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1 Introduction

The AdS/CFT correspondence suggests that interesting connections could arise between

gravitation and condensed matter physics. An important class of systems in condensed

matter physics which one could try and study using this correspondence consists of fermions

at finite density with strong correlations. Landau Fermi liquid theory is one paradigm that

often describes such systems, but it can fail. The resulting Non-Fermi liquid behaviour is

poorly understood and believed to be of considerable interest, e.g., in the study of High Tc

superconductors in 2 + 1 dimensions.

On the gravity side, the Einstein Maxwell Dilaton (EMD) system consisting of gravity

and a Maxwell gauge field coupled to a neutral scalar (the Dilaton) is of considerable interest

from the point of view of studying this problem. Fermions in the boundary theory carry
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a conserved charge - fermion number- so it is natural to include a gauge field in the bulk.

The presence of a neutral scalar allows for promising new phases to arise where the entropy

vanishes at non-zero chemical potential and zero temperature, as was discussed in [1–3].

These phases correspond to compressible states of matter with unbroken fermion number

symmetry.1 It was found that the thermodynamics and transport properties of these

systems, while showing the existence of gapless excitations, do not fit those of a Landau

Fermi liquid. For example, the specific heat is typically not linear in the temperature

(T ), at small temperatures, and the electric resistivity also does not have the required

T 2 dependence.2

An exciting recent development has shown that for an appropriate range parameters

such an EMD system could give rise to an entanglement entropy which reproduces the

behaviour expected of a system with a Fermi surface. If we take a sufficiently big region

in space in a system with a Fermi surface it is believed that the entanglement entropy

goes like

Sentangled ∼ A log(A) (1.1)

where A is the area of the boundary of this region.3 The log enhancement is believed to be

the tell-tale signature of a Fermi surface. Exactly such a behaviour was shown to arise for

appropriate choices of parameters in the EMD system in [10], see also [11]. In addition, it

was argued that the specific heat, at small temperatures, could be understood on the basis

of gapless excitations which dispersed with a non-trivial dynamical exponent.

Taken together, these developments suggest that for an appropriate range of param-

eters the EMD system could perhaps describe phases where a Fermi surface does form

but where the resulting description is not of Landau Fermi liquid type. While this is a

promising possibility it is far from being definitely established. In fact, as has been known

for some time now, at large N (classical gravity) the system does not exhibit some of the

standard characteristics expected of a system with a Fermi surface. For example there are

no oscillations in the magnetisation and other properties as the magnetic field is varied

(the de Haas-van Alphen effect) , nor are there any 2kF Friedel oscillation.4 More recently

the non-zero momentum current-current two point function has been calculated and found

to have suppressed weight at small frequency [14].

In this paper we will continue to study this class of systems from the gravity side by

turning on an additional magnetic field and determining the resulting response. In our

work the magnetic field will be kept small compared to charge density in the boundary

theory. We will be more specific about what this means in terms of the energy scales

of the boundary theory shortly. For now let us note that without a magnetic field the

1The significance of the compressible nature of the state was emphasised to us by S. Sachdev, see [4].
2These results refer to the case when the boundary theory is 2+ 1 dimensional with a 3+ 1 dimensional

bulk dual.
3Strictly speaking this behaviour has only been proven for free or weakly coupled fermions [5, 6] but it

is expected to be more generally true due to the locus of gapless excitations which arises in the presence of

a Fermi surface. Additional evidence has also been obtained in [7–9].
4At one loop de Hass- van Alphen type oscillations are seen, [12]. For some recent discussion of Friedel

oscillations in (1 + 1) dim. see [13].
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purely electric theory has a scaling-type solution (more correctly a hyperscaling violating

solution). The magnetic field is kept small so that its effects are a small perturbation

compared to the electric field in the ultraviolet (UV) of this scaling solution.

1.1 Key results

We find that in the dilaton system even a small magnetic field can have an important

effect at long distances since the magnetic field can become relevant in the Infra-red (IR).

The resulting thermodynamic and entanglement entropy can then change significantly. In

particular this happens for the whole range of parameters where the entanglement entropy

is of the form eq. (1.1).

More specifically, the EMD system we analyse is characterised by two parameters (α, δ)

which are defined in5 eq. (2.2), eq. (2.3). When |α| > |δ| we show that the magnetic field

is relevant in the IR and the geometry in the deep infra-red (small values of the radial

coordinate r we use ) flows to an AdS2 × R2 attractor. As a result the system acquires

a non-zero extensive entropy even at zero temperature. The entanglement entropy also

changes and grows like the volume of the region of interest6 (for large enough volume). In

particular, this happens for the values α = −3δ where the purely electric theory gives rise

to an entanglement of the form eq. (1.1).

We also analyse the thermodynamics and some transport properties of the resulting

state. The system continues to be compressible in the presence of a magnetic field and

its specific heat is linear at small temperatures. Both these facts indicate the presence

of gapless excitations. In general the system has a magnetisation which is linear in the

magnetic field and which is expected to be diamagnetic. The AdS2 × R2 attractor leads

to the magnetisation having a temperature dependence, at small T , which can become

important even for small magnetic fields, eq. (4.15).

The summary is that for parameters where the electric theory has an entanglement of

the form eq. (1.1), suggesting that it is a non-Landau Fermi liquid, the magnetic field is a

relevant perturbation in the IR. As a result even a small magnetic field has a significant

effect on the state of the system at long distances. The state continues to be compressible,

with a linear specific heat, but the thermodynamic entropy at zero temperature is now

extensive and the entanglement entropy scales like the volume of the region of interest, this

behaviour also being linked to the extensive ground state entropy.7 At intermediate length

scales for which the relevant region of the geometry is still reasonably well approximated

by the hyperscaling violating type metric and the effects of the magnetic field are small,

the behavior of the system continues to be essentially what it was in the absence of the

magnetic field. In particular the thermodynamics is essentially unaffected by the magnetic

5The relation of (α, δ) to the parameters (θ, z) now more conventionally used in the literature is given

in eq. (2.29). In particular α = −3δ corresponds to θ = d− 1 = 1.
6A potential confusion with our terminology arises because we are in two dimensions. Thus the volume

of the region of interest is actually its area and the area of the boundary of this region is the perimeter.
7More generally from the fact that the magnetic field is a relevant perturbation in the IR we learn that

the compressible state described by the purely electric solution “anti-screens” the effects of the magnetic

field making them grow at larger distances.
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field and the entanglement entropy also stays unchanged. Similar results for the existence

of an AdS2 × R2 attractor and associated changes in thermodynamic and entanglement

entropy etc are true in the whole region where |α| > |δ|.
The behaviour mentioned above is roughly analogous to what happens in a weakly

coupled system with a Fermi surface.8 While in this case the introduction of a small

magnetic field leads to the formation of Landau levels, at intermediate energies still low

compared to the Fermi energy but big compared to the spacing of the Landau levels,

and correspondingly at intermediate length scales smaller than the magnetic length, the

behaviour continues to be essentially that of a system with a Fermi surface. In particular the

thermodynamics is essentially unchanged by the small magnetic field and the entanglement

entropy is also expected to have the A log(A) behaviour at these length scales. Going to

much lower energies of order the spacing between the Landau level and correspondingly to

distance scales of order or longer the magnetic length though the behaviour of the system

can change. For example in the free fermion theory, depending on the fermion density, a

Landau level can be fully or partially filled, and partial filling would result in an extensive

ground state entropy.

