RECEIVED: January 28, 2013 ACCEPTED: March 10, 2013 PUBLISHED: March 28, 2013 ## Four-loop corrections with two closed fermion loops to fermion self energies and the lepton anomalous magnetic moment # Roman Lee,^a Peter Marquard,^b Alexander V. Smirnov,^c Vladimir A. Smirnov^d, and Matthias Steinhauser^b ``` ^a Budker Institute of Nuclear Physics and Novosibirsk State University, 630090 Novosibirsk, Russia ``` E-mail: r.n.lee@inp.nsk.su, peter.marquard@kit.edu, asmirnov80@gmail.com, smirnov@theory.sinp.msu.ru, matthias.steinhauser@kit.edu ABSTRACT: We compute the eighth-order fermionic corrections involving two and three closed massless fermion loops to the anomalous magnetic moment of the muon. The required four-loop on-shell integrals are classified and explicit analytical results for the master integrals are presented. As further applications we compute the corresponding four-loop QCD corrections to the mass and wave function renormalization constants for a massive quark in the on-shell scheme. KEYWORDS: Electromagnetic Processes and Properties, QCD, Standard Model ^bInstitut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany ^cScientific Research Computing Center, Moscow State University, 119992 Moscow, Russia ^dSkobeltsyn Institute of Nuclear Physics, Moscow State University, 119992 Moscow, Russia ^e Institut für Mathematik, Humboldt-Universität zu Berlin, 12489 Berlin, Germany | C | ontents | | |--------------|--|----| | 1 | Introduction | 1 | | 2 | Four-loop on-shell integrals | 3 | | 3 | Fermionic n_l^2 and n_l^3 contributions to $Z_m^{\rm OS}$ and $Z_2^{\rm OS}$ | 4 | | 4 | Fermionic n_l^2 and n_l^3 contributions to a_μ | g | | 5 | Conclusions | 11 | | \mathbf{A} | Analytic results for the master integrals | 12 | | В | Relation between $\bar{\alpha}(\mu)$ and α | 15 | | | | | #### 1 Introduction In the last about ten years several groups have been active in computing four-loop corrections to various physical quantities. Among them are the order α_s^4 corrections to the R ratio and the Higgs decay into bottom quarks [1–3], four-loop corrections to moments of the photon polarization function [4–8] which lead to precise results for the charm and bottom quark masses (see, e.g., ref. [9]), and the free energy density of QCD at high temperatures [10]. The integrals involved in such calculations are either four-loop massless two-point functions or four-loop vacuum integrals with one non-vanishing mass scale. In this paper we take the first steps towards the systematic study of a further class of four-loop single-scale integrals, the so-called on-shell integrals where in the loop massless and massive propagators may be present and the only external momentum is on the mass shell. On-shell integrals enter a variety of physical quantities, where the anomalous magnetic moments and on-shell counterterms are prominent examples. The first systematic study of two-loop on-shell integrals needed for the evaluation of the on-shell mass and wave function renormalization constants (Z_m^{OS} and Z_2^{OS}) for a heavy quark in QCD has been performed in refs. [11, 12]. Already a few years later, in 1996 the analytical three-loop corrections to the lepton anomalous magnetic moment a_l became available [13]. This result has been checked in refs. [14, 15]. In refs. [14, 16] the three-loop on-shell integrals have been applied to QCD, namely the evaluation of Z_m^{OS} and Z_2^{OS} . The calculation of ref. [14] has confirmed the numerical result of [17, 18] which has been available before. Both Z_m^{OS} and Z_2^{OS} have also been computed in ref. [15]. Further application of three-loop on-shell integrals are discussed in refs. [19, 20]. There is no systematic study of four-loop on-shell integrals available in the literature. Nevertheless, some four-loop results to the anomalous magnetic moment of the muon, a_μ , have been computed analytically, in particular contributions from Figure 1. Sample Feynman diagrams for the photon-muon vertex contributing to a_{μ} . Wavy and straight lines represent photons and fermions, respectively. In this paper we consider the contribution where at least two of the closed loops correspond to massless fermions. The last diagram in the second line is a representative of the so-called "light-by-light" contribution. closed electron loops. E.g., the contribution where the photon propagator of the one-loop diagram (see figure 1) is dressed by higher order corrections has been considered in several papers [21–27]. Four-loop corrections where one of the two photon propagators of the two-loop diagram is dressed by higher orders has been considered in ref. [28, 29]. Contributions where both photon propagators get one-loop electron insertions are still missing. This gap will be closed in the present work. Let us mention that all four- and even five-loop results for a_l are available in the literature in numerical form [27, 30–33] (see also the review articles [34, 35]). In this paper we take the first step towards the analytical calculation of four-loop onshell integrals by considering the subclass with two or three closed massless fermion loops, which are marked by a factor n_l . Thus we are concerned with four-loop terms proportional to n_l^3 and n_l^2 which we consider for three physical quantities: the anomalous magnetic moment of the muon, a_{μ} , the on-shell mass renormalization constant, Z_m^{OS} , and the onshell wave function renormalization constant, Z_2^{OS} , for a massive quark. For the latter QCD corrections to the quark two-point functions are computed whereas for the former muonphoton vertex diagrams have to be considered. Some sample Feynman diagrams are given in figures 1 and 2. The precise definition of these quantities is provided in sections 3 and 4. The outline of the paper is as follows: in the next section we provide details of the four-loop on-shell integrals needed for our calculation. In particular, we identify all master integrals and provide analytical results in appendix A. The renormalization constants $Z_m^{\rm OS}$ and $Z_2^{\rm OS}$ are discussed in section 3 and section 4 is devoted to the anomalous magnetic moment of the muon. We discuss the relation between the $\overline{\rm MS}$ and on-shell fine structure Figure 2. Sample Feynman diagrams for the QCD corrections to the fermion propagator contributing to $Z_m^{\rm OS}$ and $Z_2^{\rm OS}$. Curly and straight lines represent gluons and fermions, respectively. In this paper we consider the contribution