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1 Introduction

Higher-curvature corrections to the Einstein-Hilbert action naturally arise in the low-energy
limit of string theories and play an important role in their compactification [1, 2] where
curvature squared terms can appear in the lower dimensional effective action. In this



context, higher-curvature corrections take the form of an infinite series required by on-
shell supersymmetry which only works order by order. Many attempts have been carried
out in the explicit construction of supersymmetric higher-derivative terms. For instance,
supersymmetric R? terms were studied in [3]-[11] motivated by supersymmetrizing the
Lorentz Chern-Simons term that is indispensable to the anomaly cancelation [12]. However,
if the higher-curvature terms are treated as perturbative interactions leaving the degrees
of freedom and propagator unchanged, only the coefficient in front of R**°R,,, ,, has a
definite meaning, since a field redefinition of the form

9w = Guw + ARy + bgu R (1.1)

can shift the coefficients in front of the R¥R,, and R? terms to arbitrary values [13].
On the other hand, there are also situations where it is interesting to consider a finite
number of higher-curvature terms on the same footing as Einstein-Hilbert term, since
higher-derivative terms can improve the ultraviolet behavior of gravitational theories [21].
Among all the quadratic curvature theories of gravity, the Gauss-Bonnet combination is
singled out since it is ghost-free, sharing the similar property with Einstein gravity. Its
form is given by

e 'Lap = Ruypo R — AR, R + R?. (1.2)

In dimensions D < 6, certain types of off-shell formulation of supergravity are known
in which the higher-derivative bosonic terms can be extended to complete and indepen-
dent super-invariants with only a finite number of terms being required. Progresses on
supersymmetrizing the Gauss-Bonnet combination have been made. In four-dimensional
N = 1 supergravity, supersymmetric Gauss-Bonnet term with matter coupling was con-
structed in [14-18]; in six-dimensional chiral N = 2 supergravity, partial results on the
Gauss-Bonnet super-invariant were given in [19, 20].

In this work, we study the supersymmetric completion of Gauss-Bonnet combination
in five dimensions. We use the five-dimensional superconformal tensor calculus [22, 23]
which facilitates the construction tremendously. Since superconformal tensor calculus is
an off-shell formalism, the analysis of the higher derivative terms can be done without mod-
ifying the supersymmetry transformation rules. The off-shell nature of the supersymmetric
invariants allow us to combine different invariants to obtain more general theories.

The crucial observation in our construction of supersymmetric Gauss-Bonnet combi-
nation is that although three independent curvature squared terms enter the expression
of Gauss-Bonnet combination, such an off-shell construction might be possible with only
two independent curvature squared super-invariants. This observation is based on the fact
that the Riemann squared invariant obtained in [28] using the Dilaton Weyl multiplet con-
tains an ordinary kinetic term for the auxiliary vector field V,fj . Thus the Riemann square
extended Poincaré supergravity contains a dynamical massive auxiliary vector in its spec-
trum which forms the same multiplet with the massive graviton generated by the Riemann
squared term. By counting degrees of freedom, we notice that it might always be the
case (except for the pure Ricci scalar squared invariant) that when formulated in terms of
Dilaton Weyl multiplet, the curvature squared super-invariant includes an ordinary kinetic



term for the auxiliary vector field Vﬁj . Therefore, if there exist two independent curvature
squared super-invariants, a particular combination of them can be formed in which the ki-
netic term for the auxiliary vector vanishes. This implies that there is no massive graviton
since the massive vector and massive graviton fall into the same multiplet, suggesting that
the curvature squared terms comprise Gauss-Bonnet combination.

Based on the above observation, we start looking for another curvature squared invari-
ant constructed in terms of the Dilaton Weyl multiplet besides the known Riemann tensor
squared invariant. An obvious candidate is oL p"@,u,p(,, which is the superconformal ex-
tension of the Weyl tensor squared term whose supersymmetric completion was obtained
previously in [24]! using the Standard Weyl multiplet coupled to the vector multiplet. Uti-
lizing superconformal tensor calculus, we supersymmetrize the square of super-covariant
Weyl tensor. We find that in addition to the Weyl tensor squared term, the bosonic
action acquires a Ricci scalar squared term arising from the square of D, which is a fun-
damental scalar field in the Standard Weyl multiplet but a composite field in the Dilaton
Weyl multiplet. Equivalently, the curvature squared terms in the action take the form of
CHPICLupe + %Rz. Since
%R’“’RW + %RQ (1.3)
the ratio of coefficients in front of the R*" R, and R? terms is -4, which is the required
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value to obtain the supersymmetric completion of Gauss-Bonnet invariant by combining a
Riemann squared invariant with an appropriate coefficient.

This paper is organized as follows. In section 2, we briefly review the superconformal
multiplets of five-dimensional supergravity constructed in [23, 26, 29]. In section 3, we
review the construction of the superconformal linear multiplet action [27] and obtain a
superconformal action for the Yang-Mills multiplet coupled to the Dilaton Weyl multiplet.
In section 4, we fix the superconformal symmetries to obtain an off-shell Poincaré super-
gravity and an off-shell Yang-Mills theory coupled to the Dilaton Weyl multiplet. Using
a map between the Yang-Mills multiplet and the Dilaton Weyl multiplet [28], we recon-
struct the off-shell supersymmetric Riemann squared action. In section 5, we present the
supersymmetric completion of C**7C,,, ;5 + %R2 and combine it with a supersymmetric
Riemann squared invariant to obtain the supersymmetric Gauss-Bonnet combination. In
section 6, we derive the D = 5 on-shell minimal Einstein Hilbert supergravity and on-shell
Gauss-Bonnet extended Einstein-Maxwell supergravity. In section 7, we discuss the vac-
uum solutions with AdSs x S? and AdSy x S? structures. The bosonic spectrum around
a maximally supersymmetric Minkowskis vacuum is also analyzed. In section 8 we give
conclusion and discussions.

2 Superconformal multiplets

In this section, we introduce the basic elements of five dimensional superconformal tensor
calculus with eight supercharges [23, 26]. In section 2.1, we present the Dilaton Weyl
multiplet adopted in our construction. In the subsequent two subsections, we briefly review

!The on-shell theory of this model is derived in [25].



two superconformal matter multiplets of D = 5, N’ = 2 theory: the Yang-Mills multiplet
and the linear multiplet, which are used as compensator multiplets in the construction of
superconformal actions.

