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1 Introduction

In the last about ten years several groups have been active in computing four-loop cor-
rections to various physical quantities. Among them are the order a? corrections to the
R ratio and the Higgs decay into bottom quarks [1-3], four-loop corrections to moments
of the photon polarization function [4-8] which lead to precise results for the charm and
bottom quark masses (see, e.g., ref. [9]), and the free energy density of QCD at high tem-
peratures [10]. The integrals involved in such calculations are either four-loop massless
two-point functions or four-loop vacuum integrals with one non-vanishing mass scale. In
this paper we take the first steps towards the systematic study of a further class of four-
loop single-scale integrals, the so-called on-shell integrals where in the loop massless and
massive propagators may be present and the only external momentum is on the mass shell.

On-shell integrals enter a variety of physical quantities, where the anomalous magnetic
moments and on-shell counterterms are prominent examples. The first systematic study of
two-loop on-shell integrals needed for the evaluation of the on-shell mass and wave function
renormalization constants (Z9S and Z99) for a heavy quark in QCD has been performed
in refs. [11, 12]. Already a few years later, in 1996 the analytical three-loop corrections
to the lepton anomalous magnetic moment a; became available [13]. This result has been
checked in refs. [14, 15]. In refs. [14, 16] the three-loop on-shell integrals have been applied
to QCD, namely the evaluation of Z9S and Z95. The calculation of ref. [14] has confirmed
the numerical result of [17, 18] which has been available before. Both Z9% and Z95 have
also been computed in ref. [15]. Further application of three-loop on-shell integrals are
discussed in refs. [19, 20]. There is no systematic study of four-loop on-shell integrals
available in the literature. Nevertheless, some four-loop results to the anomalous magnetic
moment of the muon, a,, have been computed analytically, in particular contributions from
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Figure 1. Sample Feyman diagrams for the photon-muon vertex contributing to a,. Wavy and
straight lines represent photons and fermions, respectively. In this paper we consider the contribu-
tion where at least two of the closed loops correspond to massless fermions. The last diagram in
the second line is a representative of the so-called “light-by-light” contribution.

closed electron loops. E.g., the contribution where the photon propagator of the one-loop
diagram (see figure 1) is dressed by higher order corrections has been considered in several
papers [21-27]. Four-loop corrections where one of the two photon propagators of the two-
loop diagram is dressed by higher orders has been considered in ref. [28, 29]. Contributions
where both photon propagators get one-loop electron insertions are still missing. This gap
will be closed in the present work. Let us mention that all four- and even five-loop results
for a; are available in the literature in numerical form [27, 30-33] (see also the review
articles [34, 35]).

In this paper we take the first step towards the analytical calculation of four-loop on-
shell integrals by considering the subclass with two or three closed massless fermion loops,
which are marked by a factor n;. Thus we are concerned with four-loop terms proportional
to n? and nl2 which we consider for three physical quantities: the anomalous magnetic
ZOS

>, and the on-

moment of the muon, a,, the on-shell mass renormalization constant,
shell wave function renormalization constant, ng, for a massive quark. For the latter QCD
corrections to the quark two-point functions are computed whereas for the former muon-
photon vertex diagrams have to be considered. Some sample Feynman diagrams are given

in figures 1 and 2. The precise definition of these quantities is provided in sections 3 and 4.

The outline of the paper is as follows: in the next section we provide details of the
four-loop on-shell integrals needed for our calculation. In particular, we identify all master
integrals and provide analytical results in appendix A. The renormalization constants Z93
and Z95 are discussed in section 3 and section 4 is devoted to the anomalous magnetic
moment of the muon. We discuss the relation between the MS and on-shell fine structure
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Figure 2. Sample Feynman diagrams for the QCD corrections to the fermion propagator con-

tributing to Z9% and Z9S. Curly and straight lines represent gluons and fermions, respectively.

In this paper we consider the contribution where at least two of the closed loops correspond to
massless fermions.

constant and provide analytical results for a,. Finally, we conclude in section 5. Ap-
pendix B contains the analytic results for the relation between the fine structure constant
defined in the MS and on-shell scheme.

