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Abstract: We give a direct computation of the mass of black holes in Warped Anti-de Sit-

ter space (WAdS) in terms of the Brown-York stress-tensor at the boundary. This permits

to explore to what extent the holographic renormalization techniques can be applied to

such type of deformation of AdS. We show that, despite some components of the boundary

stress-tensor diverge and resist to be regularized by the introduction of local counterterms,

the precise combination that gives the quasilocal energy density yields a finite integral.

The result turns out to be in agreement with previous computations of the black hole

mass obtained with different approaches. This is seen to happen both in the case of Topo-

logically Massive Gravity and of the so-called New Massive Gravity. Here, we focus our

attention on the latter. We observe that, despite other conserved charges diverge in the

near boundary limit, the finite part in the large radius expansion captures the physically

relevant contribution. We compute the black hole angular momentum in this way and we

obtain a result that is in perfect agreement with previous calculations.
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1 Introduction

The idea of extending AdS/CFT correspondence to Warped AdS spaces (WAdS) has been

originally proposed in ref. [1], and it was further studied in refs. [2–11]. This represents

one of the most appealing attempts to generalize holography to non-AdS spaces, and this

is because WAdS spaces appear in several contexts. For instance, WAdS spaces provide

gravity duals for condensed matter systems with Schrödinger symmetry [12, 13], they are

closely related to the geometry of rotating black holes [14, 15], and they also appear in rela-

tion to many other interesting subjects [16–18]. Asymptotically WAdS3 spaces turn out to

be exact solutions of String Theory [19–23] as well as of other models of three-dimensional

gravity, including Higher-Spin Gravity [24], Topologically Massive Gravity (TMG) [25, 26],

and New Massive Gravity (NMG) [27]. Here, we will be concerned with the latter: we will

consider asymptotically WAdS3 black holes in NMG. For such solutions, we will give a

direct computation of the mass in terms of the Brown-York stress-tensor [28] in the bound-

ary of the space. We do this to explore to what extent the holographic renormalization
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techniques can be applied to such a deformation of AdS. Whether or not the Brown-York

tensor can be defined at the boundary of WAdS3 space is a question that has been raised,

for instance, in ref. [5]. Here, we will show that, despite some components of the Brown-

York stress-tensor diverge in the near boundary limit and resist to be regularized by the

introduction of local counterterms, the integral of the precise combination that gives the

definition of the quasilocal energy as a conserved charge yields a finite integral. The result

we obtain happens to be in agreement with computations of the black hole mass obtained

by different methods [25, 30, 31]. Finiteness of the conserved charge computed in this way

follows from cancellations that occur near the boundary. In contrast to the mass, in the

case of the angular momentum the charge associated to it can not be regularized by the

introduction of local boundary counterterms. However, the finite part in the near bound-

ary expansion happens to capture the physically relevant information, and it is shown to

exactly reproduce the black hole angular momentum.

The paper is organized as follows: in section II, we briefly review the theory of New

Massive Gravity introduced in ref. [32]. In section III, we discuss the geometry of Warped

Anti-de Sitter space and black holes that asymptote to it. In section IV, we study boundary

terms and the Brown-York stress-tensor they induce. We consider the near boundary limit

of this stress-tensor and use it in section V to calculate the mass of the Warped Anti-de

Sitter black holes. That is, we compute the Brown-York quasilocal energy in the limit that

the boundary tends to spatial infinity. The result we obtain is in agreement with previous

computations. We also discuss the analogous computation in the case of the gravitational

Chern-Simons term being added.

2 New massive gravity

Let us begin by reviewing New Massive Gravity theory [32]. The action of the theory

consists of the sum of three different contributions, namely

S = SEH + SNMG + SB, (2.1)

where the first term is the Einstein-Hilbert action with cosmological constant,

SEH =
1

16πG

∫

Σ
d3x

√
−g (R− 2Λ) , (2.2)

and the second term contains contributions of higher order,

SNMG =
1

16πG

∫

Σ
d3x

√
−g

(

fµνGµν −
1

4
m2(fµνf

µν − f2)

)

, (2.3)

where Gµν is the Einstein tensor Gµν = Rµν − 1
2Rgµν , and field fµν is a rank-two auxiliary

field which, after being integrated, gives

fµν =
2

m2

(

Rµν −
1

4
Rgµν

)

. (2.4)

The third term in (2.1), SB, is a boundary action needed for the variational principle

to be defined in a specific way. We will discuss the boundary terms later.
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By reinserting (2.4) back in (2.3) the higher-curvature terms take the form

SNMG =
1

16πGm2

∫

Σ
d3x

√
−g

(

RµνR
µν − 3

8
R2

)

, (2.5)

which is the form of the action presented in [32].

The equations of motion derived from action (2.1) read

16πG
δS

δgµν
= Gµν + Λgµν +

1

2m2
Kµν = 0. (2.6)

which, apart from the Einstein tensor Gµν , involve the tensor

Kµν=2�Rµν−
1

2
∇µ∇νR− 1

2
�Rgµν+4RµανβR

αβ− 3

2
RRµν−RαβR

αβgµν+
3

8
R2gµν . (2.7)

The precise combination of the square-curvature terms in (2.5), gµνKµν = RµνR
µν −

(3/8)R2, is such that the trace of the equations of motion (2.6) does not involve the mode

�R. This is one of the reasons why NMG is free of ghosts — for instance — about flat space.