where at least two of the closed loops correspond to massless fermions. constant and provide analytical results for a_{μ} . Finally, we conclude in section 5. Appendix B contains the analytic results for the relation between the fine structure constant defined in the $\overline{\rm MS}$ and on-shell scheme. #### 2 Four-loop on-shell integrals In this section we present the setup used for the calculation and discuss the families of four-loop on-shell integrals needed for the n_l^2 and n_l^3 corrections for Z_2^{OS} , Z_m^{OS} and a_μ . Since all three cases reduce to the calculation of corrections to the fermion propagator we consider in this section the corresponding two-point function. After the generation of the diagrams with QGRAF [36] we use q2e [37, 38] to translate the output into a FORM [39] readable form. In a next step exp [37, 38] is applied to map the momenta to one of five families. During the evaluation of the FORM code we apply projectors and take traces to end up with integrals which only contain scalar products in the numerator and quadratic denominators. In the next step we have to reduce all occurring integrals to a minimal set of master integrals. This is done using two different programs in order to have a cross check for the calculation. On the one hand we use crusher [40] and on the other hand the C++ version of FIRE. Both programs implements Laporta's algorithm [42] for the solution of integration-by-parts identities [43]. We find complete agreement for the expressions where the physical quantities are expressed in terms of master integrals. Let us mention that we have performed our calculations for general gauge parameter which drops out once the four-loop results for Z_2^{OS} , Z_m^{OS} and a_μ are expressed in terms of master integrals.² Altogether we end up with 13 master integrals. Seven of them (shown in figure 3) are products of one- and two-loop integrals whereas the remaining six integrals (cf. figure 4) ¹The Mathematica version of FIRE is publicly available [41]. ²Note that Z_m^{OS} and a_{μ} have to be independent of the QCD gauge parameter ξ whereas we expect that the n_l^1 and n_l -independent terms of Z_2^{OS} do depend on ξ . **Figure 3.** Master integrals for the n_l^2 and n_l^3 contribution which are easily obtained by applying one- and two-loop formulae, see e.g., ref. [49]. Solid lines carry the mass M and dashed lines are massless. For L_1 to L_6 we have $q^2 = M^2$ where q is the external momentum; L_7 is a vacuum integral. request a dedicated investigation. We calculate them using the Dimensional Recurrence and Analyticity (DRA) method introduced in [44]. In order to fix the position and order of the poles of the integrals, we use FIESTA [45, 46]. The remaining constants are fixed using the Mellin-Barnes technique [47–51]. In order to express the results in terms of the conventional multiple zeta values we apply the PSLQ algorithm [52] on high-precision numerical results (with several hundreds of decimal digits).³ The analytic results for the integrals in figure 4 are listed in appendix A. Results in terms of Gamma functions for the integrals in figure 3 are easily obtained recursively using the formulae
from the appendix of ref. [49]. For convenience also these results are given in appendix A. All results have been cross-checked numerically with the help of FIESTA [46] where an accuracy of at least four digits has been achieved. ## 3 Fermionic n_l^2 and n_l^3 contributions to $Z_m^{ m OS}$ and $Z_2^{ m OS}$ Both Z_m^{OS} and Z_2^{OS} are obtained from the fermion two-point functions $\Sigma(q)$ which can be cast in the form $$\Sigma(q, m_q) = m_q \, \Sigma_1(q^2, m_q) + (\not q - m_q) \, \Sigma_2(q^2, m_q) \,. \tag{3.1}$$ ³Let us mention that the numerical evaluation of the factorizable four-loop master integrals for a_l which reduce to the evaluation of the corresponding three-loop master integrals in higher orders of ϵ was undertaken in ref. [53] as a warm-up before a future full four-loop calculation. This was done with the method of [42] based on difference equations. The achieved accuracy of several dozen of decimal digits was not enough for using PSLQ. Here m_q represents a generic quark mass whereas bare, on-shell and $\overline{\rm MS}$ quark masses are denoted by m_q^0 , M_q and \bar{m}_q . The derivation of ready-to-use formulae for Z_m^{OS} and Z_2^{OS} is discussed at length in refs. [14, 15]. Thus, let us for convenience only repeat the final formulae which are applied in our calculations. They read $$Z_m^{OS} = 1 + \Sigma_1(M_q^2, M_q), \qquad (3.2)$$ $$(Z_2^{OS})^{-1} = 1 + 2M_q^2 \frac{\partial}{\partial q^2} \Sigma_1(q^2, M_q) \Big|_{q^2 = M_q^2} + \Sigma_2(M_q^2, M_q).$$ (3.3) The expressions on the right-hand side are computed by introducing the momentum Q with $Q^2 = M_q^2$ via q = Q(1+t) which leads to the equation $$\operatorname{Tr}\left\{\frac{Q + M_q}{4M_q^2}\Sigma(q, M_q)\right\} = \Sigma_1(q^2, M_q) + t\Sigma_2(q^2, M_q)$$ $$= \Sigma_1(M_q^2, M_q) + \left(2M_q^2 \frac{\partial}{\partial q^2}\Sigma_1(q^2, M_q)\Big|_{q^2 = M_q^2} + \Sigma_2(M_q^2, M_q)\right)t$$ $$+\mathcal{O}(t^2). \tag{3.4}$$ Hence, to obtain Z_m^{OS} one only needs to calculate Σ_1 for $q^2 = M_q^2$. To calculate Z_2^{OS} , one has to compute the first derivative of the self-energy diagrams. Note that the renormalization of the quark mass is taken into account iteratively by explicitly calculating the corresponding counterterm diagrams. We write the perturbative expansion for Z_m^{OS} in terms of the renormalized strong coupling as $(\gamma_E$ is the Euler-Mascheroni number) $$Z_m^{\text{OS}} = 1 + \frac{\alpha_s(\mu)}{\pi} \left(\frac{e^{\gamma_E}}{4\pi}\right)^{-\epsilon} \delta Z_m^{(1)} + \left(\frac{\alpha_s(\mu)}{\pi}\right)^2 \left(\frac{e^{\gamma_E}}{4\pi}\right)^{-2\epsilon} \delta Z_m^{(2)} + \left(\frac{\alpha_s(\mu)}{\pi}\right)^3 \left(\frac{e^{\gamma_E}}{4\pi}\right)^{-3\epsilon} \delta Z_m^{(3)} + \left(\frac{\alpha_s(\mu)}{\pi}\right)^4 \left(\frac{e^{\gamma_E}}{4\pi}\right)^{-4\epsilon} \delta Z_m^{(4)} + \mathcal{O}\left(\alpha_s^5\right) . \tag{3.5}$$ This allows us to take the ratio between the on-shell and $\overline{\rm MS}$ [54–56] mass renormalization constant which is given by $$z_m^{\text{OS}}(\mu) = \frac{\bar{m}_q(\mu)}{M_q} = \frac{Z_m^{\text{OS}}}{Z_m^{\overline{\text{MS}}}}$$ $$= 1 + \frac{\alpha_s(\mu)}{\pi} \delta z_m^{(1)} + \left(\frac{\alpha_s(\mu)}{\pi}\right)^2 \delta z_m^{(2)} + \left(\frac{\alpha_s(\mu)}{\pi}\right)^3 \delta z_m^{(3)} + \left(\frac{\alpha_s(\mu)}{\pi}\right)^4 \delta z_m^{(4)}$$ $$+ \mathcal{O}\left(\alpha_s^5\right)$$ (3.6) The coefficients $\delta z_m^{(i)}$ are by construction finite. In the case of $Z_2^{\rm OS}$ we choose the bare coupling as expansion parameter which in many applications turns out to be convenient. Furthermore, the dependence on μ/M_q can be **Figure 4**. Non-trivial master integrals contributing to the n_l^2 contribution. The same notation as in figure 3 has been used. written in factorized form which leads to shorter expressions. Thus we have $$Z_{2}^{OS} = 1 + \frac{\alpha_{s}^{0}}{\pi} \left(\frac{e^{\gamma_{E}}}{4\pi}\right)^{-\epsilon} \delta Z_{2}^{(1)} + \left(\frac{\alpha_{s}^{0}}{\pi}\right)^{2} \left(\frac{e^{\gamma_{E}}}{4\pi}\right)^{-2\epsilon} \delta Z_{2}^{(2)} + \left(\frac{\alpha_{s}^{0}}{\pi}\right)^{3} \left(\frac{e^{\gamma_{E}}}{4\pi}\right)^{-3\epsilon} \delta Z_{2}^{(3)} + \left(\frac{\alpha_{s}^{0}}{\pi}\right)^{4} \left(\frac{e^{\gamma_{E}}}{4\pi}\right)^{-4\epsilon} \delta Z_{2}^{(4)} + \mathcal{O}\left((\alpha_{s}^{0})^{5}\right), \quad (3.7)$$ where each term $\delta Z_2^{(n)}$ contains a factor $(\mu^2/M_q^2)^{n\epsilon}$. We refrain from repeating the one-, two- and three-loop results for Z_m^{OS} and Z_2^{OS} since analytical expressions for general colour coefficients are available in the literature [14–16]. We split the four-loop coefficient according to the number of closed massless fermion loops and write $(i \in \{m, 2\})$ $$\delta Z_i^{(4)} = \delta Z_i^{(40)} + \delta Z_i^{(41)} n_l + \delta Z_i^{(42)} n_l^2 + \delta Z_i^{(43)} n_l^3.$$ (3.8) with an analog notation for $\delta z_m^{(4)}$. In the following we present analytical results for $\delta z_m^{(42)}$, $\delta z_m^{(43)}$, $\delta Z_2^{(42)}$ and $\delta Z_2^{(43)}$ which read $$\delta z_m^{(43)} = C_F T^3 \left(\frac{l_M^4}{144} + \frac{13l_M^3}{216} + \left(\frac{89}{432} + \frac{\pi^2}{36} \right) l_M^2 + l_M \left(\frac{\zeta_3}{3} + \frac{1301}{3888} + \frac{13\pi^2}{108} \right) \right. \\ \left. + \frac{317\zeta_3}{432} + \frac{71\pi^4}{4320} + \frac{89\pi^2}{648} + \frac{42979}{186624} \right) , \tag{3.9}$$ $$\delta z_m^{(42)} = C_F n_h T^3 \left(\frac{l_M^4}{48} + \frac{13l_M^3}{72} + \frac{125l_M^2}{144} + \frac{2489l_M}{1296} + \frac{5\zeta_3}{144} - \frac{19\pi^4}{480} + \frac{\pi^2}{6} + \frac{128515}{62208} \right) \\ + C_A C_F T^2 \left(-\frac{11l_M^4}{192} - \frac{91l_M^3}{144} + l_M^2 \left(-\frac{1}{12}\pi^2 a_1 - \frac{\zeta_3}{4} - \frac{\pi^2}{8} - \frac{6539}{2304} \right) \right.$$ $$\begin{split} + l_M \left(\frac{a_1^4}{18} + \frac{1}{9} \pi^2 a_1^2 - \frac{11}{18} \pi^2 a_1 + \frac{4a_4}{44} - \frac{37\zeta_3}{16} - \frac{\pi^4}{216} - \frac{29\pi^2}{36} - \frac{15953}{2592} \right) \\ - \frac{1}{45} a_1^5 + \frac{11a_1^4}{54} - \frac{2}{27} \pi^2 a_1^2 + \frac{11}{17} \pi^2 a_1^2 - \frac{31\pi^4 a_1}{1080} - \frac{103}{108} \pi^2 a_1 + \frac{44a_4}{9} + \frac{8a_5}{3} \\ - \frac{41\zeta_5}{24} - \frac{13\pi^2 \zeta_3}{48} - \frac{3245\zeta_3}{576} - \frac{4723\pi^4}{5184} - \frac{527\pi^2}{384} - \frac{2708353}{497664} \right) \\ + C_F^2 T^2 \left(+ \frac{11t_M^4}{384} + \frac{97t_M^3}{576} + l_M^2 \left(\frac{1}{6} \pi^2 a_1 + \frac{\zeta_3}{8} - \frac{5n^2}{96} - \frac{157}{2304} \right) \right) \\ + l_M \left(-\frac{1}{9} a_1^4 - \frac{2}{9} \pi^2 a_1^2 + \frac{11}{9} \pi^2 a_1 - \frac{8a_4}{3} - \frac{11\zeta_3}{8} + \frac{11\pi^4}{216} - \frac{21\pi^2}{32} - \frac{50131}{20736} \right) \\ + \frac{2a_1^5}{45} - \frac{11a_1^4}{27} + \frac{4}{27} \pi^2 a_1^3 - \frac{22}{27} \pi^2 a_1^2 + \frac{31}{340} \pi^4 a_1 + \frac{103}{54} \pi^2 a_1 - \frac{88a_4}{32} - \frac{16a_5}{3} \\ + \frac{305\zeta_5}{48} + \frac{3\pi^2 \zeta_3}{8} - \frac{2839\zeta_3}{576} + \frac{3683\pi^4}{51840} - \frac{5309\pi^2}{3456} - \frac{2396921}{497664} \right), \quad (3.10) \\ \delta Z_2^{(43)} = C_F T^3 \left(\frac{\mu^2}{M_q^2} \right)^{4\epsilon} \left(\frac{1}{14\epsilon^4} + \frac{65}{664^2} + \frac{\frac{89}{192} + \frac{13\pi^2}{432^2}}{186624} \right) + \frac{151\zeta_5}{216} + \frac{73609}{21194} + \frac{845\pi^2}{2592} \\ + \frac{9815\zeta_3}{1296} + \frac{889\pi^4}{4320} + \frac{1157\pi^2}{576} + \frac{2106347}{186624} \right), \quad (3.11) \\ \delta Z_2^{(42)} = \left(\frac{\mu^2}{M_q^2} \right)^{4\epsilon} \left[C_F n_h T^3 \left(\frac{1}{36\epsilon^4} + \frac{187}{864\epsilon^3} + \frac{10957}{5182} - \frac{5\pi^2}{108} \right) \\ + \frac{2}{3} \pi^2 a_1 - \frac{71\zeta_5}{51} - \frac{1013\pi^2}{2592} + \frac{31004}{31104} - \frac{10}{9} a_1^4 - \frac{20}{9} \pi^2 a_1^2 + \frac{127}{18} \pi^2 a_1 \right) \\ + C_A C_F T^2 \left(-\frac{11}{192\epsilon^4} - \frac{761}{7152\epsilon^3} + \frac{16\pi^2}{36624} + \frac{187\pi^4}{18624} - \frac{2887}{1982} - \frac{64433}{13824} \right) \\ + \frac{5a_1^4}{18} + \frac{5}{9} \pi^2 a_1^2 - \frac{169}{72} \pi^2 a_1 + \frac{20a_4}{3} + \frac{37\zeta_5}{288} - \frac{647\pi^4}{8649} - \frac{1627\pi^2}{13824} - \frac{18287}{768} \right) \\ - \frac{5}{9} a_1^5 + \frac{815a_1^4}{216} - \frac{50}{72} \pi^2 a_1^3 + \frac{815}{36} \pi^2 a_1^2 + \frac{11}{18} \pi^4 a_1 - \frac{281}{18} \pi^2 a_1 \\ + \frac{815a_4}{192} + \frac{200a_5}{3} - \frac{2079\zeta_5}{32} - \frac{209\pi^2\zeta_3}{24} - \frac{2777\zeta_3}{1728} - \frac{7411\pi^4}{5760} - \frac{436741\pi^2}{5760} - \frac{436741\pi^2}{97664} \right) \\ + C_F T^2 \left(\frac{$$ $$-\frac{1630a_4}{9} - \frac{400a_5}{3} + \frac{7145\zeta_5}{48} + \frac{187\pi^2\zeta_3}{48} - \frac{50209\zeta_3}{576} + \frac{8413\pi^4}{6480} - \frac{75089\pi^2}{4608} - \frac{261181}{55296} \right], \tag{3.12}$$ where $l_M = \ln \mu^2/M_q^2$, ζ_n is Riemann's zeta function, $a_1 = \ln 2$ and $a_n = \text{Li}_n(1/2)$ $(n \ge 1)$. In the case of QCD the colour factors take the values $C_A = 3$, $C_F = 4/3$ and T = 1/2. In eqs. (3.10) and (3.12) the contributions from closed heavy quark loops are marked by $n_h = 1$ which has been introduced for illustration. In order to get an impression of the numerical size of the newly calculated terms we evaluate z_m^{OS} for $\mu = M_q$. After inserting the numerical values for the colour factors we obtain $(A_s \equiv \alpha_s(M_q)/\pi)$ $$z_m^{OS} = 1 - A_s 1.333 + A_s^2 \left(-14.229 - 0.104 \, n_h + 1.041 \, n_l \right)$$ $$+ A_s^3 \left(-197.816 - 0.827 \, n_h - 0.064 \, n_h^2 + 26.946 \, n_l - 0.022 \, n_h n_l - 0.653 \, n_l^2 \right)$$ $$+ A_s^4 \left(-43.465 \, n_l^2 - 0.017 \, n_h n_l^2 + 0.678 \, n_l^3 + \ldots \right) + \mathcal{O}\left(A_s^5 \right) , \tag{3.13}$$ where the ellipses