2.1 Dilaton Weyl multiplet

In [26], it was established that there exist two different Weyl multiplets for N = 2 confor-
mal supergravity in five dimensions: the Standard Weyl multiplet and the Dilaton Weyl
multiplet. These two multiplets have the same contents of gauge fields but different matter
fields. However, the matter fields of the Standard multiplet can be built from the funda-
mental fields in the Dilation Weyl multiplet as composite fields. The gauge sector of the
Dilaton Weyl multiplet consists of a fiinfbein e,“, a gravitino, wui, the dilatation gauge
field b, and the SU(2) gauge field V,fj . Since these gauge fields account for 21(bosonic)
+24 (fermionic) degrees of freedom, they cannot form a super-multiplet. Therefore, mat-
ter fields are needed to comprise a superconformal Weyl multiplet. For the Dilaton Weyl
multiplet, the matter sector consists of a physical vector C),, an antisymmetric two-form
gauge field By, a dilaton field o and a dilatino ¢*. The @, S and K transformation rules
for the Dilaton Weyl Multipet are given by [26]
1

de," = §E7a¢ua

' 1 1 . y ) S
(W’L = <au + §bu + 4Wuab7ab> € - V/fjej + iy Tyue’ —iyun',
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1 1. _
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' = 27 Ge' — 51@05 +oy-Te — Zi0_1€j¢z¢] +on',
1
1._ _ 1,

ob, = i€ — 2y x + ilmpu +2A K, (2.1)

where

1. -
D,o = (3ﬂ - bM)U 35 W,
i 3 Loa i ij Lo 5
D;ﬂ/} = (‘h—ibu—i—zwu Yab Q’Z)_Vﬂw]—i_Z’qub#
1. 1 o 4 4
+§11Daw; + 4o Yty — oy - Ty, — o), (2.2)
and the supercovariant curvatures are defined according to
- _ 1. -
Guu = Guu - ¢[p7y]7w[} + §law[p¢u]’

~ 3 5- 3. -
Hul/p = Huup - 102¢[u7V¢p] - §IJ¢[u7Vp]wa (23)



In above expressions, G, = 29),C, and H,,, = 30|, B,, + %C[#Gl,p}. Note that @W and
H,,, are invariant under following gauge transformations

1
0Cu=0u, 6B =20, — SACL. (2.4)

The definitions of spin connection wﬂab and the S-supersymmetry gauge field ngL are
given in [26]
1- 1-
wuab _ 2eu[aa[uey]b] o eu[aeb]aeﬂcayeo_c + 2eu[abb} + §w[a,}/b]w‘u + Zwa,y”d}b’

L™ RL(Q), (2.5)
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where éfw(Q), the supercovariant curvature of gravitino is defines as [26]
RLV(Q) = RI#Vi(Q) - 227[u¢fj} ’
D i Lo, i i ij . i
R/;u/ (Q) = 28[p¢y} + iw[,u bfyabl/)y] + b[;ﬂ/h,] - 2V[J¢1/]] + 2iy - T’}/[H@by}. (26)

For future reference, we also give the supercovariant curvature of w,% and V,;’ [26]

~

R,ul/ab(M) = 28[#"‘)1/] ab + 2w[,u,acwl/]cb + 8f[,u[aeu] ! + i?/_)[u’Yab@Du] + id_}[u'y[a’y ) T’Vb} T;Z)I/]
_ ~ 1- ~
0 Ry (Q) + §wmu]R“b(Q) = 892X + iy,
R (V) = 20,,Viy¥ — 2V, M0V, 0) =360 &/)W W =iy Tl (2)

The @- and S- transformations of the field strengths @W and PAIabC are presented in [26]

~ 1. = _ . .

5G,u,1/ = _510'€R;w (Q) - WWDVW + 1YY - T’YVW + 177’7qu )
~ 3 ~ 3. 3.
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The expressions for the composite fields Ty, ¥* and D are given as follows [26]
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where the superconformal d’Alambertian for o is given by

1 _ _
0% = (0% — 2b% + wp"*) Dyo — iiwal)“zb — 209,

1- 1-
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2
o 1 a 1 a Dl oa =
fu = - ERM + Z8eu 7?/7 RMV = R;Lp b(M)ebpeVa7 R = RMN' (210)

The notation R'(M) indicates that we have omitted the fu® term in R(M). Tt was es-
tablished in [26] that one can also construct another Weyl multiplet, the Standard Weyl
multiplet if considering T,;, D and %’ as fundamental fields instead as a matter sector in
addition to the gauge sector of the Weyl multiplet. Therefore, the composite expressions
of these fields establish a map from the Dilaton Weyl multiplet to the Standard Weyl mul-
tiplet. We refer to [26, 27] for readers interested in the derivation of this map and the
five-dimensional Weyl multiplets in superconformal theory. For later convenience, we also
present the Q- and S- transformations of the composite fields [26]

I._ 3. 5
6Tab = 516%1;)( - 516Rab(Q) 5
i1y L 5 L. i L e
ox' = VG D — 61" RY(V)e; + 37 D€’ — 3 D Type

1 o1l o, 1 ;
_ZF}/adeT’achd62 + ETZGZ + Zﬁy : TTIZ ’

0D = €Dy — giE’y -T'x —inx, (2.11)

where the supercovariant derivatives of the composite fields are
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2.2 Yang-Mills multiplet

The off-shell non-abelian D = 5, N' = 2 vector multiplet consists of 8n (bosonic) + 8n (
fermionic) degrees of freedom (where n is the dimension of the gauge group). Denoting
the Yang-Mills index by I (I = 1,---,n), the bosonic sector consists of vector fields A{L,
scalar fields p! and SU(2)-triplet auxiliary fields Y1 = Y1 SU(2)-doublet fields X/

constitute the fermionic sector.

In the background of the Dilaton Weyl multiplet, the Q- and S-transformations of the



fields in the vector multiplet are given by [29]
1., 1_
5A£ = —ilpl(-:@bu + 56%)\1,

- 1 ,.., . 1 . . o 1 .. . 1 ) )
syl — —ig@wﬂ)f + 51@% TN — 4ipTeliyd) 4 iiﬁwﬂ - iigé(l Frrlp? MK

Sl — —%’Y Pl _ %iszIGi + ol Té _Yijlej + ol
spl = %'af : (2.13)
The superconformally covariant derivatives used here are
Dyph = (@~ bu)o! +gfar A" — i (2.14)
DN = (au -~ %bu + iwuab%b) X — VI + gf i AJAT
b Pl SiBp g+ Y5 — ol T~ Mg, (219)

where the supercovariant Yang-Mills curvature is given as

. _ 1.,

F;{u = 26[#‘415] + ngKIA;{AyK - 1/1[#%])\[ + ilﬂlib[;ﬂbu] . (216)
2.3 Linear multiplet

The off-shell D = 5, N' = 2 linear multiplet contains 8 (bosonic)+8 (fermionic) degrees of
freedom carried by the following fields

(LY, E* N, ¢"). (2.17)

The bosonic fields are an SU(2) triplet L = L(9) a constrained vector F, and a scalar N.
The fermionic fields are given by an SU(2) doublet ¢°. In the background of the Standard
Weyl multiplet, the Q- and S- transformations of the fields in the linear multiplet are
given by [27]

SLY = iE(igpj),
i Lipric; — LiveB,e 4 Lve LY LY
o' = _§Z$ €j — 517" Fac —1—5 € —v-TLYe¢; +3L"Yn;,
1. _ _
0B, = —5ievaD"¢ — 261" 0Ty — 27709,
1 3. i 3.
ON = J&Pp+ Siey - Tp + 4ie'x! Lij + Siig, (2.18)
where the super-covariant derivatives are defined as
DL = (0, — 3b,) LY + 2V, LK — ifiph) |
} 7 1 . g 1 . 1 )
DuQOZ = <8“ — ib# + 4wuab7ab> SOZ - V/jjsoj + ileUwﬂj + izfyaanlZ
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—§N¢L +’}/ -TL ]I,Z)Mj — 3LU¢M]’,