In other regions of parameter space where |α| < |δ| the magnetic perturbation is ei-

ther not relevant in the IR and thus essentially leaves the low-energy and large distance

behaviour of the system unchanged. Or it is relevant but we have not been able to com-

pletely establish the resulting geometry to which the system flows in the deep IR.

The paper is planned as follows. We start with a brief description of the dilatonic

system and the hyperscaling violating metrics in section 2. The effects of a magnetic field

are discussed in section 3. The resulting thermodynamics is discussed in section 4 and

the entanglement entropy in section 5. We end with a discussion of results and some

concluding comments in section 6. Appendix A contains important details about the

numerical analysis.

Before ending the introduction let us also comment on some related literature. For

a discussion of probe fermions in the extremal RN geometry and the resulting non-Fermi

liquid behaviour see, [16–21]. The EMD system has been studied in [1–3, 22–28]. The

subject of entanglement entropy has received considerable attention in the literature lately,

for a partial list of references see [29–33], for early work; and for a discussion within the

context of the AdS/CFT correspondence see [34, 35].

Two papers in particular have overlap with the work reported here. While their moti-

vations were different the analysis carried out in these papers is similar to ours. The EMD

system with the inclusion of possible higher order corrections was analysed in [36] and it

was found that sometimes these corrections could change the behaviour of the geometry

resulting in an AdS2 ×R2 region in the deep IR. This analysis was generalised to the case

with hyperscaling violation in the more recent paper [37] which appeared while our work

was being completed.

8We thank the referee for his/her comments which have lead to this paragraph being incorporated in

the revised version of the paper.
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2 The dilaton gravity system

We work in 3 + 1 dimensions in the gravity theory with an action

S =

∫

d4x
√−g[R− 2(∇φ)2 − f(φ)FµνF

µν − V (φ)]. (2.1)

Much of our emphasis will be on understanding the near horizon region of the black

brane solutions which arise in this system. This region is more universal, often having the

properties of an attractor, and also determines the IR behaviour of the system. In this

region, in the solutions of interest, the dilaton will become large, φ → ±∞. The potential

and gauge coupling function take the approximate forms

f(φ) = e2αφ (2.2)

V = −|V0|e2δφ (2.3)

along this direction of field space. The two parameters, α, δ, govern the behaviour of the

system. For example the thermodynamic and transport properties and also the entan-

glement properties crucially depend on these parameters. The action in eq. (2.1) has a

symmetry under which the sign of φ, α, δ are reversed. Without loss of generality we will

therefore choose δ > 0 in the discussion which follows.

Our analysis will build on the earlier investigations in [3] and [26], and our conventions

will be those in [26]. We will work in coordinates where the metric is,

ds2 = −a(r)2dt2 +
dr2

a(r)2
+ b(r)2(dx2 + dy2) (2.4)

The horizon of the extremal black brane will be taken to lie at r = 0.

The gauge field equation of motion gives,

F =
Qe

f(φ)b2
dt ∧ dr +Qmdx ∧ dy. (2.5)

The remaining equations of motion can be conveniently expressed in terms of an effective

potential [38]

Veff =
1

b2

(

e−2αφQ2
e + e2αφQ2

m

)

− b2|V0|
2

e2δφ, (2.6)

and are given by,

(a2b2)′′ = 2|V0|e2δφb2 (2.7)

b′′

b
= − φ′2 (2.8)

(a2b2φ′)′ =
1

2
∂φVeff (2.9)

a2b′2 +
1

2
a2

′
b2

′
= a2b2φ′2 − Veff. (2.10)
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2.1 Solutions with only electric charge

Next let us briefly review the solutions with Qm set to zero which carry only electric charge.

The solution in the near-horizon region take the form,

a = Car
γ b = rβ φ = k log r (2.11)

where the coefficients Ca, γ, β, k and the electric charge Qe are given by

β =
(α+ δ)2

4 + (α+ δ)2
γ = 1− 2δ(α+ δ)

4 + (α+ δ)2
k = − 2(α+ δ)

4 + (α+ δ)2
(2.12)

C2
a = |V0|

(

4 + (α+ δ)2
)2

2 (2 + α(α+ δ)) (4 + (3α− δ)(α+ δ))
Q2

e = |V0|
2− δ(α+ δ)

2 (2 + α(α+ δ))
. (2.13)

It might seem strange at first that the electric charge Qe is fixed, this happens because

in the near-horizon metric we work with the the time (and spatial coordinates) which have

been rescaled compared to their values in the UV.

The following three conditions must be satisfied for this solution to be valid : Q2
e >

0, C2
a > 0, γ > 0. These give the constraints,

2− δ(α+ δ) > 0 (2.14)

2 + α(α+ δ) > 0 (2.15)

4 + (3α− δ)(α+ δ) > 0 (2.16)

4 + (α− 3δ)(α+ δ) > 0. (2.17)

The last of these conditions follow from the requirement that

2γ − 1 > 0 (2.18)

so that the specific heat is positive. Figure 1 shows the the region in the (δ, α) plane, with

δ > 0, allowed by the above constraints.

To summarise our discussion, the metric in the purely electric solution takes the form

ds2 = −C2
ar

2γdt2 +
dr2

C2
ar

2γ
+ r2β(dx2 + dy2). (2.19)

And the dilaton is given in eq. (2.11), (2.12) While this solution is not scale invariant it does

admit a conformal killing vector. This follows from noting that under the transformation

r = λr̃ (2.20)

t = λ1−2γ t̃ (2.21)

{x, y} = λ1−γ−β{x̃, ỹ} (2.22)

the metric eq. (2.19) remains invariant upto a overall scaling,

ds2 = λ2−2γ

{

− C2
a r̃

2γdt̃2 +
dr̃2

C2
a r̃

2γ
+ r̃2β(dx̃2 + dỹ2)

}

. (2.23)
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2

Figure 1. The blue and green shaded regions are allowed by the various positivity and thermody-

namics constraints for the electric scaling solutions. The straight lines in the (δ, α) plane demarcate

various regions which will be relevant for the discussion in the following sections.

The dilaton also changes under this rescaling by an additive constant,

φ = k ln(r̃) + k ln(λ) (2.24)

The two exponents γ, β which appear in the metric are related to the dynamic exponent

with which gapless excitations disperse and hyperscaling violations, as was explained in [11].

Under the coordinate change,

r = r̃
− 1

β (2.25)

t =
1

βC2
a

t̃ (2.26)

(x, y) =
1

βCa
(x̃, ỹ), (2.27)

the metric eq. (2.19) becomes

ds2 =
1

β2C2
a

1

r̃2

{

− dt̃2

r̃
4(z−1)
2−θ

+ r̃
2θ
2−θ dr̃2 + dx̃2 + dỹ2

}

. (2.28)

Where,

z =
2γ − 1

β + γ − 1
θ =

2(γ − 1)

β + γ − 1
. (2.29)
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This is the form of the metric discussed in [11] (upto the overall 1
β2C2

a
factor which was set

to unity by a choice of scale). The exponent z is the dynamic exponent, as we can see from

the scaling weights of the t and x, y directions in eq. (2.21), eq. (2.22). The exponent θ is

the hyperscaling violation exponent, we will also explain this further in section 4.

Let us end this section with some more comments. In eq. (2.5) the two-form F is

dimensionless, so that Qe, Qm have dimensions of [Mass]2. The chemical potential µ is

related to Qe by

Qe ∼ µ2 (2.30)

and has dimensions of mass.