indicate n_l independent contributions and terms proportional to n_l which have not been computed. One observes that the n_l^2 contribution at two loops and the n_l^3 contribution at three loops are quite small. This is in contrast to the linear n_l terms which can become quite sizeable. E.g., setting $n_l = 5$, which corresponds to the case of the top quark, we obtain (for $n_h = 1$) $$z_m^{OS} = 1 - A_s 1.333 + A_s^2 \left(-14.332 + 5.207_{n_l} \right)$$ $$+ A_s^3 \left(-198.707 + 134.619_{n_l} - 16.317_{n_l^2} \right)$$ $$+ A_s^4 \left(-1087.060_{n_l^2} + 84.768_{n_l^3} + \dots \right) + \mathcal{O}\left(A_s^5 \right) .$$ $$(3.14)$$ At two-loop order the n_l contribution is only a factor of three smaller than the n_l -independent term, however, with an opposite sign. At three loops the linear- n_l term has almost the same order of magnitude than the constant contribution but again a different sign. It is remarkable that for $n_l = 5$ the coefficient of the four-loop n_l^2 term is more than a factor of five larger than the n_l -independent term at order α_s^3 . Let us finally compare our results with the approximate expressions obtained in ref. [57] in the large- β_0 approximation. In ref. [57] one finds for the quantity $M_q/\bar{m}_q(\bar{m}_q)$ the result $(a_s \equiv \alpha_s(\bar{m}_q)/\pi)$ $$\frac{M_q}{\bar{m}_q(\bar{m}_q)}\Big|_{\text{large}-\beta_0} = 1 + a_s 1.333 + a_s^2 (17.186 - 1.041n_l) + a_s^3 (177.695 - 21.539n_l + 0.653n_l^2) + a_s^4 (3046.294 - 553.872n_l + 33.568n_l^2 - 0.678n_l^3), (3.15)$$ where for the renormalization scale $\mu = \bar{m}_q$ has been chosen. The coefficients of eq. (3.15) should be compared with our findings which read $$\frac{M_q}{\bar{m}_q(\bar{m}_q)} = 1 + a_s 1.333 + a_s^2 (13.443 - 1.041n_l)$$ $$+ a_s^3 (190.595 - 26.655n_l + 0.653n_l^2) + a_s^4 (c_0 + c_1 n_l + 43.396n_l^2 - 0.678n_l^3) ,$$ (3.16) where c_0 and c_1 are not yet known. By construction one finds agreement for the coefficient of n_l^3 since it has been used as input in ref. [57]. As far as the n_l^2 term is concerned the exact coefficient is predicted with an accuracy of about 30%. ### 4 Fermionic n_l^2 and n_l^3 contributions to a_μ It is convenient to introduce the form factors F_1 and F_2 of the photon-lepton vertex as $$\Gamma^{\mu}(q,p) = F_1(q^2)\gamma^{\mu} + i\frac{F_2(q^2)}{2M_l}\sigma_{\mu\nu}q^{\nu}, \qquad (4.1)$$ where q is the incoming momentum in the photon line and M_l is the lepton mass. The anomalous magnetic moment is given by $$a_l = \left(\frac{g-2}{2}\right)_l = F_2(0).$$ (4.2) In eq. (4.1) also the momentum $p = (p_1 + p_2)/2$ has been introduced where $p_1^2 = p_2^2 = M_l^2$ are the momenta flowing through the external fermion lines (see figure 1 for the directions of the momenta). The evaluation of a_l requires that $\Gamma^{\mu}(q,p)$ is computed in the limit $q \to 0$. Due to the factor q^{ν} in front of F_2 in eq. (4.1) one has to perform an expansion of $\Gamma^{\mu}(q,p)$ up to linear terms in q which can be written as $$\Gamma^{\mu}(q,p) = X^{\mu}(p) + q_{\nu}Y^{\mu\nu}(p) + \mathcal{O}(q^2),$$ (4.3) with $p^2 = M_l^2$. F_2 is conveniently obtained after the application of a projector given by (see, e.g., ref. [58]) $$a_{l} = \frac{1}{2M_{l}^{2}(D-1)(D-2)} \operatorname{Tr} \left[\frac{D-2}{2} \left(M_{l}^{2} \gamma_{\mu} - D p_{\mu} \not p - (D-1) M_{l} p_{\mu} \right) X^{\mu} + \frac{M_{l}}{4} \left(\not p + M_{l} \right) \left[\gamma_{\nu}, \gamma_{\mu} \right] \left(\not p + M_{l} \right) Y^{\mu\nu} \right], (4.4)$$ and thus a_l is reduced to the evaluation of on-shell two-point functions as described in section 2 We define the loop expansion of a_l in analogy to eq. (3.5) (with α_s replaced by the fine structure constant) and introduce the same splitting according to the number of massless lepton loops as in eq. (3.8). The Feynman diagrams contributing to a_l respectively the coefficients of α^n and n_l^k can be subdivided to two classes: (i) the one where the external photon couples to the lepton at hand and (ii) the one where it couples to a lepton present in a closed loop. Sample diagrams are given in figure 1. In the following we refer to the diagrams of class (ii) as "light-by-light" contribution in analogy to the corresponding hadronic part. In this paper four-loop corrections contributing to class (i) are evaluated which contain two or three closed massless fermion loops. They are used in order to compute electron loop contributions to a_{μ} neglecting terms of order M_e/M_{μ} . For the diagrams in class (i) we can proceed as follows: In a first step we renormalize the fine structure constant in the $\overline{\rm MS}$ scheme, $\bar{\alpha}(\mu)$. The corresponding renormalization constant is easily obtained from the one for α_s after specifying the colour factors to QED. The $\overline{\rm MS}$ scheme has the advantage that the electron mass can be set to zero (which is not the case for the diagrams in class (ii)). After renormalizing the muon mass in the on-shell scheme we obtain a finite expression for a_μ which shows an explicit dependence on $\ln(\mu^2/M_\mu^2)$. In a next step we replace $\bar{\alpha}(\mu)$ by its on-shell counterpart using the corresponding relation up to three loops. It can best be calculated by considering the photon two point function $$(q^{2}g^{\mu\nu} - q^{\mu}q^{\nu})\Pi(q^{2}) = i \int dx \, e^{iqx} \langle 0|j^{\mu}(x)j^{\nu}(x)|0\rangle$$ (4.5) and employing the on-shell renormalization condition $\Pi(q^2=0)=0$. The form of the renormalization condition reduces the problem to the calculation of two-scale vacuum integrals at three loops. Note, that for the renormalization of the fermion masses in the on-shell scheme the dependence on both masses has to be taken into account. In the limit $M_e \ll M_\mu$ we obtain (see also refs. [25, 27, 59]) $$\frac{\bar{\alpha}(\mu)}{\alpha} = 1 + \frac{\alpha}{3\pi} \left(L_{\mu} + L_{e} \right) + \left(\frac{\alpha}{\pi} \right)^{2} \left[\frac{15}{8} + \frac{L_{\mu} + L_{e}}{4} + \frac{(L_{\mu} + L_{e})^{2}}{9} \right]$$ $$+ \left(\frac{\alpha}{\pi} \right)^{3} \left(\frac{L_{e}^{3}}{27} + \frac{L_{\mu}L_{e}^{2}}{9} + \frac{5L_{e}^{2}}{24} + \frac{79L_{e}}{144} - \frac{695}{648} + \frac{\pi^{2}}{9} + \frac{7\zeta_{3}}{64} + \dots \right) + \mathcal{O}(\alpha_{s}^{4})$$ (4.6) with $L_{\mu} = \ln(\mu^2/M_{\mu}^2)$ and $L_e = \ln(\mu^2/M_e^2)$. The ellipses in the coefficient of $(\alpha/\pi)^3$ indicate terms which we left out since