1. _ _
D, E, = (0 — 4b,) Eq + wuan B® + 5@%%17@”90 + 20,70 Tha + 20070 . (2.19)



The closure of the superconformal algebra requires that the following constraint must
be satisfied
D*E, =0. (2.20)

Thus E, can be solved in terms of a 3-form E,,, as

1
EM — —EGW’MADVEW/\, (2.21)

where E,,,, is invariant under the following gauge transformation

AEpup = 30, Ay - (2.22)
We can also express EF and E,,, in terms of a 2-form potential according to [27]
EFt = D,E"
Eup = €uuporE7 . (2.23)

The supersymmetry transformations of the 2-form gauge field E,,, and 3-form gauge field
E,., are given in [27]
SEW — _1'7 KV 1@52 HpIT,. . 9 AP
= 216’7 ¥ 9 p € L P )
SEup = —&Yuwpp + iq;fﬂyp]ej Lij. (2.24)

3 Superconformal actions

In this section, we review the derivation of the superconformal action for the linear mul-
tiplet [27], and construct a superconformal action for the Yang-Mills multiplet. We begin
with the following super-invariant density formula [23]

e 'y =YL +idp — %&WVLU - %e“”’mAAM&,E’pm\
+p (N + %@Zﬂw + ii@zﬁabﬂ)ﬂij) : (3.1)
By integration by parts, Ly, can be reexpressed as
e 'Ly =YL +iXp - %@Q’YQWLU + %FWE’“’
+p <N + %u‘m% + }'u‘wbwzw) : (3.2)

3.1 Linear multiplet action

In this section, we construct the vector multiplet in terms of fundamental fields of the linear
multiplet and the Dilation Weyl multiplet, and obtain an action for the linear multiplet
by using vetor-linear Lagrangian (3.2). Firstly, the scalar p in the vector multiplet can be
constructed from the elements of linear multiplet as follows [27]

p=2L" N +igip; LVL™3, L? = LYL,;. (3.3)



Using this expression and applying a sequence of supersymmetry transformations, we ob-
tain the full expressions for the components of vector multiplets in terms of elements in
the linear multiplet [27]

p=2L"'N+iL3¢"¢/ Ly,

i = 2P, L + (16Lijx? +4v - Ty;) L™t —2NLjj L3
+20(PLi; L *or — ELijo" )L™ + i gip; L3
—6i! Grp LM Li; L2,

Yij = L7'0%Li; — DoLy;D"Lj),, LF"L™* — N*L;;L™* — E,B"L;;L™*

1
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_2D[#(L73¢17V]S0]Lij) - iLil@Ruu(Q) . (34)

Substituting above composite expressions into the vector-linear Lagrangian (3.2), one ob-
tains the superconformal action for the linear multiplet [27]

e 'Ly = L 'Ly0°L¥ — LYD, L, ;D" Lj),, L"" L% — N°L™!
1

~E,EFL7Y 4 gLT2 +4DL — 5L_3E“”L§€6uL’“p8prl

+2E" 9, (L B, + V9 Li L") + fermions, (3.5)
where the complete expression for the superconformal d’Alembertian is defined as

LijO°LY = Lij(0% — 46% 4+ w*YDo LY 4 2LV, 'y DOL* + 6 L2 f,°
—iLijp" Do) — 6L %ax — Lijp'y - TY*Y) + Lij@'y"d),. (3.6)

Fermionic contribution to above action can be straightforwardly read from the formulae
given in (3.4).

3.2 Yang-Mills multiplet action

This subsection is devoted to construct a superconformal action describing a vector multi-
plet coupled to a Dilaton Weyl multiplet. Such an action was previously obtained in [23]
using the Standard Weyl multiplet and applied in [24] to derive an off-shell Poincaré the-
ory. Another use of the vector multiplet action was established in [26, 27], where the vector
multiplet action in the Standard Weyl multiplet background was used to derive the map
between the Standard Weyl multiplet and the Dilaton Weyl multiplet.



Similar to the construction of a linear multiplet action, we can use the density for-
mula (3.1) to obtain an action for an abelian vector multiplet coupled to a Dilaton Weyl
multiplet. Based on the action for an abelian vector multiplet, we derive the action for a
Yang-Mills multiplet coupled to the Dilaton Weyl Multiplet.

We start from the following identification

Li; =Y. (3.7)
This identification, however, has the wrong Weyl weight and fails to satisfy the S-invariance
of L;;j (See appendix B for the Weyl weights of the fields). The one with the right Weyl
weight and invariant under the S-transformation is given by

1. - 1.-

After employing a sequence of -and S-transformations to (3.8), we obtain the full expres-
sions for the components of linear multiplet in terms of the fields in the vector multiplet
and Dilaton Weyl multiplet

1. 4+ 1<
Lij = oYy + Jipo sy — S1Aa¥s);

1. 1. 1 =
;i = 51017»\1' + 51,01751!)@' +py T+ oy -TA —8opxi — 3V GA;

1~ 1 1 11
—g7 Fvit+ Z@ff)\i + ZZDP% - 5 Y’ - 310 "N iy,

1~y 1 4 1.- 1
E® =D, (—20F“b — 5pGab + 8o pT ™ — 81)\%(,1/1) — geabcdec:chde,

1 1 1 1 =~ 2
N = —p0% + Z¢0%p + =D,pD% — =G F'®* — 4po | D + =172
2 2 2 4 3
~ ~ 1_ 1_
+40 F Ty + 4pG™T oy + Bio XA + 8ipXw) — TAPY — L IPA
+igry - TA. (3.9)

Inserting above expressions into density formula (3.1), we derive an action for an abelian
vector multiplet coupled to a Dilaton Weyl multiplet. Generalization of the action for
abelian vector multiplet to that for Yang-Mills multiplet is straightforward. The result is
given by

. 1 1 1
e Lym = arg <0Yi§Y” I ZO-F:L{VFHVJ - ipIF;L],,GW + 80pIF;L]VT“” + §pIpJDCO'

1 1 26
+fUpIDCpJ + =p!Dop’ Do — 40p!p? (D + 3T2> + 4p[pJGWT’“’

2 2
1
_ 86’“’”‘7>‘F,qub]aC>\> + fermions, (3.10)
where I = 1,...n and the complete expression of the superconformal d’Alembertian for p!

is [29]
1 - _
Dcpf _ (aa — 2%+ Wbba)pa/)[ _ iid)apa)‘l _ 2pf¢a,7ax

1- 1-
+§1/1a’ya7 : T)‘I + §¢a7a)\l + 2faapl. (3.11)

,10,



4 Gauge fixing and off-shell actions

In the previous section, we have obtained superconformal actions for a linear multiplet and
Yang-Mills multiplet. In this section, we fix the redundant superconformal symmetries to
obtain off-shell supersymmetric theories including a Poincaré supergravity and Yang-Mills
coupled to the Dilaton Weyl multiplet.

As discussed in [30] for the four-dimensional case and in [24] for the five-dimensional
case, the construction of a consistent Poincaré supergravity requires more than one com-
pensator multiplet if the Standard Weyl multiplet is adopted. However, if the Dilaton Weyl
multiplet is utilized, a single compensator multiplet is sufficient to construct a consistent
Poincaré supergravity. As we will present shortly, a consistent Poincaré supergravity is
obtained via gauge fixing the superconformal linear multiplet action [27] instead of the
vector multiplet action. The latter cannot give rise to a supergravity theory due to the
lacking of Einstein-Hilbert term in the action.