The near-horizon geometry of the type being discussed here can be obtained by start-

ing from an asymptotically AdS space in the UV for a suitable choice of the potential V (φ).

This was shown, e.g., in [26], for additional discussion see appendix A. It is simplest to

consider situations where the asymptotic AdS space has only one scale, µ, which charac-

terises both the chemical potential of the boundary theory and any breaking of conformal

invariance due to a non-normalisable mode for the dilaton being turned on. In our subse-

quent discussion we will have such a situation in mind and the scale µ will often enter the

discussion of the thermodynamics and entanglement.

Also note that the parameter N2 which will enter for example in the entropy eq. (4.5)

is given in terms of the potential eq. (2.3) by

N2 ∼ 1

GN |V0|
. (2.31)

Again to keep the discussion simple we will take the cosmological constant for the asymp-

totic AdS to be of order V0 so that N2 is also number of the degrees of freedom in the UV.9

The solutions we have considered can have curvature singularities as r → 0, when such

singularities are absent tidal forces can still diverge near the horizon, e.g., see10 [40]. These

divergences can be cut-off by heating the system up to a small temperature as discussed

in [2, 26]. Also, as we will see shortly, adding a small magnetic field can alter the behaviour

of the geometry in the deep IR again removing the singular region.

3 The effect of the magnetic field

Now that we have understood the solutions obtained with only electric charge we are ready

to study the effects of adding a small magnetic field.

The presence of the magnetic field gives rise to an additional term in the effective

potential eq. (2.6). The magnetic field is a small perturbation if this term is small compared

to the electric charge term, giving rise to the condition

(

Qm

Qe

)2

≪ e−4αφ. (3.1)

9The examples studied in [26] are of this type. There the full potential was taken to be V (φ) =

−2|V0| cosh(2δφ) (see eq. (F.1) of [26]). As a result in the asymptotic region r → ∞ the potential goes to

its maximum value, V → V∞ = −2|V0| ∼ −|V0|.
10Sometimes the geometries can be regular with no singularities or diverging tidal forces, [39].
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From eq. (2.11) and eq. (2.12) we see that

e−4αφ = r−4αk (3.2)

so eq. (3.1) in fact gives rise to a condition on the radial coordinate

(

Qm

Qe

)2

≪ r−4αk. (3.3)

By a small magnetic field we mean more precisely choosing a suitable value of Qm

and starting at a value of the radial coordinate r where eq. (3.3) is met. We will be then

interested in asking if this magnetic perturbation continues to be small in the IR, i.e., even

smaller values of r, or if its effects grow.11

The requirement that the magnetic field is small can be stated more physically as

follows. Consider a purely electric solution which asymptotes to AdS space in the far UV

and let µ be the only scale characterising the boundary theory which is dual to this electric

theory as discussed in the previous section. Then the magnetic field is small if it satisfies

the condition

|Qm| ≪ µ2, (3.4)

so that its effects can be neglected in the UV and continue to be small all the way to the

electric scaling region.

Our discussion breaks up into different cases depending on the values of the parameters

α, δ. We will choose δ ≥ 0 in the discussion below without any loss of generality. Let us

also note that although we do not always mention them for an electric solution to exist the

additional conditions eq. (2.14)-eq. (2.17) must also be met.

We now turn to the various cases.

3.1 Case I. −δ < α < 0

In this case the magnetic perturbation is irrelevant in the infrared. From eq. (2.12) we see

that αk > 0 so that

e−4αφ = r−4αk → ∞ (3.5)

as r → 0. Thus choosing a value of Qm, r, where eq. (3.1) is met and going to smaller

values of r, eq. (3.1) will continue to hold and therefore the effects of the magnetic field

will continue to be small.12 In this range of parameters then the low temperature behaviour

of the system and its low frequency response will be unchanged from the purely electric

case. Also the entanglement entropy in the boundary theory of a region of sufficient large

volume will be unchanged and be given as we shall see in section 5 by eq. (5.16).

11As is clear from eq. (3.3) and we will study this shortly in more detail, the magnetic field is relevant

in the IR when αk < 0. It is easy to see from eq. (2.12), eq. (2.13) that when this condition is met the

coupling g2 = e−2αφ in the purely electric solution is weakly coupled in the IR since g2 → 0 as r → 0.
12On the other hand the magnetic field gets increasingly more important at large r, i.e., in the UV.

However from numerical solutions one sees that for a suitable V (φ), when Q
/
mµ2 ≪ 1 its effects continue

to be small all the way upto the asymptotic AdS region.

– 9 –
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3.2 Case II. |α| > δ

In this case the magnetic perturbation is relevant in the infrared and in the deep infrared

the solution approaches an attractor of the extremal RN type. The dilaton is drawn to a

fixed and finite value φ0 and does not run-away and the near-horizon geometry is AdS2×R2

with the metric components eq. (2.4), being

b = b0 (3.6)

a2 =
r2

R2
2

, (3.7)

where b0, R
2
2 are constants with R2 being the radius of AdS2. Note that in this attractor

region of the spacetime the effects of the electric and magnetic fields are comparable.

To establish this result we first show that eq. (2.7), eq. (2.8), eq. (2.9) and eq. (2.10)

allow for such an attractor solution. Next, starting with this attractor solution we identify

appropriate perturbations and establish numerically that the solution flows to the electric

scaling solution in the UV.

It is easy to check that the equations of motion allow for a solution of the type described

above. Eq. (2.9) and eq. (2.10) are met with φ being constant and b being constant as long

as the conditions Veff = ∂φVeff = 0 are met. This gives rise to the conditions

e−2αφ0Q2
e + e2αφ0Q2

m =
b40|V0|
2

e2δφ0 (3.8)

−e−2αφ0Q2
e + e2αφ0Q2

m =

(

δ

α

)

b40|V0|
2

e2δφ0 (3.9)

which determine φ0, b0. Eliminating b0 between the two equations gives

e4αφ0 =
Q2

e

Q2
m

1 + δ
α

1− δ
α

(3.10)

The l.h.s. must be positive, this gives a constraint | δα | < 1 which is indeed true for Case II.

Substituting eq. (3.10) in eq. (3.8) next determines b0 in terms of φ0 to be

b40 =
4Q2

ee
−2φ0(α+δ)

|V0|
(

1− δ
α

) . (3.11)

Of the remaining equations eq. (2.8) is trivially satisfied while eq. (2.7) determines R2 to be

R2
2 =

1

|V0|

(∣

∣

∣

∣

α− δ

α+ δ

∣

∣

∣

∣

) δ
2α
(

Q2
m

Q2
e

) δ
2α

. (3.12)

We see that for α > 0, R2 → 0 as Qm → 0, making the AdS2 highly curved, while for

α < 0, R2 → ∞ as Qm → 0.

Appendix A contains some discussion of the two perturbations in this AdS2×R2 solu-

tion which grow in the UV. Starting with an appropriate choice of these two perturbations

we find that the solution flows to the electric scaling solution in the UV. This can be seen

– 10 –
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in figure 4 and 5. For an appropriate choice of potential going out even further in the UV

one finds that the solution becomes asymptotically AdS4, as shown in figure 7 and 8.

The AdS2 × R2 near-horizon geometry changes the IR behaviour of the system com-

pletely. As discussed in the introduction there is now an extensive thermodynamic entropy

and the entanglement entropy also scales like the volume, for large enough volume. For

additional discussion of the thermodynamics see section 4 .

