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1 Introduction

According to the standard lore of AdS/CFT correspondence [1–3], the partition functions

of type IIB string theory on AdS5×S5 and N = 4, SU(N) super Yang-Mills (SYM) theory

are equal. The field-operator correspondence of AdS/CFT states that every operator of

N = 4 SYM has a dual string state in IIB string theory on AdS5× S5 and every boundary

observable (e.g. operator scaling dimensions, correlation functions, scattering amplitudes,

etc.) possesses a dual observable in the bulk. Therefore, in order to establish the validity

of AdS/CFT [4, 5], the spectra of scaling dimensions of the two theories should match

(among other things and at least in the planar limit [6, 7]).

The difficulty with the program of matching the spectra on both sides of the duality

has traditionally been linked to the insufficient knowledge of type IIB String Theory on

AdS5 × S5 backgrounds. A breakthrough in this direction was made in 2002 by Gubser,

Klebanov and Polyakov (GKP) [8], who proposed to study closed semiclassical strings,

spinning, rotating or pulsating in AdS5 × S5, in order to obtain the (anomalous) scaling

dimensions of their dual SYM operators at strong coupling, a regime where all perturbative

calculations from the gauge theory side typically break down [9].

The paper of Gubser, Klebanov and Polyakov [8] contains three prototype string set-

tings for which the energy-spin relation is calculated: (I) a folded closed string rigidly

rotating at the equator of S3 of AdS5, (II) a folded closed string rigidly rotating around

the pole of S2 ⊂ S5 and (III) a closed string pulsating inside AdS3. Each of these string

configurations is dual to a gauge-invariant operator of N = 4 SYM, the (anomalous) scal-

ing dimensions of which at strong coupling are given by the energy of the corresponding

closed string state.

Case (I) has been thoroughly analyzed over the past years. The key observation of GKP

was that the energy minus the spin angular momentum of a long folded closed string that

rotates inside AdS3, scales as the logarithm of its (large) spin, behavior already familiar

from the study of anomalous dimensions of twist-2 Wilson operators in perturbative QCD.

Being able to reproduce this calculation within N = 4 SYM, GKP asserted that their

string is dual to the twist-2 operators of N = 4 SYM, Tr
[
Z DS+Z

]
+ . . .1

Twist operators of large spin S originally came up in a QCD context where their

anomalous scaling dimensions were shown to be responsible for the (logarithmic) violation

of Bjorken scaling in deep inelastic scattering (DIS). For twist-2 they have been calculated2

at one-loop [11, 12], two-loops [13–16] and three loops [17, 18]. As it turns out, the QCD

results may be used to extract the corresponding anomalous dimensions in perturbative

N = 1, 2, 4 SYM theory (see e.g. [10]). For N = 4 SYM the anomalous dimensions of twist-

2 operators Tr
[
Z DS+Z

]
+ . . . have thus been calculated to one-loop [19], two-loops [20]

and, using transcedentality, to three-loops [21] for large-spin S and weak ’t Hooft coupling

1We denote Z, W, Y the three complex scalars of N = 4 SYM composed out of its six real scalars φ.

Also D+ = D0 + D3, D− = D1 + D2 stand for the light-cone derivatives. The dots in a trace operator

generally denote terms that are built by permuting trace fields Z and impurities, W, Y, D±.
2For more references and a brief historical perspective, see [10].
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λ. To wit, the following logarithmic behavior is obtained, also known as Sudakov scaling:

γ (S , g) = ∆− (S + 2) = f(g) lnS + . . . , g =

√
λ

4π
, λ = g2

YM N. (1.1)

f(g) is known as the cusp anomalous dimension or the universal scaling function of N = 4

SYM and has a history of its own with analytic expressions obtained by solving the Beisert-

Eden-Staudacher (BES) equation at weak [22, 23] and strong coupling [24, 25]. The latter

is found to agree at two loops with the cusp anomalous dimension that is calculated from

the folded closed AdS3 string when quantum corrections are included [26–28].

Alternative techniques may provide the anomalous dimensions of twist-2 operators of

N = 4 SYM at weak coupling up to five loops. By solving the Baxter equation analyti-

cally, three-loop [29] and four-loop [30] expressions are obtained. By including wrapping

corrections after three-loops, the anomalous dimensions to four and five-loops have been

computed in [31, 32].
At strong coupling, the structure3 of the large-spin expansion of anomalous scaling

dimensions of Tr
[
Z DS+Z

]
+ . . . is identical to the perturbative one (1.1), albeit with

different coefficients f(
√
λ):

γ (S , λ) = f ln(S/
√
λ) +

∞∑
n=1

fnn
lnn(S/

√
λ)

Sn
+

∞∑
n=1

fnn−1
lnn(S/

√
λ)

Sn+1
+

∞∑
n=0

fn
Sn

+ . . . (1.2)

It is a daunting task to calculate all the coefficients of (1.2) at strong coupling. Theoreti-

cally, one may obtain them all by means of the thermodynamic Bethe ansatz (TBA) [35].

Alternatively, one may calculate quantum corrections to the AdS3 GKP-string [36, 37].

In a recent paper, the authors of [38] succeeded in calculating all the classical leading

and subleading terms of series (1.2) at strong coupling, by introducing an iterative method

that can potentially supply all the classical terms at an arbitrary subleading order. The

current work extends the method of [38] to examples other than the classic GKP case (I).4

In their original treatment [8], Gubser, Klebanov and Polyakov gave the following formula

for the anomalous dimensions of the N = 4 SYM operator that is dual to the R×S2 closed

and folded string (II):

E − J =
2
√
λ

π
, J, λ→∞. (1.3)

For finite yet large J , this expression receives subleading exponential contributions. In this

paper we are interested in calculating all of the subleading in J terms of the series (1.3).

GKP case (II) also turns out to have been extensively studied over the past years.

Some initial considerations based on the GKP model [8] may be found in [26, 40]. Closed

folded single-spin strings rotating on R×S2 can be decomposed into more elementary string

theory excitations, known as giant magnons. These are open, single-spin strings rotating

3For recent developments on the structure of 3-point correlators involving twist-J operators both at

weak and strong coupling, see [33, 34] and references therein.
4At this point let us mention that an interesting generalization of this calculation would be to calculate

the anomalous dimensions of twist-2 operators in the context of a generalized Yang-Mills theory, such as [39].
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in S2 ⊂ S5, identified in 2006 by Hofman and Maldacena [41] as the string theory duals of

N = 4 SYM magnon excitations. The energy-spin relation of one giant magnon of angular

extent ∆ϕ is:

E − J =

√
λ

π

∣∣∣∣sin ∆ϕ

2

∣∣∣∣ , J, λ→∞, (1.4)

where ∆ϕ = p is the dual magnon’s momentum. Superimposing two such giant magnons

of maximum angular extent ∆ϕ = π gives the GKP formula (1.3).

As we have just mentioned, giant magnons are dual to magnons, the elementary spin

chain excitations. The exact infinite-volume magnon dispersion relation, valid at weak

and strong coupling, was found by Beisert in [42] by considering the centrally extended

superalgebra su (2|2)c ⊕ su (2|2)c ⊂ psu (2, 2|4):

E − J =

√
1 +

λ

π2
sin2

(p
2

)
, J →∞. (1.5)

This result reproduces both the string (1.4) and the perturbative gauge-theory results.

On the side of N = 4 SYM, it has long been known that the dilatation operator has

the form of an integrable spin chain Hamiltonian5 which can be diagonalized by means of

the Bethe ansatz (BA) [43]. However, and due to their being asymptotic in nature, the

BA equations can only reproduce the correct form of anomalous dimensions only when

the length L of the spin chain is infinite or larger than the loop order L. At and above

this critical loop-order L, virtual particles start circulating around the spin chain (as the

range of spin-chain interactions then exceeds its length) and wrapping corrections have to

be taken into account.

Indeed, the inefficiency of BA has been noted in both gauge [44] and string theo-

ries [45, 46]. The wrapping effects that appear at the critical loop-order have the form of

exponentially small corrections to the anomalous dimensions, as noticed in [47, 48]. An

important theoretical issue is therefore the calculation of the exact anomalous dimensions

of unprotected operators of N = 4 SYM that have finite size L.

To this end, it was proposed in [49] that the thermodynamic Bethe ansatz (TBA) [50] 6

can correctly account for the wrapping interactions. The Y-system [52] also accounts for
wrapping corrections. On the string theory side, one equivalently calculates exponential
corrections to the corresponding giant magnon dispersion relation (1.4). The following

5The compact su (2) sector ofN = 4 SYM consists of the single-trace operators Tr
[
ZLΦL−M

]
, where Φ ∈

{W,Y}. It is dual to strings rotating in R×S3 ⊂ AdS5×S5 and its one-loop dilatation operator is given by

the Hamiltonian of the ferromagnetic XXX1/2 Heisenberg spin chain. The other closed sector of relevance to

our paper is the non-compact sl (2) sector composed out of the twist-J operators Tr
[
DS1

+ Φ DS2
+ Φ . . .DSJ

+ Φ
]
,

where S1 + S2 + . . .+ SJ = S and Φ is any of the three complex scalar fields of N = 4 SYM. This sector

is dual to strings rotating in AdS3 × S1 and its dilatation operator is given by the Hamiltonian of the

ferromagnetic XXX−1/2 Heisenberg spin chain.
6For more, see the review [51].
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result was first derived by Arutyunov, Frolov and Zamaklar in [53]:7

E − J =

√
λ

π

∣∣∣sin p
2

∣∣∣ {1− 4 sin2 p

2
e−2−2πJ/

√
λ|sin p

2 | − 8 sin2 p

2

[
6 cos2 p

2
+

1

2
+

+
(

6 cos2 p

2
− 1
) 2πJ√

λ
∣∣sin p

2

∣∣ + cos2 p

2

(
2πJ√
λ
∣∣sin p

2

∣∣
)2 ]

e−4−4πJ/
√
λ|sin p

2 | + . . .

}
. (1.6)

Astolfi, Forini, Grignani and Semenoff have proven in [54] that, when placed upon an

orbifold, giant magnons are completely independent of any gauge parameter. The first

two terms of the same result (1.6) have been found by the algebraic curve method in [55].

They have also been obtained by using Lüscher’s perturbative method [56, 57] at strong

coupling [58–60].
By using the relation between strings on S2 and the sine-Gordon model [61], Klose and

McLoughlin [62] have obtained the following leading terms of the series (1.6):

E − J =

√
λ

π
sin

p

2

{
1− 4 sin2 p

2
e−Leff

[
1 + 2L2

eff cos2 p

2
e−Leff + 8L4

eff cos4 p

2
e−2Leff+

+
128

3
L6

eff cos6 p

2
e−3Leff +

800

3
L8

eff cos8 p

2
e−4Leff +

9216

5
L10

eff cos10 p

2
e−5Leff + . . .

]}
,

(1.7)

where Leff ≡ L/ sin p/2 is the effective length and L is the spatial periodicity of the spin

chain. Giant magnons have been generalized to β-deformed backgrounds [63, 64], TsT-

transformed AdS5 × S5 [65, 66] and AdS4/CFT3 [67, 68].

In this paper we study the dispersion relations of the following (long) operators of

N = 4 SYM:

OS = Tr
[
Z DS+Z

]
+ . . . & OJ = Tr

[
ΦZm ΦZJ−m

]
+ . . . , (1.8)

for large values of the ’t Hooft coupling constant λ. These operators are dual to cases

(I) and (II) of GKP strings that were discussed above. Our work is motivated by the

interesting properties of twist-2 operators that originally appeared in the context of deep

inelastic scattering in QCD and have been studied intensively ever since. Twist-2 opera-

tors are also present in N = 4 super Yang-Mills theory and the AdS/CFT correspondence

permits to study them in the strong coupling regime. Our investigation aims to shed light

on the structure of the corresponding strong-coupling, large-spin, semiclassical dispersion

relations, with a view to gaining insight into their weak-coupling, small-spin and quan-

tum generalizations. A reorganization of these relations might lead to better-recognizable

structures that could be useful, especially when one is trying to derive series (1.2)–(1.6)

with other integrability methods such as Lüscher corrections, the TBA or the Y-system.

We propose a systematic method, based on the Lagrange-Bürmann inversion formula,

for the order-by-order inversion of a certain class of functions that are related to elliptic

7Actually, this is the gauge-independent result of [54], which coincides with that of AFZ [53] in the

temporal gauge.
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integrals. Next, we apply this method in order to express the dispersion relations of opera-

tors (1.8) as sums of Lambert’s W-functions. The latter are analytic in their arguments and

therefore have the property of collecting infinitely many terms that were previously unbe-

known. We emphasize that these previously unknown terms have not yet been obtained by

any other integrability method, such as Lüscher corrections (where only the first two terms

are known), the TBA or the Y-system. Within the context of AdS/CFT correspondence,

our analysis could have repercussions in the dispersion relations of giant magnons, spiky

strings, spinning membranes, or strings rotating in β-deformed and TsT-transformed back-

grounds. Our technique can also be applied to the solution of the renormalization group

equations up to any loop-order. For more, the reader is referred to the discussion section 7.