In section 4.1 we present our gauge choices and the corresponding decomposition rules.
Imposing these gauge choices in the superconformal action, we obtain an off-shell Poincaré
supergravity in section 4.2. In section 4.3, we first present an off-shell action describing
Yang-Mills coupled to a Dilaton Weyl multiplet. Then, using a map between Yang-Mills
multiplet and Dilaton Weyl multiplet [28], we obtain an off-shell Riemann tensor squared
invariant. Different from [28] where the five-dimensional Riemann squared invariant is
obtained via circle reduction of the six-dimensional Riemann squared invariant, our con-
struction of the Yang-Mills action is purely based on the superconformal tensor calculus.

4.1 Gauge fixing and decomposition rules

In this section, we introduce our gauge choices to fix the redundant superconformal sym-
metries in order to obtain off-shell supersymmetric theories. If we do not insist on the
canonical Einstein-Hilbert term in the action, there exists a set of gauge choices facilitat-

ing the derivation of curvature squared invariant. These gauge choices are?

1
V2

The first gauge choice breaks the SU(2)r down to U(1)r whereas the second one fixes

L;; = 0i; L, o=1, P =0, b, = 0. (4.1)

dilatations, the third one fixes special supersymmetry transformations and the last one
fixes conformal boosts. After fixing the gauge, the remaining fields are

e, (10), ¢7,(32), Cu(4), Buu(6), ' (8), L(1), Eup(4), N(1), Viu(4), Vl;ij(lo). (4.2)

To maintain the gauge (4.1), the compensating transformations are required includ-
ing a compensating SU(2), a compensating special supersymmetry and a compensating
conformal boost with parameters (up to cubic fermion terms)

. 1 . . . 1 ...
A\ — _E<Sk(153)l6kl>7 QU = g(l(pJ) _ degk()@lékh
i ]. jn] i ]-._ ]-._ —
n = (— v-T 4+ Zy . G)e , Ak = —Zlﬁqﬁp - Zm% + EVuX- (4.3)

2The canonical Einstein-Hilbert term can be obtained by using another set of gauge choices [27].
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4.2 Off-shell Poincaré theory

Imposing the gauge fixing conditions (4.1) in the linear multiplet action (3.5), one can

obtain a consistent Poincaré supergravity whose action is given by?3

1 1 1 1
e 'Lpp = SLR+ iLflauLa“L = LG G — CLH,, H"" + L7'N?
1 1
2 L7100 By O BT + ; ﬂewmv Oy Epox + LV, IV, !
+fermions.

Notice that we have decomposed the field V,fj into its trace and traceless part as

ij i L i ij
Vil =V +§5JVM, V7 éij = 0.

(4.4)

(4.5)

The Poincaré supergravity presented above is invariant under the following supersymmetry

transformation rules (up to cubic fermion terms)

1_
e = 5 U

4 1~ ,
5y, = Du(w_ )el — fiG,ﬂ/y”eZ,

i Ll 1 o~ ., P
SV, = ( w — Zeliy. HW) _ 116( - Gw) + 9N + A(kV;f)’“,
50“ - —§1€wu,
1
5Bw/ = §€7[lﬂl}y] + C[NCS(E)CV} ,
1.,
oL = ﬁle w05,
oot = ~ L igrsiie, — vt sihne, — Lipe ¢ Iy 4 L Ly - Gée;
22 NG 7T 9 9 12 J

il - f](Sijej,

1
6v/2
) o
5E/WP = —G’YMVPQO + El[zwi‘“’}/yp]ejéij N
1

1
= —¢ H -
ON 5€7 (3M+4

1. . 1 .
wubcvbc><p+§€“yanj<pJ v ﬁlelvaﬂwé%

i€y YV el + fle'y“Ewa — fN &Y")q +

1 1
+
42 8v2
S 1 N
—V2LEY G by + giey - He,
where we have used the torsionful spin connection [28]

ab ab 77 ab
wut = w,” £ H,Y,

3The action directly coming from (3.5) by imposing (4.1) is equal to—e *Lrr.
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and the supercovariant curvatures under the gauge (4.1) are [28]

QZ;W = 2D[u(w—)wu] + iﬁy)\@)\[uwu] ) (4'8)
~ 1 -
G,ul/ = Za[ycu} + ilw[;ﬂ/}z/] ) (49)
~ 3 - 3
Hywp = 301, Byy) — Zw[u%wp] + §C[MGVP] : (4.10)

4.3 Riemann squared action

In this section, we construct the supersymmetric Riemann squared action. To begin with,
we shall review a map between the Yang-Mills super-multiplet and a set of fields in the
Poincaré multiplet (4.2).

In establishing the map between Yang-Mills and Poincaré multiplets, it is important to
consider the full supersymmetry transformations, including the cubic fermion terms which
have been omitted so far. In the following, we shall need the full supersymmetry transfor-
mation rules for the_: 'ﬁelds (en®, wz, V,fj ,Cy, B,w). Up to cubic fermions, the transformation
rules of (e,“, wi, Vi, Cy, Byy) are already given in (4.6). In this section, we will, however,
keep the complete SU(2) symmetry, i.e. we do not impose L% = %Léij . In this way we
do not need to accommodate for the compensating SU(2) transformations proportional to
A 4 The full version of the supersymmetry transformations are given by [28]

1_
de,* = iefyai/)u,

i i LA
oy, = Dy(w-)e" — §1GW7 €,

T L I D
oV, = 56(17” l]),/ — 66(’7 . H@bf} — 116( o G@bf} )
0C, = —%i&bﬂ,
1
5B,u1/ = §E’7[u¢y] + C[ud(e)cu] : (411)

Next, we consider the following supersymmetry transformations [28]

1.~ 1 ~
&UM? = —§1Gab61/1u - §E’yuw“b,

~ 1~ o 1 ~ . 1x ~ .
0y = Z)/CdRcdab(er)e’ — Vapej + iw"Du(er)Gabe’ — ZGGW -Ge',
~ 1.~
0Gq = _51677/}(167
~ . 1 . ~ 1 0 o~
OV = —iE(zﬁ(w,w,) 22, - QE(W : H¢2, - 16(’Gd[awg})d, (4.12)

where ﬁabcd(wg denotes the super-covariant curvature of the torsionful connection wy. In
D, (w4 )Gap, the connection w, rotates both the indices a and b, and in Dy, (w,w_ )1/, the

4After we construct the action, we can still impose the gauge LY = %Ldij. This will not affect the
Riemann squared invariant.