3.3 Case III. 0 < α < δ

In this case also we will see that the magnetic perturbation is relevant in the IR. Our

analysis for what the end point is in the IR will not be complete, however.

We do identify a candidate “run-away” attractor as the IR end point of the system.

In this attractor solution the magnetic field dominates and the effects of the electric field

are negligible in comparison. As a result a solution taking the hyperscaling violating form

eq. (2.11), for an appropriate choice of exponents, exists. We will refer to this solution as

the magnetic scaling solution below. Unfortunately, we have not been able to satisfactorily

establish that starting with the electric solution of interest one does indeed end in this

magnetic scaling solution in the IR. This requires additional numerical work.

To see that the magnetic perturbation is relevant in the IR note that αk < 0 in this

region so that eventually, for small enough values of r, condition eq. (3.3) will no longer

hold and the effects of the magnetic field will become significant.

To identify the candidate run-away attractor let us begin by noting that the effective

potential eq. (2.6) and thus the equations of motion are invariant under the transformation,

Qm ↔ Qe accompanied by α → −α with the other parameters staying the same. Under

this transformation the region discussed in Case I maps to the region 0 < α < δ. The

discussion for Case I above then shows that, with Qm present, in this region of parameter

space there is a consistent solution where the effects of the electric charge in the deep IR

can be neglected. The solution takes the form, eq. (2.11) and eq. (2.12), eq. (2.13), with

Qe → Qm and α → −α. This is the magnetic scaling solution referred to above. Actually,

this solution exists only if (−α, δ) meet the conditions eq. (2.14)–(2.17). In figure 1 the

region for Case III where all the conditions eq. (2.14)-eq. (2.17) are met is shown in green.

It is easy to see that for any point in this allowed green region the corresponding point

(−α, δ) automatically lies in the allowed blue region.

Assuming that we have identified the correct IR end point we see that the thermody-

namic entropy at extremality continues to vanish once the magnetic perturbation is added.

It is also easy to see that the entanglement entropy is of the form eq. (5.16).

A more complete analysis of the system in this region of (α, δ) parameter space is left

for the future.

3.4 Additional comments

We end this section with some comments. It is sometimes useful to think of the solutions

we have been discussing as being embedded in a more complete one which asymptotes to

AdS space in the UV. The dual field theory then lives on the boundary of AdS space and

standard rules of AdS/CFT can be used to understand its behavior. We take this theory
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Region δ,α β, γ

A α > δ 1 + β > γ > 1− β

B 0 < α < δ γ < 1− β

C 0 > α > −δ γ < 1− β

D −3δ < α < −δ γ > 1 + β

E α < −3δ 1 + β > γ > 1− β

Table 1. Various Regions in (δ, α) space.

to have one scale, µ, as discussed in section 2. In addition the magnetic field is also turned

on with Qm/µ2 ≪ 1. The full metric for this solution will be of the form eq. (2.4) and in

the UV will become AdS space:13

ds2 = −r2dt2 +
1

r2
dr2 + r2(dx2 + dy2) (3.13)

Starting with this geometry for r → ∞ it will approach the electric scaling solution

when r . µ.

The magnetic field becomes a significant effect when its contribution to the effective

potential eq. (2.6) is roughly comparable to the electric field. This gives a condition for

the dilaton

e−4αφ ∼ Q2
m

Q2
e

(3.14)

Using eq. (2.12) this happens at a radial location r ∼ r∗ where

r∗ ∼ µ

(

Q2
m

Q2
e

)
−1
4αk

(3.15)

Here we have introduced the parameter µ which was set equal to unity in eq. (2.11),

eq. (2.12), eq. (2.13). For Case II and III where the magnetic perturbation is relevant in

the IR, αk < 0, and the magnetic field continues to be important for all r < r∗. In Case

II for r ≪ r∗ the solution becomes AdS2 × R2. In Case III we have not identified the IR

endpoint with certainty when r ≪ r∗. For Case I the magnetic perturbation is irrelevant

in the IR.

Second, figure 2 shows a plot of various regions in the (δ, α) plane, with δ > 0. Region C

corresponds to Case I. Regions A, D and E correspond to Case II. And region B corresponds

to Case III. The line α = −3δ which is of special interest is the thick black line separating

regions E and D. These regions are also described in terms of the parameters β, γ, eq. (2.12),

eq. (2.13) in table 1. The corresponding values of the parameters (θ, z) can be obtained

from eq. (2.29).

4 More on thermodynamics

In this section we will discuss the thermodynamic behaviour in the presence of the magnetic

field in some more detail. The introduction of a small magnetic field in the dilaton system

13We have set RAdS = 1.
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C

DE

∆

Α

Α=∆

Α=−∆

Α=−3∆

0.0 0.5 1.0 1.5 2.0

-2

-1

0

1

2

Figure 2. Figure showing various region in (δ, α) space. Details of these regions can be found in

table 1.

can have a significant effect on the IR behaviour as we have already discussed. Here we

will study some additional aspects of the resulting thermodynamics.

In our system the role of the Fermi energy is played by the chemical potential µ. Let

us start with the purely electric theory first at a small temperature T

T/µ ≪ 1 (4.1)

As discussed in [3, 26] the entropy density s = S/V goes like

s ∼ N2T
2β

2γ−1 . (4.2)

Under the scaling symmetry equations, (2.20), (2.21), (2.22), s has dimensions of Lθ−2,

where θ is defined in eq. (2.29) and L transforms in the same way as the (x, y) coordinates

do in eq. (2.22). Thus θ is the exponent related to hyperscaling violation.

Now we can consider introducing a small magnetic field Qm. Since the stress energy

of the electromagnetic field is quadratic in Q2
m this should result in a correction to the

entropy which is of order Q2
m. The scaling symmetry eq. (2.21), eq. (2.22) then fixes the

resulting temperature dependence of this correction so that s is given by

s ∼ N2µ2

(

T

µ

)
2β

2γ−1

(

1 + s1

(

Qm

µ2

)2(T

µ

) 4αk
2γ−1

)

(4.3)

where k is defined in eq. (2.11), eq. (2.12) and s1 is a µ independent constant. We see that

the magnetic field can be regarded as a small perturbation only for temperatures meeting

– 13 –



J
H
E
P
0
3
(
2
0
1
3
)
1
5
5

the condition
(

Qm

µ2

)2(T

µ

) 4αk
2γ−1

≪ 1 (4.4)

We have numerically verified that the coefficient s1 indeed does not vanish for generic

values of (α, δ).

The condition eq. (4.4) is in agreement with the discussion of section section 2 where

we found that the magnetic field is irrelevant or relevant in the IR depending on the sign

of αk. Since 2γ − 1 > 0, eq. (2.18), we see from eq. (4.3) that when αk > 0 the effects of

the magnetic field on the entropy vanish as T → 0. On the other hand when αk < 0 these

effects grow as T → 0.

4.1 More on Case II

One region of the parameter space where αk < 0 corresponds to Case II. As discussed in

section 2 in this case the resulting geometry for T = 0 in the deep IR is of the extreme

RN type and the entropy at extremality does not vanish. From eq. (3.11) this entropy is

given by

S = s0V N2µ2

(

Qm

µ2

)
α+δ
2α

(4.5)

where s0 is a dimensionless constant, V is the volume and we have used eq. (2.30). The

remaining region of parameter space where αk < 0 corresponds to Case III. For this case

as discussed in section 2 our analysis is not complete. If the IR in the gravity theory

is an attractor of the magnetic scaling type described in 3.3 then the entropy vanishes

at extremality.