they are irrelevant for the n_l^2 contribution discussed in this paper. The complete result containing the exact dependence on M_e/M_{μ} is presented in appendix B. Note that the result in eq. (4.6) can be obtained from the one provided in ref. [27] where the relation between $\bar{\alpha}(\mu)$ and α is given for one massive lepton. Also in the case of a_l we refrain from listing the lower-order results which can be found in the literature [13, 32–35]. Rather we concentrate on the new correction terms at four loops. Adopting the notation from eq. (3.8) we obtain the following results for the n_l^3 contribution $$a_{\mu}^{(43)} = \frac{1}{54} L_{\mu e}^3 - \frac{25}{108} L_{\mu e}^2 + \left(\frac{317}{324} + \frac{\pi^2}{27}\right) L_{\mu e} - \frac{2\zeta_3}{9} - \frac{25\pi^2}{162} - \frac{8609}{5832}$$ $$\approx 7.19666,$$ (4.7) where $L_{\mu e} = \ln(M_{\mu}^2/M_e^2)$. The approximate results have been obtained with the help of [60] $M_{\mu}/M_e = 206.7682843(52)$. The result in eq. (4.7) agrees with the one in ref. [28, 29]. In the case of the n_l^2 contribution we split $a_{\mu}^{(42)}$ into two parts. The first one $(a_{\mu}^{(42)a})$ corresponds to the diagrams containing two closed fermion loops and the second one $(a_{\mu}^{(42)b})$ originates from diagrams with three closed fermion loops where one of them is a muon and two are electron loops. Thus, we have $$a_{\mu}^{(42)} = a_{\mu}^{(42)a} + a_{\mu}^{(42)b} \,,$$ with $$a_{\mu}^{(42)a} = L_{\mu e}^{2} \left[\pi^{2} \left(\frac{5}{36} - \frac{a_{1}}{6} \right) + \frac{\zeta_{3}}{4} - \frac{13}{24} \right] + L_{\mu e} \left[-\frac{a_{1}^{4}}{9} + \pi^{2} \left(-\frac{2a_{1}^{2}}{9} + \frac{5a_{1}}{3} - \frac{79}{54} \right) \right]$$ $$- \frac{8a_{4}}{3} - 3\zeta_{3} + \frac{11\pi^{4}}{216} + \frac{23}{6} \right] - \frac{2a_{1}^{5}}{45} + \frac{5a_{1}^{4}}{9} + \pi^{2} \left(-\frac{4a_{1}^{3}}{27} + \frac{10a_{1}^{2}}{9} \right)$$ $$- \frac{235a_{1}}{54} - \frac{\zeta_{3}}{8} + \frac{595}{162} \right) + \pi^{4} \left(-\frac{31a_{1}}{540} - \frac{403}{3240} \right) + \frac{40a_{4}}{3} + \frac{16a_{5}}{3} - \frac{37\zeta_{5}}{6} \right)$$ $$+ \frac{11167\zeta_{3}}{1152} - \frac{6833}{864}$$ $$\approx -3.62427,$$ $$(4.8)$$ $$a_{\mu}^{(42)b} = \left(\frac{119}{108} - \frac{\pi^{2}}{9} \right) L_{\mu e}^{2} + \left(\frac{\pi^{2}}{27} - \frac{61}{162} \right) L_{\mu e} - \frac{4\pi^{4}}{45} + \frac{13\pi^{2}}{27} + \frac{7627}{1944}$$ $\approx 0.494\,05$. (4.9) $a_{\mu}^{(42)b}$ agrees with ref. [28, 29]. Analytical results for $a_{\mu}^{(42)a}$ are not present in the literature since corrections originating from diagrams as the third one in the first row of figure 1 since corrections originating from diagrams as the third one in the first row of figure 1 have not been considered yet. However, we can perform a numerical comparison with the results from refs. [30, 33]⁴ which reads $$a_{\mu}^{(42)a}\Big|_{\text{num}} = -3.642\,04(1\,12)\,,$$ (4.10) There is a good agreement with the analytic result in eq. (4.8). The deviation can be explained by corrections of order $M_e/M_\mu \approx 0.005$ or $(M_e/M_\mu)^2 \ln^3 M_\mu/M_e \approx 0.004$ [28, 29] which are absent in our analytic expressions. #### 5 Conclusions In this paper the first steps towards the evaluation of four-loop on-shell integrals have been undertaken. As an application within QCD we have
computed the contributions involving two massless quark loops to the on-shell renormalization constants $Z_2^{\rm OS}$ and $Z_m^{\rm OS}$. As an application in QED we have considered the contribution from four-loop diagrams involving two or three closed electron loops to the anomalous magnetic moment of the muon excluding, however, the light-by-light contribution. ⁴In in ref. [33] the contributions from closed electron and muon loops are always added whereas in our result at least two closed electron loops are present. We are deeply grateful to the authors of ref. [33] for providing us the results for the contributions containing only electron loops eq. (4.10). We describe in some detail the techniques and the programs which have been used for the calculation. We are confident that they are generic enough to be applied to the n_l^1 and non-fermionic contribution. The only bottleneck might be the analytic evaluation of the master integrals so that maybe numerical methods have to be applied. #### Acknowledgments We would like to thank M. Nio for useful communications concerning the numerical results for a_{μ} . We also thank K.G. Chetyrkin for carefully reading the manuscript. This work was supported by the DFG through the SFB/TR 9 "Computational Particle Physics". The work of R.L, A.S. and V.S. was also supported by the Russian Foundation for Basic Research through grant 11-02-01196. The work of R.L. is also supported by the Ministry of Education and Science of the Russian Federation. The Feynman diagrams were drawn with JaxoDraw [61, 62]. #### A Analytic results for the master integrals In this appendix we provide the analytic results of all master integrals where we assume an integration measure $d^D k/(i\pi)^{D/2}$ with $D=4-2\epsilon$. Furthermore we write scalar propagators of particles with mass M in the form $1/(-k^2+M^2)$. For convenience we set M=1 in the final result since the dependence on M can easily be restored. The analytic results for the integrals in figure 3 read $$L_{1} = \frac{\Gamma\left(5 - \frac{3D}{2}\right)\Gamma\left(1 - \frac{D}{2}\right)\Gamma\left(2 - \frac{D}{2}\right)^{2}\Gamma\left(\frac{D}{2} - 1\right)^{4}\Gamma(3D - 9)}{\Gamma(D - 2)^{2}\Gamma(2D - 5)},$$ $$L_{2} = \frac{\Gamma(3 - D)^{2}\Gamma\left(2 - \frac{D}{2}\right)^{2}\Gamma\left(\frac{D}{2} - 1\right)^{4}\Gamma(2D - 5)^{2}}{\Gamma(D - 2)^{2}\Gamma\left(\frac{3D}{2} - 3\right)^{2}},$$ (A.1) $$L_3 = \frac{\Gamma(5-2D)\Gamma\left(4-\frac{3D}{2}\right)\Gamma\left(\frac{D}{2}-1\right)^4\Gamma(4D-9)}{\Gamma(2D-4)\Gamma\left(\frac{5D}{2}-5\right)},$$ (A.2) $$L_4 = \frac{\Gamma(6-2D)\Gamma(5-\frac{3D}{2})\Gamma(2-\frac{D}{2})^2\Gamma(\frac{D}{2}-1)^5\Gamma(\frac{3D}{2}-4)\Gamma(4D-11)}{\Gamma(4-D)\Gamma(D-2)^2\Gamma(2D-5)\Gamma(\frac{5D}{2}-6)},$$ (A.3) $$L_{5} = \frac{\Gamma(6-2D)\Gamma(3-D)\Gamma(2-\frac{D}{2})\Gamma(\frac{D}{2}-1)^{5}\Gamma(4D-11)}{\Gamma(D-2)\Gamma(\frac{3D}{2}-3)\Gamma(\frac{5D}{2}-6)},$$ (A.4) $$L_6 = \frac{\Gamma(7-2D)\Gamma(2-\frac{D}{2})^3\Gamma(\frac{D}{2}-1)^6\Gamma(4D-13)}{\Gamma(D-2)^3\Gamma(\frac{5D}{2}-7)},$$ (A.5) $$L_7 = \frac{\Gamma(6-2D)\Gamma\left(5-\frac{3D}{2}\right)^2\Gamma\left(2-\frac{D}{2}\right)^2\Gamma\left(\frac{D}{2}-1\right)^4\Gamma\left(\frac{3D}{2}-4\right)}{\Gamma(10-3D)\Gamma(D-2)^2\Gamma\left(\frac{D}{2}\right)}.