,13,



connection w rotates the spinor index, while the connection w_ rotates the Lorentz vector
indices. Vu,,ij is the supercovariant curvature of V7 under the gauge choices (4.1)

~ .. L~ L = N
Vio'? = Vil =P}, + 20l - Hel) + Jidfiy - Gul) (4.13)

vip

We now compare the above transformation rules with those of the D = 5, N’ = 2 Yang-Mills
multiplet [28§]

1., 1_
5A£ = —ﬂplﬂ/)u + 56’}/“)\[,

2
g 1 s 1 . o~ 1., 4
Syl — _ig(l]p)\J)I - ﬂg(hy CHN §fl‘gg(lfJKIpJ/\J)K?
. 1 _ -~ .1 . »
SN = ~1 (’y CFL— pley G) € — §i¢ple’ — Y”Iej,
spl = %'af : (4.14)

where F\lfy and D, p! can be found in (2.16) and (2.14) by imposing the gauge choices (4.1)
A 1 . g ,
DA = <8u + 1 Wuab%b> AT — V;JAJI' + ngKIA,{AZK

+7 (7 FT—ply. G) U+ 5iPp Y+ Y (4.15)

We observe that the transformations (4.12) and (4.14) become identical by making the
following identifications [28]

(A;Iu }/}ij’ ZI :01) — (wzz-v _?abija _u)(izba éab)' (4'16)

Setting ay; = 07y and imposing the gauge fixing conditions (4.1) in action (3.10), we obtain

B . 1 1
e 1‘CYM’U:1 _ Y;éY”I o §D#,OIDMPI _ Z(Falb _ plGab)(FabI _ pIGab)
1
—gﬁadee(F(fb - PIGab)(FcId - PIch)Ce
1
—ie“dee(FJb — p!Guy) BegDep' + fermions. (4.17)

Finally, using the map (4.16) in above action (4.17), we obtain the supersymmetric Riemann
squared action. Its purely bosonic part is given as

1
4

1 -
—§Du(w+)GabD“(w+)Gab + Vo, TV

@ (Buaal) = GG ) (Bpo™(w) = GpoG) O

1
—56“”"‘7)‘3‘,0 (Ruvab(wy) — GuuGap) D)\(w+)Gab + fermions. (4.18)

e MLpiom? = — <R,wab(w+) - G,uuGab) (R“mb(w+) - GWGab)

We notice that the actions (4.17) and (4.18) obtained via superconformal tensor calculus
match with those derived through the circle reduction of six-dimensional actions [28].
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5 Supersymmetric Gauss-Bonnet combination

In this section, we shall construct the supersymmetric completion of the Gauss-Bonnet
combination

e 'Lop = Ruype RMP7 — AR, R* + R2. (5.1)

According to the usual routine, one may think of constructing three independent curva-
ture squared super-invariants first, then combining them with proper coefficients to form a
supersymmetric Gauss-Bonnet combination. However, as we mentioned before, two inde-
pendent curvature squared invariants may be enough to obtain the supersymmetric com-
pletion of Gauss-Bonnet combination based on counting the degrees of freedom and the
cancelation of the kinetic term for the auxiliary vector Vlfj . This section is devoted to
construct another curvature squared invariant.
We start from the conventional constraint imposed on the supercovariant curvature of
wy,® [23, 26]
e’y R,,, " (M) = 0, (5.2)

where ﬁwab(M ) is defined in (2.7). The conventional constraint (5.2) implies that the
supercovariant curvature of wﬂab gives the Weyl Tensor, which is defined as

1
Cul/pa = Rw/pa - 7(gupRV0 - gl/pRuJ - guaRup + gl/aRup)

3
1
+ﬁ(g,upgua - guagup)R~ (5.3)
Its square is
4 1
ChvpoC"P7 = R0 RMPT — gRWRW + 6R2‘ (5.4)

In the rest of this paper, we use é,wp(, to denote the superconformally covariant Weyl tensor
instead of ]/%W“b(M ). Because the off-shell supersymmetric Riemann squared invariant is
known, the Gauss-Bonnet super-invariant can be obtained by combining the Riemann
squared invariant with another curvature squared invariant in which the curvature squared
terms take the form .

Clupo CHP7 + 6R?. (5.5)

Although, none of the terms in (5.5) is a supercovariant quantity, we can replace (5.5) by
the following supercovariant expression

A~ A 512
Cluvpe CHP7 + TDQ’ (5.6)

since the composite field D (2.9) under the gauge choices (4.1) reads

_ 1 1 ab 26 ab ab .
D= 32R 16G Gap 3 TT,p + 2T Gy + fermions. (5.7)

Therefore, if (5.6) can be supersymmetrized, we will get the desired the curvature squared
terms in (5.5). When carrying out the supersymmetrization of (5.6), we find that in
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fact, the D? term is indispensable to the supersymmetrization of the Weyl tensor squared
term, moreover, the relative coefficient between the Weyl squared term and the D? exactly
matches with the one in (5.6), the magical % In the next section, we give the details of
the construction.

5.1 Supersymmetrization of C*W,,J@WW

In this section, we first supersymmetrize the square of Weyl tensor by using (3.2) in which
the fields of linear multiplet are expressed as composites in terms of fields in Dilaton Weyl
mult1plet We notice that to obtain the Weyl tensor squared term, N should begin with

512 D?. After expanding D

C’WPUC“ P2, The complete expression for N include a term
in terms of independent fields, we find that the curvature squared terms take the form
(2\f cH fUCquo + %R2, which is different from those in the supersymmetric completion of
ClipaCHP? considered in [24] by using Standard Weyl multiplet where D is merely an
auxiliary field. We obtain full composite expressions for the fields of linear multiplet in

terms of fields in the Dilation Weyl multiplet as

1= N 256
L = SRG(QBI(Q) + i) + 5 R (V)T
i 1 i Aabe . i arpbe 128 i
S —g’chRab(Q)C bed (M) — divy, ab(Q)D T + 3 X D
~ ~. 64 1024 :
+8i7.D Ly (Q)T™ + 8ing D R}, (Q)T™ — 3 — iy DT X+ — X

128, A 16 - Sabi o
+?1’YanXZT“b + E%bRch(Q)TGbTCd + §Rab (V)R (Q)

8
=RV v,

1 1 3
E, = Tﬁeabcdecbcfgcdefg - Efabcdevbcijvde t

64 128 512
+pb <4Cabch — — DTy — —TpT? —

T T,
3 9 3 bd)

2
—32€upede D? <3ch DT 4 1¢, DT ) + fermions,

1 64 1024 16 y
N = 7CadeCabcd + 3 D2 o TQD 3 abchab Tcd Vabwvabij
64 64 128
—ED WThe DT + ?DbTaCD“TbC -3 == T1.,D"D. T
128 2816
3 = eabeae TP TD; T +1024 T — 5 “——(T®)? + fermions. (5.8)

where the following notations are introduced for simplicity
T* = T, T T T, (T?)? = (T, 7). (5.9)
Under the gauge choices (4.1) T, D*D.T% is given by

2 1
T, DD, T = T, VOV T + gRbcTabT“c — ﬁT2R + fermions, (5.10)
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where V, only contains the usual spin connection
V#Tab = 8,LLTab — QCU#C[aTb]C. (511)

To obtain (5.8) we have used the Q- and S- transformations of supercovariant curvatures
which can be found in [26]. Substituting the composite expressions (5.8) into the density
formula (3.2), we obtain the following action