It is also worth commenting on the behaviour of some of the other thermodynamic

variables for Case II. We start with the case where both Qm, T vanish, then first introduce

a small Qm/µ2 ≪ 1 and finally a small temperature. The temperature we consider meets

the condition T/µ ≪ 1. In fact it is taken small enough to meet the more stringent condition

Q2
m

µ4
≫
(

T

µ

)
−4αk
2γ−1

(4.6)

so that eq. (4.4) does not hold and the near horizon geometry is that of a near- extremal

RN black brane at a small non-zero temperature.

The discussion of thermodynamics is conceptually simplest if we think of the gravity

solution being asymptotic in the deep UV to AdS space with a possible non-normalisable

mode for the dilaton turned on, as was discussed in 2.1. In the absence of a magnetic field

the dual field theory is a relativistic theory with the coupling constant dual to the dilaton

being turned on and thus scale invariance being broken. The energy density ρ and pressure

P for such a system at zero temperature are given by

ρ = c1N
2µ3 + ρ0 (4.7)

P =
c1
2
N2µ3 − ρ0 (4.8)
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where the ρ0 term arises due to the cosmological constant induced by to the breaking of

scale invariance when the non-normalisable mode of the dilaton is turned on.

On introducing a small magnetic field the geometry changes for Case II significantly in

the deep IR. However one expects that the resulting change in ρ, p, which are determined

by the normalisable mode of gravity at the boundary, is small. Since the stress-energy in

the bulk changes at quadratic order in Qm, as was discussed above, this correction should

be of order Q2
m. Thus the pressure, working still at zero temperature, would become

P =
c1
2
N2µ3 − ρ0 + a1N

2Q
2
m

µ
(4.9)

where a1 is a dimensionless constant. The resulting magnetisation can be obtained using

the thermodynamic relation

SdT +Ndµ− V dP +MdQm = 0. (4.10)

Keeping T = 0 and µ fixed gives

M

V
=

dP

dQm
= 2a1N

2Qm

µ
(4.11)

We expect this magnetisation to be diamagnetic.

Introducing a small temperature next will result in a temperature dependence in the

pressure and the magnetisation. The change in the pressure keeping µ,Qm fixed and

increasing T slightly is given from eq. (4.10) by

∆P =

∫

sdT = s0N
2µ2

(

Qm

µ2

)
α+δ
2α

T (4.12)

where we have used eq. (4.5). Adding this to eq. (4.9) gives the total pressure to be

P =
c1
2
N2µ3 − ρ0 + a1N

2Q
2
m

µ
+ s0N

2µ2

(

Qm

µ2

)
α+δ
2α

T (4.13)

The resulting magnetisation also acquires a linear dependence on temperature

M

V
= 2a1N

2Qm

µ
+ soN

2

(

α+ δ

2α

)

T

(

Qm

µ2

)
δ−α
2α

(4.14)

Notice that in Case II |α| > δ and therefore the exponent δ−α
2α in the second term on the

r.h.s. is negative. Since Qm/µ2 ≪ 1 this means that the coefficient of the term linear in T

in the magnetisation is enhanced. As a result at a small temperature of order

T

µ
∼
(

Qm

µ2

)
3α−δ
2α

(4.15)

this term will become comparable to the zero temperature contribution.

A case of particular interest is when α = −3δ. This corresponds to θ = 1, eq. (2.29),

and gives rise to the logarithmic enhancement of entropy eq. (1.1). The pressure and
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magnetisation etc can be obtained for this case by substituting this relation between α, δ

in the the equations above.

Let us end this section some comments. It is important to note that after turning

on the magnetic field the state is still compressible. The compressibility is defined by

κ = − 1
V

∂V
∂P |TQmN and can be related to the change in charge or number density n as µ

is changed,

κ =
1

n2

(

∂n

∂µ

)∣

∣

∣

∣

TQm

(4.16)

From eq. (4.10) and eq. (4.13) we see that

n =
∂P

∂µ

∣

∣

∣

∣

TQm

=
3

2
c1N

2µ2 + · · · (4.17)

where the first term on the r.h.s. arises from the first term in P in eq. (4.13) and the ellipses

denote corrections which are small. Thus the charge density is only slightly corrected by

the addition of Qm and therefore the state remains compressible. Our discussion above for

the magnetisation etc has been for Case II. The analysis in case I where the magnetic field

is irrelevant in the IR is straightforward. For Case III we do not have a complete analysis

of what happens in the gravity theory in the deep IR. A candidate attractor was identified

in section 3, if this attractor is indeed the IR end point then starting from it the resulting

thermodynamics can be worked out at small Qm, T along the lines above.

5 Entanglement entropy

The entanglement entropy for the hyperscaling violating metrics we have been considering

has already been worked out in in [10], see also [11]. Knowing these results, the behaviour

of the entanglement entropy for our system of interest, in the presence of a small magnetic

field, can be easily deduced.

To keep the discussion self contained we first review the calculation of the entanglement

entropy for hyperscaling violating metrics and then turn to the system of interest.

5.1 Entanglement entropy in hyperscaling violating metrics

We will be considering a metric of the form

ds2 = −r2γdt2 +
dr2

r2γ
+ r2β(dx2 + dy2) (5.1)

(this is the same form as eq. (2.11) except that we have dropped the constant C2
a by

appropriately scaling the metric). In the discussion below it will be useful to think of this

metric as arising in the IR starting with an AdS metric in the UV. This could happen for

an appropriately chosen potential as was discussed in section 2, [26]. The field theory of

interest then lives on the boundary of AdS space. For simplicity we will restrict ourselves to

a circular region R in the field theory of radius L. The boundary of this region in the field

theory ∂R is a circle of radius L. To compute the entanglement entropy of R we work on a

fixed constant time slice and find the surface in the bulk which has minimum area subject to
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the condition that it terminates in ∂R at the boundary of AdS. The entanglement entropy

is then given by [34, 35].

SEE =
Amin

4GN
(5.2)

where Amin is the area of this surface.

We will work in a coordinate system of the form eq. (2.4) which as r → 0 becomes

eq. (5.1) and as r → ∞ becomes AdS space

ds2 = r2(−dt2) +
dr2

r2
+ r2(dx2 + dy2). (5.3)

Replacing (x, y) by (ξ, θ) the metric eq. (2.4) can be rewritten as

ds2 = −a2dt2 +
dr2

a2
+ b2(dξ2 + ξ2dθ2). (5.4)

We expect the minimum area bulk surface to maintain the circular symmetry of the

boundary circle. Such a circularly symmetric surface has area

Abulk = 2π

∫

√

b2
(

dξ

dr

)2

+
1

a2
ξ(r)b(r)dr (5.5)

where ξ(r) is the radius of the circle which varies with r. To obtain Amin we need to

minimise Abulk subject to the condition that as r → ∞, ξ → L. The resulting equation for

ξ(r) is

d

dr





b3ξ dξ
dr

√

b2(dξdr )
2 + 1

a2



−

√

b2
(

dξ

dr

)2

+
1

a2
b = 0. (5.6)

Let us note that the circle on the boundary of R has area14

A = 2πL (5.7)

It is easy to see that as r → ∞ the b2(dξdr )
2 term in the square root in eq. (5.5) cannot

dominate over the 1
a2

term. The contribution to Abulk from the r → ∞ region can then be

estimated easily to give

δ1Abulk = Armax (5.8)

where rmax is the IR cutoff in the bulk which should be identified with a UV cutoff in the

boundary. This is the expected universal contribution to entanglement which arises from

very short distance modes entangled across the boundary of R.