Our paper is organized as follows. We begin with a brief summary of our findings in

section 2. In section 3 we derive the single-spin string solution of GKP that rotates in

R × S2 by minimizing the energy functional of a generic R × S2 string configuration and

show that it obeys a duality of the short-long type. Section 4 contains our calculation of

the exponential corrections to the anomalous dimensions of long R× S2 strings. We start

from a 2× 2 system of equations

E = d (x) lnx+ h (x) (1.9)

J = c (x) lnx+ b (x) , (1.10)

where E and J are the string’s energy and spin, x is a parameter depending on the angular

velocity of the string and d (x), h (x), c (x), b (x) are some known power series of x. We

invert equation (1.10) for the inverse spin function x = x (J ), then plug it back into (1.9)

in order to obtain the anomalous dimensions γ ≡ E − J = γ (J ). The main thrust of our

paper is showing that the dispersion relation γ (J ) can be written in terms of Lambert’s

W-function:

W (z) eW (z) = z ⇔W (z ez) = z. (1.11)

We obtain formulas for all the leading, subleading and next-to-subleading coefficients for

both long folded (angular velocity ω > 1) and fast circular (angular velocity ω < 1)

strings in R× S2. In sections 5–6, our analysis is repeated for long folded strings spinning

(with angular velocity ω > 1) in AdS3 where again we derive expressions for the leading,

subleading and next-to-subleading coefficients of anomalous dimensions. A discussion of

our results can be found in section 7. Appendix A is a brief introduction to Lambert’s W-

function. Appendix B contains the definitions and some useful formulas of elliptic integrals

and functions. In appendix C we briefly consider short/slow-spin strings and in appendix D

we have collected our symbolic computations on the long and fast GKP strings of our paper.

2 Summary of results

In this section we summarise our basic results.

2.1 Long strings in R × S2

The R × S2 string solutions that we will be considering are dual to the following gauge
theory operators: Tr

[
ΦZm ΦZJ−m

]
+ . . ., where the dots denote appropriate weighted

– 6 –
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permutations of the complex scalar fields Z, Φ ∈ {W,Y} and J �
√
λ. By computing

the energy of the GKP string, we obtain the strong coupling value of scaling dimensions of
the aforementioned operators. The result can be expressed in terms of Lambert’s function
W
(
±8J e−2J−2

)
as follows:

E − J = 1− 1

4J
(
2W +W 2

)
− 1

16J 2

(
W 2 +W 3

)
− 1

256J 3

W 3
(
11W 2 + 26W + 16

)
1 +W

+ . . . ,

(2.1)

• leading terms: − 1

4J
(
2W +W 2

)
=

∞∑
n=1

an J n−1
(
e−2J−2

)n
.

• subleading terms: − 1

16J 2

(
W 2 +W 3

)
=

∞∑
n=2

bn J n−2
(
e−2J−2

)n
.

• next-to-subleading terms: − 1

256J 3

W 3
(
11W 2 + 26W + 16

)
1 +W

=

∞∑
n=3

cn J n−3
(
e−2J−2

)n
.

where E ≡ π E/2
√
λ and J ≡ π J/2

√
λ. The plus sign in the argument of Lambert’s

W-function corresponds to closed and folded strings (angular velocity ω > 1) and the

minus sign to circular strings (angular velocity ω < 1). Upon expansion of Lambert’s W-

function, the second, third and fourth term on the r.h.s. of (2.1) provide three infinite series

of coefficients which completely determine the leading, subleading and next-to-subleading

contributions to the large-J finite-size corrections to the dispersion relation of a closed

folded single-spin string rotating on S2. The precise expressions for these infinite series

can be found in equations (4.21), (4.31) and (4.37). One can argue that all finite-size

corrections (Nk-subleading terms) can be written in terms of Lambert’s W-function. Note

that all (super-leading) terms of the form J n(e−2J−2)n are absent from expansion (2.1).

Effectively, our calculation provides the finite-size corrections to the dispersion relation of

a single-magnon state with maximal momentum p = π, the dual operator of which is:

ÕJ =
∑
m

eimπ |. . .ZZΦ(m)ZZ . . .〉 , J →∞. (2.2)

These corrections are exactly equal to one-half the finite-size corrections (2.1) to the energy

of a closed folded single-spin string that rotates on S2.

We have also found a duality between short and long strings. For each solution of

energy E and spin J , there exists a dual solution whose energy E′ and spin J ′ are related

to the original by equations (3.23)–(3.24).

2.2 Long strings in AdS3

Secondly, we will consider the classical GKP solution rotating in an AdS3 subspace of

AdS5. These strings are dual to twist-2 operators which schematically have the following

form:

OS = Tr
[
Z DS+Z

]
+ . . . (2.3)

– 7 –
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The case of long AdS3 strings has been extensively studied in the literature because the
corresponding field theory operators play a vital role in DIS. The form of their anomalous
dimensions admits the following strong coupling expansion:

E − S = ρc lnS +

∞∑
n=0

n∑
k=0

ρ(nk)
lnk S
Sn

= ρc lnS + ρ0 +

∞∑
n=1

ρ(nn)
lnn S
Sn

+

∞∑
n=2

ρ(nn−1)
lnn−1 S
Sn

+

+

∞∑
n=3

ρ(nn−2)
lnn−2 S
Sn

+ . . .+
ρ1

S
+
ρ2

S2
+
ρ3

S3
+ . . . , (2.4)

where S = πS/2
√
λ. By expressing the above result in terms of Lambert’s function

W−1

(
−e−4S−3/2/4

)
,

γ =− W−1

2
−
(

2S +
5

4

)
+

9

8W−1
−
[
S
2

+
35

16

]
1

(W−1)2 +

[
5S
2

+
2213

384

]
1

(W−1)3 −
[
S2 +

361S
32

+
6665

384

]
·

· 1

(W−1)4 +

[
19S2

2
+

1579S
32

+
433501

7680

]
1

(W−1)5 −
[

10S3

3
+

259S2

4
+

81.799S
384

+
2.963.887

15.360

]
1

(W−1)6 +

+

[
136S3

3
+

3069S2

8
+

175.481S
192

+
2.350.780.111

3.440.640

]
1

(W−1)7 − . . . , (2.5)

we have analytically calculated the following coefficients:

ρc =
1

2
, ρ0 = 2 ln 2− 1

2
, ρ1 =

ln 2

2
− 1

8
, ρ2 = − ln2 2

4
+

9 ln 2

32
− 5

128

and also the following three infinite series of coefficients:

ρ(mm) =
(−1)m+1

4m
1

2m
,

ρ(m+1,m) =
1

2

(−1)m+1

4m+1

[
Hm +

m

4
+ 1− 4 ln 2

]

ρ(m+2,m) =
(−1)m+1

4m+3
· (m+ 1) ·

{
H2
m+1 −H

(2)
m+1 +

1

2
(m− 16 ln 2 + 5) ·Hm+1 +

m2

24
−

−
(

2 ln 2 +
1

24

)
m+ 16 ln2 2− 10 ln 2

}
.

The series ρ(mm) and ρ(m+1,m) were derived for the first time in [38]. The infinite series of

the next-to-next-to-leading coefficients ρ(m+2,m) is derived in section 6.

3 Gubser-Klebanov-Polyakov R × S2 string

In [8] the following configuration of a string that has its center at the north pole of S2 ⊂ S5

and rotates around it was considered:{
t = κτ, ρ = θ = φ1 = φ2 = 0

}
×
{
θ1 = θ1 (σ) , θ2 = κωτ, φ1 = φ2 = φ3 = 0

}
, (3.1)

– 8 –
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Figure 1. θ = θ1 (σ) and energy/spin of the folded closed R× S2 string (3.1) for ω > 1.

where the line element of AdS5 × S5 is

ds2 = `2
[
− cosh2 ρdt2 + dρ2 + sinh2 ρ

(
dθ2 + cos2 θ dφ2

1 + sin2 θ dφ2
2

)
+

+ dθ
2
1 + cos2 θ1 dφ

2
1 + sin2 θ1

(
dθ

2
2 + cos2 θ2 dφ

2
2 + sin2 θ2 dφ

2
3

) ]
. (3.2)

We shall now briefly demonstrate that the above GKP solution is unique in the sense

that it minimizes the energy of an R×S2 string with a single, constant angular momentum

J . Let us consider the following generic ansatz on R× S2:{
t = κτ, ρ = θ = φ1 = φ2 = 0

}
×
{
θ1 = θ1 (τ, σ) , θ2 = θ2 (τ, σ) , φ1 = φ2 = φ3 = 0

}
,

(3.3)

which leads to the Polyakov action (in the conformal gauge, γab = ηab),

SP =
`2

4πα′

∫ (
−ṫ2 + θ̇

2

1 − θ
′2
1 + sin2 θ1

(
θ̇

2

2 − θ
′2
2

))
dτdσ. (3.4)

One can derive the Hamiltonian density of the string in the standard way, namely

H =
`2

4πα′

{
−κ2 +

p2
1

4
+ θ
′2
1 +

p2
2

4 sin2 θ1

+ θ
′2
2 sin2 θ1

}
= 0 ,

p1 = 2 θ̇1

p2 = 2 θ̇2 sin2 θ1.
(3.5)

(3.5) is identical to one of the Virasoro constraints. We want to find the minimum of the

energy E under the constraint of fixed angular momentum J . To achieve this we introduce

the Lagrange multiplier ω and look for the minimum of the quantity

Y ≡ `2

4πα′

∫
dσ · 2

√
p2

1

4
+ θ
′2
1 +

p2
2

4 sin2 θ1

+ θ
′2
2 sin2 θ1 − ω

[
`2

4πα′

∫
p2 dσ − J

]
,

(3.6)

which is obtained after substituting κ from (3.5) into the integral of the energy, E =

`2/4πα′
∫
dσ · 2κ. We find:

δY

δp1
= 0⇒ p1 = 0⇒ θ̇1 = 0⇒ θ1 = θ1 (σ) (3.7)

δY

δp2
= 0⇒ θ̇2 = ω κ⇒ θ2 = κω τ + φ̃ (σ) . (3.8)
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Figure 2. Energy/spin of the closed folded/circular R× S2 string as functions of ω and x.

One can now use the second Virasoro constraint θ̇1 θ
′
1 + θ̇2 θ

′
2 sin2 θ1 = 0 and equa-

tion (3.7) to conclude that θ
′
2 = 0 or equivalently φ̃ (σ) = 0. Let us mention that the

vanishing of the functional derivative δY/δθ1(σ) = 0 will give the equation of motion for
θ1. We thus end up with the GKP solution (3.1), the Polyakov action of which is given by:

SP =
`2

4πα′

∫ (
−ṫ2 + θ̇

2

2 sin2 θ1 − θ
′2
1

)
dτdσ =

`2

4πα′

∫ (
−κ2 + κ2ω2 sin2 θ1 − θ

′2
1

)
dτdσ.

(3.9)

Setting σ (ϑ0) = π/2 for the length of the string, we obtain the following cases, de-

pending on the value of ω 6= 1:

ω2 < 1. Circular folded string.

θ1 (σ) = am
[
κσ
∣∣∣ω2

]
, κ =

2

π
·K
(
ω2
)

(3.10)

E (ω) =
2
√
λ

π
·K
(
ω2
)
⇒ E ≡ π E

2
√
λ

= K (1− x̃) (3.11)

J (ω) =
2
√
λ

π ω

[
K
(
ω2
)
− E

(
ω2
) ]
⇒ J ≡ π J

2
√
λ

=
1√

1− x̃

[
K (1− x̃)− E (1− x̃)

]
.

(3.12)

ω2 > 1. Folded closed string.

θ1 (σ) = am
[
κσ
∣∣∣ω2

]
, κ =

2

π ω
·K
(

1

ω2

)
, ω = cscϑ0 (3.13)

E (ω) =
2
√
λ

π ω
·K
(

1

ω2

)
⇒ E ≡ π E

2
√
λ

=
√

1− x ·K (1− x) (3.14)

J (ω) =
2
√
λ

π
·
[
K
(

1

ω2

)
− E

(
1

ω2

)]
⇒ J ≡ π J

2
√
λ

= K (1− x)− E (1− x)

(3.15)

γ ≡ E − J =
(√

1− x− 1
)
·K (1− x) + E (1− x) . (3.16)
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x ≡ 1−1/ω2 and x̃ ≡ 1−ω2 are the complementary parameters of 1/ω2 and ω2 respectively.

In figures 1–2 we have plotted θ1 = θ1 (σ) for various values of ω > 1 as well as the energy

and the spin of the R× S2 string as functions of ϑ0, ω and x.

For ω > 1, there exist two interesting regimes where one would want to obtain the

functional dependence of E = E (J) and the corresponding anomalous dimensions γ =

γ (J), namely the short-string limit ω → ∞ and the long-string limit ω → 1+. In what

follows we shall be concerned only with the latter. Short strings are briefly treated in

appendix C.

3.1 Long folded strings in R× S2: ω → 1+, J �
√
λ

For long folded strings on S2 (ω → 1+), the expansions for the energy and the spin become
(cf. appendix B):

E =

√
λ

π2ω
·
∞∑
n=0

(
Γ (n+ 1/2)

n!

)2 [
2ψ (n+ 1)− 2ψ (n+ 1/2)− ln

(
1− 1/ω2

) ]
·
(
1− 1/ω2

)n
(3.17)

J =

√
λ

π
·

{
4 ln 2− 2− ln

(
1− 1/ω2

)
− 1

2π

∞∑
n=0

Γ (n+ 1/2) Γ (n+ 3/2)

((n+ 1)!)
2

[
2ψ (n+ 1)−

− 2ψ (n+ 1/2)− ln
(
1− 1/ω2

)
+

2n

(n+ 1) (2n+ 1)

]
·
(
1− 1/ω2

)n+1

}
. (3.18)

In terms of the complementary parameter x ≡ 1 − 1/ω2 → 0+ the above series can be
written in compact forms as follows:

E ≡ π E

2
√
λ

=
√

1− x ·
∞∑
n=0

xn (dn lnx+ hn) = −
∞∑
n=0

xn ·
n∑
k=0

(2k − 3)!!