1 64 1024 32
e4gm:§mwmqw+§mm+—§mﬁp—§pnw@
16

1
_gpcabchab TCd + ZC’CLbch’CdFﬂb + EeabcdeAaCbCfngefg
16

1 iy iy 1 g 64
_ﬁfabcdeAavbcijvde Y+ ?Y;jvabw 7% — gpvab” Vb, + gppracDaTbc
4 281
- Ty DD T — % pD Ty DVT +1024p T* — 816
256 32
—jTabFabTQ - 7TOLCTchwFab - geabcdeTCf D;T*F*
128

128
T2 2
57 P(I7)
64
—16qwak]mffﬁ1wa“b—»—gfpawakiﬂwfmefT@f4—ﬂwnﬂons, (5.12)

where
V,uuij — 28[ny]ij _ 2V[Mk(ivy]kj)- (5.13)

This action (5.12) describes the coupling between an external vector multiplet and Dilaton
Weyl multiplet. If we simply combine above action with the Riemann tensor squared
invariant, we are not able to obtain the supersymmetric Gauss-Bonnet combination since
the curvature squared terms in (5.12) is multiplied by p which stays the same after imposing
the gauge choices (4.1). By comparing the superconformal transformation rules of vector

multiplet
1
1 _ 1_
0A, = —506% + 56%)\,
: 1 ~. 1 , 4 g .
I = 27 Fe' — giﬁpe’ +py-Te —Ye; + pn',
g 1 ...« 1 . . 1
6WJ:—§W¢M%+?Wyau”—4mWy%+?ﬁuQ (5.14)
with those of (o, C,,, ") in the Dilaton Weyl multiplet
1
(50’ = §1€¢,
1 _ 1_
0C, = —50'61,0# + 567“%
; 1 ~. 1 . | I .
= - Ge' — iiﬁaez +ovy-Te — Eio_leﬂb’wg +on', (5.15)

we notice that there exists a map from vector multiplet to (o, C, )

. ) 1 U
p— o, Ay — Cy, N — gt Y — 110_1 (), (5.16)
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since

) (110—%%3')) = —%g(%wﬂ') + %ie% L Tp?) — dioelind) + %iﬁ(iwj). (5.17)

Using (5.16), we obtain the supersymmetrization of C,,,,cC*?? purely based on the
fields of Dilaton Weyl multiplet

1 64 1024 32
6715002 = éUOadeCabcd + §0D2 + TO’T2D — gD TabGab
16 1
_Eacabchab T + 2CabchCdGab + EGabcdecachfngefg
1 16 y 1 g 64
— g €abedeC VGV + VgV I — oV TV ™5 + oDy T, DT
128 64 2816
—TaTabDchT“c — EJDaTbCD“T“ + 10240 T* — 7a(T2)2
_%T bGabTQ _ @T TchbdGab _ ge bed TCfoTdeGab
9 a 3 ac 3 aocae
128
—16eabcdeTCfDdTefG“b — ?aeabcdeTabTCdeTef + fermions. (5.18)
Imposing the gauge fixing conditions (4.1), we obtain
1 1 1 64 1024
e Loc2lom1 = gRadeR“de - gRabRab + 4—81%2 + §D2 + —1T?D
16 1 8
_ERabchab Tcd + 2Rabchchab + gRTabGab . gRbdGchCd
64 8 32 1
—5 R¥TuT + GRT® = DTG + L cancac C*R*IRY 1,
1 1 64
_Eeabcdecavbci_jvde iy gVabZ] Vabij _ ?VaTbcvaTbc
64 128 128
+§vbTanaT‘w — ?Tabvbch“ — 76ab0deTGchdv 5T
2816 64 256
+1024T7* — 2—7(T2)2 - gTabG“bTQ — ?TQCTCddeG“b (5.19)
32
—geabcdechVdeeGab — 166abcdeTCdeTefGab + fermions,
where
1 1 26
D = —3—2R — EGabGab — ?TabTab + 277G, + fermions,
1 1
Top = éGab + @eabcdeHCde + fermions. (5.20)

5.2 Supersymmetric completion of Gauss-Bonnet combination

In previous sections, we obtained the supersymmetric completion of Einstein-Hilbert, Rie-
mann tensor squared and Weyl tensor squared actions. Because of the off-shell nature
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of these invariants, we can combine them to form a more general theory with two free
parameters
L=Lrp+ alyi? + BLyc2 |o=1 - (5.21)

The Gauss-Bonnet combination corresponds to case with 8 = 3a in which the kinetic term
of auxiliary vector V,;’ vanishes. Using 3 = 3a, the purely bosonic part of Lagrangian (5.21)
takes the form

1 1 1 1
e (Lor+aLs) = 5LR+ SLT 0L L — SLGu G — SLH,, H" + LN

1, 3 1 R L
+ 5L 0y Byp) 0" BT 6756“”“’ V0 Epox + LV, 7V, )

+a [ 1 (Buvanl(ws) = GuuGap) (R (1) = GGt

4
+§R RHVPo _ 1R RM 4+ iR2 + 64D?

g T 2 16

1
e ( Ryap (@) — G,WGab) (Rpaab(er) . G,x,c:ab)cA

1
—5 "B, ( Ryap (@) — G,WGab> Va(ws )G

3 1 y
+Efuypg,\c'uRyp76RU)\ré o Zeuupakcuvypijva/\ ij
~16Rpo T" T + 6 Ry pe G* TP + RT,, G* — 8R,,, G " T

1024

—64R"T,,T°,+8RT*— 32D T, G" + TT2D— 64V, T,,VHT""

1
+64VI TP, T, — 1287, V"V, TH — ivu(er)G“bV“(er)Gab

2816 64
+3072T* — T(T?)2 -3 WGP T? — 256T),, TP T, G

—128€,1po AT TP7N - T — 326,11y A G TPV T

—48€,,por GM TP NI T|. (5.22)

We notice that the ratio of the coefficients in front of the Gauss-Bonnet combination
and the Chern-Simons coupling eWpoAC”R”p‘;TR‘”\(;T is % which is consistent with the
value resulting from the circle reduction of the partial results given in [19, 20] on the
six-dimensional supersymmetric Gauss-Bonnet combination.

6 On-shell theory

In this section, we study the on-shell theory of the Gauss-Bonnet extended supergravity to
first order in « upon eliminating the auxiliary fields. In section 6.1, we present the minimal
on-shell Poincaré supergravity by eliminating the the auxiliary fields (E.,, Vi, N, V,/ij )
and truncating the matter multiplet (BW,L,goi). In section 6.2, we obtain the on-shell
Gauss-Bonnet extended Einstein-Maxwell supergravity to first order in « by using the
equations derived from the 2-derivative Lagrangian that is zeroth order in «.
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6.1 On-shell Poincaré supergravity

To eliminate the auxiliary fields (IV, P, V,, Vulij ), we use their equations of motion

0=N, 0=e"9,E,, 0=V,9, (6.1)
1
-1 A
0= 0o (L a[uEypg} + 72\/56!“,’,0)\‘/ ) . (6.2)

Equation (6.2) implies that locally

1 1
— ELilﬁ'uypo—)\ayEpo)\ + EVM = au¢7 (63)

where ¢ is a Stueckelberg scalar. Eliminating this scalar by using the shift symmetry
transformation and using the second equation in (6.1), we obtain®

V,=0. (6.4)
It follows that the corresponding on-shell theory is given by

1 1 1 1
e 'Lev = SLR+ §L_18“L6“L = (LG G = S LHyup HM" . (6.5)

