sin θ cosϕDE dx2 ∧ dx3

]
(4.16)

A(4) = cos θ cosϕE(H−1 − 1) cothαdt ∧ dx1 ∧ dx2 ∧ dx3 (4.17)

where f , H and D are defined in (4.7) and E is defined as

E−1 = cos2 ϕ+ sin2 ϕDH−1 . (4.18)

Black D3 ‖ (F1 ⊥ D1) brane bound state. To find the black D3 ‖ (F1 ⊥ D1) brane

bound state we begin with a black D3-brane solution

ds2 =
1√
H

[
−fdt2 + dx2

1 + dx2
2 + dx2

3

]
+
√
H
[
f−1dr2 + r2dΩ2

5

]
(4.19)

with dilaton φ = 0 and with Ramond-Ramond 4-form potential given by

A(4) = (H−1 − 1) cothαdt ∧ dx1 ∧ dx2 ∧ dx3 (4.20)

where we defined

H = 1 +
r4

0 sinh2 α

r4
, f = 1− r4

0

r4
(4.21)

In the following we again use the T-duality map of appendix B. We begin by T-dualizing

the above black D3-brane along x3 to reveal a smeared black D2-brane solution. We now

rotate along the (x2, x3) plane with angle ϕ. Following this we boost along the rotated x3

direction with rapidity η. Finally, we T-dualize along the rotated and boosted x3 direction.

This gives the black D3 ‖ (F1 ⊥ D1) brane bound state solution

ds2 =
D̃√
H

[
−f (cos2 ϕ+ sin2 ϕH−1)dt2 − 2f (H−1 − 1) sinh η sinϕ cosϕdt dx2 + D̃−1dx2

1

+
(
cosh2 η − sinh2 η(sin2 ϕ+ cos2 ϕH−1)f

)
dx2

2 + dx2
3

]
+
√
H
[
f−1dr2 + r2dΩ2

5

]
(4.22)

with dilaton, Kalb-Ramond field and Ramond-Ramond fields given by

e2φ = D̃ (4.23)

B(2) = D̃(H−1 − 1) cosh η
[

sinh η
(
cos2 ϕ+ sinh−2 α

)
dt ∧ dx3 + cosϕ sinϕdx2 ∧ dx3

]
(4.24)

A(2) = (H−1 − 1) cothα
[
− sinϕdt ∧ dx1 + cosϕ sinh η dx1 ∧ dx2

]
(4.25)

A(4) = D̃(H−1 − 1) cothα cosϕ cosh η dt ∧ dx1 ∧ dx2 ∧ dx3 (4.26)
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where H, f and D̃ are defined as

H = 1+
r4

0 sinh2 α

r4
, f = 1− r

4
0

r4
, D̃ =

H

cosh2 η sin2 ϕ+H cosh2 η cos2 ϕ− f sinh2 η
(4.27)

The above solution is new also in the extremal limit. However, it is connected to the

type of brane bound states used for supertubes. Indeed, if we T-dualize along the direction

of the electric field we get a (smeared) F1-D0-D2 brane bound state which is related to

the original supertube construction of Townsend and Mateos [22]. One can infer from this

that it is a 1/4 BPS state at zero temperature. Indeed, if one starts with an extremal

D3 ‖ (F1 ⊥ D1) brane bound state smeared on a fourth direction x4 and one T-dualizes

along x4 and uplifts to M-theory one gets a M5 ‖ (M2 ⊥ M2) brane bound state which is

a special case of the configurations considered in [27].

4.2 Thermal DBI action with electric field at strong coupling

As a warm-up to the two most general cases we consider first how to find the thermal DBI

for an electric field on the D3-brane. This parallels the methods of [8] although the thermal

DBI action was not written down in that paper. To do this we consider the black F1-D3

brane bound state solution (4.3)–(4.7). This solution has charge quantization condition

N = 2π2TD3 cos θr4
0 coshα sinhα (4.28)

where N is the number of coincident D3-branes in the bound state. The expectation value

of the electric field - i.e. the electric part of the Kalb-Ramond field - is read off from (4.4)

to be4

E = B01 = sin θ tanhα (4.29)

The F-string charge qF1 and the corresponding number of F-strings k in the bound state are

qF1 =
k

2πl2s
= NTD3V23 sin θr4

0 coshα sinhα (4.30)

where V23 is the area along the x2 and x3 directions. The conjugate chemical potential to

qF1 is

µF1 = V1E (4.31)

where V1 is the length in the x1 direction. The temperature T and entropy S are

T =
1

πr0 coshα
, S = 2π3V3T

2
D3r

5
0 coshα (4.32)

where V3 = V1V2 is the volume along the x1, x2 and x3 directions. One finds the Helmholtz

free energy F = M − TS

F =
π2

2
T 2

D3V3r
4
0(1 + 4 sinh2 α) (4.33)