$$ (A.6) The analytic results for the integrals in figure 4 read $$e^{4\epsilon\gamma_E}M_1 = \frac{5}{24\epsilon^4} + \frac{25}{24\epsilon^3} + \left(\frac{205}{96} + \frac{17\pi^2}{72}\right)\epsilon^{-2} + \left(-\frac{323}{96} + \frac{85\pi^2}{72} + \frac{79\zeta_3}{18}\right)\epsilon^{-1}$$ $$\begin{split} &+\left(-\frac{55241}{1152} + \frac{409\pi^2}{288} + \frac{395\zeta_3}{18} + \frac{\pi^4}{8}\right)\epsilon^0 - \left(\frac{733351}{3456} + \frac{4199\pi^2}{288} - \frac{1943\zeta_3}{72} \right. \\ &-\frac{5\pi^4}{8} - \frac{499\pi^2\zeta_3}{54} - \frac{407\zeta_5}{6}\right)\epsilon^1 - \left(\frac{14346449}{4172} + \frac{383045\pi^2}{3456} + \frac{19057\zeta_3}{72} \right. \\ &+ \frac{437\pi^4}{96} - \frac{2495\pi^2\zeta_3}{54} - \frac{2035\zeta_5}{6} + \frac{2027\pi^6}{11340} - \frac{2285\zeta_3^2}{27}\right)\epsilon^2 - \left(-\frac{391938053}{124416} \right. \\ &+ \frac{3517963\pi^2}{10368} + \frac{1751323\zeta_3}{864} + \frac{93447\pi^4}{1440} - \frac{443\pi^2\zeta_3}{216} + \frac{21905\zeta_5}{24} + \frac{2027\pi^6}{2268} \right. \\ &- \frac{11425\zeta_3^2}{27} - \frac{2477\pi^4\zeta_3}{90} - \frac{9223\pi^2\zeta_5}{90} + \frac{11681\zeta_7}{42}\right)\epsilon^3 + O\left(\epsilon^4\right), \qquad (A.7) \\ &e^{4\epsilon\gamma_E}M_2 = -\frac{5}{12\epsilon^4} - \frac{23}{8\epsilon^3} - \left(\frac{433}{48} + \frac{29\pi^2}{36}\right)\epsilon^{-2} - \left(-\frac{297}{32} + \frac{191\pi^2}{24} + \frac{275\zeta_3}{18}\right)\epsilon^{-1} \\ &- \left(-\frac{22765}{64} + \frac{7177\pi^2}{144} - 24\pi^2a_1 + \frac{2273\zeta_3}{12} + \frac{125\pi^4}{72}\right)\epsilon^0 - \left(-\frac{411105}{128} + \frac{8085\pi^2}{32} - 324\pi^2a_1 + \frac{105463\zeta_3}{72} + \frac{2747\pi^4}{240} + 80\pi^2a_1^2 + 40a_1^4 + \frac{1595\pi^2\zeta_3}{16} + \frac{3223\zeta_5}{6} + 960a_4\right)\epsilon^1 - \left(-\frac{16944559}{768} + \frac{216731\pi^2}{129} - 2706\pi^2a_1 + \frac{146001\zeta_3}{16} + \frac{43757\pi^4}{1440} + 1080\pi^2a_1^2 + 540a_1^4 + \frac{16\pi^4a_1}{3} - \frac{800}{3}\pi^2a_1^3 - 80a_1^5 + \frac{9785\pi^2\zeta_3}{36} + \frac{52351\zeta_5}{128} + \frac{112339\pi^6}{22680} + \frac{15125\zeta_3^2}{54} + 12960a_4 + 9600a_5\right)\epsilon^2 - \left(-\frac{685\pi^2c_3}{5120} + \frac{3669721}{128} + \frac{16\pi^4a_1}{3} + \frac{4851365\zeta_3}{960} - \frac{94853\pi^4}{960} + 9020\pi^2a_1^2 + 4510a_1^4 + \frac{16\pi^4a_1}{3} + \frac{4851365\zeta_3}{960} - \frac{94853\pi^4}{960} + 9020\pi^2a_1^2 + 4510a_1^4 + \frac{16\pi^4a_1}{3} + \frac{4851365\zeta_3}{960} - \frac{94853\pi^4}{960} + 9020\pi^2a_1^2 + 4510a_1^4 + \frac{16\pi^4a_1}{3} + \frac{16\pi^4a_1}{3} + \frac{4851365\zeta_3}{960} - \frac{94853\pi^4}{960} + \frac{9467\pi^2\zeta_3}{36} + \frac{364086}{120} + \frac{16875\pi^4\zeta_3}{36} + \frac{93467\pi^2\zeta_5}{90} + \frac{652775\zeta_7}{42} + 108240a_4 + 129600a_5 + 96000a_6 + 1856\pi^2a_4\right)\epsilon^3 + O\left(\epsilon^4\right), \qquad (A.8)$$ $$e^{4\epsilon\gamma_E}M_3 = -\frac{1}{6\epsilon^4} - \frac{7}{6\epsilon^3} - \left(\frac{10}{3} + \frac{13\pi^2}{18}\right)\epsilon^{-2} - \left(-\frac{61}{6} + \frac{73\pi^2}{18} + \frac{118\zeta_3}{9}\right)\epsilon^{-1} - \left(-\frac{851}{4} + \frac{83\pi^2}{18} + \frac{637\zeta_3}{9} + \frac{177\pi^2}{10}\right)\epsilon^0 - \left(-\frac{14861}{8} - \frac{3667\pi^2}{36} + \frac{10$$ $$\begin{split} &+\frac{88585\zeta_3^2}{27} + \frac{17204\pi^4\zeta_3}{45} + \frac{206434\pi^2\zeta_5}{45} + \frac{1267243\zeta_7}{21} \right) \epsilon^3 + O\left(\epsilon^4\right) \,, \qquad (A.9) \\ &e^{4\epsilon\gamma_E} M_4 = -\frac{1}{3\epsilon^4} - \frac{5}{5\epsilon^3} - \left(\frac{55}{6} + \frac{4\pi^2}{9}\right) \epsilon^{-2} - \left(3 + \frac{19\pi^2}{3} + \frac{56\zeta_3}{9}\right) \epsilon^{-1} - \left(-250 + \frac{1925\pi^2}{36} - 32\pi^2a_1 + \frac{464\zeta_3}{3} + \frac{19\pi^4}{45}\right) \epsilon^0 - \left(-\frac{5991}{2} + \frac{2811\pi^2}{8} - 432\pi^2a_1 + \frac{14797\zeta_3}{9} + \frac{17\pi^4}{90} + \frac{320}{3}\pi^2a_1^2 + \frac{160a_1^4}{3} + \frac{322\pi^2}{27} + \frac{1556\zeta_5}{155} + 1280a_4 \right) \epsilon^1 \\ &- \left(-\frac{55049}{3} + \frac{95693\pi^2}{48} - 3608\pi^2a_1 + \frac{24831\zeta_3}{2} - \frac{1084\pi^4}{45} + 1440\pi^2a_1^2 + 720a_1^4 + \frac{160\pi^4}{9}a_1 - \frac{3200}{9}\pi^2a_1^3 - \frac{320a_1^2}{3} + \frac{1046\pi^2\zeta_3}{9} - 8246\zeta_5 + \frac{772\pi^6}{2835} + \frac{2648\zeta_3^2}{27} + 17280a_4 + 12800a_5 \right) \epsilon^2 - \left(-\frac{458141}{4} + \frac{329467\pi^2}{32} - 24220\pi^2a_1 + \frac{938425\zeta_3}{3} - \frac{9979\pi^4}{36} + \frac{36080\pi^2}{3}\pi^2a_1^2 + \frac{18040a_1^4}{4} + 240\pi^4a_1 - 4800\pi^2a_1^3 + 1440a_1^5 + \frac{19930\pi^2\zeta_3}{276} - \frac{353044\zeta_5}{3} + 44800s_6 - \frac{76904\pi^6}{945} - 176\pi^4a_1^2 + 976\pi^2a_1^4 + \frac{1600a_1^4}{94} + \frac{172800a_5}{9} + \frac{155668\zeta_3^2}{9} + \frac{4304\pi^4\zeta_3}{135} + \frac{7304\pi^2\zeta_5}{45} + \frac{4616\zeta_7}{21} + 144320a_4 + 172800a_5 + 128000a_6 + \frac{6272\pi^2a_4}{72} \right) \epsilon^3 + O\left(\epsilon^4\right) \,, \quad (A.10) \\ e^{4\epsilon\gamma_E} M_5 &= -\frac{1}{12\epsilon^4} - \frac{1}{34\epsilon^3} - \left(\frac{15}{16} + \frac{13\pi^2}{36}\right) \epsilon^{-2} - \left(-\frac{136}{195} + \frac{169\pi^2}{72} + \frac{86\zeta_3}{9}\right) \epsilon^{-1} - \left(-\frac{28699}{153} + \frac{749\pi^4}{40} + \frac{7267\pi^2\zeta_3}{27} + \frac{149426\zeta_5}{15} + \frac{14053\pi^6}{1620} + \frac{14063\zeta_5^2}{28} \right) \epsilon^2 \\ &- \left(-\frac{58275695}{1536} - \frac{625859\pi^2}{128} - \frac{1192693\zeta_3}{72} - \frac{168143\pi^4}{1620} + \frac{2951\pi^2\zeta_3}{6} + \frac{12689\pi^6}{3240} + \frac{182819\zeta_3^2}{54} + \frac{51013\pi^4\zeta_3}{180} + \frac{98852\pi^2\zeta_5}{245} + \frac{1021711\zeta_7}{42} \right) \epsilon^3 + O\left(\epsilon^4\right) \,, \quad (A.11) \\ e^{4\epsilon\gamma_E} M_6 &= -\frac{1}{12\epsilon^4} - \frac{17}{24\epsilon^3} - \left(\frac{149}{148} + \frac{13\pi^2}{36}\right) \epsilon^{-2} - \left(\frac{433}{9} + \frac{149\pi^2}{14953} + \frac{2951\pi^2\zeta_3}{9}\right) \epsilon^{-1} \\ &- \left(-\frac{58275695}{64} - \frac{625859\pi^2}{128} - \frac{1192693\zeta_3}{12} - \frac{168143\pi^4}{1620} + \frac{2951\pi^2\zeta_3}{6} + \frac{1607\pi^4}{45} + \frac{1806\pi^2}{128} + \frac{182819\zeta_3^2}{320} + \frac{1495\pi^2}{128} + \frac{9}{9} \epsilon^$$ $$+\frac{1717\zeta_{3}}{36} + \frac{833\pi^{4}}{360} + \frac{3527\pi^{2}\zeta_{3}}{27} + \frac{30599\zeta_{5}}{15} + \frac{57791\pi^{6}}{5670} + \frac{734\zeta_{3}^{2}}{27} \right) \epsilon^{2}$$ $$-\left(-\frac{61900879}{1536} - \frac{410283\pi^{2}}{128} - \frac{55357\zeta_{3}}{24} - \frac{193957\pi^{4}}{720} + \frac{8489\pi^{2}\zeta_{3}}{54} +