Now one would expect that as L is increased the bulk surface penetrates deeper into

the IR eventually entering the scaling region eq. (5.1). For large enough L one expects

that the radial variable ξ stays approximately constant in the UV and undertakes most

of its excursion from L to 0 in this scaling region. We will make these assumption here

and proceed. These assumptions can be verified numerically for the interesting range of

parameters and we will comment on this further below.

14As mentioned earlier we will persist in calling this the area although it is of course the perimeter.
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With these assumptions the contribution from the scaling region for the minimal area

surface δ2Abulk can be estimated by a simple scaling argument. We can neglect the change

in ξ before the surface enters the scaling region and take its value at the boundary of the

scaling region15 which we denote as ξ0 to be L. Under the scaling symmetry eq. (2.20)-

eq. (2.22), which takes

r → λr, ξ → λ1−β−γξ, (5.9)

we see from eq. (5.5) that

δ2Abulk → λ2(1−γ)δ2Abulk (5.10)

Now by choosing λ in eq. (5.9) to be

λ = L
1

γ+β−1 (5.11)

we can set the rescaled value for ξ0 to be unity. In terms of the rescaled variable the

minimisation problem has no scale left and δ2Abulk must be order unity. This tells us that

when ξ0 = L

δ2Abulk ∼ LL
γ−β−1
γ+β−1 . (5.12)

Note also that with ξ0 set equal to unity the surface would reach a minimum value at a

radial value of rmin which is of order unity. Thus before the rescaling

rmin ∼ λ = L
−( 1

β+γ−1
)
. (5.13)

Now we are ready to consider different regions in the (γ, β) parameter space. From

eq. (2.12) we see that β > 0 and from eq. (2.18) that γ > 1/2.

• γ > 1 + β: In this case we see from eq. (5.12) and (5.8) that δ2Abulk > δ1Abulk for

sufficiently big L and fixed UV cutoff r0. Thus the dominant contribution to the area

for sufficiently big L comes the scaling region. The entanglement is then given by

SEE ∼ N2(Lµ)(Lµ)
γ−β−1
γ+β−1 (5.14)

with an additional term proportional to L in units of the UV cutoff r0. In eq. (5.14)

we have introduced the scale µ to make up the dimensions. We remind the reader

that this scale stands for the chemical potential which is the only length scale in

the boundary theory. We see from eq. (5.14) that the entanglement grows with L

with a power faster than unity. Also notice that from eq. (5.13) rmin decreases with

increasing L in accord with our expectation that the surface penetrates further into

the scaling region as L is increased.

• A special case of importance is when 1+β = γ. Here the term (Lµ)
γ−β−1
γ+β−1 is replaced

by a log, [10], resulting in eq. (5.14) being replaced by

SEE ∼ N2(Lµ) log(Lµ) (5.15)

15By the boundary of the scaling region we mean the region where the metric begins to significantly

depart from eq. (5.1). This happens as we go to larger values of r; for even larger values the metric becomes

AdS space.
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• 1 + β > γ > 1 − β : In this case we see from eq. (5.12) and eq. (5.8) that the

contribution δ2Abulk grows with L with a power less than unity and therefore the

contribution made by the scaling region to the total area is less significant than δ1A

which is linear in16 L. In this region of parameter space the entanglement entropy is

therefore dominated by the short distance contributions and given by

SEE ∼ N2L

a
(5.16)

where a = 1
rmax

is an UV cutoff in the system.

• γ < 1 − β: In this case rmin does not decreases with increasing L, actually the

surface stops entering the scaling region and our considerations based on the scaling

symmetry are not relevant. The entanglement entropy is again given by eq. (5.16).

One can calculate the minimal area surface numerically for cases when γ > 1 + β and

also 1 + β > γ > 1 − β. This gives agreement with the above discussion including the

scaling behaviour for rmin eq. (5.13) in these regions of parameter space.

Let us make some more comments now. In the case where the near horizon geometry

is of extreme RN type, i.e., AdS2 × R2 we have β = 0, γ = 1. This case needs to be

dealt with separately. Here the entanglement entropy scales like the volume and equals the

Beckenstein-Hawking entropy of the corresponding region in the boundary theory.

SEE ∼ N2(Lµ)2 (5.17)

The discussion in section 2 was in terms of the parameters (α, δ) while here we have used

(β, γ). The relation between these parameters is obtained from eq. (2.13) and summarised

in table 1. We see that γ > 1+β corresponds to Region D. The line γ = 1+β corresponds

to α = −3δ at the interface between D and E. The condition 1+β > γ > 1−β corresponds

to A and E and finally γ < 1− β to B and C.

5.2 Entanglement with a small magnetic field

We are now ready to consider the effects of a small magnetic field. The behaviour of the

gravity solutions was discussed in section 2 where it was shown that the analysis breaks up

into various cases. In all cases we will take the solution to approach AdS space in the UV.

The resulting behaviour of the solution was discussed for the various cases in subsection 3.4.

For r ≫ µ the solution is AdS space while for r∗ ≪ r ≪ µ it is of electric scaling type (r∗
is defined in eq. (3.15)). What happens for r ≪ r∗ depends on the various cases.

• Case II. |α| > δ: In this case the geometry for r ≪ r∗ is AdS2 × R2. Let us start

with a boundary circle of very small radius and slowly increase its size. When the

radius Lµ ≪ 1 the entanglement entropy is given by eq. (5.16). When Lµ ∼ 1 the

surface begins to penetrate the electric scaling region and as L increases we see from

16We should note that the scaling argument tells us that rmin does decrease with increasing L, eq. (5.13),

so that the surface does get further into the scaling region as L increases.
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eq. (5.13) that rmin decreases. When rmin reaches r∗ the surface begins to enter the

region where the magnetic field has an appreciable effect on the geometry. Using

eq. (5.13) this corresponds to

L ∼ L∗ =
1

µ

(

Q2
e

Q2
m

)− 1
(4αk)(β+γ−1)

. (5.18)

For

L∗ ≫ L ≫ 1

µ
(5.19)

the entanglement entropy is given by the calculation in the electric solution. Thus

for −3δ < α < −δ it grows faster than L with an additional fractional power while

for α = −3δ it is logarithmically enhanced. For other values of (α, δ) which lie in

this region the entanglement entropy is proportional to L and is dominated by the

UV contribution.

Finally, when L ≫ L∗ the surface enters into the near-horizon AdS2 ×R2 geometry.

Now the entanglement entropy grows like L2 and is given by

S ∼ L2N2µ2

(

Qm

µ2

)
α+δ
2α

(5.20)

This is an expression analogous to the Beckenstein-Hawking entropy, eq. (4.5), but

with L2 now being the volume of the region of interest. For the case of special interest,

α = −3δ, this becomes

S ∼ L2N2µ2

(

Qm

µ2

) 1
3

. (5.21)

• Case III. 0 < α < δ: In this case the magnetic field is important at small r. For

L∗ ≫ L ≫ 1
µ the entanglement is given by the electric theory, it goes like eq. (5.16)

and arises dominantly due to short distance correlations. The geometry in the deep

IR could be the magnetic scaling solution discussed in subsection 3.3. If this is correct

for L ≫ L∗ the entanglement will continue to go like eq. (5.16).