4Strictly speaking this is the value of the Kalb-Ramond field at asymptotic infinity since one should

impose that it is zero on the horizon. However, in the solution (4.4) we use a gauge where Bµν is zero at

infinity and hence the expectation value should be read off as minus the value of Bµν at the horizon.
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with variation dF = −SdT + ωdN + µF1dqF1. However, this is not the correct free energy

for the strongly coupled thermal DBI action corresponding to the one we found at weak

coupling in section 3. The thermal DBI action is in an ensemble of fixed temperature

T and fixed Kalb-Ramond field Bab (pulled back to the world-volume), i.e. fixed electric

and magnetic fields on the world-volume ~E and ~B. In the present case of consideration

it means we should work in an ensemble of fixed temperature T and fixed electric field E

(as well as fixed D3-brane charge). Since the chemical potential µF1 is proportional to the

electric field we can switch to the proper ensemble by considering the Gibbs free energy

G = F − µF1qF1 = M − TS − µF1qF1

G =
π2

2
T 2

D3V3r
4
0(1 + 4 cos2 θ sinh2 α) (4.34)

with variation dG = −SdT +ωdN − qF1dµF1. Using (4.28) and (4.29) we can write this as

G = NTD3V3

√
1− E2

x− 3
4√

x2 − x
, x ≡ (1− E2) cosh2 α (4.35)

Combining (4.28) with the temperature (4.32) we find

π2NT 4

2TD3
= cos θ

sinhα

cosh3 α
(4.36)

This gives the third order equation

4 cos2 δ

27
x3 − x+ 1 = 0 (4.37)

where we defined

cos δ ≡ 3
√

3π2NT 4

4TD3(1− E2)3/2
(4.38)

Note that (4.37) only has solutions with x real and non-negative if cos δ ≤ 1. This gives

an upper bound on the temperature

T 4

TD3
≤ 4
√

3

9π2N
(1− E2)3/2 (4.39)

Or, alternatively, an upper bound on the electric field

E ≤

√
1−

(9π2NT 4

4
√

3TD3

) 2
3

(4.40)

The third order equation (4.37) gives in general two different physical branches, one con-

nected to the extremal F1-D3 brane bound state (reached for δ = π/2), corresponding to

x =
3

2

cos δ3 +
√

3 sin δ
3

cos δ
(4.41)

and another branch connected to a 3-brane made of smeared extremal F-strings (reached

for δ = π/2),

x =
3

2

cos δ3 −
√

3 sin δ
3

cos δ
(4.42)
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Both are valid branches for the thermal DBI action. However, since we would like to

compare to the thermal DBI action at weak coupling and low temperature as found in

section 3 the relevant branch to consider is (4.41) since this is connected to the extremal

F1-D3 brane bound state which gives the strong coupling analogue of the zero temperature

DBI action. Inserting (4.41) into the Gibbs free energy (4.35) now gives the thermal

DBI action for a given temperature T , electric field E and number of D3-branes N . For

T 4 � TD3(1− E2)3/2 we see that one has an expansion of G as

G = NTD3V3

√
1− E2

(
1−

∞∑
n=1

an
T 4n

TnD3(1− E2)3n/2

)
(4.43)

One can easily compute the first couple of coefficients to find

G = NTD3V3

√
1− E2

(
1− π2NT 4

8TD3(1− E2)3/2
− π4N2T 8

32T 2
D3(1− E2)3

+O(T 12)

)
(4.44)

This is the thermal DBI action at strong coupling for the D3-brane with an electric field

at low temperature.

Comparison to weakly coupled thermal DBI action. If we consider the leading

term in (4.44) this corresponds to I0 in (3.11) for an electric field. This matches perfectly,

as a consequence of the F1-D3 brane bound state being 1/2 BPS at zero temperature.5

Looking instead at the first correction at low temperature we see that the T 4 term in (4.44)

precisely is 3/4 times the result (3.29) for ~E = (E, 0, 0) and ~B = 0 at weak coupling. Note

that the N2 factor seen at strong coupling in (4.44) trivially occurs also at weak coupling

when going to N D3-branes since the weak coupling result is computed for the free theory

and hence N2 just counts the dimension of the adjoint representation of SU(N).6 Thus, we

can conclude that the 3/4 factor found without electric field turned on generalizes to the

case with electric field.