(2k)!!
(dn−k lnx+ hn−k) (3.19)

J ≡ π J

2
√
λ

=

∞∑
n=0

xn (cn lnx+ bn) . (3.20)

The coefficients that appear in series (3.19) and (3.20) are given by:8

dn = −1

2

(
(2n− 1)!!

(2n)!!

)2

, hn = −4 dn · (ln 2 +Hn −H2n)

cn = − dn
2n− 1

, bn = −4 cn ·
[
ln 2 +Hn −H2n +

1

2 (2n− 1)

]
, (3.21)

for n = 0 , 1 , 2 , . . .

3.2 Short-long strings duality

Following [38], we may now write down a formula that connects the values of conserved

charges at the two opposite ends of the closed folded string spectrum, that is “short”

strings (ω → ∞) and “long” strings (ω → 1+). There’s a known expression between

8Some useful values of the double factorial are: 0!! = 1, (−1)!! = 1, (−3)!! = −1.

– 11 –



J
H
E
P
0
3
(
2
0
1
4
)
0
1
8

Figure 3. E = E (J) of the folded closed R× S2 string.

complete elliptic integrals of the first and second kind, namely Legendre’s relation (see

e.g. [69]):

E(k)K(k′) + K(k)E(k′)−K(k)K(k′) =
π

2
, (3.22)

where the arguments of elliptic integrals, k = 1/ω2 and k′ = x = 1/ω′ 2 satisfy k + k′ = 1.

Solving (3.14)–(3.15) for E(k) and K(k) and substituting in (3.22), we get the following

duality relation between classical folded short and long strings that spin on S2 ⊂ S5:

ω ω′EE′ − ωEJ ′ − ω′E′J =
2λ

π
, ω > 1. (3.23)

This relation is completely analogous to the one found for closed folded strings that

spin inside AdS3, (5.18). One could also write (3.23) in terms of γ ≡ E − S. Plotting the

functions E = E (ω) and J = J (ω) in a common diagram parametrically, the graph of

E = E (J) along with the first 4 terms of its “short” series (C.5) and the first 2 terms of

its “long” approximation (D.3) has been obtained in figure 3 (red and blue dashed lines

respectively of the plot on the right). Likewise, a similar relation can be formulated for

fast and slow circular strings using (3.11)–(3.12):

EE′ − ω′EJ ′ − ωE′J =
2λ

π
, ω < 1, (3.24)

where k̃ = ω2, k̃′ = x̃ = ω′2 and k̃ + k̃′ = 1.
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4 Inverse spin functions and anomalous dimensions on R × S2

4.1 Inverse spin function

We will now follow the method of [38] in order to invert the J-series (3.20) for x = x (J )

and obtain E = E (J ) by substituting x (J ) into E (x). Let us first solve (3.20) for lnx:

J =

∞∑
n=0

xn
(
cn lnx+ bn

)
⇒ lnx =

[
J − b0
c0

−
∞∑
n=1

bn
c0
xn

]
·
∞∑
n=0

(−1)n
( ∞∑
k=1

ck
c0
xk

)n
.

(4.1)

Performing the products between the series and exponentiating, we are led to the following

equation that we will eventually have to solve (or invert) for x:

x = x0 · exp

[ ∞∑
n=1

an x
n

]
= x0 · exp

(
a1 x+ a2 x

2 + a3 x
3 + . . .

)
, (4.2)

where

x0 ≡ exp

[
J − b0
c0

]
= 16 e−2J−2 (4.3)

solves (4.1) to lowest order in x and the coefficients an are determined from (4.1). One

possible way to revert series (4.2) with respect to the variable x, is by means of the Lagrange

inversion theorem [69]. In our case it turns out that the function to be inverted has a

special form that significantly simplifies the computation of its inverse. The following

reversion formula (applied here to the exponential function) is named after J.-L. Lagrange

and H.H. Bürmann [70]:

x =

∞∑
n=1

xn0
n!
·

{
dn−1

dzn−1
exp

[ ∞∑
m=1

n am z
m

]}
z=0

. (4.4)

We find

x =
∞∑
n=1

xn0 ·
n−1∑
k,ji=0

nk

n!

(
n− 1

j1 , j2 , . . . , jn−1

)
aj11 aj22 . . . a

jn−1

n−1 , (4.5)

where

j1 + j2 + . . .+ jn−1 = k & j1 + 2 j2 + . . .+ (n− 1) jn−1 = n− 1.

Now notice from (4.1) that the ai’s can only be linear functions of J , so that the

inverse spin function x = x (J ) has to be of the form:

x =
∞∑
n=1

xn0 ·
n−1∑
k=0

ankJ
k, (4.6)
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where ank are some constants. This follows from the two constraints on the values of j

which imply

j1 + j2 + . . .+ jn−1 = k

j1 + 2 j2 + . . .+ (n− 1) jn−1 = n− 1

}
⇒ k + j2 + . . .+ (n− 2) jn−1 = n− 1, (4.7)

that is the power of J is at most k ≤ n − 1. A second conclusion that can be drawn

from these two constraints is that all leading in J contributions to x are controlled by the

leading in J terms of a1, all subleading J -contributions to x are controlled by a1 and the

leading in J terms of a2, etc., i.e. x (J ) has all its coefficients up to xn0 J n−m controlled by

a1 , . . . am−1, and the leading term of am. To see this, notice from k+j2+. . .+(n− 2) jn−1 =

n− 1 that when some jm in (4.5) is jm 6= 0 (minimum 1), k = jm + . . . + jn−1 is at most

n− 1− (m− 1) = n−m. This is consistent with our expectations from (4.2), from which

the same conclusion about the number of terms that should be kept on the r.h.s., in order

to fully determine x (J ) up to a given order, is reached.

4.2 Anomalous dimensions

Having derived a general formula for x(J ), we may express the anomalous scaling dimen-

sions γ = E − J of the R× S2 spinning closed and folded string as a function of J :

E − J =

∞∑
n=0

xn (fn lnx+ gn) =

∞∑
n=0

xn
[
An + fn ln

x

x0

]
, E ≡ πE

2
√
λ
, J ≡ πJ

2
√
λ
,

(4.8)

where

fn ≡ −cn −
n∑
k=0

(2k − 3)!!

(2k)!!
· dn−k , gn ≡ −bn −

n∑
k=0

(2k − 3)!!

(2k)!!
· hn−k , n = 0, 1, 2, . . . (4.9)

and the coefficients An are defined as:

An ≡ gn + fn lnx0 = gn + 2fn (2 ln 2− J − 1) . (4.10)

For large J , series (4.1) may be inverted for x = x (J ) using a computer algebra

system. The inverse spin function x (J ) may then be plugged into equation (4.8) and give

the anomalous dimensions of N = 4 SYM operators Tr
[
ΦZm ΦZJ−m

]
+ . . . in terms of the

(large) R-charge J . Such a calculation has been performed with Mathematica and both

series of the inverse spin function x = x (J ) and anomalous dimensions γ = γ (J ) have

been obtained (cf. (D.2), (D.3)). It turns out that both expansions contain the following

terms:

Leading Terms (L): J n−1
(
e−2J−2

)n
Next-to-Leading/Subleading Terms (NL): J n−2

(
e−2J−2

)n
NNL Terms: J n−3

(
e−2J−2

)n
... (4.11)
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Note that series (3.19), (3.20) and (4.8) are identical in structure. We may then prove that

in order to get E − J up to a given subleading order, the inverse spin function x (J ) that

will be inserted into (4.8) has to be known up to no more than the same order. From (4.2)

and (4.6) we write:

ln
x

x0
=

∞∑
k=1

ak x
k = a1 x+ a2 x

2 + a3 x
3 + . . .

x =

∞∑
n=1

xn0 ·
n−1∑
k=0

ankJ k =

∞∑
n=1

J n−1 xn0 ·
n−1∑
k=0

ãnk
J k

=
1

J

∞∑
n=1

J n xn0 ·
n−1∑
k=0

ãnk
J k

, (4.12)

where ank = ãn(n−k−1) are some constants and an are linear functions of J . The last
equation follows from (4.6) after some reshuffling. The anomalous dimensions (4.8) are
then written as follows:

E − J =

∞∑
n=0

xn (fn lnx+ gn) =

∞∑
n=0

xn
[
An + fn ln

x

x0

]
=

∞∑
n=0

xn

[
An +

∞∑
k=1

fn ak x
k

]
. (4.13)

Since all the leading terms of xn are of the order 1/J n and they multiply either An or

fn−k ·ak in (4.13), which are both linear in J , we see that the r-th subleading term of E−J
(which is of the order 1/J r) cannot get any contributions from its xr+2 terms. Therefore

in order to get precisely the first r-subleading orders of the anomalous dimensions E − J
(r = 1 leading, r = 2 subleading, etc.), no more than the first r + 1 powers of x need to

be retained in (4.13). In addition, the last power of x to be kept in (4.13) (namely xr+1)

does not have to be multiplied by coefficients that do not contain J .

Furthermore, we can see why we need exactly n subleading terms in the expansion of

x in order to be able to calculate E − J up to the same subleading order n. Keeping less

powers inside x would mean that x · A1 = −x/4 in (4.13) essentially misses some of the

subleading terms, while terms deeper than 1/J n into x do not contribute, since there exist

no corresponding powers of J in the expression for E − J that can lift them up to the

wanted order. All of these observations will become clearer in what follows.

4.3 Leading terms

As a first application of the above, we may calculate the anomalous dimensions to leading

order in J , i.e. the coefficients of the following series:

E − J
∣∣∣
(L)

=

∞∑
n=1

an J n−1
(
e−2J−2

)n
. (4.14)

In order to be able to do this, x has to be determined up to leading order in J , i.e. the

coefficients of the series

x(L) =
∞∑
n=1

αn J n−1
(
e−2J−2

)n
(4.15)

must be computed. To this end, we must keep all the terms that multiply x0 = 1 on the

r.h.s. of equation (4.1) and just the leading in J terms that multiply x1 = x. (4.1) then
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becomes:

lnx(L) =
J − b0
c0

− c1

c2
0

J · x(L) ⇒ x0 = x(L) exp

[
c1

c2
0

J · x(L)

]
= x(L) e

J ·x(L)/2, (4.16)

where x0 = 16 e−2J−2. This is equation (4.2) for the leading terms of x. We either solve

it by the inversion method of the previous section or we could just as well calculate the

following iteration:

x(L) = x0 e
−x0J /2·e−x0J/2·e...

= x0 ·
(
e−x0J /2

)∞
. (4.17)

Given the expression for the infinite exponential (see e.g. [71]),

(ez)∞ =
W (−z)
−z

=

∞∑
n=1

nn−1

n!
zn−1, (4.18)

where W (z) is the principal branch of the Lambert W-function,9 we find:

x(L) =
2

J
W
(
8J e−2J−2

)
=
∞∑
n=1

αn J n−1
(
e−2J−2

)n
, (4.19)

where we have defined

αn ≡ (−1)n+1 23n+1 · n
n−1

n!
. (4.20)

As we have explained above, in order to calculate the E − J series to leading order in

J , we have to insert this formula for x(L) into (4.8) and take care as to keep only leading

terms. The result is:

E − J
∣∣∣
(L)

=
2
√
λ

π

{
1 + g1 x(L) − 2f2 J x2

(L)

}
=

2
√
λ

π

{
1−

x(L)

4
−
J x2

(L)

16

}
=

=
2
√
λ

π

{
1− 1

4J

[
2 ·W

(
8J e−2J−2

)
+W 2

(
8J e−2J−2

) ]}
=

=
2
√
λ

π

{
1− 1

16

∞∑
n=1

[
4αn +

n−1∑
k=1

αk αn−k

]
· J n−1

(
e−2J−2

)n}
, (4.21)

which contains all the leading-order terms of E − J .

9We need to choose the principal branch W0 in order for x to have the correct limiting behavior, i.e.

x → 0+ as J → +∞. Choosing the W−1 branch gives x → −4, to leading order. For more see also

appendix A that deals with the Lambert function.
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4.4 Next-to-leading terms

We can go on and calculate all the subleading in J coefficients of the anomalous dimensions,

i.e. obtain an analytic expression for the terms of the following series:

E − J
∣∣∣
(NL)

=
∞∑
n=2

bn J n−2
(
e−2J−2

)n
. (4.22)

This time we have to know not only the leading, but also the subleading terms of x in (4.5),

namely

x(NL) =
∞∑
n=2

βn J n−2
(
e−2J−2

)n
. (4.23)

This means that on the r.h.s. of (4.1) we have to keep all the terms that multiply

x0,1 and only the leading in J terms that multiply x2. Then equation (4.1), precise up to

next-to-leading/subleading order, becomes:

lnx(L+NL+...) =
J − b0
c0

− J c1 + b1c0 − b0c1

c2
0

· x(L+NL+...) +
c2

1 − c0c2

c3
0

J · x2
(L+NL+...) ⇒

⇒ x(L+NL+...) = x0 · exp

[
−J + 1

2
· x(L+NL+...) −

7J
32
· x2

(L+NL+...)

]
. (4.24)

To solve this equation, we invert it for x(L+NL+...) by using the Lagrange-Bürmann formula,

as it was done in going from equation (4.2) to (4.5),

x(L+NL+...) =

∞∑
n=1

xn0
n!

n−1∑
k, j1 = 0

n− 1 = k + j1
0 ≤ j1 ≤ k

(−1)k nk
(n− 1)!