2 Four-loop on-shell integrals

In this section we present the setup used for the calculation and discuss the families of
four-loop on-shell integrals needed for the n? and n} corrections for 7Z98, 795 and Ay
Since all three cases reduce to the calculation of corrections to the fermion propagator we
consider in this section the corresponding two-point function.

After the generation of the diagrams with QGRAF [36] we use q2e [37, 38] to translate
the output into a FORM [39] readable form. In a next step exp [37, 38| is applied to map
the momenta to one of five families. During the evaluation of the FORM code we apply
projectors and take traces to end up with integrals which only contain scalar products in
the numerator and quadratic denominators.

In the next step we have to reduce all occurring integrals to a minimal set of master
integrals. This is done using two different programs in order to have a cross check for
the calculation. On the one hand we use crusher [40] and on the other hand the C++
version of FIRE.! Both programs implements Laporta’s algorithm [42] for the solution of
integration-by-parts identities [43]. We find complete agreement for the expressions where
the physical quantities are expressed in terms of master integrals.

Let us mention that we have performed our calculations for general gauge parameter
which drops out once the four-loop results for ZQOS, Z,?LS and a, are expressed in terms of
master integrals.?

Altogether we end up with 13 master integrals. Seven of them (shown in figure 3) are
products of one- and two-loop integrals whereas the remaining six integrals (cf. figure 4)

!The Mathematica version of FIRE is publicly available [41].
2Note that Z9% and a, have to be independent of the QCD gauge parameter { whereas we expect that
the n; and ni-independent terms of Z9°5 do depend on €.
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Figure 3. Master integrals for the n? and n} contribution which are easily obtained by applying
one- and two-loop formulae, see e.g., ref. [49]. Solid lines carry the mass M and dashed lines are
massless. For L; to Lg we have ¢> = M? where ¢ is the external momentum; L~ is a vacuum integral.

request a dedicated investigation. We calculate them using the Dimensional Recurrence
and Analyticity (DRA) method introduced in [44]. In order to fix the position and order
of the poles of the integrals, we use FIESTA [45, 46]. The remaining constants are fixed
using the Mellin-Barnes technique [47-51]. In order to express the results in terms of
the conventional multiple zeta values we apply the PSLQ algorithm [52] on high-precision
numerical results (with several hundreds of decimal digits).?

The analytic results for the integrals in figure 4 are listed in appendix A. Results in
terms of Gamma functions for the integrals in figure 3 are easily obtained recursively using
the formulae from the appendix of ref. [49]. For convenience also these results are given in
appendix A.

All results have been cross-checked numerically with the help of FIESTA [46] where an
accuracy of at least four digits has been achieved.

3 Fermionic n? and n} contributions to Z9% and Z9%

Both Z9% and Z95 are obtained from the fermion two-point functions ¥(q) which can be
cast in the form

X(g,mq) = mq Zl(q2>mq) + (¢ —myg) 22(q2, mg) - (3.1)

3Let us mention that the numerical evaluation of the factorizable four-loop master integrals for a; which
reduce to the evaluation of the corresponding three-loop master integrals in higher orders of € was undertaken
in ref. [53] as a warm-up before a future full four-loop calculation. This was done with the method of [42]
based on difference equations. The achieved accuracy of several dozen of decimal digits was not enough for
using PSLQ.



Here m, represents a generic quark mass whereas bare, on-shell and MS quark masses are
denoted by mg, M, and my.

The derivation of ready-to-use formulae for Z9S and Z9® is discussed at length in
refs. [14, 15]. Thus, let us for convenience only repeat the final formulae which are applied
in our calculations. They read

Z0% =1+ %1 (M2, M,), (3.2)

—1 0
(25%) =1+ 2M§@21(q2, My) L+ Da(M7, My). (3.3)
q

The expressions on the right-hand side are computed by introducing the momentum @
with Q% = Mq2 via ¢ = Q(1 4+ t) which leads to the equation

@ +M,
o {m;qE(q,M@ = (%, My) + t52(d2, My)

0
= B1(Mg, My) + <2Mf128q221(92,Mq) q2M2+22(ManMq)> t
- q

+O(t?). (3.4)

Hence, to obtain Z9% one only needs to calculate Xy for ¢> = M, q2. To calculate Z?S, one has
to compute the first derivative of the self-energy diagrams. Note that the renormalization of
the quark mass is taken into account iteratively by explicitly calculating the corresponding
counterterm diagrams.