At first this could seem highly surprising since the 3/4 factor is due to the conformality

of the theory on the D3-brane for small excitations since they are governed by the N = 4

SYM theory and also since it is a consequence of the AdS/CFT correspondence. However,

we have already shown in section 3 that we can map small fluctuations of the F1-D3

brane at weak coupling to N = 4 SYM in a different coordinate system and we shall see

in section 5 that at strong coupling we can analogously get a map to the black hole in

AdS5 × S5 from the decoupling limit of the F1-D3 brane bound state. Thus, in this sense

the 3/4 factor for a general electric field is not surprising but a consequence of the fact that

the behavior of small excitations of D3-branes with constant electric and magnetic fields

can be mapped to the behavior of small fluctuations of the D3-brane without electric and

magnetic fields. Indeed, we shall see in section 4.3 that the 3/4 factor persists for more

5There is a factor of N in the strong coupling result not present in (3.11) at weak coupling. However,

this factor of N is trivially found by combining N times the result at weak coupling since two extremal

F1-D3 bound states do not have any force between them.
6The dimension of the adjoint representation of SU(N) is N2 − 1 but since we assume that N is large

the leading order answer is N2.
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general electric and magnetic field configurations as well. Note that it is important in this

that the map from excitations of a D3-brane with electric and magnetic field to the ones

without electric and magnetic fields is independent of the coupling gsN . This is indeed

what we argued in section 3 where it is seen that the dependence of the coupling and the

dependence of the electric and magnetic fields factorize in (3.34). In support of this we

find that the same coordinate transformation defined by (3.25) is found for gsN � 1 in

terms of the black hole in AdS5 × S5 in section 5.

Comparison to weakly coupled thermal DBI action without choosing ensemble.

In the above we succesfully found the thermal DBI action with electric field at strong

coupling gsN � 1. In doing this, it seemed important to find the free energy in the right

ensemble, namely the one with fixed electric field. This is possible since the electric field is

proportional to the chemical potential conjugate to the F-string charge in the F1-D3 brane

bound state. However, this poses a problem for more general configuration of electric and

magnetic field. If we consider the case of a D3-brane with a magnetic field it is described at

strong coupling as the D1-D3 brane bound state (4.8), (4.9) and (4.7). Here the Helmholtz

free energy F = M − TS is in the ensemble of fixed T , N and D1-brane charge qD1.

Alternatively the Gibbs free energy G = M − TS − µD1qD1 is in the ensemble of fixed T ,

N and D1-brane chemical potential µD1. However, none of these ensembles correspond to

the ensemble of fixed magnetic field. This can be seen by comparing the magnetic field B

to µD1 and qD1,

B =
tan θ sinh2 α

cosh2 α+ tan2 θ
, µD1 = V1 sin θ tanhα , qD1 = NTD3V23 sin θr4

0 coshα sinhα (4.45)

Hence, rather than struggling to find the appropriate ensemble it would be better to avoid

having to use a particular ensemble to find the thermal DBI action. This is possible by

employing the entropy instead of the free energy. The entropy is the same regardless

of ensembles, the choice of ensembles only comes in as a change of variables. Hence the

strategy below in the cases with more complicated electric and magnetic field configurations

will be to find the entropy S and expressing it as a function of T , N , ~E and ~B. With this

in hand, one can integrate to find the free energy in the ensemble of fixed T , N , ~E and
~B as

F (T,N, ~E, ~B) = NTD3V3

√
1− ~E2 + ~B2 − ( ~E · ~B)2 −

∫ T

0
dT ′S(T ′, N, ~E, ~B) (4.46)

where we assumed we are in the branch connected to the extremal bound state of the D3-

brane with electric and magnetic fields, and we infered the leading term of the free energy

from the mass of the extremal bound state.

Employing the entropy instead of the free energy to compute the thermal DBI action

at strong coupling and low temperature has the additional advantage that the leading order

term in the entropy corresponds to the first order term in the free energy, and the 1st order

term in the entropy to the 2nd order term in the free energy, and so on. Hence to find

the analogue of the T 4 term in (4.44) for the case of the electric field we only need the
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leading order term of the entropy. Solving (4.37) to leading order simply means ignoring

the constant term and hence

x =
3
√

3

2 cos δ
=

2TD3(1− E2)3/2

π2NT 4
(4.47)

to leading order (for the branch connected to the extremal F1-D3 bound state). This

should be inserted in the general expression of the entropy (4.32) in terms of T , E and x

S =
2T 2

D3V3(1− E2)2

π2T 5x2
(4.48)

thus giving the leading order entropy

S =
π2

2
N2V3T

3 1

1− E2
+O(T 7) (4.49)

which we see is 3/4 times the weak coupling result (3.31) (in addition to the N2 factor).

Inserting this in the general formula (4.46) then reveals the leading and first order terms

of (4.44).

4.3 Thermal DBI at strong coupling for ~E ‖ ~B and for ~E ⊥ ~B

We consider here the thermal DBI action at strong coupling for the two most general

configurations of electric and magnetic fields for which we have available supergravity

solutions, namely for ~E ‖ ~B and for ~E ⊥ ~B.