(k − j1)! j1!
·
(
J + 1

2

)k−j1 (7J
32

)j1
. (4.25)

We now have to select and keep only the leading and next-to-leading J -terms in this

expression. Expanding the binomial in powers of J ,(
J + 1

2

)k−j1
·
(

7J
32

)j1
=

(
1

2

)k−j1 (7J
32

)j1
·
k−j1∑
m=0

(
k − j1
m

)
Jm =

=
7j1

2k+4j1
·
k−j1∑
m=0

(
k − j1
m

)
Jm+j1 =

7j1

2k+4j1
·
(
J j1 + . . .+ (k − j1)J k−1 + J k

)
,

we see that the leading terms J n−1 xn0 , correspond to m = k = n − 1, j1 = 0 and we

obtain the leading power series (4.19)–(4.20) of the previous section. To get the next-to-

leading/subleading terms J n−2 xn0 , we have to put either k = n− 1, j1 = 0, m = n− 2 or

k = m = n− 2, j1 = 1 and sum the two terms. We find:

x(NL) =
∞∑
n=1

xn0
n!
·
{

(−1)n−1 nn−1 (n− 1)

2n−1
+ (−1)n−2 nn−2 7 (n− 1) (n− 2)

2n+2

}
· J n−2,

(4.26)
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so that the leading and next-to-leading terms of x are given by:

x(L+NL) =
∞∑
n=1

(
αn J n−1 + βn J n−2

)
·
(
e−2J−2

)n
(4.27)

with the definition (αn’s are defined in (4.20)),

βn ≡ (−1)n+1 23n−2 · n
n−2

n!
· (n− 1) (n+ 14) . (4.28)

Series (4.27) can be written in terms of Lambert’s W-function, using formulas (A.7)–

(A.12) of appendix A:

x(L+NL) =
∞∑
n=1

(
αn J n−1 + βn J n−2

)
·
(
e−2J−2

)n
=

2

J
W − 1

4J 2

W 2 (7W + 8)

1 +W
,

(4.29)

where the argument of the W-function is W
(
8J e−2J−2

)
. To obtain the leading and next-

to-leading coefficients of E − J , we insert (4.29) into (4.8) keeping only terms of leading

and next-to-leading/subleading order:

E − J
∣∣∣
(L+NL)

=
2
√
λ

π

{
1 +A1

(
x(L) + x(NL)

)
− 2f2 J x2

(L) − 4f2 J x(L) · x(NL)+

+ (g2 + 2 (2 ln 2− 1) f2)x2
(L) −

(
c1f2

c2
0

+ 2f3

)
J x3

(L)

}
= (4.30)

=
2
√
λ

π

{
1−

x(L)

4
−
x(NL)

4
− J

16
x2

(L) −
J
8
x(L) · x(NL) −

9

64
x2

(L) −
J
16
x3

(L)

}
.

From this expression we read off the next-to-leading/subleading coefficients as follows (the
leading ones are given in (4.21)):

E − J
∣∣∣
(NL)

= −2
√
λ

π

{
x(NL)

4
+
J
8
x(L) · x(NL) +

9

64
x2

(L) +
J
16
x3

(L)

}
= −2

√
λ

π

1

16J 2

(
W 2 +W 3

)
⇒

⇒ E − J
∣∣∣
(NL)

= −
√
λ

32π

∞∑
n=1

{
16βn +

n−1∑
k=1

αk

[
9αn−k + 8βn−k

]
+

+ 4

n−2∑
k,m=1

αk αm αn−k−m

}
· J n−2

(
e−2J−2

)n
. (4.31)

4.5 NNL terms

Computing higher-order terms in the long-string expansion of E − J is straightforward.
Equation (4.5) becomes,

x(L+NL+NNL+...) =

∞∑
n=1

xn0
n!
·

n−1∑
k,j=0

(−1)k nk (n− 1)!

(k − j1 − j2)! j1! j2!

(
J + 1

2

)k−j1−j2
(

14J + 9

64

)j1
(

15J
128

)j2

, (4.32)
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with n− 1 = k + j1 + 2j2 and 0 ≤ j1 + j2 ≤ k. Again we have to select and keep only the

leading, subleading (NL) and next-to-subleading (NNL) terms the way it was done in the

previous subsection and then express the resulting power series with the aid of Lambert’s

function, by using the formulas of appendix A. We find:

x(L+NL+NNL) =
∞∑
n=1

(
αn J n−1 + βn J n−2 + γn J n−3

)
·
(
e−2J−2

)n
, (4.33)

having defined (α’s and β’s are defined in (4.20)–(4.28)) the γn’s as

γn ≡ (−1)n+1 23n−6 · n
n−3

n!
· (n− 1) (n− 2)

(
n2 + 41n+ 228

)
. (4.34)

In terms of Lambert’s W-function, the inverse spin function x = x (J ) (precise up to
NNL order) is given by

x(L+NL+NNL) =
2

J
W − 1

4J 2

W 2 (7W + 8)

1 +W
+

1

64J 3

W 3
(
76W 3 + 269W 2 + 312W + 120

)
(1 +W )

3 , (4.35)

where the arguments of the W-functions are W
(
8J e−2J−2

)
. This expression for x is in

turn inserted into (4.8), keeping only terms up to next-to-subleading order. The next-to-
subleading (NNL) coefficients of E − J are found by writing

E − J
∣∣∣
(NNL)

= −2
√
λ

π

{
x(NNL)

4
+

9

32
x(L) · x(NL) +

J
16
x2

(NL) +
J
8
x(L) · x(NNL) +

23

256
x3

(L)+

+
3J
16

x2
(L) · x(NL) +

111J
2048

x4
(L)

}
= −2

√
λ

π

1

256J 3

W 3
(
11W 2 + 26W + 16

)
1 +W

, (4.36)

which implies,

E − J
∣∣∣
(NNL)

= −
√
λ

128π

∞∑
n=1

{
64 γn + 8

n−1∑
k=1

[
9αk βn−k + 2βk βn−k + 4αk γn−k

]
+

n−2∑
k,m=1

αk αm·

·
[
23αn−k−m + 48βn−k−m

]
+

111

8

n−3∑
k,m,s=1

αk αmαs αn−k−m−s

}
· J n−3

(
e−2J−2

)n
. (4.37)

Our final result for the inverse spin function and the anomalous dimensions of the
long N = 4 SYM operators Tr

[
ΦZm ΦZJ−m

]
+ . . . at strong ’t Hooft coupling and up to

next-to-subleading order in large-J is:

x =
2W

J
− 1

4J 2

W 2 (7W + 8)

1 +W
+

1

64J 3

W 3
(
76W 3 + 269W 2 + 312W + 120

)
(1 +W )

3 + . . . (4.38)

E − J = 1− 1

4J
(
2W +W 2

)
− 1

16J 2

(
W 2 +W 3

)
− 1

256J 3

W 3
(
11W 2 + 26W + 16

)
1 +W

+ . . . ,

(4.39)

where E ≡ πE/2
√
λ, J ≡ πJ/2

√
λ and the arguments of the W-functions are

W
(
8J e−2J−2

)
. Expanding series (4.38) and (4.39) around J → ∞, by using the formulas
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of appendix A, we find that they completely agree with the ones computed if series (3.15)

is inverted with a symbolic calculations program such as Mathematica and the result is

plugged into equation (3.14) (cf. appendix D, equations (D.2)–(D.3)).

Likewise, we may keep on going to higher and higher orders in J . Theoretically, we are

thus able to obtain all the terms of the long string expansion. We may conjecture that the

Lambert W-functions will keep appearing to all orders of x and consequently to all orders

of E −J as well. To see this, note that equation (4.5) will in general contain a term of the

form nn/n! that multiplies some Laurent polynomial of n, which in turn originates from

the multinomial coefficient and the expansion of ai’s in powers of J . Using the formulas

of appendix A, the resulting series may be expressed in terms of W-functions.

4.6 Fast circular strings in R× S2: ω → 1−, J � λ

Region ω < 1 of GKP strings on the sphere (circular strings) is very similar to the regime
ω > 1 that was studied in sections 3 and 4.1–4.5. In this subsection we will briefly derive
the corresponding expressions x̃ = x̃ (J ) and E = E (J ) for fast (large-J) circular strings
on S2 (ω → 1−). Our treatment is very similar to the case ω → 1+:

E ≡ π E

2
√
λ

=

∞∑
n=0

x̃n (dn ln x̃+ hn) (4.40)

J ≡ π J

2
√
λ

=
1√

1− x̃
·
∞∑
n=0

x̃n (cn ln x̃+ bn) =

∞∑
n=0

x̃n ·
n∑
k=0

(2k − 1)!!

(2k)!!
(cn−k ln x̃+ bn−k) (4.41)

E − J =

∞∑
n=0

x̃n (fn ln x̃+ gn) =

∞∑
n=0

x̃n
[
An + fn ln

x̃

x0

]
, (4.42)

where the complementary parameter is now x̃ ≡ 1 − ω2 → 0−, bn, cn, dn, hn are defined

in (3.21),

fn ≡ dn −
n∑
k=0

(2k − 1)!!

(2k)!!
· cn−k , gn ≡ hn −

n∑
k=0

(2k − 1)!!

(2k)!!
· bn−k (4.43)

and

An ≡ gn + fn lnx0 = gn + 2fn (2 ln 2− J − 1) , (4.44)

while x0 is defined in (4.3) and n = 0 , 1 , 2 , . . . We find:

x̃ = −2W

J
− 1

4J 2

W 2 (9W + 8)

1 +W
− 1

64J 3

W 3
(
140W 3 + 397W 2 + 376W + 120

)
(1 +W )

3 + . . . (4.45)

E − J = 1− 1

4J
(
2W +W 2

)
− 1

16J 2

(
W 2 +W 3

)
− 1

256J 3

W 3
(
11W 2 + 26W + 16

)
1 +W

+ . . . ,

(4.46)

where the argument of the W-function is W
(
−8J e−2J−2

)
. Notice that although the

inverse spin functions x (J ) and x̃ (J ) are different for fast folded and circular strings on
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S2 (cf. (4.38), (4.45)), the expressions for the anomalous dimensions in terms of Lambert W-

functions coincide (cf. (4.39), (4.46)). Nevertheless, and due to the fact that the arguments

of the W-functions have opposite signs in the two cases, the formulas for the anomalous

dimensions γ = γ (J ) will have a periodic sign difference (cf. (D.3)–(D.5)). It would be

interesting to study the operators that are dual to these circular string states.

5 Gubser-Klebanov-Polyakov AdS3 string

Let us now consider the Gubser-Klebanov-Polyakov (GKP) folded closed string that rotates

at the equator of S3 of AdS5 [8]:{
t = κτ, ρ = ρ(σ), θ = κωτ, φ1 = φ2 = 0

}
×
{
θ1 = θ2 = φ1 = φ2 = φ3 = 0

}
. (5.1)

As in the case of the GKP string rotating in R×S2, we will show that the GKP solution

in AdS3 is unique in the sense that it minimizes the energy of an AdS3 string with a single

spin S. Let us again consider the following generic ansatz:{
t = κτ, ρ = ρ(τ, σ), θ = θ (τ, σ) , φ1 = φ2 = 0

}
×
{
θ1 = θ2 = φ1 = φ2 = φ3 = 0

}
. (5.2)

The Polyakov action in the conformal gauge (γab = ηab) is:

SP =
`2

4πα′

∫ (
−ṫ2 cosh2 ρ+ ρ̇2 − ρ′2 +

(
θ̇2 − θ′2

)
sinh2 ρ

)
dτdσ. (5.3)

From this action one can derive the Hamiltonian density of the string that satisfies the first

of the Virasoro constraints, namely

H =
`2

4πα′

{
−κ2 cosh2 ρ+

p2
ρ

4
+ ρ′2 +

p2
θ

4 sinh2 ρ
+ θ′2 sinh2 ρ

}
= 0 ,

pρ = 2 ρ̇

pθ = 2 θ̇ sinh2 ρ.

(5.4)

We want to find the minimum of the energy E subject to the constraint of fixed angular

momentum S. Introducing the Lagrange multiplier ω, the functional to be minimized is

given by:

Y ≡ `2

4πα′

∫
dσ · 2 cosh ρ

√
p2
ρ

4
+ ρ′2 +

p2
θ

4 sinh2 ρ
+ θ′2 sinh2 ρ− ω

[
`2

4πα′

∫
dσ pθ − S

]
,

(5.5)

where the last formula is obtained by substituting κ from (5.4) into the integral of energy

E. Therefore,

δY

δpρ
= 0⇒ pρ = 0⇒ ρ̇ = 0⇒ ρ = ρ(σ) (5.6)

δY

δpθ
= 0⇒ θ̇ = κω ⇒ θ = κω τ + θ̃(σ). (5.7)
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Figure 4. ρ = ρ (σ) and energy/spin of the folded closed string AdS3 string (5.1) for ω > 1.

Combining the second Virasoro constraint ρ̇ ρ′ + θ̇ θ′ sinh2 ρ = 0 with equation (5.6),

we conclude that θ′ = 0, i.e. θ̃(σ) = 0. Again, the vanishing of the functional derivative

δY/δρ(σ) = 0 will give the equation of motion for ρ. Thus the GKP solution (5.1) follows

from the minimization of the string energy in AdS3. Its Polyakov action reads:

SP =
`2

4πα′

∫ (
−ṫ2 cosh2 ρ− ρ′ 2 + θ̇2 sinh2 ρ

)
dτdσ =

=
`2

4πα′

∫ (
−κ2 cosh2 ρ− ρ′ 2 + κ2ω2 sinh2 ρ

)
dτdσ, (5.8)

where `4/α′ 2 = λ is the ’t Hooft coupling. The string essentially contains four segments

extending between ρ = 0 and ρ = ρ0. κ is a factor needed to fix σ (ρ0) = π/2. The

conserved charges that correspond to the two cyclic coordinates t and θ of the action (5.8)

both diverge when ω < 1. For ω > 1 we obtain:

ω2 > 1. Folded closed string.