We write the perturbative expansion for Z,%S in terms of the renormalized strong
coupling as (yg is the Euler-Mascheroni number)

—e 2 —2e¢
708 — 14 %W <€7E> 570 + (W> <€7E> 572

T 4 T dm
3 vE\ —3€ 4 . —de
i (O‘i“)) <e47r> 0%+ (O‘S(“)> <64E> 2w+ 0 (el - (35)
T 7

This allows us to take the ratio between the on-shell and MS [54-56] mass renormalization
constant which is given by

0S(,) — me(p)  Zpo

SRV
2 3 4
_14 %W <0‘“)> 52 4 (a(ﬂ)> 523 4 (0‘8(“)> 520
T T T T
+ 0 (a2) (3.6)

The coefficients 5z,(7? are by construction finite.
In the case of Zé)s we choose the bare coupling as expansion parameter which in many
applications turns out to be convenient. Furthermore, the dependence on /M, can be
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Figure 4. Non-trivial master integrals contributing to the n? contribution. The same notation as
in figure 3 has been used.

written in factorized form which leads to shorter expressions. Thus we have

0 YE\ € 0\ 2 /ove\ —2€
os _ g, % (€F W, (%) (" (@)
Z _1+W<4ﬂ> 52, +(W> <4W> 52,
A\ (N () (PN T 0\5

)

where each term (5Z§n contains a factor (p?/MJ)" .

We refrain from repeating the one-, two- and three-loop results for Z9S and Z?S since
analytical expressions for general colour coefficients are available in the literature [14-16].
We split the four-loop coefficient according to the number of closed massless fermion loops
and write (i € {m,2})

62 = 5210 4 62" ny + 620} + 62} . (38)

(2
with an analog notation for 62,(;%).

In the following we present analytical results for (527(,;12), 5,2,(733), 5Z§42) and 5Z§43)
which read
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where [);y = In ,uz/qu, (n is Riemann’s zeta function, a; = In2 and a,, = Li,(1/2) (n > 1).
In the case of QCD the colour factors take the values Cy = 3,Cr = 4/3 and T' = 1/2.
In egs. (3.10) and (3.12) the contributions from closed heavy quark loops are marked by
nyp, = 1 which has been introduced for illustration.

In order to get an impression of the numerical size of the newly calculated terms we

evaluate 295 for y = M,. After inserting the numerical values for the colour factors we
obtain (As = o, (My)/m)
295 = 1 — A,1.333 + A% (—14.229 — 0.104 ny, + 1.041n))

+ A3 (—197.816 — 0.827ny, — 0.064 1}, + 26.946 7, — 0.022 nyny — 0.65317)

+ A} (—43.465n7 — 0.017nn} +0.678nf +...) + O (42) , (3.13)
where the ellipses indicate n; independent contributions and terms proportional to n; which
have not been computed. One observes that the le contribution at two loops and the n?
contribution at three loops are quite small. This is in contrast to the linear n; terms which
can become quite sizeable. E.g., setting n; = 5, which corresponds to the case of the top
quark, we obtain (for nj = 1)

295 =1 A,1.333 + A% (—14.332 + 5.207,,,)
+ A3 (—198.707 +134.619,, — 16.317n5)

+ oA (—1087.060nl2 +84.768,5 + .. ) +0O(49) . (3.14)

At two-loop order the n; contribution is only a factor of three smaller than the ny-
independent term, however, with an opposite sign. At three loops the linear-n; term has
almost the same order of magnitude than the constant contribution but again a different
sign. It is remarkable that for n; = 5 the coefficient of the four-loop nlz term is more than
a factor of five larger than the nj-independent term at order a?.

Let us finally compare our results with the approximate expressions obtained in ref. [57]
in the large-fy approximation. In ref. [57] one finds for the quantity M,/mq(m,) the result

(as = as(mg) /)

M,
—L = 1+ as1.333 + a2 (17.186 — 1.041n,)

Mg(1mg)
T large—go 4 43 (177.695 — 21.539n; + 0.653n7)
+ aj (3046.294 — 553.872n,; + 33.568n; — 0.678n}) , (3.15)

where for the renormalization scale p = m, has been chosen. The coefficients of eq. (3.15)
should be compared with our findings which read

= 1+ as1.333 + a2 (13.443 — 1.041n,)

mq(Mg)



+ a2 (190.595 — 26.655n; + 0.653n;)
+ ag (co + cimy + 43.396n] — 0.678n7) | (3.16)

where ¢y and c¢q are not yet known. By construction one finds agreement for the coefficient
of n} since it has been used as input in ref. [57]. As far as the n? term is concerned the
exact coefficient is predicted with an accuracy of about 30%.