Thermal DBI for ~E ‖ ~B. For ~E ‖ ~B we use the type IIB supergravity solution given

by eqs. (4.12)–(4.18) and eq. (4.7). We have the charge quantization of the number N of

D3-branes

N = 2π2TD3r
4
0 cosϕ cos θ coshα sinhα (4.50)

We find the following temperature and entropy

T =
1

πr0 coshα
, S = 2π3V3T

2
D3r

5
0 coshα =

2T 2
D3V3

π2T 5 cosh4 α
(4.51)

Moreover, we can read off the parallel electric and magnetic fields from the B01 and B23

components of the Kalb-Ramond fields (4.13) as

E = sin θ tanhα , B =
tanϕ cos2 θ sinh2 α

cos2 θ cosh2 α+ sin2 θ + tan2 ϕ
(4.52)

Combining (4.50) with the temperature T in (4.51) we find

4 cos2 δ

27
cosh6 α− cosh2 α+ 1 = 0 , cos δ ≡ 3

√
3π2NT 4

4TD3 cosϕ cos θ
(4.53)

Solving this as a third order equation for cosh2 α we find the two possible physical branches

cosh2 α =


3

2

cos δ3 +
√

3 sin δ
3

cos δ
(Connected to extremal bound state)

3

2

cos δ3 −
√

3 sin δ
3

cos δ
(Connected to neutral 3-brane)

(4.54)
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The first branch is connected to the extremal D3 ‖ (F1 ‖ D1) brane bound state and the

second to the neutral 3-brane. Combining this solution for cosh2 α with (4.52) one can find

the entropy S as a function of T , N , E and B for the two branches. Using then (4.46) one

finds the thermal DBI action at strong coupling. We are particularly interested in the first

branch since we would like to compare to the thermal DBI at weak coupling (3.29). We

can solve this explicitly for small T giving

S =
π2

2
V3N

2T 3 1 +B2

1− E2

(
1 +

π2N
√

1 +B2 (1 + 2B2)

2TD3(1− E2)3/2
T 4

)
+O(T 11) (4.55)

Here we only listed the two first contributions at low temperature but one can find any

number of higher order terms in powers of the temperature from the implicit solution

above. We can compare the first term to the entropy (3.31) at weak coupling for ~E ‖ ~B

S =
2π2

3
V3T

3 1 +B2

1− E2
(4.56)

As expected from the discussion in section 4.2 the strongly coupled thermal DBI action

has the same dependence on the electric and magnetic fields and the only difference is a

factor of 3/4 as well as the N2 factor from having multiple D3-branes.

Thermal DBI for ~E ⊥ ~B. For ~E ⊥ ~B we use the type IIB supergravity solution given

by eqs. (4.22)–(4.27). We have the charge quantization of the number N of D3-branes

N = 2π2TD3r
4
0 cosϕ cosh η coshα sinhα (4.57)

We find the following temperature and entropy

T =
1

πr0 coshα cosh η
, S = 2π3V3T

2
D3r

5
0 coshα cosh η =

2T 2
D3V3

π2T 5 cosh4 α cosh4 η
(4.58)

We can read off the orthogonal electric and magnetic fields from the B03 and B23 compo-

nents of the Kalb-Ramond fields (4.23) as

E = tanh η , B =
cosϕ sinϕ sinh2 α

cosh η(sin2 ϕ+ cos2 ϕ cosh2 α)
(4.59)

Combining (4.57) with the temperature T in (4.58) we find

4 cos2 δ

27
cosh6 α− cosh2 α+ 1 = 0 , cos δ ≡ 3

√
3π2NT 4 cosh3 η

4TD3 cosϕ
(4.60)

Solving this as a third order equation for cosh2 α we find the two possible physical branches

cosh2 α =


3

2

cos δ3 +
√

3 sin δ
3

cos δ
(Connected to extremal bound state)

3

2

cos δ3 −
√

3 sin δ
3

cos δ
(Connected to neutral 3-brane)

(4.61)
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The first branch is connected to the extremal D3 ‖ (F1 ⊥ D1) brane bound state and the

second to the neutral 3-brane. Combining this solution for cosh2 α with (4.59) one can find

the entropy S as a function of T , N , E and B for the two branches. Using then (4.46) one

finds the thermal DBI action at strong coupling. We are particularly interested in the first

branch since we would like to compare to the thermal DBI at weak coupling (3.29). We

can solve this explicitly for small T giving

S =
π2

2
V3N

2T 3 1− E2 +B2

(1− E2)2

(
1 +

π2N
√

1− E2 +B2 (1− E2 + 2B2)

2TD3(1− E2)3
T 4

)
+O(T 11)

(4.62)

Here we only listed the two first contributions at low temperature but one can find any

number of higher order terms in powers of the temperature from the implicit solution

above. We can compare the first term to the entropy (3.31) at weak coupling for ~E ⊥ ~B

S =
2π2

3
V3T

3 1− E2 +B2

(1− E2)2
(4.63)

As expected from the discussion in section 4.2 the strongly coupled thermal DBI action

has the same dependence on the electric and magnetic fields and the only difference is a

factor of 3/4 as well as the N2 factor from having multiple D3-branes.