ρ(σ) = arctanh

[
1

ω
sn

(
κωσ

∣∣∣∣∣ 1

ω2

)]
, κ =

2

πω
·K
(

1

ω2

)
, ω = coth ρ0 (5.9)

E(ω) =
2
√
λ

π

ω

ω2 − 1
· E
(

1

ω2

)
⇒ E ≡ π E

2
√
λ

=

√
1− x
x

· E (1− x) (5.10)

S(ω) =
2
√
λ

π

[
ω2

ω2 − 1
E
(

1

ω2

)
−K

(
1

ω2

)]
⇒ S ≡ π S

2
√
λ

=
1

x
E (1− x)−K (1− x)

(5.11)

γ ≡ E − S =

√
1− x− 1

x
· E (1− x) + K (1− x) , (5.12)

where x ≡ 1− 1/ω2 is the complementary parameter of 1/ω2. The plot of ρ (σ) for various

values of the angular velocity ω > 1 as well as the string’s energy and spin as functions

of ρ0, ω and x may be found in figures 4–5. In figure 6 we have plotted the energy of the

string as a function of its spin E = E(S) parametrically, along with the first 4 terms of

its “short” series (red dashed line, equation (C.16)) and its leading “long” approximation

(blue dashed line, equations (6.29)–(6.30)).
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Figure 5. Energy and spin of the folded closed AdS3 string as functions of ω > 1 and x > 0.

5.1 Long strings: ω → 1+, S �
√
λ

In the long strings-regime, ω → 1+ (S � λ), the formulas for the energy and spin have the
following expansions:

E =
2
√
λ

πω
·
{

ω2

ω2 − 1
+

1

2π

∞∑
n=0

Γ(n+ 1/2)Γ(n+ 3/2)

n!(n+ 1)!

[
2ψ(n+ 1)− 2ψ(n+ 1/2)−

− ln(1− 1/ω2)− 1

(n+ 1) (2n+ 1)

]
· (1− 1/ω2)n

}
(5.13)

S =
2
√
λ

π
·
{

ω2

ω2 − 1
− 1

4π

∞∑
n=0

(Γ(n+ 1/2))
2

n!(n+ 1)!

[
2ψ(n+ 1)− 2ψ(n+ 1/2)− ln(1− 1/ω2)+

+
1

n+ 1

]
· (1− 1/ω2)n

}
. (5.14)

The two series may also be written in terms of the complementary parameter x ≡ 1 −
1/ω2 → 0+:

E ≡ π E

2
√
λ

=
√

1− x ·

{
1

x
+

∞∑
n=0

xn (dn lnx+ hn)

}
=

=
1

x
−
∞∑
n=0

xn ·

{
(2n− 1)!!

(2n+ 2)!!
+

n∑
k=0

(2k − 3)!!

(2k)!!
(dn−k lnx+ hn−k)

}
(5.15)

S ≡ π S

2
√
λ

=
1

x
+

∞∑
n=0

xn (cn lnx+ bn) . (5.16)
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Figure 6. Energy vs spin of the folded closed AdS3 string for ω > 1.

The coefficients that appear in series (5.15) and (5.16) are given by:10

dn = −1

4

(
(2n− 1)!!

(2n)!!

)2

· 2n+ 1

n+ 1
, hn = −dn ·

[
4 ln 2 + 4 (Hn −H2n) +

1

n+ 1
− 2

2n+ 1

]

cn = − dn
2n+ 1

, bn = −cn ·
[
4 ln 2 + 4 (Hn −H2n) +

1

n+ 1

]
, (5.17)

where n = 0 , 1 , 2 , . . .

5.2 Short-long strings duality

Solving (5.10) and (5.11) for E(k) and K(k) and substituting into Legendre’s relation (3.22),

we get the following formula between classical folded short and long strings spinning in

AdS3 ⊂ AdS5 [38]:

1

ω
ES′ +

1

ω′
E′S − SS′ = 2λ

π
, (5.18)

where the respective arguments of the primed and unprimed charges are k = 1/ω2 and

k′ = x = 1/ω′ 2, and satisfy k+ k′ = 1. Again we see that large values of ω′ →∞ (”short”

strings) correspond to values of ω → 1+ near unity (”long” strings) and (5.18) provides a

map between the corresponding energies and spins.11

10As a reminder, 0!! = 1, (−1)!! = 1, (−3)!! = −1.
11This subsection has been included here for reasons of completeness. For more, see [38]. One may also

formulate short-long dualities that mix the charges of the AdS3 and R× S2 strings:

ω′

ω
E ′1 E2 +

ω

ω′
E1 E ′2 − ω ω′ E2 E ′2 =

π

2
& S1 J ′2 + S ′1 J2 + S1 S ′1 =

π

2
(5.19)

1

ω′
S1 E ′2 +

1

ω
S ′1 E2 =

π

2
&

1

ω ω′
E1 E ′1 − J2 J ′2 =

π

2
, (5.20)

where the index 1 refers to the string energy and spin in AdS3 and index 2 denotes the corresponding

charges in R× S2.
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6 Inverse spin functions and anomalous dimensions on AdS3

6.1 Inverse spin function

Following the method of subsection 4.1, we will now invert series (5.16) for x = x (S). First

solve (5.16) for lnx:

S =
1

x
+
∞∑
n=0

xn (cn lnx+ bn)⇒

⇒ lnx =

[
− 1

c0 x
+
S − b0
c0

−
∞∑
n=1

bn
c0
xn

]
·
∞∑
n=0

(−1)n
( ∞∑
k=1

ck
c0
xk

)n
. (6.1)

This essentially reduces to an equation of the following form (cf. equation (4.2)):

x = x0 · exp

[
a0

x
+

∞∑
n=1

an x
n

]
= x0 · exp

(a0

x
+ a1 x+ a2 x

2 + a3 x
3 + . . .

)
, (6.2)

where the an’s are linear functions of S determined from (6.1) (a0 = −c−1
0 = −4), and x0

is defined as:

x0 ≡ exp

[
S − b0
c0

+
c1

c2
0

]
= 16 e4S+3/2. (6.3)

Equation (6.2), that gives the inverse spin function of a string that rotates in AdS3

differs significantly from the corresponding inverse spin function in S5, (4.2). For one, it

contains the 1/x term but also x0 is now an increasing function of S. The point is that we

cannot solve equation (6.2) by the algorithm of subsection 4.1. Instead, a slightly different

procedure has to be applied. Suppose x∗ solves the following equation:

x∗ = x0 · ea0/x∗ ⇒ x∗ =
a0

W (a0/x0)
= x0 · eW (a0/x0), (6.4)

where W (z) is again the Lambert W-function (see (A.1) in appendix A). Essentially x∗ is

the leading-order solution of equation (6.2).12 Now set:

x = x∗ · ev, (6.5)

with v → 0, and substitute it into equation (6.2). We obtain, using also (6.4):

v − a0

x∗

∞∑
k=1

(−1)k
vk

k!
−
∞∑
n=1

an (x∗)n env = 0. (6.6)

This series may be inverted for v using the standard series inversion. First we expand
the exponential in (6.6):(

1 +
a0

x∗
−
∞∑
k=1

k ak (x∗)
k

)
v −

∞∑
n=2

[
(−1)

n a0

x∗
+

∞∑
k=1

kn ak (x∗)
k

]
vn

n!
=

∞∑
n=1

an (x∗)
n
. (6.7)

12Observe though that since we solve (6.1) in the region where S → +∞, x→ 0+ and a0 < 0, x0 → +∞,

we must choose the W−1 branch of Lambert’s function. We’ll return to this issue later.
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The inverse series is a power series in x∗. It can be obtained by using a symbolic calculations

package such as Mathematica. The result is:

v =
a1

a0
(x∗)2 +

[
a2

a0
− a1

a2
0

]
(x∗)3 +

[
a1

a3
0

+
3 a2

1 − 2 a2

2 a2
0

+
a3

a0

]
(x∗)4 + . . . (6.8)

Then x in (6.5) is given by

x = x∗ +
a1

a0
(x∗)3 +

[
a2

a0
− a1

a2
0

]
(x∗)4 +

[
a3

a0
+

2 a2
1 − a2

a2
0

+
a1

a3
0

]
(x∗)5 + . . . (6.9)

and 1/x by

1

x
=

1

x∗
− a1

a0
x∗ −

[
a2

a0
− a1

a2
0

]
(x∗)2 −

[
a3

a0
+

a2
1 − a2

a2
0

+
a1

a3
0

]
(x∗)3 + . . . (6.10)

We may now expand (6.1), obtain the coefficients an and, by substituting them

into (6.9)–(6.10), find the corresponding expressions for x and 1/x (only the first few

terms are shown):

x = x∗ +

(
S

8
+

3

64

)
(x∗)3 +

(
S

16
+

23

1024

)
(x∗)4 +

(
S2

32
+

55S

1024
+

349

24 576

)
(x∗)5 + . . .

(6.11)

1

x
=

1

x∗
−
(
S

8
+

3

64

)
x∗ −

(
S

16
+

23

1024

)
(x∗)2 −

(
S2

64
+

43S

1024
+

295

24 576

)
(x∗)3 + . . .

(6.12)

6.2 Anomalous dimensions

Just as for the case of strings on S2, the anomalous scaling dimensions γ = E − S of the

AdS3 string may be expressed as a function of S:

E − S =

∞∑
n=0

xn (fn lnx+ gn) =

∞∑
n=0

xn
[
An + fn ln

x

x0

]
, E ≡ πE

2
√
λ
, S ≡ πS

2
√
λ
, (6.13)

where,

x0 ≡ exp

[
S − b0
c0

+
c1

c2
0

]
= 16 e4S+3/2 (6.14)

and we also define

fn ≡ −cn −
n∑
k=0

(2k − 3)!!

(2k)!!
· dn−k

gn ≡ −bn −
(2n− 1)!!

(2n+ 2)!!
−

n∑
k=0

(2k − 3)!!

(2k)!!
· hn−k , n = 0, 1, 2, . . . (6.15)
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The coefficients An are defined as:

An ≡ gn + fn lnx0 = gn + fn

(
4 ln 2 + 4S +

3

2

)
. (6.16)

For later purposes, it will be useful to obtain the expression of the anomalous dimen-

sions γ = E − S in terms of x∗. We first insert (6.2) into (6.13):

E − S =
a0 f0

x
+A0 +

∞∑
n=1

xn

[
An + a0 fn+1 +

n−1∑
k=0

fn−k−1 ak+1

]
. (6.17)

Subsequently we plug series (6.11) and (6.12) into (6.17), which leads us to the following

result (for simplicity, we omit higher-order terms):

E − S =
2

x∗
−
(

2S +
5

4

)
− 9x∗

32
−
(
S
32

+
35

256

)
(x∗)2 −

(
5S
128

+
2.213

24.576

)
(x∗)3−

−
(
S2

256
+

361S
8.192

+
6.665

98.304

)
(x∗)4 −

(
19S2

2.048
+

1.579S
32.768

+
433.501

7.864.320

)
(x∗)5 + . . . . (6.18)

At this point, a note analogous to that made for strings rotating in R×S2, concerning

the structure of the large-spin expansion of the inverse spin function and the anomalous

dimensions of strings spinning in AdS3, should be made. Consider the following kinds of

terms (n = 0, 1, 2, . . .):

Leading Terms (L):
lnn S
Sn

Next-to-Leading/Subleading Terms (NL):
lnn S
Sn+1

NNL Terms:
lnn S
Sn+2

... (6.19)

In what follows we shall find that, in the expansion of the inverse spin function x =

x (S), all the leading terms lnn S/Sn are absent whereas, in the anomalous dimensions

γ = E − S, all of the above terms are present. Therefore the large-spin expansion of γ

assumes the following form:

E − S = ρc lnS +

∞∑
n=0

n∑
k=0

ρ(nk)
lnk S
Sn

= ρc lnS + ρ0 +

∞∑
n=1

ρ(nn)
lnn S
Sn

+

∞∑
n=2

ρ(nn−1)
lnn−1 S
Sn

+

+
∞∑
n=3

ρ(nn−2)
lnn−2 S
Sn

+ . . .+
ρ1

S
+
ρ2

S2
+
ρ3

S3
+ . . . (6.20)
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Note also the presence of the exceptional (super-) leading term f lnS. Equivalently we

may write:

E − S = f ln
(
S/
√
λ
)

+

∞∑
n=0

n∑
k=0

f(nk)

lnk
(
S/
√
λ
)

Sn
= f ln

(
S/
√
λ
)

+ f0+

+

∞∑
n=1

f(nn)

lnn
(
S/
√
λ
)

Sn
+

∞∑
n=2

f(nn−1)

lnn−1
(
S/
√
λ
)

Sn
+

∞∑
n=3

f(nn−2)

lnn−2
(
S/
√
λ
)

Sn
+

+ . . .+
f1

S
+
f2

S2
+
f3

S3
+ . . . , (6.21)

where

ρc =
π f

2
√
λ
, ρ0 =

π

2
√
λ

(
f0 + f ln

2

π

)
, ρ1 =

(
π

2
√
λ

)2(
f1 + f11 ln

2

π

)

ρ2 =

(
π

2
√
λ

)3(
f2 + f21 ln

2

π
+ f22 ln2 2

π

)

ρ3 =

(
π

2
√
λ

)4(
f3 + f31 ln

2

π
+ f32 ln2 2

π
+ f33 ln3 2

π

)

ρ(nn) =

(
π

2
√
λ

)n+1

· f(nn) , ρ(nn−1) =

(
π

2
√
λ

)n+1(
f(nn−1) + n f(nn) ln

2

π

)

ρ(nn−2) =

(
π

2
√
λ

)n+1(
f(nn−2) + (n− 1) f(nn−1) ln

2

π
+
n (n− 1)

2
ln

2

π

)
. (6.22)

6.3 Leading terms

We may now employ formula (6.4) in order to calculate the leading in S terms of se-

ries (6.13):

x∗ = x0 · eW−1(a0/x0) =
a0

W−1 (a0/x0)
=

−4

W−1

[
−e−4S−3/2/4

] . (6.23)

Note that, as S → +∞ we should have x∗ → 0+, behavior that is only possible if W → −∞,
i.e. in the W−1 branch of Lambert’s function (on the contrary W0 → 0− for S → +∞,
which would cause x∗ to blow up as x∗ → +∞, cf. figure 8). Using expansion (A.3) of the
W-function, we may obtain the inverse spin function x = x (S) up to leading order. Let us
first calculate 1/x∗:

1

x∗
= S +

lnS
4

+ ln 2 +
3

8
+

∞∑
n=1

(−1)
n+1

4n

(
4 ln 2 + 3

8S

)n
−

∞∑
n,q=0

∞∑
m=1

m∑
p=0

(−1)
m

4n+m+1m!