4 Fermionic n} and n} contributions to a,

It is convenient to introduce the form factors F; and F5 of the photon-lepton vertex as

Fy(q?
2§Wl ) U;u/qy )

I*(q,p) = Fi(¢*)y" +1i (4.1)

where ¢ is the incoming momentum in the photon line and M; is the lepton mass. The
anomalous magnetic moment is given by

= (92_2>l — Fy(0). (4.2)

In eq. (4.1) also the momentum p = (p; + p2)/2 has been introduced where p? = p3 = Ml2
are the momenta flowing through the external fermion lines (see figure 1 for the directions
of the momenta).

The evaluation of a; requires that I'#(g, p) is computed in the limit ¢ — 0. Due to the
factor ¢” in front of F; in eq. (4.1) one has to perform an expansion of I'*(g, p) up to linear
terms in ¢ which can be written as

I*(q,p) = X*(p) + @ Y" (p) + O (¢°) (4.3)

with p? = MZQ. F5, is conveniently obtained after the application of a projector given by
(see, e.g., ref. [58])

1 D -2
= T M?2~,, — Dp,p — (D — 1) Mp,) X*
2Ml2(D_ 1)(D—2) r 2 ( 1 T p/ﬁﬁ ( ) lpu)

a

+ 5L G+ M) bl (B4 M) Y| (4.0

and thus q; is reduced to the evaluation of on-shell two-point functions as described in
section 2.

We define the loop expansion of a; in analogy to eq. (3.5) (with a; replaced by the fine
structure constant) and introduce the same splitting according to the number of massless
lepton loops as in eq. (3.8).

The Feynman diagrams contributing to a; respectively the coefficients of o’ and nf can
be subdivided to two classes: (i) the one where the external photon couples to the lepton
at hand and (ii) the one where it couples to a lepton present in a closed loop. Sample
diagrams are given in figure 1. In the following we refer to the diagrams of class (ii) as
“light-by-light” contribution in analogy to the corresponding hadronic part.



In this paper four-loop corrections contributing to class (i) are evaluated which contain
two or three closed massless fermion loops. They are used in order to compute electron
loop contributions to a, neglecting terms of order M, /M,,.

For the diagrams in class (i) we can proceed as follows: In a first step we renormalize
the fine structure constant in the MS scheme, a(y). The corresponding renormalization
constant is easily obtained from the one for a; after specifying the colour factors to QED.
The MS scheme has the advantage that the electron mass can be set to zero (which is
not the case for the diagrams in class (ii)). After renormalizing the muon mass in the
on-shell scheme we obtain a finite expression for a, which shows an explicit dependence
on ln(,uQ/Mﬁ).

In a next step we replace a(u) by its on-shell counterpart using the corresponding
relation up to three loops. It can best be calculated by considering the photon two
point function

(g™ — ¢ ¢)I(G?) = i / da €47 (0] ()77 (2)]0) (4.5)

and employing the on-shell renormalization condition IT1(¢?> = 0) = 0. The form of the
renormalization condition reduces the problem to the calculation of two-scale vacuum in-
tegrals at three loops. Note, that for the renormalization of the fermion masses in the
on-shell scheme the dependence on both masses has to be taken into account. In the limit
M. < M, we obtain (see also refs. [25, 27, 59])

2 2
« « 15 L,+L L,+ L
(M)Zl—l—(Lu+Le)~l—<7r> [+ ptLe  (LutLe)

Qi

4.
o 37 8 4 9 (46)

3 3 2 2 2
o L L,L? 5L2 T79L. 695 7 TG 4
+< > (27+ o "1 T 61 9+64+'”>+O(a8)

s

with L, = ln(ug/Mﬁ) and L. = In(u?/M?). The ellipses in the coefficient of (a/7)3
indicate terms which we left out since they are irrelevant for the nl2 contribution discussed
in this paper. The complete result containing the exact dependence on M, /M, is presented
in appendix B. Note that the result in eq. (4.6) can be obtained from the one provided in
ref. [27] where the relation between a(u) and « is given for one massive lepton.