4.4 Thermal DBI at strong coupling and low temperature

In section 4.3 we found explicit expressions for the thermal DBI action at low temperature

and strong coupling gsN � 1 in the cases ~E ‖ ~B and ~E ⊥ ~B. These are given by (4.55)

and (4.62) from which one easily finds the thermal DBI action from (4.46). While no

supergravity solution is known for general configurations of constant ~E and ~B fields one

can use the two cases to infer the general thermal DBI action. This relies on the fact that

the thermal DBI action transforms as a scalar under rotation of the three spatial directions.

Hence it can only be formulated in terms of rotational invariants. Thus, in addition to the

parameters V3, N and T the only other rotational invariants in our setup are ~E2, ~B2 and
~E · ~B (note that ( ~E × ~B)2 is not an independent invariant). Hence we can see directly

from the expressions for the entropy (4.55) and (4.62) that the unique generalization to

arbitrary constant ~E and ~B is

S =
π2

2
V3N

2T 3 1− ~E2 + ~B2 − ( ~E · ~B)2

(1− ~E2)2

+
π4

4TD3
V3N

3T 7 (1− ~E2 + ~B2 − ( ~E · ~B)2)
3
2

(1− ~E2)5
(1− ~E2 + 2 ~B2 − 2( ~E · ~B)2)

+O(T 11) (4.64)
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Inserting this into (4.46) we get the thermal DBI action

F = NTD3V3

√
1− ~E2 + ~B2 − ( ~E · ~B)2

1−

√
1− ~E2 + ~B2 − ( ~E · ~B)2

(1− ~E2)2

π2NT 4

8TD3

−(1− ~E2 + ~B2 − ( ~E · ~B)2)

(1− ~E2)5
(1− ~E2 + 2 ~B2 − 2( ~E · ~B)2)

π4N2T 8

32T 2
D3

+O(T 12)

)
(4.65)

in our setup of section 2. We see that this correctly reduces to the free energy (4.44) for

zero magnetic field ~B = 0.

One can easily generalize the thermal DBI action corresponding to the free energy (4.65)

to work for a general embedding Xµ(σ) in a static thermal background with local temper-

ature T , world-volume metric γab = ∂aX
µ∂bX

νgµν and pullback of the Kalb-Ramond field

Bab = ∂aX
µ∂bX

νBµν

Ieff = −NTD3

∫
d4σ
√
−det(γab +Bab)

(
1−

√
det(δab + γacBcb)

(γ00 + γijB0iB0j)2

π2NT 4

8TD3
+O(T 8)

)
(4.66)

This effective action - the thermal DBI action for N coincident D3-branes at low tempera-

tures and strong coupling gsN � 1 - is valid for a general type IIB supergravity background

with static metric gµν and Kalb-Ramond field Bµν , but with constant dilaton field and zero

Ramond-Ramond fields. We observe again the 3/4 factor in comparing it to its weak cou-

pling gsN � 1 counterpart (3.35) (for N = 1). Note that the above action requires working

in a static gauge such that γ0i = 0. Presumably one can trivially generalize this action

to a varying dilaton background by making the substitution TD3 → TD3e
−φ. Including

the coupling to Ramond-Ramond fields would consist in adding the standard topological

Wess-Zumino term to the action. Note finally that one can readily generate any number

of higher order corrections in powers of the temperature from the above, starting with the

T 8 term already computed in (4.64).

The interpretation of the action (4.66) as the action of N coincident black D3-branes

in a background Kalb-Ramond field at strong coupling gsN � 1 (and with N � 1) is due

to the blackfold approach (see refs. [6, 7] for the blackfold approach and more specifically

refs. [8, 9] for the application to D-branes). This is valid as long as the length scales of the

variations of the embedding, the metric and the Kalb-Ramond field are large compared to

the charge radius of the brane (N/TD3)1/4.

5 Decoupling limit and the AdS/CFT correspondence

In this section we complete the description of our understanding of the small excitations of

the DBI action at weak and strong coupling in the form of the T 4 term at low temperature

in the thermal DBI action. We do this by taking the same decoupling limit at strong

coupling gsN � 1 that we already performed on the DBI action at weak coupling gsN � 1

in section 3.
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Decoupling limit of D3 ‖ (F1 ‖ D1) brane bound state. Consider the black D3 ‖
(F1 ‖ D1) brane bound state solution of type IIB supergravity given by eqs. (4.12)–(4.18)

and eq. (4.7) with properties (4.50)–(4.52). The decoupling limit of the DBI action at weak

coupling in section 3 translates for this supergravity solution to the limit

ls → 0 , gs, N, T, ~E, ~B fixed , u ≡ r

l2s
fixed , u0 ≡

r0

l2s
fixed (5.1)

Note that demanding r and r0 to be of order l2s is analogous to the statement at weak

coupling that transverse fluctuations of X(σ) are of order l2s . We consider here the case of

constant E and B fields. Taking now the decoupling limit (5.1) we get the supergravity

solution with metric

l−2
s ds2 =

u2

√
λ

[
(1− E2)(−fdt2 + dx2

1) + (1 +B2)(dx2
2 + dx2

3)
]