[
n+m

n+ 1

]
·

·
(
−n−m

q

)(
m

p

)
lnp S
Sn+m

(
2 ln 2−

∞∑
k=1

(−1)
k

k

(
4 ln 2 + 3

8S

)k)m−p(
4 ln 2 + 3

8S

)q
(6.24)
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where, for large S, we have written

ln

[
4S + 2 ln 2 +

3

2

]
= lnS + 2 ln 2 +

∞∑
n=1

(−1)n+1

n

(
4 ln 2 + 3

8S

)n
(6.25)

and the unsigned Stirling numbers of the first kind

[
n+m

n+ 1

]
are defined in appendix A.

To obtain x∗, we expand the inverse of series (6.24):

x∗ =
1

S
·

{
1 +

lnS
4S

+

(
ln 2 +

3

8

)
1

S
+ 2

∞∑
n=1

(−1)
n+1

n

(4 ln 2 + 3)
n

8Sn+1
−

∞∑
n,q=0

∞∑
m=1

m∑
p=0

(−1)
m

4n+m+1m!
·

·
[
n+m

n+ 1

](
−n−m

q

)(
m

p

)
lnp S
Sn+m+1

(
2 ln 2−

∞∑
k=1

(−1)
k

k

(
4 ln 2 + 3

8S

)k)m−p
·

·
(

4 ln 2 + 3

8S

)q }−1

. (6.26)

A few comments are in order, before proceeding to the calculation of the corresponding

series for the anomalous dimensions. First observe that series (6.24) for 1/x∗ contains all

kinds of small terms (i.e. terms→ 0 as S → ∞): leading terms lnn S/Sn, subleading terms

lnn S/Sn+1, next-to-subleading terms lnn S/Sn+2, etc. up to 1/Sn terms (n = 1, 2, 3 . . .).

Series (6.26) for x∗ on the contrary, does not contain leading terms. It is to be expected

that (x∗)2 will not contain leading and subleading terms, in (x∗)3 leading, subleading and

next-to-subleading terms will be absent, etc. Therefore, to calculate the E − S series up

to leading order in S, we need no more than the first two terms of (6.18),

E − S
∣∣∣
(L+...)

=
2

x∗
−
(

2S +
5

4

)
, (6.27)

since the other terms of series (6.18) only contribute to NL orders. We obtain,

E − S
∣∣∣
(L+...)

=
1

2
lnS +

(
2 ln 2− 1

2

)
+

∞∑
n=1

(−1)
n+1

2n

(
4 ln 2 + 3

8S

)n
− 1

2

∞∑
n,q=0

∞∑
m=1

m∑
p=0

(−1)
m

4n+m
·

· 1

m!

[
n+m

n+ 1

](
−n−m

q

)(
m

p

)
lnp S
Sn+m

(
4 ln 2 + 3

8S

)q [
2 ln 2−

∞∑
k=1

(−1)
k

k
·

·
(

4 ln 2 + 3

8S

)k ]m−p
. (6.28)

For p = m and n = q = 0 we read off the coefficients of the leading terms:

ρ(mm) = −1

2

(−1)m

4mm!
·

[
m

1

](
−m

0

)(
m

m

)
=

(−1)m+1

4m
1

2m
, (6.29)
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which agrees with the results of [38] (we have used the first property of unsigned Stirling

numbers in (A.5)). Also,

ρc =
1

2
& ρ0 = 2 ln 2− 1

2
. (6.30)

6.4 Next-to-leading terms

To extract the subleading coefficients, we have to keep the following terms of series (6.18)

E − S
∣∣∣
(L+NL+...)

=
2

x∗
−
(

2S +
5

4

)
− 9x∗

32
− S

32
(x∗)2 (6.31)

and read off the terms that contribute to subleading order from equations (6.24)–(6.26).

The result is (with the aid of (A.5)):

ρ(m+1,m) =
1

2

(−1)m+1

4m+1

[
Hm +

m

4
+ 1− 4 ln 2

]
, (6.32)

in conformity with [38]. We also confirm the coefficient ρ1 in expansion (6.20):

ρ1 =
ln 2

2
− 1

8
. (6.33)

6.5 NNL terms

We may also go to higher subleading orders, e.g. the NNL one. In this case the terms

of (6.18) that contribute are:

E − S
∣∣∣
L+NL+NNL+...

=
2

x∗
−
(

2S +
5

4

)
− 9x∗

32
−
(
S
32

+
35

256

)
(x∗)2 − 5S

128
(x∗)3

− S
2

256
(x∗)4 . (6.34)

We now can read off all the NNL terms (using property (A.5) of unsigned Stirling numbers):

ρ(m+2,m) =
(−1)m+1

4m+3
· (m+ 1) ·

{
H2
m+1 −H

(2)
m+1 +

1

2
(m− 16 ln 2 + 5) ·Hm+1 +

m2

24
−

−
(

2 ln 2 +
1

24

)
m+ 16 ln2 2− 10 ln 2

}
. (6.35)

For the coefficient ρ2 of (6.20) we find:

ρ2 = − ln2 2

4
+

9 ln 2

32
− 5

128
. (6.36)

The above results agree completely with the (first three) terms of the series (6.21) that

were computed in [36, 72].
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6.6 Higher-order terms

Similarly, we may get going to higher and higher orders. Using Mathematica we find e.g.

(cf. (D.7)),

ρ3 =
ln3 2

6
− 3 ln2 2

8
+

11 ln 2

64
− 7

384

ρ4 = − ln4 2

8
+

43 ln3 2

96
− 51 ln2 2

128
+

937 ln 2

8192
− 1919

196.608

ρ5 =
ln5 2

10
− 49 ln4 2

96
+

23 ln3 2

32
− 777 ln2 2

2048
+

1963 ln 2

24.576
− 7423

1.310.720

ρ6 = − ln6 2

12
+

17 ln5 2

30
− 581 ln4 2

512
+

11.401 ln3 2

12.288
− 67.715 ln2 2

196.608
+

30.085 ln 2

524.288
− 218.431

62.914.560
.

We may also express formulas (6.11)–(6.18) for the inverse spin function x (S) and the

anomalous dimensions γ = E − J of the long operators Tr
[
Z DS+Z

]
+ . . . of N = 4 SYM

at strong ’t Hooft coupling in terms of Lambert’s W-function. Plugging equation (6.23)

into (6.11) and (6.18) we find, respectively (for simplicity, only the first few terms are

displayed):

x = − 4

W−1
− 8S + 3

(W−1)3 +

[
16S +

23

4

]
1

(W−1)4 −
[
32S2 + 55S +

349

24

]
1

(W−1)5 +

[
152S2+

+
711S

4
+

3745

96

]
1

(W−1)6 −
[
160S3 + 704S2 +

4765S

8
+

26.659

240

]
1

(W−1)7 +

+

[
3728S3

3
+

6077S2

2
+

48.955S

24
+

2.543.083

7680

]
1

(W−1)8 − . . . , (6.37)

E − S = − W−1

2
−
(

2S +
5

4

)
+

9

8W−1
−
[
S
2

+
35

16

]
1

(W−1)2 +

[
5S
2

+
2213

384

]
1

(W−1)3−

−
[
S2 +

361S
32

+
6665

384

]
1

(W−1)4 +

[
19S2

2
+

1579S
32

+
433501

7680

]
1

(W−1)5−

−
[

10S3

3
+

259S2

4
+

81.799S
384

+
2.963.887

15.360

]
1

(W−1)6 +

[
136S3

3
+

3069S2

8
+

+
175.481S

192
+

2.350.780.111

3.440.640

]
1

(W−1)7 − . . . , (6.38)

where the arguments of the W-functions are W−1

(
−e−4S−3/2/4

)
and E ≡ πE/2

√
λ, S ≡

πS/2
√
λ. Just as for strings in R × S2, the terms of both series (6.37) and (6.38) are

organized in decreasing order of importance, e.g. in (6.38) the first two terms contain all

the leading coefficients, the fist four terms all of the subleading coefficients, and so on. Our

results can be verified with a direct calculation in Mathematica (see (D.6), (D.7)).
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7 Discussion

We have computed the large-spin expansion of anomalous dimensions of two single-trace

operators of N = 4 super Yang-Mills theory at strong coupling, namely

OJ = Tr
[
ΦZm ΦZJ−m

]
+ . . . & OS = Tr

[
Z DS+Z

]
+ . . . , (7.1)

where Φ is any scalar field of N = 4 SYM that is not used to build Z. According to the

AdS/CFT correspondence, the anomalous dimensions of the operators under consideration

are given by the dispersion relation of their dual AdS5 × S5 strings. Operator OJ is dual

to single-spin strings that rotate inside R× S2, while OS is dual to single-spin strings that

rotate inside AdS3. We have expressed the anomalous dimensions γ of the above (long)

gauge-theory operators in terms of Lambert’s W-function. This results in more compact

expressions for γ’s and simplify the derivation of the corresponding series. We have also

found a duality between short and long strings. For each solution of energy E and spin

J , there exists a dual solution whose energy E′ and spin J ′ are related to the original

by equations (3.23)–(3.24). These relations are purely classical (λ � 1) but it would be

interesting to see if and how they can be promoted to the quantum level.

The inversion of elliptic integrals and Jacobi elliptic functions w.r.t. the parameter m,

is an active field of research in computational mathematics.13 It seems though that due

to the presence of the logarithmic singularity at m = 1 (cf. appendix B), no significant

progress in actually calculating these inverses has yet been made. In our case, we have

noticed that equation (4.2) may be solved by the Lagrange-Bürmann formula and that the

result may then be expressed in terms of Lambert’s W-function. In the case of AdS3 a

slightly different process had to be followed, as the equation to be inverted (6.2) is more

difficult, because of the additional 1/x term on the r.h.s.14 The presence of this 1/x term,

in fact leads to the appearance of the branch W−1 of Lambert’s function instead of W0 and

subsequently to logarithmic instead of exponential corrections for the inverse spin function

and the anomalous dimensions.

Equations (4.38)–(4.39) and (6.37)–(6.38) that we have found, are only valid up to a

certain subleading order. It would be interesting if generalizations to all subleading orders

via a general formula or a recursive process could be found. As we have already said,

we believe that the Lambert functions will keep appearing to all subleading orders. One

could also consider changing branches in Lambert’s W-functions. Changing between the

Lambert branches W0 and W−1 means that the inverse spin function either blows up (i.e.

x → ±∞) or in general does not have the desired behavior x → 0. Conversely, we saw

that a single sign flip in the argument of Lambert’s function (cf. (4.39), (4.46)) carries

us from folded (ω > 1) to circular (ω < 1) strings on S2 and vice-versa. This could be

the manifestation of a more profound link between the two domains. It is also possible

that the Lambert function formalism could help make apparent the symmetries that are

13See e.g. [73].
14This difficulty partly accounts for the somewhat unconventional organization of our paper, discussing

the GKP configuration (II) before (I).
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hidden inside the large-spin expansions (e.g. one such symmetry could be the near conjugate

symmetry Wk (z) = W−k (z)).

Our results from the study of GKP strings on AdS (6.38) point out that the anomalous

dimensions of long twist-2 operators of N = 4 SYM theory at strong coupling may be

expressed in terms of Lambert’s W-function. This could also be the case at weak coupling.

For the cousin theory of QCD, long twist operators (responsible for scaling violations in

DIS) could also admit an analogous Lambert parametrization. Note that the exact 3-loop

running coupling constant of QCD has already been found to be expressible in terms of

Lambert’s W-function [74–77]:

αs
(
Q2
)

=
−π/c

1− c2/c2 +W (z)
, (7.2)

where c2 is a renormalization scheme-dependent constant and

β0 ≡
1

4

(
11− 2

3
nf

)
, c ≡ 1

4β0

[
102− 38

3
nf

]
, z ≡ −1

c
exp

[
−1 +

c2
c2
− β0 t

c

]
, t ≡ ln

(
Q2

Λ2

)
.

It would be surprising if the anomalous dimensions of long, twist QCD operators didn’t

have anything to do with W (at least in strong coupling).15 Thermal backgrounds, as

well as dilaton geometries within holographic frameworks [78] could also be susceptible to

analogous W-formulations since, in the language of holography, Einstein’s equations are

nothing more than RG equations and these have also been solved in terms of Lambert’s

W-function [79, 80]. Our analysis suggests that a generic feature of the solution of the

RG equations at any loop-order is that they can be expressed in terms of Lambert’s W-

function (to see this compare equation (6.2) with the integral of the generic RG-equation

β(x) = µ2dx/dµ2 = −x2
∑
βn x

n.).