To truncate out the matter multiplet (B, L, ©'), we first dualize B,,, to a vector field CN'M
by adding the following Lagrange multiplier to (6.5)

1 ~ ~ -
AL = _ﬁeWﬂ“BWGM, G = 20,,C,), (6.6)

and replacing H,,, by B, + %C[HGW,}. The field equations of éu and By, imply that

1 ~
Buvp = 30, Byy),  HM"? = =L L1e"" G (6.7)

vp)>

Substituting (6.7) to (6.5), we obtain the on-shell ungauged Einstein-Maxwell supergravity

1 1 1 1 ~
e 'Ly = SLR+ §L_18ML8“L - LGuwG — gL—lc:W(;W

1 ~
+§e“”p”’\CﬂG,,pGU,\ , (6.8)

where (eua,wZ,CM) constitute the supergravity multiplet while (C’N,goi,L) comprise the
Maxwell multiplet.
Truncation of the Einstein-Maxwell theory to the minimal on-shell theory can be im-
plemented by imposing
L=1, C,=0C, ¢ =0, (6.9)

®In the original Poincaré theory (4.4) U(1)r symmetry is gauged by the auxiliary vector V,,. However,
in the on-shell theory, the U(1)z symmetry becomes global due to the elimination of V.
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which is consistent with the equations of motion
_ -1 728 M 1 nz 1 -2 v
R=2L""0L—-L"0,L L—i—iGWG _ZL G G",
1 -
LR,, =V,V,L—-L1'9,L0,L + LG,°G,, + §L’1GM”GVU
1 i~
_Zg‘”’L 1GPO_GPU7
1 ~
0 = V"(LGy,) + ZeW,J(,A(;VPG“,
~ 1
0 = VY(L'Gop) + ~ €uporGPG™, (6.10)

4

and leads to the following transformation

1
de " = §€’y“1/)“,
% 1 ab ) 1 vp v.p
oy, = | Ou + e ab | € + gl(’)/“ —4557")Gyp,
1
0Cy = — it (6.11)

The resulting action coincides with the minimal on-shell supergravity in five dimensions [35]

; 1 3 1
e~ lopmin = S = LG G + gewwcﬂawcm. (6.12)

The canonical kinetic term of C), can be recovered by a scaling C), — %CM.

6.2 On-shell Gauss-Bonnet extended Einstein-Maxwell model

With the Gauss-Bonnet combination added, the duality relation (6.7) and truncation con-
dition must receive corrections proportional to the powers of «, if we consider a pertubative
expansion valid when the energy scale A satisfies A? < 1/|al. We follow the procedure
of [31]. Schematically, the off-shell action (5.22) takes the form

Soft-shenn[¢] = So[p] + aS1[¢]. (6.13)

It follows that the auxiliary field equations (6.1)-(6.2), the field equation for B,,, (6.7)
as well as the truncation equation (6.9) must receive corrections proportional to a. The
solution to those equations can be expressed in terms of a series expansion in «

¢ = do+apy + Py -, (6.14)

where ¢q is the solution to the zeroth order equation given in previous section. As a
consequence, the on-shell action possesses the form

Son-shen[¢] = So[¢o] + a(S1[¢o] + ¢1.55[d0)) + - - - (6.15)

In the above equation, S{[¢o] = 0 when ¢q is an auxiliary field or a Lagrangian multi-
plier. We eliminate the auxiliary fields and Lagrangian multiplier B,,, by plugging their
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zeroth order solutions to the action (5.22). Ultimately we derive the on-shell Gauss-Bonnet
extended Einstein-Maxwell theory®

1 1 1 1 ~  ~
e (Lom + aLap) = SLR+SLT'0,L0'L — LG G = SL7' GG

1 . 3 1 1
+ 5" CuGyCor + [8RWMRWW — SRR+ R

+64D2 — %(Rwab(wﬂ ~ GGy ) (B (w2) = GG
1

=57 (Baab(4) = G Gn) (™ @4) = Gpa G )

1 3
_ 5 GHVPU)\ Bpa ( R,U,Vab (W+) o G,u,l/Gab) v)\ (W+ ) G(lb 4 TGE#VPUAC'LL RVPT5RU)\T6

~16Rpo T" T + 6 Ry pe G** TP + RT,, G* — 8R,,, GoH T
1024
—64R"T,,T°, + 8RT* — 32D T,,,G" + TT2D — 64V, T,,VFT"?
1
+64VHITVPN T,y — 1287, VYV o TH — ivu(er)G“bV“(er)Gab
2816 64
+3072T* — T(TQ)2 - ETW,GWTQ — 2561,,T°7T,, G""
1286, pr AT TPV TN — 32€,1po 2 GM TPTN T

—48€,,,p G TP VI TAT | 4+ O(a?), (6.16)

b

where T}, and w4 % are now given by

1 P 1 ~
T = 162G + L 1Gw)y win®=w,®— L Lo, pel G . (6.17)

7 Vacuum solutions and spectrum analysis

In this section, we investigate the vacuum solutions and spectrum to the general the-
ory (5.21). The results for Poincaré supergravity extended by Gauss-Bonnet combination
can be obtained as special case when [ = 3a.

7.1 Vacuum solutions with 2-form and 3-form fluxes

We first consider solutions with AdSs x S? structure. To solve the equation of motion, we
make the following ansatz where Greek indices denote the coordinates on Lorentzian AdSs,
while latin indices stand for the coordinates on S?

R/J,I/pO’ = —a(gupgua - g/,wgup)a qurs = b(Qprgqs - gpsgqr)v
L = Ly, Gpg = Cepg, Hyp = depyp. (7.1)

In above equation, €,,, and .5 are the Levi-Civita tensors on AdS3 and S? respectively.
The full set of equations of motion are solved provided that the following equations are

Generalization of the Gibbons-Hawking boundary term in theories with generic curvature-squared cor-
rections in the presence of a chemical potential is studied in [32].
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satisfied

6a —2b+c? —2d% = 0,

1
sLo(—a+d*) + %(—cﬂ b2 — 26 + ¢* — dacd + 10ad? + dedd — 9d%)
+§( 2+ ab— b+ 2bc® — ' + 2acd — 10ad® — bd* — 2cd® + 9d*) = 0,

@
2
+§(—3a2 + b2 — 4bc? + 3c* + dbed — APd + 6ad® — 3dY) = 0. (7.2)

1
+Lo(b— A) + —(3a® — b + 4bc? — 3¢* — dbed + 4¢3 d — 6ad® + 3d*)

The integrability conditions for the Killing spinor equations 54% =0 and 6.p" = 0 are

ab 3 . N A
(Rﬂﬁaa(wf) - QGﬂaGﬁa>7 be =0, <2wa - ZHMVA> e =0, (7.3)

where fi, a = 0,1,...4. Substituting the ansatz (7.1) into the integrability conditions (7.3),
we find that when
a=d>, b=c?, c= —2d, (7.4)

the integrability conditions are satisfied automatically without imposing any projection
condition on the @ transformation parameter e. Therefore, this solution possesses max-
imum supersymmetry. Remarkably, this solution exists for arbitrary values of Lg, «, f.
Thus it seems that the higher derivative correction will not affect the supersymmetric so-
lutions. A similar phenomenon happens in 6D chiral gauged supergravity extended by
Riemann squared invariant [33]. Next we investigate solutions with AdSs x S? structure.
We make similar ansatz as previous case except that Greek indices denote the coordinates
on Lorentzian AdSs,, while latin indices are used for the coordinates on S3