+
√
λ

[
du2

u2
+ dΩ2

5

]
(5.2)

with

f = 1− u4
0

u4
(5.3)

and with constant dilaton and axion fields

e2φ = (1− E2)(1 +B2) , χ =
EB√

(1− E2)(1 +B2)
(5.4)

where we defined

λ = 4πgse
φN = 4πgsN

√
(1− E2)(1 +B2) (5.5)

and with the Ramond-Ramond five-form field strength having N units of flux on the

(t, x1, x2, x3, u) part as well as on the S5 part. In addition, one gets constant values for the

Kalb-Ramond field B(2) and the Ramond-Ramond 2-form potential A(2). However, these

can trivially be gauged away.

We recognize the solution (5.2)–(5.5) as the black hole in AdS5 × S5 in the Poincaré

patch, just in slightly different coordinates. Indeed, if we make the coordinate rescaling

t̃ =
√

1− E2t , x̃1 =
√

1− E2x1 , x̃2 =
√

1 +B2x2 , x̃3 =
√

1 +B2x3 (5.6)

we see that we transform to the metric

l−2
s ds2 =

u2

√
λ

[
− fdt̃2 + dx̃2

1 + dx̃2
2 + dx̃2

3

]
+
√
λ

[
du2

u2
+ dΩ2

5

]
(5.7)

This also gives an alternative derivation of the leading term in the entropy (4.55) as this

can be obtained from the entropy in the (t̃, x̃1, x̃2, x̃3) coordinates being S = (π2/2)N2Ṽ3T̃
3

and then one can find (4.55) by applying the transformation (5.6).

Finally, if we take the zero-temperature limit of the solution (5.2)–(5.5) (corresponding

to u0 = 0) we can compare the metric on the world-volume coordinates (t, x1, x2, x3) to

the metric Gab at weak coupling as given by the map (3.25). For B01 = E and B23 = B

the map (3.25) gives

−G00 = G11 = 1− E2 , G22 = G33 = 1 +B2 (5.8)
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which we indeed recognize as the metric on the world-volume coordinates (t, x1, x2, x3).

Thus, the constant background metric for N = 4 SYM theory that we found at weak

coupling gsN � 1 also appears at strong coupling gsN � 1. Furthermore, we see that the

identification of the N = 4 SYM gauge coupling in (3.26) is in perfect correspondence with

the identification of λ in (5.5) as the ’t Hooft coupling λ = g2
YMN while the θ angle in (3.26)

is in correspondence to the axion field χ in (5.4) via the holographic dictionary [28]

χ = gs
θ

2π
(5.9)

We can therefore conclude that starting with a D3-brane with constant and parallel

electric and magnetic components of the Kalb-Ramond field turned on we get the AdS/CFT

correspondence between N = 4 SYM theory and AdS5 × S5 in the Poincaré patch with

different coordinates along the world-volume directions corresponding to having the world-

volume metric (5.8) as well as a rescaled ’t Hooft coupling (5.5). A similar conclusion was

reached in [29]. This is evidence that the dependence of the coupling constant and the

electromagnetic fields in the T 4 term in the free energy F (T, ~E, ~B) indeed factorizes at all

values of the coupling as we speculated in section 3.

Decoupling limit of D3 ‖ (F1 ⊥ D1) brane bound state. We now turn to the

black D3 ‖ (F1 ⊥ D1) brane bound state solution of type IIB supergravity given by

eqs. (4.22)–(4.27) with properties (4.57)–(4.59). The decoupling limit of the DBI action

at weak coupling in section 3 again corresponds to the limit (5.1). Taking the decoupling

limit we find

l−2
s ds2 =

u2

√
λ

[
−(1− E2)f

(
dt− EB

1− E2
dx2

)2

+ dx2
1 +

1− E2 +B2

1− E2
dx2

2

+ (1− E2 +B2)dx2
3

]
+
√
λ

[
du2

u2
+ dΩ2

5

]
(5.10)

with

f = 1− u4
0

u4
(5.11)

and with constant dilaton and axion fields

e2φ = 1− E2 +B2 , χ = 0 (5.12)

where we defined

λ = 4πgse
φN = 4πgsN

√
1− E2 +B2 (5.13)

and with the Ramond-Ramond five-form field strength having N units of flux on the

(t, x1, x2, x3, u) part as well as on the S5 part. In addition, one gets constant values for the

Kalb-Ramond field B(2) and the Ramond-Ramond 2-form potential A(2). However, these

can trivially be gauged away.
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We recognize the solution (5.10)–(5.13) as the black hole in AdS5×S5 in the Poincaré

patch, just in slightly different coordinates. Indeed, if we make the coordinate transforma-

tion

t̃ =
√

1− E2

(
t− EB

1− E2
x2

)
, x̃1 = x1 , x̃2 =

√
1− E2 +B2

√
1− E2

x2 , x̃3 =
√

1− E2 +B2x3

(5.14)

we see that we transform to the metric (5.7). This gives an alternative derivation of the lead-

ing term in the entropy (4.62) as this can be obtained from the entropy in the (t̃, x̃1, x̃2, x̃3)

coordinates and then one can find (4.62) by applying the transformation (5.14).