All of our expressions for long/fast strings have been verified with Mathematica (see

appendix D). We have also considered short strings (appendix C). Since the elliptic integrals

do not have a logarithmic singularity for eccentricities smaller than one, E = E (J ) and

E = E (S) can be obtained by simple series reversion in Mathematica. It is possible that

these short series also afford an analysis into sums of W-functions. Compact forms for

the short series would be rather interesting because of the relationship that short spinning

strings bear to closed strings rotating in flat spacetimes. In this case E =
√
π S, which is

just the first term of the short series (either in R×S2 or AdS3). In figure 7 we have plotted

in a common diagram the energy as a function of spin, for all these three cases of folded

closed GKP strings: (3.11)–(3.12) and (3.14)–(3.15) for strings on R×S2, (5.10)–(5.11) for

strings in AdS3 and E =
√
π S for strings rotating in flat spacetime.

It is known that both GKP strings (I) and (II) that we have studied in our paper,

can be formed by the superposition of other elementary string-excitations, spiky strings

and giant magnons (GMs) respectively. It would be then natural to inquire whether our

findings have any consequences whatsoever to the computation of the general dispersion

relations of these elementary excitations.

15Note that the branch of the W-function in the QCD case (7.2) depends on the number of flavors nf .

For c > 0⇔ z < 0 the relevant branch is W−1, while for c < 0⇔ z > 0 the branch is W0 [76].
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Figure 7. E = E (S,J ) for GKP strings in AdS3, S2 and flat spacetimes.

As we have already mentioned in the introduction, strings on R × S2 are the sum of

two giant magnons of maximum momentum p = π and angular momentum J/2. The

all-loop, infinite-volume Beisert dispersion relation (1.5) [42], converges to the Hofman-

Maldacena [41] relation (1.4) at strong coupling and receives finite-size corrections as the

volume is gradually decreased. Arutyunov, Frolov and Zamaklar (AFZ) [53] and Astolfi,

Forini, Grignani and Semenoff [54] have calculated the finite-size corrections to the giant

magnon (1.6), while Klose and McLoughlin [62] have provided the leading terms (1.7).

Our result (4.39) completely agrees with formula (3.20) of AFZ [53].16 We have also

found that the finite-size corrections of giant magnons can be expressed in terms of Lam-

bert’s function W
(
−16J 2 cot2 (p/2) e−2J csc p/2−2

)
as follows:17

E − J = sin
p

2
+

1

4J 2
tan2 p

2
sin3 p

2

[
W +

W 2

2

]
− 1

16J 3
tan4 p

2
sin2 p

2

[
(3 cos p+ 2)W 2+

+
1

6
(5 cos p+ 11)W 3

]
− 1

512J 4
tan6 p

2
sin

p

2

{
(7 cos p− 3)2 W 2

1 +W
−

− 1

2
(25 cos 2p− 188 cos p− 13)W 2 − 1

2
(47 cos 2p+ 196 cos p− 19)W 3−

− 1

3
(13 cos 2p+ 90 cos p+ 137)W 4

}
+ . . . (7.3)

Upon expanding (7.3) we recover formulas (5.14) of AFZ [53] and (39) of Astolfi-Forini-

Grignani-Semenoff [54]. Especially for the above formula, we have set E ≡ πE/
√
λ and

16In comparing our results to those of AFZ one should note a difference in the definition of J ≡ πJ/2
√
λ,

given in AFZ as J{AFZ} ≡ 2πJ/
√
λ.

17Our result is valid in the conformal gauge of the string Polyakov action (γab = ηab) and the static time

gauge, t = τ . The details of the derivation will be given in a forthcoming publication.
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J ≡ πJ/
√
λ. The Klose-McLoughlin series (1.7) is retrieved by letting Leff = 2J csc p/2:

E − J =

√
λ

π
sin

p

2

{
1 + L−2

eff tan2 p

2

(
W +

1

2
W 2

)}
, (7.4)

so that the arguments of the W-functions are W
(
−4L2

eff cos2 (p/2) e−Leff
)
. We should

note in passing that the Lüscher corrections that were first calculated in [58] (equation (6)

ibid.), completely agree with AFZ and therefore our results agree with [58] too. One could

also consider further extending these findings to the GMs of ABJM Theory.

Similar considerations should also apply to spiky strings [81], since strings on AdS3

can be thought of as 2-spike Kruczenski strings. One may keep thinking more and more

applications of the Lambert formalism. For example the expression of finite-size correc-

tions to the energy of GMs in γ-deformed backgrounds18 [63] is very reminiscent of the

undeformed ones (1.6):

E − J =

√
λ

π
sin

p

2

{
1− 4 sin2 p

2
cos Ξ e−2−2πJ/

√
λ sin p

2 + . . .

}
, Ξ ≡ 2π (n2 − β J)

23/2 cos3 p/4
,

(7.5)

where n2 is the integer string winding number and β is the real deformation parameter,

satisfying |n2 − β J | ≤ 1/2 [65]. For more applications in this direction, one could consult

the review article [82]. Finally, finite-size effects may be studied for higher dimensional

analogues of GMs and single spike strings, e.g. for M2-branes on AdS4×S7 [83]. Our results

are also directly applicable to stringy membranes that rotate inside AdS4/7× S7/4 [84, 85].
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A Lambert’s W-function

In this appendix we briefly review Lambert’s W-function. It is defined by the following

implicit relation:

W (z) eW (z) = z ⇔W (z ez) = z. (A.1)

18Aka real Lunin-Maldacena backgrounds.
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W (x) has two real branches, W0 (x) in
[
−e−1,∞

)
and W−1 (x) in

[
−e−1, 0

]
, plotted in

figure 8. The branch point is
(
−e−1,−1

)
. The Taylor series at x = 0 for each of the two

branches are [86]:

W0 (x) =
∞∑
n=0

(−1)n
(n+ 1)n

(n+ 1)!
· xn+1 =

∞∑
n=1

(−1)n+1 n
n−1

n!
· xn , |x| ≤ e−1 (A.2)

W−1 (x) = ln |x| − ln ln |x|+
∞∑
n=0

∞∑
m=1

(−1)n

m!

[
n+m

n+ 1

]
(ln |x|)−n−m (ln ln |x|)m , (A.3)

where the unsigned Stirling numbers of the first kind,
[
n+m
n+1

]
can be defined recursively

as [87]:[
n

k

]
=

[
n− 1

k − 1

]
+ (n− 1)

[
n− 1

k

]
&

[
n

0

]
=

[
0

k

]
= 0 ,

[
0

0

]
= 1 , n, k ≥ 1. (A.4)

In our paper we have used the following identities of unsigned Stirling numbers:[
n

1

]
= (n− 1)! ,

[
n

2

]
= (n− 1)!Hn−1 ,

[
n

3

]
=

1

2
(n− 1)!

[
H2
n−1 −H

(2)
n−1

]
. (A.5)

The W-function also provides a series for the expression xx
x...

. The result is:

xx
x...

= (xz)∞ =
W (− lnx)

− lnx
. (A.6)

Due to its defining property (A.1), the derivatives and antiderivatives of Lambert’s

function get significantly simplified. Below, we give a list of some useful expressions in-

volving the W0 function:

W ′ (x) =
W (x)

x (1 +W (x))
(A.7)

xW ′ (x) =

∞∑
n=1

(−1)n+1 n
n

n!
· xn =

W (x)

1 +W (x)
(A.8)

x
(
xW ′ (x)

)′
=
∞∑
n=1

(−1)n+1 n
n+1

n!
· xn =

W (x)

(1 +W (x))3 (A.9)

∫
W (x) dx = x

(
W (x)− 1 +

1

W (x)

)
(A.10)

∫
W (x)

x
dx =

∞∑
n=1

(−1)n+1 n
n−2

n!
· xn = W (x) +

W 2 (x)

2
(A.11)

∫
1

x

∫
W (x)

x
dx2 =

∞∑
n=1

(−1)n+1 n
n−3

n!
· xn = W (x) +

3W 2 (x)

4
+
W 3 (x)

6
. (A.12)
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Figure 8. Lambert’s W-function.

B Elliptic integrals and Jacobian elliptic functions

This appendix is a brief reminder of the definitions and some basic properties of elliptic

integrals and Jacobian elliptic functions that we have used in our paper. Our conventions

are similar to those of Abramowitz-Stegun [69].

Jacobian elliptic functions.

u ≡
∫ ϕ

0

dθ(
1−m sin2 θ

)1/2 , ϕ ≡ am(u|m) , ∆(ϕ) ≡ (1− sin2 θ)1/2 ≡ dn(u|m)

x = sinϕ ≡ sn(u|m) , cosϕ ≡ cn(u|m).

Elliptic integral of the first kind.

F
(
ϕ
∣∣m) ≡ ∫ ϕ

0

(
1−m sin2 θ

)−1/2
dθ =

∫ x

0

[(
1− t2

) (
1−mt2

)]−1/2
dt = u (B.1)

K (m) ≡ F
(π

2

∣∣∣m) =
π

2
· 2F1

[
1

2
,
1

2
; 1;m

]
(complete) (B.2)

K (m) =
π

2
·
∞∑
n=0

(
(2n− 1)!!

(2n)!!

)2

mn =

=
π

2
·

[
1 +

(
1

2

)2

m+

(
1 · 3
2 · 4

)2

m2 +

(
1 · 3 · 5
2 · 4 · 6

)2

m3 + . . .

]
, |m| < 1

(B.3)
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K (m) =
1

2π
·
∞∑
n=0

(
Γ(n+ 1/2)

n!

)2 [
2ψ(n+ 1)− 2ψ(n+

1

2
)− ln(1−m)

]
(1−m)n =

=

∞∑
n=0

(
(2n− 1)!!

(2n)!!

)2 [
ψ(n+ 1)− ψ(n+

1

2
)− 1

2
ln(1−m)

]
(1−m)n ,

|1−m| < 1, (B.4)

where ψ(z) ≡ Γ′(z)/Γ(z) is the psi (digamma) function.

Elliptic integral of the second kind,

E
(
ϕ
∣∣m) ≡ ∫ ϕ

0

(
1−m sin2 θ

)1/2
dθ =

∫ x

0

(
1− t2

)−1/2 (
1−mt2

)1/2
dt (B.5)

E (m) ≡ E
(π

2

∣∣∣m) =
π

2
· 2F1

[
−1

2
,
1

2
; 1;m

]
(complete) (B.6)

E (m) = −π
2
·
∞∑
n=0

(
(2n− 1)!!

(2n)!!

)2 mn

2n− 1
=

=
π

2
·

[
1−

(
1

2

)2 m

1
−
(

1 · 3
2 · 4

)2 m2

3
−
(

1 · 3 · 5
2 · 4 · 6

)2 m3

5
+ . . .

]
, |m| < 1 (B.7)

E (m) = 1− 1

2π
·
∞∑
n=0

Γ(n+ 1/2)Γ(n+ 3/2)

n!(n+ 1)!

[
ln(1−m) + ψ(n+ 1/2) + ψ(n+ 3/2)−

− ψ(n+ 1)− ψ(n+ 2)

]
(1−m)n+1 =

= 1 +
1

2π
·
∞∑
n=0

Γ(n+ 1/2)Γ(n+ 3/2)

n!(n+ 1)!

[
2ψ(n+ 1)− 2ψ(n+ 1/2)− ln(1−m)−

− 1

(n+ 1) (2n+ 1)

]
(1−m)n+1 , |1−m| < 1. (B.8)

C Short and slow strings

In this appendix we summarize our computations on short and slow GKP strings. We have

the following cases.

• R×S2 folded strings (ω > 1): for short folded strings on S2 (ω →∞) the expansions

of energy (3.14) and spin (3.15) in terms of the angular frequency ω assume the

following forms (cf. appendix B):

E =
√
λ ·

∞∑
n=0

(
(2n− 1)!!

(2n)!!

)2 1

ω2n+1
(C.1)

J =
√
λ ·

∞∑
n=1

(
(2n− 1)!!

(2n)!!

)2 2n

2n− 1

1

ω2n
. (C.2)
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Series (C.2) can be inverted with a symbolic computations program, then the inverse
spin function x = x (J ) may be inserted into the expression for energy (C.1), leading
to E = E (J ). The results are:

x = 1− 4J
π

+
6J 2

π2
− 3J 3

π3
− 5J 4

4π4
+

9J 5

16π5
+

21J 6

16π6
+

35J 7

64π7
− 459J 8

512π8
− 5.835J 9

4.096π9
− . . .

(C.3)

E = π1/2J 1/2 +
J 3/2

4π1/2
+

3J 5/2

32π3/2
+
J 7/2

128π5/2
− 61J 9/2

2.048π7/2
− 201J 11/2

8.192π9/2
+

199J 13/2

65.536π11/2
+ . . .

(C.4)

The latter may also be written as follows:

E =
(

2
√
λJ
)1/2

·
[
1 +

J

8
√
λ

+
3J2

128λ
+

J3

1 024λ3/2
− 61J4

32 768λ2
− 201J5

262 144λ5/2
+O

(
J6

λ3

)]
.

(C.5)

• R×S2 circular strings (ω < 1): slow circular strings on S2 (ω → 0+) have the following

series for the energy (3.11) and spin (3.12), in terms of the angular frequency ω:

E =
√
λ ·

∞∑
n=0

(
(2n− 1)!!

(2n)!!

)2

ω2n (C.6)

J =
√
λ ·

∞∑
n=1

(
(2n− 1)!!

(2n)!!