• Case I. −δ < α < 0: In this case the magnetic field is not important in the IR and

the the entanglement entropy is given by eq. (5.16) both when L < 1
µ and L > 1

µ .

6 Concluding comments

In this paper we have studied a system of gravity coupled to an Abelian gauge field and a

dilaton. This system is of interest from the point of view of studying fermionic matter at

non-zero charge density. Some of our key results were summarised in section 1. We end in

this section with some concluding comments.

• For the case |α| > δ (Case II in our terminology) we saw that the magnetic field is

a relevant perturbation in the IR and the inclusion of a small magnetic field changes

the behaviour significantly making the zero temperature thermodynamic entropy
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extensive and the entanglement grow like the volume. In particular this happens along

the line α = −3δ (θ = 1, eq. (2.29)), where the electric theory has an entanglement

entropy of the form eq. (1.1) suggesting the presence of a Fermi surface.

• It is well known that an extensive ground state entropy can arise in the presence of

a magnetic field due to partially filled Landau levels. When this happens in a free

fermionic theory the entropy scales like Qm while, in contrast, for the dilaton system

the dependence on the the magnetic field is typically more exotic, eq. (5.20). E.g.,

with α = −3δ the entropy goes like Q
1/3
m , eq. (5.21). Such a non-trivial exponent

suggests that the ground state is more interesting and strange.

• A notable feature about how the entanglement entropy behaves in all the cases we

have studied is that it never decreases in the IR, i.e., as one goes to regions of larger

and larger size (L)in the boundary. For instance, consider the case where −3δ ≤ α <

−δ. In this case for very small L is it given by eq. (5.16) and dominated by short

distance correlations of the CFT. At intermediate values of L, meeting the condition

eq. (5.19), it goes like eq. (5.14) and is enhanced compared to the L dependence

by an additional fractional power of L or a log(L), eq. (5.15). Finally at very large

values of L it grows like the volume L2, eq. (5.17). We see that as L increases the

entanglement increases monotonically.17 In other cases while the detailed behaviour

is different this feature is still true. These observations are in agreement with [42]

where a renormalised version of the entanglement entropy was defined and it was

suggested that in 2 + 1 dimensions this entropy would monotonically increase. It is

easy to see that the behaviour of the entanglement entropy we have found implies

that the renormalised entanglement entropy of [42] is monotonic and increasing.

• In [26] the behavior of a probe fermion in the bulk in the electric hyperscaling violating

geometry was discussed. This corresponds to calculating the two point function of a

gauge invariant fermionic correlator in the boundary. It is notable that the region in

parameter space where Fermi liquid behaviour was found to occur for this correlator

is exactly the region |α| > δ for which we have found that the geometry flows to

an AdS2 × R2 endpoint in the IR.18 It would be worth understanding this seeming

coincidence more deeply. It is also worth mentioning that in [26] marginal Fermi

liquid behaviour was found when |α| = δ. This region lies at the boundary of the

region |α| > δ where an AdS2 ×R2 endpoint arise.19

17Our scaling argument does not directly fix the sign of the entanglement entropy in eq. (5.14) and

eq. (5.15). However it is clear that the sign must be positive since the corresponding contribution to the

surface area is bigger than the contribution from the UV for fixed rmax as L → ∞, and the total surface

area must be positive.
18The remaining region |α| < δ does not exhibit Fermi liquid behaviour, this includes Case I of section 2

where the magnetic field is irrelevant and also Case III of section 2 where it is relevant but where we have

not identified a definite IR end point to which the solution flows.
19In fact the nature of the attractor changes at this boundary. E.g. in the purely electric case when

α = −δ the dilaton is a flat direction of the attractor potential and not fixed to a unique value in the IR,

similarly for α = δ in the purely magnetic case.
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• Our focus in this paper was on taking an electrically charged system and including a

small magnetic field. However, it is worth pointing out that the magnetic solutions

with no electric field present (Qe = 0) are also of considerable interest in their own

right. These solutions can be obtained by taking

Qe → Qm (6.1)

and α → −α in the solutions eq. (2.12), eq. (2.13). For a choice of parameters,

which now meet the condition α = 3δ, the resulting entanglement entropy has the

form eq. (1.1) which suggests the presence of a Fermi surface even though the charge

density is now vanishing. It would be worth understanding the resulting state bet-

ter in the field theory. The transformation eq. (6.1) is an electromagnetic duality

transformation, and should act by exchanging charged particles with vortices in the

field theory [43, 44]. These vortices perhaps form a Fermi surface resulting in the

logarithmic enhancement of the entropy.

• We have not included an axion field in our analysis. Such a field is natural to include

once the dilaton is present and it can have important consequences once the magnetic

field is also turned on as was discussed in [23]. For example it was shown in [23] for

the case δ = 0 that in the presence of the axion the entropy at extremality continues

to vanishes in the presence of a magnetic field. Once the axion is included we need

to allow for the potential to also depend on it, this leads to considerable choice in the

kinds of models one can construct. To remove some of this arbitrariness it would be

worth including the axion within the context of models which arise in string theory

or at least gauged supergravity.

• More generally, the time seems now ripe to systematically embed models of this

type in string theory and supergravity. Some papers in this direction have already

appeared [45–50]. It would be worth understanding these constructions better and

also gaining a better understanding of their dual field theory descriptions.
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A Numerical interpolation

In this appendix we consider Case II solutions which were discussed in section 3.2 and

establish that the deep IR solution is indeed AdS2 ×R2. We establish this numerically by

integrating outwards from the AdS2×R2 near horizon solution discussed in subsection 3.2
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and showing that the system approaches the electric scaling solution. For a suitable po-

tential we find that the electric scaling solution in turn finally asymptotes to AdS4 in the

UV. Our numerical work is done using the Mathematica package.

We divide the discussion into three parts. In the first part we identify two perturbations

in the AdS2 × R2 region that grow towards the UV. In the second part, by choosing an

appropriate combination of these two perturbation, we numerically integrate outwards

taking the scalar potential to be V (φ) = −|V0|e2δφ, eq. (2.3). At moderately large radial

distances we get the electric scaling solution. In the last part, taking the potential to be of

the form V (φ) = −2|V0| cosh(2δφ),20 we continue the numerical integration towards larger

r and show that the geometry asymptotes to AdS4.

A.1 The perturbations

To identify the perturbations in the AdS2 × R2 solution discussed in 3.2 we consider per-

turbations of this solution of the following form for the metric components and the dilaton,

a(r) = Car
[

1 + ac1r
ν +O(r2ν)

]

(A.1)

b(r) = b0
[

1 + bc1r
ν +O(r2ν)

]

(A.2)

φ(r) = φ0 + log
[

1 + φc1r
ν +O(r2ν)

]

. (A.3)

Note that this is a perturbation series in rν which is valid in the near horizon region where

r ≪ 1. Equations (2.7)–(2.10) can be solved to leading order in rν to find perturbations

which are relevant towards the UV, i.e with ν > 0. We find two such perturbations

parametrized by their strengths φ
(1)
c1 , a

(2)
c1 which are given below:

a
(1)
c1 =

2δ

1 + α2 − δ2 +
√
1 + 4α2 − 4δ2

φ
(1)
c1 (A.4)

b
(1)
c1 = 0 (A.5)

ν1 =
1

2

(

− 1 +
√

1 + 4α2 − 4δ2
)

(A.6)

and

b
(2)
c1 = − 3(−2 + α2 − δ2)

2(−2 + α2 − 2δ2)
a
(2)
c1 (A.7)

φ
(2)
c1 = − 3δ

(−2 + α2 − 2δ2)
a
(2)
c1 (A.8)

ν2 = 1 (A.9)

Note that b
(1)
c1 vanishes in the first of the above perturbations, as a result the first correction

to b(r) starts at second order. Actually, we found it important to go to second order in the

first of the above perturbations for carrying out the numerical integration satisfactorily.