Finally, we take the zero-temperature limit of the solution (5.10)–(5.13) (corresponding

to u0 = 0) giving the metric

l−2
s ds2 =

u2

√
λ

[
− (1− E2)dt2 + 2EB dt dx2 + dx2

1 + (1 +B2)dx2
2 + (1− E2 +B2)dx2

3

]
+
√
λ

[
du2

u2
+ dΩ2

5

]
(5.15)

We now compare the metric on the world-volume coordinates (t, x1, x2, x3) to the metric

Gab at weak coupling as given by the map (3.25). For B03 = E and B23 = B the map (3.25)

gives

G00 = −1 + E2 , G02 = EB , G11 = 1 , G22 = 1 +B2 , G33 = 1− E2 +B2 (5.16)

which we indeed recognize as the metric on the world-volume coordinates (t, x1, x2, x3)

of (5.15). Thus, the constant background metric for N = 4 SYM theory that we found at

weak coupling gsN � 1 also appears at strong coupling gsN � 1. Furthermore, we see

that the identification of the N = 4 SYM coupling in (3.26) is in perfect correspondence

with the identification of λ in (5.13) as the ’t Hooft coupling λ = g2
YMN . Note also that

χ = 0 in (5.12) is in correspondence with having θ = 0 in N = 4 SYM theory from (3.26).

We conclude therefore that starting with a D3-brane with constant and orthogonal

electric and magnetic components of the Kalb-Ramond field turned on we get the AdS/CFT

correspondence between N = 4 SYM theory and AdS5 × S5 in the Poincaré patch with

different coordinates along the world-volume directions corresponding to having the world-

volume metric (5.16) as well as a rescaled ’t Hooft coupling (5.13). This gives further

evidence that the dependence on the coupling constant and the electromagnetic fields in

the T 4 term in the free energy F (T, ~E, ~B) indeed factorizes at all values of the coupling as

we speculated in section 3.
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A Explicit one-loop computation of free energy in electric case

The one-loop correction to the thermal DBI action at weak coupling for a constant Bab
field can be derived explicitly by computing the free energy of the decoupled theory with

action (3.12)–(3.15). To do this, we first have to compute the partition function Z which

is defined as

Z =

∫
DAaDΦiDψ̄Dψ δ(h) det

(
δh

δχ

)
e−I

E
2,F−I

E
2,Φ−I

E
2,ψ , (A.1)

where we Wick rotated to Euclidean time. The time direction is periodic with period equal

to the inverse temperature β = 1/T and we impose periodic boundary condition for the

scalars and the gauge field and anti-periodic boundary conditions for the fermions. h is a

functional of the gauge field and its derivatives and it is taken to be zero, h [A, ∂A] = 0, in

order to fix the gauge. χ is the gauge transformation parameter. We choose h = A3 = 0

so that in the following we have δh
δχ = ∂3.

From above we see that the partition function factorizes in the product of the three

contributions

Z =

[∫
DAa δ(h) det

(
δh

δχ

)
e−I

E
2,F

] [∫
DΦi e−I

E
2,Φ

] [∫
Dψ̄Dψ e−I

E
2,ψ

]
= ZFZΦZψ .

(A.2)

For the sake of simplicity, we show explicitly the computation of the partition function

when only the B01 component of the Kalb-Ramond field is turned on. This corresponds

the pure electric case, ~E = (E, 0, 0), with E = B01.

Let us start with the contribution coming from the gauge field. We can write

IE
2,F =

TD3

2 (1− E2)5/6

∫ β

0
dτ

∫
d3rATMA , (A.3)

where d3r = dx1dx2dx3, A = (A0, A1, A2)T and the matrix M is

M =
1

(1− E2)
2/3
×−∂21 −

(
∂22 + ∂23

) (
1− E2

)
∂0∂1 ∂0∂2

(
1− E2

)
∂0∂1 −∂20 −

(
∂22 + ∂23

) (
1− E2

)
∂1∂2

(
1− E2

)
∂0∂2

(
1− E2

)
∂1∂2

(
1− E2

)
−
(
1− E2

) (
∂20 + ∂21 + ∂23

(
1− E2

))
 .