)2 2n

2n− 1
· ω2n−1. (C.7)

Again, series (C.7) is reverted for ω = ω (J) and then the inverse spin function
x̃ ≡ 1− ω2 = x̃ (J ) is plugged into the expression for energy (C.6), leading to:

x̃ = 1− 16J 2

π2
+

192J 4

π4
− 2112J 6

π6
+

22.400J 8

π8
− 233.088J 10

π10
+

2.397.696J 12

π12
− . . .

(C.8)

E =
π

2
+

2J 2

π
− 6J 4

π3
+

32J 6

π5
− 206J 8

π7
+

1464J 10

π9
− 11.064J 12

π11
+

87.200J 14

π13
− . . .

(C.9)

(C.9) can also be written as follows:

E =
√
λ ·
[
1 +

J2

λ
− 3 J4

4λ2
+
J6

λ3
− 103 J8

64λ4
+

183 J10

64λ5
− 1383 J12

256λ6
+

2725 J14

256λ7
−O

(
J16

λ8

)]
.

(C.10)

• AdS3 folded strings (ω > 1): for the short-string limit of AdS3 strings, we may expand

expressions (5.10)–(5.11) around ω → ∞ and obtain the corresponding short-string

series (cf. appendix B):

E =
√
λ ·

∞∑
n=0

(
(2n− 1)!!

(2n)!!

)2 2n+ 1

ω2n+1
(C.11)

S =
√
λ ·

∞∑
n=1

(
(2n− 1)!!

(2n)!!

)2 2n

ω2n
, (C.12)
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where, in order to obtain series (C.11), the identity

(2n+ 1)

(
(2n− 1)!!

(2n)!!

)2

+
n∑
k=0

1

2k − 1

(
(2k − 1)!!

(2k)!!

)2

= 0 (C.13)

was used. Observe that the short S2-string coefficients of the energy series (C.1) dif-
fer from the corresponding AdS3 ones (C.11) by a factor of 2n + 1, n = 0, 1, . . .,
while the coefficients of the angular momentum J in (C.2) differ from those of
the spin S in (C.12) by 1/2n − 1. This is related to the fact the the correspond-
ing functions (5.10), (5.11) can appropriately be taken by differentiation/integration
of (3.14), (3.15). Using series reversion in Mathematica, we may also obtain expres-
sions for the inverse spin function x = x (S) and energy E = E (S) as functions of the
spin S:

x = 1− 4S
π

+
18S2

π2
− 87S3

π3
+

1.765S4

4π4
− 37.071S5

16π5
+

199.815S6

16π6
− 4.397.017S7

64π7
+ . . .

(C.14)

E = π1/2S1/2 +
3S3/2

4π1/2
− 21S5/2

32π3/2
+

187S7/2

128π5/2
− 9.261S9/2

2.048π7/2
+

136.245S11/2

8.192π9/2
− . . . (C.15)

The ’t Hooft coupling dependence of the last expression may be restored as follows:

E =
(

2
√
λS
)1/2

[
1 +

3S

8
√
λ
− 21S2

128λ
+

187S3

1 024λ3/2
− 9 261S4

32 768λ2
+

136 245S5

262 144λ5/2
−O

(
S6

λ3

)]
.

(C.16)

D Long and fast strings

This appendix contains some of our symbolic computations on long and fast GKP strings.

Just as for short/slow strings in the preceding appendix, the inverse spin functions x (J )

and x (S) of long/fast strings on R × S2 and AdS3 have been obtained by inverting the

corresponding series for spins (3.20), (4.41) and (5.16) with Mathematica. Then the results

are plugged into the series of the anomalous dimensions E = E (x), leading to the expres-

sions for E (J ) and E (S). Only the first few terms of each series are presented here. All

of these results agree with the analytic formulas and series coefficients that were derived

in our paper and we summarized in section 2. We have addressed the following cases.

• Folded string on R× S2 (ω > 1).19

x = 16 e−2J−2 − 128 (J + 1) e−4J−4 + 64
(
24J 2 + 34J + 15

)
e−6J−6

− 512

3
(128J 3 + 216J 2 + 153J + 42) e−8J−8

+
32

3
(32.000J 4 + 60.800J 3 + 54.960J 2 + 25.452J + 4989) e−10J−10

− 512

5
(55.296J 5 + 115.200J 4 + 122.400J 3 + 74.460J 2 + 25.480J + 3855) e−12J−12 + . . .

(D.2)

19By making the transformation

S ≡ 1

16
e2J+2 ⇔ J =

1

2
(lnS + 4 ln 2− 2) (D.1)

the inverse spin function and the anomalous dimensions of strings spinning in R × S2, assume a form

that resembles the corresponding formula for strings in AdS3 and permits comparisons between the two.

Interestingly, and in contradistinction with the AdS case, all lnn S/Sn terms are absent.
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E − J = 1− 4e−2J−2 + 4 (4J − 1) e−4J−4 − 32
(
4J 2 − J + 1

)
e−6J−6

+
4

3
(1024J 3 − 192J 2 + 456J − 63) e−8J−8

− 8

3
(6400J 4 − 640J 3 + 3888J 2 − 660J + 279) e−10J−10

+
32

5
(36.864J 5 + 27.840J 3 − 4040J 2 + 4160J − 405) e−12J−12 − . . . (D.3)

• Circular string on R× S2 (ω < 1).

x̃ = 16 e−2J−2 + 128 (J − 1) e−4J−4 + 192
(
8J 2 − 10J + 5

)
e−6J−6

+
512

3
(128J 3 − 168J 2 + 129J − 42) e−8J−8

+
32

3
(32.000J 4 − 41.600J 3 + 39.600J 2 − 20.628J + 4989) e−10J−10

+
1536

5
(18.432J 5 − 23.040J 4 + 25.440J 3 − 16.460J 2 + 6.720J − 1285) e−12J−12 + . . .

(D.4)

E − J = 1 + 4e−2J−2 + 4 (4J − 1) e−4J−4 + 32
(
4J 2 − J + 1

)
e−6J−6

+
4

3
(1024J 3 − 192J 2 + 456J − 63) e−8J−8

+
8

3
(6400J 4 − 640J 3 + 3888J 2 − 660J + 279) e−10J−10

+
32

5
(36.864J 5 + +27.840J 3 − 4040J 2 + 4160J − 405) e−12J−12 + . . . (D.5)

• Folded string on AdS3 (ω > 1).

x =
1

S −
[1

4
lnS +

(
ln 2 +

1

4

)] 1

S2
+
[ 1

16
ln2 S +

( ln 2

2
+

1

32

)
lnS +

(
ln2 2 +

ln 2

8
+

3

64

)] 1

S3

−
[ 1

64
ln3 S +

(3 ln 2

16
− 1

64

)
ln2 S +

(3 ln2 2

4
− ln 2

8
+

3

128

)
lnS

+
(

ln3 2− ln2 2

4
+

3 ln 2

32

)] 1

S4
+ . . . (D.6)

γ =
1

2
lnS +

[
2 ln 2− 1

2

]
+
[1

8
lnS +

(
ln 2

2
− 1

8

)] 1

S −
[ 1

64
ln2 S +

(
ln 2

8
− 9

128

)
lnS

+

(
ln2 2

4
− 9 ln 2

32
+

5

128

)] 1

S2
+
[ 1

384
ln3 S +

(
ln 2

32
− 3

128

)
ln2 S

+

(
ln2 2

8
− 3 ln 2

16
+

11

256

)
lnS +

(
ln3 2

6
− 3 ln2 2

8
+

11 ln 2

64
− 7

384

)] 1

S3

−
[ 1

2048
ln4 S +

(
ln 2

128
− 43

6144

)
ln3 S +

(
3 ln2 2

64
− 43 ln 2

512
+

51

2048

)
ln2 S+

+
( ln3 2

8
− 43 ln2 2

128
+

51 ln 2

256
− 937

32.768

)
lnS

+

(
ln4 2

8
− 43 ln3 2

96
+

51 ln2 2

128
− 937 ln 2

8192
+

1919

196.608

)]
· 1

S4
+ . . . (D.7)
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[46] S. Schäfer-Nameki and M. Zamaklar, Stringy sums and corrections to the quantum string

Bethe ansatz, JHEP 10 (2005) 044 [hep-th/0509096] [INSPIRE].
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[48] S. Schäfer-Nameki, M. Zamaklar and K. Zarembo, How Accurate is the Quantum String

Bethe Ansatz?, JHEP 12 (2006) 020 [hep-th/0610250] [INSPIRE].

[49] J. Ambjørn, R.A. Janik and C. Kristjansen, Wrapping interactions and a new source of

corrections to the spin-chain/string duality, Nucl. Phys. B 736 (2006) 288 [hep-th/0510171]

[INSPIRE].

[50] A.B. Zamolodchikov, Thermodynamic Bethe Ansatz in Relativistic Models. Scaling Three

State Potts and Lee-Yang Models, Nucl. Phys. B 342 (1990) 695 [INSPIRE].

[51] Z. Bajnok, Review of AdS/CFT Integrability, Chapter III.6: Thermodynamic Bethe Ansatz,

Lett. Math. Phys. 99 (2012) 299 [arXiv:1012.3995] [INSPIRE].

[52] N. Gromov, V. Kazakov and P. Vieira, Exact Spectrum of Anomalous Dimensions of Planar

N = 4 Supersymmetric Yang-Mills Theory, Phys. Rev. Lett. 103 (2009) 131601

[arXiv:0901.3753] [INSPIRE].

[53] G. Arutyunov, S. Frolov and M. Zamaklar, Finite-size Effects from Giant Magnons, Nucl.

Phys. B 778 (2007) 1 [hep-th/0606126] [INSPIRE].

[54] D. Astolfi, V. Forini, G. Grignani and G.W. Semenoff, Gauge invariant finite size spectrum

of the giant magnon, Phys. Lett. B 651 (2007) 329 [hep-th/0702043] [INSPIRE].

[55] J.A. Minahan and O. Ohlsson Sax, Finite size effects for giant magnons on physical strings,

Nucl. Phys. B 801 (2008) 97 [arXiv:0801.2064] [INSPIRE].
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[84] S.A. Hartnoll and C. Nuñez, Rotating membranes on G2 manifolds, logarithmic anomalous

dimensions and N = 1 duality, JHEP 02 (2003) 049 [hep-th/0210218] [INSPIRE].

[85] M. Axenides, E. Floratos and G. Linardopoulos, Stringy Membranes in AdS/CFT, JHEP 08

(2013) 089 [arXiv:1306.0220] [INSPIRE].

[86] R. Corless, G.H. Gonnet, D.E.G. Hare, D.J. Jeffrey and D.E. Knuth, On the Lambert W

function, Adv. Comput. Math. 5 (1996) 329 [INSPIRE].

[87] L. Comtet, Advanced Combinatorics, Reidel (1974).

– 46 –

http://dx.doi.org/10.1088/1126-6708/1998/07/007
http://arxiv.org/abs/hep-ph/9806462
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9806462
http://arxiv.org/abs/hep-ph/9911456
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9911456
http://dx.doi.org/10.1088/1126-6708/2007/05/062
http://dx.doi.org/10.1088/1126-6708/2007/05/062
http://arxiv.org/abs/hep-ph/0608266
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0608266
http://dx.doi.org/10.1103/PhysRevD.87.085023
http://dx.doi.org/10.1103/PhysRevD.87.085023
http://arxiv.org/abs/1302.6069
http://inspirehep.net/search?p=find+EPRINT+arXiv:1302.6069
http://dx.doi.org/10.1103/PhysRevD.83.065019
http://dx.doi.org/10.1103/PhysRevD.83.065019
http://arxiv.org/abs/1010.5174
http://inspirehep.net/search?p=find+EPRINT+arXiv:1010.5174
http://dx.doi.org/10.1088/1126-6708/2005/08/014
http://dx.doi.org/10.1088/1126-6708/2005/08/014
http://arxiv.org/abs/hep-th/0410226
http://inspirehep.net/search?p=find+EPRINT+hep-th/0410226
http://dx.doi.org/10.1007/s11005-011-0515-8
http://arxiv.org/abs/1012.3998
http://inspirehep.net/search?p=find+EPRINT+arXiv:1012.3998
http://dx.doi.org/10.1088/1126-6708/2008/08/054
http://dx.doi.org/10.1088/1126-6708/2008/08/054
http://arxiv.org/abs/0807.0566
http://inspirehep.net/search?p=find+EPRINT+arXiv:0807.0566
http://dx.doi.org/10.1088/1126-6708/2003/02/049
http://arxiv.org/abs/hep-th/0210218
http://inspirehep.net/search?p=find+EPRINT+hep-th/0210218
http://dx.doi.org/10.1007/JHEP08(2013)089
http://dx.doi.org/10.1007/JHEP08(2013)089
http://arxiv.org/abs/1306.0220
http://inspirehep.net/search?p=find+EPRINT+arXiv:1306.0220
http://dx.doi.org/10.1007/BF02124750
http://inspirehep.net/search?p=find+J+Adv.Comput.Math.,5,329

	Introduction
	Summary of results 
	Long strings in R x S**2
	Long strings in AdS(3)

	Gubser-Klebanov-Polyakov R x S**2 string
	Long folded strings
	Short-long strings duality

	Inverse spin functions and anomalous dimensions on R x S**2
	Inverse spin function
	Anomalous dimensions 
	Leading terms 
	Next-to-leading terms 
	NNL terms 
	Fast circular strings

	Gubser-Klebanov-Polyakov AdS(3) string 
	Long strings
	Short-long strings duality

	Inverse spin functions and anomalous dimensions on AdS(3) 
	Inverse spin function
	Anomalous dimensions
	Leading terms 
	Next-to-leading terms 
	NNL terms 
	Higher-order terms 

	Discussion
	Lambert's W-function 
	Elliptic integrals and Jacobian elliptic functions 
	Short and slow strings 
	Long and fast strings 