We will not provide the detailed expressions for these second order corrections here since

they are cumbersome.

20Note, for this last part we present results for the case where α > δ so that in the electric scaling

solution φ → ∞ in the deep IR. As a result the modified potential −2|V0| cosh(2δφ) can be approximated

by −|V0|e
2δφ in the IR. In the UV we then find that the modified potential allows for an AdS4 solution. A

similar analysis can be done when α < −δ, using a suitably modified potential.
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A.2 Scaling symmetries

The system of equations eq. (2.7)-eq. (2.10) has two scaling symmetries.

a2 → λ1a
2, r2 → λ1r

2 (A.10)

(Q2
e, Q

2
m) → λ2(Q

2
e, Q

2
m), b2 → λ2b

2 (A.11)

The first scaling symmetries can be used to set21 a
(2)
c1 = −1. The second scaling symmetry

can then be used to set Qe = 1. In addition we can choose units so that |V0| = 1. With

these choices the system of equations has two parameters, φ
(1)
c1 , which characterises the

first perturbation, eq. (A.4), and Qm. Numerical analysis shows that for a given choice of

Qm ≪ µ2, φ
(1)
c1 needs to be tuned very precisely to ensure that the solution flows to the

electric scaling solution. Otherwise, for example with the modified potential considered in

subsection A.4 below, the solution can flow from the AdS2 × R2 region in the IR directly

to AdS4, as r → ∞, without passing close to the electric scaling solution at intermediate

values of r.

A.3 Numerics: AdS2 × R2 to the electric scaling solution

We will illustrate the fact that the solution evolves from the AdS2 × R2 geometry to the

electric scaling solution once the values of φ
(1)
c1 is suitably chosen with one example here.

Similar behaviour is found for other values of (α, δ), which lie in Case II.22

The example we present here has α = 1, δ = 0.6 (satisfying |α| > δ). We will present

the data here for the case when Qm = 10−4 the behaviour for other values of Qm ≪ µ2 is

similar. It turns out that in this case we have to fine tune the value of this parameter to

be near φ
(1)
c1 = −0.3173 so as to obtain an electric scaling solution at intermediate r.

Evidence for the electric scaling solution can be obtained by examining the relative

contributions that various terms make in the effective potential eq. (2.6). In the electric

scaling region the contribution that the Q2
m dependent term makes must be smaller than

the Q2
e dependent term and the scalar potential which in turn must scale in the same way.

Figure 3 shows the different contributions to Veff made by the terms, e−2αφQ2
e, e

2αφQ2
m and

b4(r) e
2δφ

2 in a Log-Log plot. Clearly the Q2
e term is growing as the same power of r as the

scalar potential e2δφ term and Q2
m is subdominant.

Figure 4 and figure 5 show the plots of metric components a(r), b(r) and the scalar φ(r)

obtained numerically. Each of them is fitted to a form given in eq. (2.12). We see that the

fitted parameters agree well with the analytic values for β, γ and k obtained from eq. (2.13)

with (α, δ) = (1, 0.6). This confirms that the system flows to the electric scaling solution.

A.4 Numerics: AdS2 × R2 → electric scaling → AdS4

Here we show that on suitably modifying the potential so that the IR behaviour is essen-

tially left unchanged the solution which evolves from the AdS2 ×R2 geometry in the deep

21We cannot change the sign of a
(2)
c1 by using the symmetries. The above sign is necessary for the solution

to flow to the electric scaling solution in the UV.
22The example we choose here has α, δ > 0. Similar results are also obtained when α < 0, δ > 0.
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Figure 3. Different contributions to Veff in Log-Log plot. Blue→ Scalar Potential b4(r) e
2δφ

2
,

Black→ Q2
ee

−2αφ term, Red→ Q2
me2αφ term.
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Figure 4. In the top plot, a(r) ∼ rγ with γFit = 0.706 whereas γAnalytical = 0.707. In the bottom

plot, b(r) ∼ rβ with βFit = 0.391 whereas βAnalytical = 0.390.
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Figure 5. φ = k log[r]. kFit = −0.4858 as compared to kAnalytical = −0.4878.

IR to the electric scaling solution can be further extended to become asymptotic AdS4 in

the far UV.

We will illustrate this for the choice made in the previous subsection: (α, δ) = (1, 0.6),

(Qe = 1, Qm = 10−4). For this choice of (α, δ) it is easy to see from eq. (2.12), eq. (2.13)

that φ → ∞ in the IR of the electric scaling solution, and from eq. (3.10) that it continues

to be big in the AdS2×R2 geometry once the effects of the magnetic field are incorporated.

We will modify the potential to be

V (φ) = −2|V0| cosh(2δφ) (A.12)

instead of eq. (2.3). For φ → ∞ we see that this makes a small change, thus our analysis in

the previous subsection showing that the solution evolves from the AdS2×R2 geometry to

the electric scaling solution will be essentially unchanged. However, going to larger values

of r the modification in the potential will become important. This modified potential has a

maximum for the dilaton at φ = 0 and a corresponding AdS4 solution with23 R2
AdS = − 3

V0
.

We find by numerically integrating from the IR that the solution evolves to this AdS4

geometry in the UV.

To see this first consider a plot of the three different contributions to Veff proportional

to e−2αφQ2
e, e

2αφQ2
m and b4(r) cosh(2δφ) shown in figure 6. We see that there are three

distinct regions. In the far IR AdS2 × R2 region, the three contributions are comparable.

At intermediate r where we expect an electric scaling solution on the basis of the discussion

of the previous subsection the magnetic field makes a subdominant contribution and the

other two contributions indeed scale in the same way. Finally at very large r, in the far

UV, the cosmological constant is dominant as expected for an AdS4 solution.

We also show the metric components a(r), b(r) in a Log-Log plot in figure 7 and 8.

Once again, we can see three distinct slopes for a, b, corresponding to three different regions

in the solution. In the AdS4 region, as r → ∞, numerically fitting the behaviour gives

23This example was analysed in [26]. The dilaton lies above the BF bound of the resulting AdS4 theory

for our choice of parameters.
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Figure 6. Different contributions to Veff in Log-Log plot. Blue→ Scalar Potential b4(r) cosh(2δφ),

Black→ Q2
ee

−2αφ term, Red→ Q2
me2αφ term.
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Figure 7. In the Log-Log plot both curves show three different slopes for the metric components,

which correspond to the three regions AdS2 ×R2, Electric Scaling Region and AdS4 respectively.

a(r), b(r) ∼ r0.99 which is in good agreement24 with the expected linear behaviour. Finally,

figure 8 shows the scalar function φ(r) settling to zero with the expected fall-off as r → ∞.

These results confirm that the system evolves to AdS4 in the far UV.

24The fit was done for r ∼ 107.
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Figure 8. φ(r) approaches zero like r−1.22 as r → ∞. This agrees with the fall off of non-

normalizable component of dilaton in AdS4.
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