(A.4)

The partition function is then given by

ZF = (det ∂3) (detM)−1/2 . (A.5)

The determinant of M can be computed by substituting each entry in the matrix by

the corresponding eigenvalue and then by taking the infinite product over all the possible

eigenvalues, namely

detM =
∏
~k

∞∏
n=−∞

k2
3

[(
2πn

β

)2

+ f(~k)

]2

(A.6)
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where

f(~k) = k2
1 +

(
1− E2

) (
k2

2 + k2
3

)
. (A.7)

Using this in (A.5) we find

ZF =
∏
~k

∞∏
n=−∞

[(
2πn

β

)2

+ f(~k)

]−1

. (A.8)

Now we take into account the contribution coming from the scalars and the fermions.

The scalar partition function is

ZΦ =
∏
~k

∞∏
n=−∞

[(
2πn

β

)2

+ f(~k)

]−3

, (A.9)

and the fermionic one is

Zψ =
∏
~k

∞∏
n=−∞

[(
π(2n+ 1)

β

)2

+ f(~k)

]4

. (A.10)

Putting together the above results (A.8), (A.9), (A.10), we can compute the total free

energy F = − 1
β logZ and we obtain

F (T,E) =
8V3

β

∫
d3k

(2π)3

[
log

(
1− e−β

√
f(~k)

)
− log

(
1 + e−β

√
f(~k)

)]
= − T 4π2V3

6 (1− E2)
,

(A.11)

where we made use of the ζ-function regularization prescription to compute the infinite

product over n appearing in the partition function. One can easily generalize the above

computation to a general Bab field. This gives indeed the general result (3.29) as we

computed in an alternative fashion in section 3.

It is also interesting to further generalize this result for a Dp-brane. Sticking again

to the pure electric case, in which the only non-vanishing component of Bab is B01 = E,

we get

Fp(T,E) =
8Vp
β

∫
dpk

(2π)p

[
log

(
1− e−β

√
fp(~k)

)
− log

(
1 + e−β

√
fp(~k)

)]
, (A.12)

where

fp(~k) = k2
1 +

(
1− E2

) (
k2

2 + · · ·+ k2
p

)
. (A.13)

In order to compute the integral (A.12) it is convenient to perform the following rescaling,

ki → (1 − E2)−1/2ki for i = 2, . . . , p, in such a way to recover the integral for the free

energy with zero Bab field. This yields

Fp(T,E) =
8Vp

β (1− E2)
p−1

2

∫
dpk

(2π)p

[
log
(

1− e−βk
)
− log

(
1 + e−βk

)]
=

(p− 1)! ζH
(
p+ 1, 1

2

)
T p+1

4p−2πp/2Γ
(p

2

)
(1− E2)

p−1
2

=
Fp(T, 0)

(1− E2)
p−1

2

,

(A.14)

in which k =
√
k2

1 + · · ·+ k2
p and ζH is the Hurwitz zeta function. One can easily generalize

the above to an arbitrary constant Bab field giving the same result as in (3.36).
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B T-duality map

The ten-dimensional T-duality map between the type IIA and the type IIB supergravity

fields was given in [30] (see page 30-31). Using our notation and conventions the map from

the type IIB to the type IIA supergravity for a T-duality along a direction x reads

g̃xx =
1

gxx
e2φ̃ =

e2φ

gxx
(B.1a)

g̃µν = gµν −
1

gxx

(
gxµgxν −BxµBxν

)
g̃xµ = −Bxµ

gxx
(B.1b)

B̃µν = Bµν +
1

gxx

(
Bxµgxν −Bxνgxµ

)
B̃xµ = −gxµ

gxx
(B.1c)

A(1)
µ = A(2)

xµ − χBxµ A(1)
x = χ (B.1d)

A(3)
xµν = A(2)

µν +
1

gxx

(
A(2)
xµgxν −A(2)

xν gxµ

)
(B.1e)

A(3)
µνρ = A(4)

xµνρ + 3
(
A

(2)
x[µBνρ] −Bx[µA

(2)
νρ] −

Bx[µA
(2)
|x|νgρ]x −A

(2)
x[µB|x|νgρ]x

gxx

)
(B.1f)

The map from the type IIA to the type IIB supergravity for a T-duality along a direction

x reads

g̃xx =
1

gxx
e2φ̃ =

e2φ

gxx
(B.2a)

g̃µν = gµν −
1

gxx

(
gxµgxν −BxµBxν

)
g̃xµ = −Bxµ

gxx
(B.2b)

B̃µν = Bµν −
1

gxx

(
Bxµgxν −Bxνgxµ

)
B̃xµ = −gxµ

gxx
(B.2c)

A(2)
µν = A(3)

xµν +A(1)
x Bµν + 2A

(1)
[µ Bν]x − 2

A
(1)
x

gxx
gx[µBν]x A(2)

xµ = A(1)
µ −

A
(1)
x gxµ
gxx

(B.2d)

A(4)
xµνρ = A(3)

µνρ + 3
(
A

(1)
[µ Bνρ] −

gx[µBνρ]A
(1)
x

gxx
−
gx[µA

(3)
νρ]x

gxx

)
χ = A(1)

x (B.2e)
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