R;wpa = _b(gupgua - guagup)a qurs = a(gprgqs - gpsgqr)y
L = Ly, G = cep, Hpgr = depgr. (7.5)

In this case, the solutions of equation of motion are determined by

6a —2b+c? —2d% = 0,

1
sLola—d*) + %(—a2 02 — 2bc% + ¢* — dacd + 10ad? + ded? — 9d%)
+§( 2 4 ab—b? 4+ 2bc — ¢* — 2acd — 10ad? — bd? + 2¢d® 4+ 9d*) = 0,

@
2
+§(—3a2 + 0% — 4bc? 4 3¢t — Abed + 43d + 6ad® — 3d*) = 0. (7.6)

1
1 Lo(=b+ ) + —(3a® — b + 4bc? — 3¢* — dbed + Ac3d — 6ad? + 3d*)

By examining the integrability conditions (7.3), we find that solution with maximum su-
persymmetry is given by
a=d?, b=c?, c=2d, (7.7)

for arbitrary values of Lg, «, [3.
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7.2 Vacuum solutions without fluxes

If we set ¢ = d = 0, the solutions are simply

L
1) AdS3x S%:b=3a, B=6a, a=——2,
2a
3 Lo
2) AdSQXS :b:3a> BZGOK, a:%a
3) Minkowskis (7.8)

In this case, the maximally supersymmetric vacuum solution is just Minkowskis. Following
the procedure carried out in the spectrum analysis of six-dimensional higher derivative
chiral supergravity [33, 34|, we study the bosonic spectrum of the perturbations around
the maximally supersymmetric Minkowskis vacuum. We define the linearized fluctuations,

Juv = N + hltuv L= Lo+ ¢, C,u = Cy,
Vi =Y, By = by (7.9)

The linearized Einstein equation and L field equation take the following form

2 1 L
<L0 +3(6- 3a)D>R£LJ = 3(8 - 30)9,0,R") + D RY — 0,06 + 0,0,6, (7.10)

LoR™) = 20¢, (7.11)

where RL,L,) and R are the linearized Ricci tensor and Ricci scalar. Inserting (7.11) into

the trace of linearized Einstein equation, we get

2
(LO +5(08- Sa)D) O¢ = 0. (7.12)
This equation describes a massless scalar and a massive scalar with mass squared

2 3L0

=, 7.13
™= 2Ba—p) (7.13)
To simplify the linearized Einstein equation, we choose the usual De Donder gauge in which,
1
RE) = —5 . (7.14)

Then using the (7.11) and (7.12), we find
(0 —m?)0h,, = 2Ly (0 — m?)9,0,¢. (7.15)

Since ¢ can be solved from (7.12), the right hand side of above equation is known function.
The homogeneous solutions of above equation describe a massless graviton and a massive
graviton with a mass squared the same as that of the massive scalar.

Equations of motion for the remaining fields can be straightforwardly obtained by
choosing the Lorentz gauge for the gauge fields

<L0 + %(ﬁ - 3a)D> O (bcu ) =0, <L0 + %(5 - 3a)D> vl =0. (7.16)

%
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In summary, for generic «, (3, the full spectrum consists of the (reducible) massless 12+12
supergravity multiplet with fields (hy., b, cu, @, zﬁ/’ﬁ ¢') and a massive 32432 super-
gravity multiplet with ghost fields (huy, buv, cu, @, v, w;, ©'). At the special point where
b = 3a, the curvature squared terms in the action furnish the Gauss-Bonnet combination,
massive particles become infinitely heavy and decouple from the spectrum leaving only the
massless excitations as expected from the ghost-free feature of Gauss-Bonnet combination.

8 Conclusion and discussions

Using the superconformal tensor calculus in five dimensions, we have constructed an off-
shell theory with four parameters

e L = Lrr+ ELyM|o=1 + aERiemQ + BLyc2|o=1 + C['pR2|U=1' (8.1)

The supersymmetric Gauss-Bonnet extended Poincaré theory corresponds to the case where
& =(=0and g = 3a. Although the auxiliary fields do not propagate in this model, they
can be eliminated order by order in a. We obtain the on-shell theory of this model to first
order in . The maximally supersymmetric solutions to the ordinary 2-derivative Einstein-
Maxwell supergravity are known including Minkowskis, Ad.S3 x S? and AdSsx S%. We found
that these solutions are not modified by the inclusion of the higher-derivative interactions
proportional to « and (8 for arbitrary values. The spectrum of this theory around the
maximally supersymmetric Minkowskis is determined. We show that the spectrum has a
ghostly massive spin two multiplet in addition to a massless supergravity and a Maxwell
vector multiplet. However, when 8 = 3« corresponding to the Gauss-Bonnet combination,
the massive spin-2 multiplet decouples.

Our off-shell model is ungauged and therefore does not admit AdSs as a supersymmet-
ric vacuum solution. The gauging of our model should be interesting. A further question

¢

is the matter couplings of this theory. Since neither “very special geometry” [35, 36], nor
“quaternionic Kéhler geometry” [29] arise naturally in our model via the gauge fixing con-
dition (4.1), it would be interesting to investigate how the scalars in the vector multiplet
and hypermultipet are constrained and what kind of geometries arise. Finally, we hope
to generalize our construction to D = 6, N = (1,0) off-shell supergravity to derive the

supersymmetric completion of the Gauss-Bonnet combination in six dimensions.
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A Notations and conventions

In this paper, we use the conventions of [26]. The signature of the metric is diag(—, +, +,
+,+). The SU(2) indices are lowered or raised according to NW-SE convention

Al =V A;, A= Alej, (A.1)
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where 19 = —£91 = €2 = 1. When SU(2) indices on spinors are suppressed,

contraction is understood.
77[),}/0/1... an — @Z}z,}/al... anxl”

where y*1-% ig defined as

(a1 ~a2 ... . an)

Y = 2y
Changing the order of spinors in a bilinear leads to the following signs

where tyg = t; = —to = —t3 = 1. We also used the following Fierz identity

1,1 1
UiX' = =X = XYY Ye + XY Y Yab

The Levi-Civita tensor is real and satisfies

PLeePnTleTm — o] [P1.. ¢Tm]
€p1...pnql...qm€ = n.m.é[qln_éqm}.

NW-SE

(A.2)

(A.3)

(A.4)

(A.5)

(A.6)

Finally, the product of all gamma matrices is proportional to the unit matrix, and we use

,Yabcde _ ieabcde'

B Multiplets of five dimensional superconformal gravity

(A7)

In this appdendix, we give the SU(2) representations and Weyl weights of the fields ap-

pearing in this paper.

Multiplet Field SU(2) reps. Weyl weight
Dilaton Weyl Multiplet | e, -1

U

NI

Vector Multiplet A,

)

1

2

1

3

1

1

1

3’ 2
1

2

1

3

Linear Multiplet L 3
2

1

1

B RN W RN O — OO O O
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