\frac{45833\zeta_{5}}{30} + \frac{1106911\pi^{6}}{22680} + \frac{14197\zeta_{3}^{2}}{54} + \frac{21637\pi^{4}\zeta_{3}}{135} + \frac{75407\pi^{2}\zeta_{5}}{45} + \frac{522017\zeta_{7}}{21} \right) \epsilon^{3} + O\left(\epsilon^{4}\right), \tag{A.12}$$ with $s_6 = \sum_{m=1}^{\infty} \sum_{k=1}^{m} (-1)^{m+k} / (m^5 k) = 0.98744...$ #### B Relation between $\bar{\alpha}(\mu)$ and α In this appendix we present the result for the relation between the fine structure constant defined in the $\overline{\rm MS}$ and on-shell renormalization scheme involving two massive leptons with masses m_1 and m_2 . We label contributions from leptons with mass m_1 and m_2 by n_h and n_l , respectively. Our result reads $$\frac{\bar{\alpha}(\mu)}{\alpha} - 1 = \frac{1}{3}l_2n_l\frac{\alpha}{\pi} + \left\{ \frac{1}{9}l_1l_2n_hn_l + \frac{1}{9}l_2^2n_l^2 + \left(\frac{l_2}{4} + \frac{15}{16}\right)n_l \right\} \left(\frac{\alpha}{\pi}\right)^2 \\ + \left\{ \frac{1}{27}l_2^3n_l^3 + \frac{1}{9}l_1l_2^2n_hn_l^2 + n_l^2 \left(\frac{5l_2^2}{24} + \frac{79l_2}{144} + \frac{7\zeta_3}{64} + \frac{\pi^2}{9} - \frac{695}{648}\right) \right. \\ + n_l \left(-\frac{1}{3}\pi^2a_1 - \frac{l_2}{32} + \frac{\zeta_3}{192} + \frac{5\pi^2}{24} + \frac{77}{576}\right) \\ + n_hn_l \left[\frac{79l_1x^2}{384} - \frac{79l_2\left(3x^2 - 8\right)}{1152} + \frac{5l_1l_2}{24} + \frac{1}{384}\left(-128x^4 - 15x^2 - 71\right)\ln^2(x) \right. \\ + \frac{1}{3}\left(-x^4 + x^3 + x - 1\right)\operatorname{Li}_2(1 - x) + \frac{1}{3}\left(x^4 + x^3 + x + 1\right)\operatorname{Li}_2(-x) \\ + \frac{\left(5x^6 + 3x^4 + 3x^2 + 5\right)}{256x^3} \left(\left(\operatorname{Li}_2(1 - x) + \operatorname{Li}_2(-x)\right)\ln(x) - 2\operatorname{Li}_3(1 - x) - \operatorname{Li}_3(-x)\right) \\ + \frac{1}{3}\left(x^4 + x^3 + x + 1\right)\ln(x)\ln(x + 1) + \frac{\left(5x^6 + 3x^4 + 3x^2 + 5\right)\ln^2(x)\ln(x + 1)}{512x^3} \\ + \frac{405x^3\zeta_3 + 1152\pi^2\left(x^3 + x\right) - 5994x^2 + 243x\zeta_3 - 5126}{10368} \right] \right\} \left(\frac{\alpha}{\pi}\right)^3 \\ + \left\{n_h \leftrightarrow n_l, m_1 \leftrightarrow m_2, x \leftrightarrow \frac{1}{x}\right\}, \tag{B.1}$$ with $x = m_1/m_2$, $l_k = \ln(\mu^2/m_k^2)$ and $a_1 = \ln 2$. #### References [1] P.A. Baikov, K.G. Chetyrkin and J.H. Kuhn, Scalar correlator at $O(\alpha_s^4)$, Higgs decay into b-quarks and bounds on the light quark masses, Phys. Rev. Lett. **96** (2006) 012003 [hep-ph/0511063] [INSPIRE]. - [2] P.A. Baikov, K.G. Chetyrkin and J.H. Kuhn, Order α_s^4 QCD corrections to Z and τ decays, Phys. Rev. Lett. **101** (2008) 012002 [arXiv:0801.1821] [INSPIRE]. - [3] P.A. Baikov, K.G. Chetyrkin, J.H. Kuhn and J. Rittinger, Complete $O(\alpha_s^4)$ QCD corrections to hadronic Z-decays, Phys. Rev. Lett. 108 (2012) 222003 [arXiv:1201.5804] [INSPIRE]. - [4] K.G. Chetyrkin, J.H. Kuhn and C. Sturm, Four-loop moments of the heavy quark vacuum polarization function in perturbative QCD, Eur. Phys. J. C 48 (2006) 107 [hep-ph/0604234] [INSPIRE]. - [5] R. Boughezal, M. Czakon and T. Schutzmeier, *Charm and bottom quark masses from perturbative QCD*, *Phys. Rev.* **D 74** (2006) 074006 [hep-ph/0605023] [INSPIRE]. - [6] C. Sturm, Moments of heavy quark current correlators at four-loop order in perturbative QCD, JHEP **09** (2008) 075 [arXiv:0805.3358] [INSPIRE]. - [7] A. Maier, P. Maierhofer and P. Marqaurd, The second physical moment of the heavy quark vector correlator at $O(\alpha_s^3)$, Phys. Lett. B 669 (2008) 88 [arXiv:0806.3405] [INSPIRE]. - [8] A. Maier, P. Maierhofer, P. Marquard and A.V. Smirnov, Low energy moments of heavy quark current correlators at four loops, Nucl. Phys. B 824 (2010) 1 [arXiv:0907.2117] [INSPIRE]. - [9] K.G. Chetyrkin, J.H. Kühn, A. Maier, P. Maierhöfer, P. Marquard, M. Steinhauser and C. Sturm, Charm and bottom quark masses: An update, Phys. Rev. D 80 (2009) 074010 [arXiv:0907.2110] [INSPIRE]. - [10] K. Kajantie, M. Laine, K. Rummukainen and Y. Schröder, Pressure of hot QCD up to $g^6 ln(1/g)$, Phys. Rev. **D** 67 (2003) 105008 [hep-ph/0211321] [INSPIRE]. - [11] N. Gray, D.J. Broadhurst, W. Grafe and K. Schilcher, Three loop relation of quark (modified) MS and pole masses, Z. Phys. C 48 (1990) 673 [INSPIRE]. - [12] D.J. Broadhurst, N. Gray and K. Schilcher, Gauge invariant on-shell Z₂ in QED, QCD and the effective field theory of a static quark, Z. Phys. C 52 (1991) 111 [INSPIRE]. - [13] S. Laporta and E. Remiddi, The Analytical value of the electron (g-2) at order α^3 in QED, Phys. Lett. **B 379** (1996) 283 [hep-ph/9602417] [INSPIRE]. - [14] K. Melnikov and T.v. Ritbergen, The three loop relation between the MS-bar and the pole quark masses, Phys. Lett. B 482 (2000) 99 [hep-ph/9912391] [INSPIRE]. - [15] P. Marquard, L. Mihaila, J.H. Piclum and M. Steinhauser, Relation between the pole and the minimally subtracted mass in dimensional regularization and dimensional reduction to three-loop order, Nucl. Phys. B 773 (2007) 1 [hep-ph/0702185] [INSPIRE]. - [16] K. Melnikov and T. van Ritbergen, The three loop on-shell renormalization of QCD and QED, Nucl. Phys. B 591 (2000) 515 [hep-ph/0005131] [INSPIRE]. - [17] K.G. Chetyrkin and M. Steinhauser, Short distance mass of a heavy quark at order α_s^3 , Phys. Rev. Lett. 83 (1999) 4001 [hep-ph/9907509] [INSPIRE]. - [18] K.G. Chetyrkin and M. Steinhauser, The relation between the MS-bar and the on-shell quark mass at order α_s^3 , Nucl. Phys. B 573 (2000) 617 [hep-ph/9911434] [INSPIRE]. - [19] K. Melnikov and T. van Ritbergen, The three loop slope of the Dirac form-factor and the S Lamb shift in hydrogen, Phys. Rev. Lett. 84 (2000) 1673 [hep-ph/9911277] [INSPIRE]. - [20] A.G. Grozin, P. Marquard, J.H. Piclum and M. Steinhauser, *Three-loop chromomagnetic interaction in HQET*, *Nucl. Phys.