Also in the case of a; we refrain from listing the lower-order results which can be
found in the literature [13, 32-35]. Rather we concentrate on the new correction terms at
four loops. Adopting the notation from eq. (3.8) we obtain the following results for the
n? contribution

g3 _ Lys _ 25,0 (317 203 257% 8609
BT g re g8 He T\ 324 27 ) TR

Q

7.196 66, (4.7)

where Ly, = In(M7/M?). The approximate results have been obtained with the help of [60]
M, /M. = 206.7682843(52). The result in eq. (4.7) agrees with the one in ref. [28, 29].

,10,



In the case of the n? contribution we split affu) into two parts. The first one (aL42)a)

corresponds to the diagrams containing two closed fermion loops and the second one (agm)b)
originates from diagrams with three closed fermion loops where one of them is a muon and

two are electron loops. Thus, we have

alg42) _ a,1(1,42)a+a,1(142)b’

with
5 a ¢ 13 a} 242 5a 79
o _ g2 [2(5 a\ G 18] o [ af  o( 20 BSar 79
U “6[” <36 6)+4 4| Thre T T (T Ty T
8a4 1zt 23] 24}  5af o[ 4a} 10a?
P 3 - | - — = =
3 C3+216+6] BT T T T
C235ay G 595\ 4 8lai_ 403\  40as  16as 376
54 8 ' 162 540 3240 3 3 6
11167¢; 6833
1152 864
~ —3.62427, (4.8)
119 2 261 4r 1372 7627
aep _ (W9 7Y o (m 61N, dwt 18wt 7627
Z 108 9 ) T \27 7 162 45 27 1044

~ 0.49405. (4.9)
al(fg)b agrees with ref. [28, 29]. Analytical results for a,(L42)a are not present in the literature
since corrections originating from diagrams as the third one in the first row of figure 1
have not been considered yet. However, we can perform a numerical comparison with the
results from refs. [30, 33]* which reads

ae| = _3.64204(112), (4.10)

® num

There is a good agreement with the analytic result in eq. (4.8). The deviation can be
explained by corrections of order M,/M,, = 0.005 or (M./M,)*In® M,,/M. =~ 0.004 [28, 29]
which are absent in our analytic expressions.

5 Conclusions

In this paper the first steps towards the evaluation of four-loop on-shell integrals have
been undertaken. As an application within QCD we have computed the contributions
involving two massless quark loops to the on-shell renormalization constants Zé)s and ZT(,)LS.
As an application in QED we have considered the contribution from four-loop diagrams
involving two or three closed electron loops to the anomalous magnetic moment of the
muon excluding, however, the light-by-light contribution.

*In in ref. [33] the contributions from closed electron and muon loops are always added whereas in our
result at least two closed electron loops are present. We are deeply grateful to the authors of ref. [33] for
providing us the results for the contributions containing only electron loops eq. (4.10).

— 11 —



We describe in some detail the techniques and the programs which have been used for
the calculation. We are confident that they are generic enough to be applied to the nll and
non-fermionic contribution. The only bottleneck might be the analytic evaluation of the
master integrals so that maybe numerical methods have to be applied.
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A Analytic results for the master integrals

In this appendix we provide the analytic results of all master integrals where we assume an
integration measure d”k/(ir)P/? with D = 4—2¢. Furthermore we write scalar propagators
of particles with mass M in the form 1/(—k? 4+ M?). For convenience we set M = 1 in the
final result since the dependence on M can easily be restored.

The analytic results for the integrals in figure 3 read
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The analytic results for the integrals in figure 4 read
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B Relation between a(p) and «

(A.12)

In this appendix we present the result for the relation between the fine structure constant
defined in the MS and on-shell renormalization scheme involving two massive leptons with

masses m1 and mo. We label contributions from leptons with mass my and meo by nj and

ny, respectively. Our result reads
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with = mq/ma, I, = In(y?/m3) and a1 = In2.
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