* B **789** (2008) 277 [arXiv:0707.1388] [INSPIRE]. - [21] B.E. Lautrup and E. De Rafael, The anomalous magnetic moment of the muon and short-distance behaviour of quantum electrodynamics, Nucl. Phys. B 70 (1974) 317 [Erratum ibid. B 78 (1974) 576] [INSPIRE]. - [22] T. Kinoshita, H. Kawai and Y. Okamoto, Asymptotic photon propagator in massive QED and the muon anomalous magnetic moment, Phys. Lett. B 254 (1991) 235 [INSPIRE]. - [23] H. Kawai, T. Kinoshita and Y. Okamoto, Asymptotic photon propagator and higher order QED Callan-Symanzik β -function, Phys. Lett. B 260 (1991) 193 [INSPIRE]. - [24] R.N. Faustov, A.L. Kataev, S.A. Larin and V.V. Starshenko, The analytical contribution of the three loop diagrams with two fermion circles to the photon propagator and the muon anomalous magnetic moment, Phys. Lett. B 254 (1991) 241 [INSPIRE]. - [25] D.J. Broadhurst, A.L. Kataev and O.V. Tarasov, Analytical on-shell QED results: Three loop vacuum polarization, four loop β-function and the muon anomaly, Phys. Lett. B 298 (1993) 445 [hep-ph/9210255] [INSPIRE]. - [26] P.A. Baikov and D.J. Broadhurst, Three loop QED vacuum polarization and the four loop muon anomalous magnetic moment, hep-ph/9504398 [INSPIRE]. - [27] P.A. Baikov et al., The relation between the QED charge renormalized in MSbar and on-shell schemes at four loops, the QED on-shell β-function at five loops and asymptotic contributions to the muon anomaly at five and six loops, Nucl. Phys. B 867 (2013) 182 [arXiv:1207.2199] [INSPIRE]. - [28] S. Laporta, The Analytical contribution of some eighth order graphs containing vacuum polarization insertions to the muon (g-2) in QED, Phys. Lett. **B 312** (1993) 495 [hep-ph/9306324] [INSPIRE]. - [29] J.-P. Aguilar, D. Greynat and E. De Rafael, Muon anomaly from lepton vacuum polarization and the Mellin-Barnes representation, Phys. Rev. **D** 77 (2008) 093010 [arXiv:0802.2618] [INSPIRE]. - [30] T. Kinoshita and M. Nio, Improved α^4 term of the muon anomalous magnetic moment, Phys. Rev. **D** 70 (2004) 113001 [hep-ph/0402206] [INSPIRE]. - [31] T. Aoyama, M. Hayakawa, T. Kinoshita and M. Nio, Revised value of the eighth-order QED contribution to the anomalous magnetic moment of the electron, Phys. Rev. D 77 (2008) 053012 [arXiv:0712.2607] [INSPIRE]. - [32] T. Aoyama, M. Hayakawa, T. Kinoshita and M. Nio, Tenth-order QED contribution to the electron g-2 and an improved value of the fine structure constant, Phys. Rev. Lett. 109 (2012) 111807 [arXiv:1205.5368] [INSPIRE]. - [33] T. Aoyama, M. Hayakawa, T. Kinoshita and M. Nio, Complete tenth-order QED contribution to the muon q-2, Phys. Rev. Lett. 109 (2012) 111808 [arXiv:1205.5370] [INSPIRE]. - [34] F. Jegerlehner, The anomalous magnetic moment of the muon, Springer Tracts Mod. Phys. 226 (2008) 1 [INSPIRE]. - [35] F. Jegerlehner and A. Nyffeler, The muon g-2, Phys. Rept. 477 (2009) 1 [arXiv:0902.3360] [INSPIRE]. - [36] P. Nogueira, Automatic Feynman graph generation, J. Comput. Phys. 105 (1993) 279 [INSPIRE]. - [37] R. Harlander, T. Seidensticker and M. Steinhauser, Complete corrections of order αα_s to the decay of the Z boson into bottom quarks, Phys. Lett. B 426 (1998) 125 [hep-ph/9712228] [INSPIRE]. - [38] T. Seidensticker, Automatic application of successive asymptotic expansions of Feynman diagrams, hep-ph/9905298 [INSPIRE]. - [39] J. Vermaseren, New features of FORM, math-ph/0010025 [INSPIRE]. - [40] P. Marquard and D. Seidel, unpublished. - [41] A. Smirnov, Algorithm FIRE Feynman Integral REduction, JHEP 10 (2008) 107 [arXiv:0807.3243] [INSPIRE]. - [42] S. Laporta, High precision calculation of multiloop Feynman integrals by difference equations, Int. J. Mod. Phys. A 15 (2000) 5087 [hep-ph/0102033] [INSPIRE]. - [43] K. Chetyrkin and F. Tkachov, Integration by parts: the algorithm to calculate β -functions in 4 loops, Nucl. Phys. **B 192** (1981) 159 [INSPIRE]. - [44] R. Lee, Space-time dimensionality D as complex variable: calculating loop integrals using dimensional recurrence relation and analytical properties with respect to D, Nucl. Phys. B 830 (2010) 474 [arXiv:0911.0252] [INSPIRE]. - [45] A.V. Smirnov and M.N. Tentyukov, Feynman integral
evaluation by a sector decomposition approach (FIESTA), Comput. Phys. Commun. 180 (2009) 735 [arXiv:0807.4129] [INSPIRE]. - [46] A.V. Smirnov, V.A. Smirnov and M.N. Tentyukov, FIESTA 2: parallelizeable multiloop numerical calculations, Comput. Phys. Commun. 182 (2011) 790 [arXiv:0912.0158] [INSPIRE]. - [47] V.A. Smirnov, Analytical result for dimensionally regularized massless on shell double box, Phys. Lett. B 460 (1999) 397 [hep-ph/9905323] [INSPIRE]. - [48] J.B. Tausk, Nonplanar massless two loop Feynman diagrams with four on-shell legs, Phys. Lett. B 469 (1999) 225 [hep-ph/9909506] [INSPIRE]. - [49] V.A. Smirnov, Analytic tools for Feynman integrals, Springer Tracts Mod. Phys. **250** (2013) 1 [INSPIRE]. - [50] M. Czakon, Automatized analytic continuation of Mellin-Barnes integrals, Comput. Phys. Commun. 175 (2006) 559 [hep-ph/0511200] [INSPIRE]. - [51] A.V. Smirnov and V.A. Smirnov, On the resolution of singularities of multiple Mellin-Barnes integrals, Eur. Phys. J. C 62 (2009) 445 [arXiv:0901.0386] [INSPIRE]. - [52] H.R.P. Ferguson and D.H. Bailey, A polynomial time, numerically stable integer relation algorithm, RNR Techn. Rept. RNR-91-032 (1992). - [53] S. Laporta, High precision ϵ -expansions of three loop master integrals contributing to the electron g-2 in QED, Phys. Lett. **B 523** (2001) 95 [hep-ph/0111123] [INSPIRE]. - [54] K.G. Chetyrkin, Quark mass anomalous dimension to $O(\alpha_s^4)$, Phys. Lett. **B 404** (1997) 161 [hep-ph/9703278] [INSPIRE]. - [55] J.A.M. Vermaseren, S.A. Larin and T. van Ritbergen, The four loop quark mass anomalous dimension and the invariant quark mass, Phys. Lett. B 405 (1997) 327 [hep-ph/9703284] [INSPIRE]. - [56] K.G. Chetyrkin, Four-loop renormalization of QCD: full set of renormalization constants and anomalous dimensions, Nucl. Phys. B 710 (2005) 499 [hep-ph/0405193] [INSPIRE]. - [57] M. Beneke and V.M. Braun, Naive non-abelianization and resummation of fermion bubble chains, Phys. Lett. B 348 (1995) 513 [hep-ph/9411229] [INSPIRE]. - [58] B. Krause, Zwei- und Dreischleifen-Berechnungen zu elektrischen und magnetischen Dipolmomenten von Elementarteilchen, Ph.D. thesis, University of Karlsruhe, Germany (1997). - [59] D.J. Broadhurst, Three loop on-shell charge renormalization without integration: Λ-MS (QED) to four loops, Z. Phys. C 54 (1992) 599 [INSPIRE]. - [60] P.J. Mohr, B.N. Taylor and D.B. Newell, CODATA recommended values of the fundamental physical constants: 2010, Rev. Mod. Phys. 84 (2012) 1527 [arXiv:1203.5425] [INSPIRE]. - [61] J.A.M. Vermaseren, Axodraw, Comput. Phys. Commun. 83 (1994) 45 [INSPIRE]. - [62] D. Binosi, J. Collins, C. Kaufhold and L. Theussl, JaxoDraw: a graphical user interface for drawing Feynman diagrams. Version 2.0 release notes, Comput. Phys. Commun. 180 (2009) 1709 [arXiv:0811.4113] [INSPIRE].