Equations of motion (2.6) are solved by all solutions of General Relativity, provided

an adequate renormalization of the effective cosmological constant. The theory also admits

solutions that are not Einstein spaces; these have Kµν 6= 0. Probably the simplest solutions

of this sort are WAdS3 spaces.

3 Warped Anti-de Sitter

3.1 WAdS3 space

WAdS3 spaces are squashed or stretched deformations of AdS3 [14]. Such a deformation

is obtained by first writing AdS3 as a Hopf fibration of R over AdS2 and then multiplying

the fiber by constant warp factor K. More precisely, one first considers the metric of AdS3
written in coordinates

ds2 =
l2

4

(

− cosh2 x dτ2 + dx2 + (dy + sinhx dτ)2
)

(3.1)

and then deforms it as follows

ds2 =
l2K
4

(

− cosh2 x dτ2 + dx2 +K(dy + sinhx dτ)2
)

, (3.2)

where x, y, τ ∈ R, and K ∈ R. It is usual to parameterize the deformation by a positive

constant ν defined by K = 4ν2/(ν2 + 3), such that ν = 1 corresponds to undeformed

–unwarped– AdS3. Through the deformation, the AdS3 radius l gets also rescaled as

l2 → l2K = 4l2/(ν2 + 3). Spaces (3.2) with ν2 > 1 describe stretched AdS3 spaces, while

those with ν2 < 1 describe squashed deformations of it. Through a double Wick rotation

x, τ → ix, iτ one goes from the spacelike WAdS3 metric (3.2) to a timelike analog of it.

Here we will be involved with spacelike stretched WAdS3 spaces.
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3.2 WAdS3/CFT2

The warping deformation breaks the SL(2,R) × SL(2,R) isometry group of AdS3 space

down to SL(2,R) × U(1). As a consequence, also the asymptotic isometry group, which

in the case of AdS3 coincides with the two-dimensional local conformal group, gets al-

tered. It has been recently understood that the asymptotic group of WAdS3 turns out

to be generated by the semi-direct product of one copy of Virasoro algebra and an affine

extension of u(1) algebra with non-vanishing central extension; see [2–4, 8, 9]. That is,

the asymptotic isometry group in WAdS3 spaces certainly differs from the two-dimensional

conformal group; nevertheless, it has been shown in [11] that, under certain circumstances,

the symmetry results powerful enough to constrain the dual theory and extract relevant

information from it. The holographic description of WAdS3 black hole thermodynamics

carried out in [11] is a notable realization of this idea.

Motivated by the similarities between asymptotically WAdS3 and asymptotically AdS3
spaces, the authors of [1] proposed the idea of extending AdS/CFT to the former case. The

conjecture is that quantum gravity in asymptotically WAdS3 space would be dual to a two-

dimensional theory which exhibits partial conformal symmetry, it being symmetric under

right — but not left — dilations. The main motivation we have to study the holographic

renormalization techniques in this context comes from trying to determine to what extent

what we know about holography can be applied with no major modification to WAdS

spaces as well.

3.3 WAdS3 black holes

One of the most attractive properties of WAdS space is that it admits black holes that

asymptote to it and, on the other hand, are given by discrete quotients of WAdS3 it-

self. This is analogous to what happens with the Bañados-Teiltelboim-Zanelli (BTZ) black

hole [33], which is locally equivalent to AdS3. The existence of WAdS3 black holes is very

interesting since, if thought of within the context of a WAdS3/CFT2 correspondence, it

gives raise the hope to investigate black hole physics in a totally new setup.

The metric of WAdS3 black holes is given by

ds2 = dt2 +
(

2νr −
√

(ν2 + 3)r+r−

)

dtdϕ+ l2
(

(ν2 + 3)(r − r+)(r − r−)
)−1

dr2 +

+
r

4

(

3(ν2 − 1)r + (ν2 + 3)(r+ + r−)− 4ν
√

r+r−(ν2 + 3)
)

dϕ2, (3.3)

where t ∈ R, the angular coordinate ϕ ∈ [0, 2π), it being identified as ϕ ∼ ϕ + 2π, and

r ∈ R≥0. r+ and r− are two integration constants that, for r+ ≥ r− ≥ 0, represent

the location of the outer and inner horizons of the black hole. Solutions (3.3) asymptote

spacelike stretched WAdS3 at large r. Metric (3.3) can also be written in the ADM like form

ds2 = −N2
t dt

2 + ρ2 (dϕ+Nϕdt)2 +
l2dr2

4ρ2N2
t

, (3.4)

with

ρ2 =
r

4

(

3(ν2 − 1)r + (ν2 + 3)(r+ + r−)− 4ν
√

r+r−(ν2 + 3)
)

, (3.5)
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N2
t =

(ν2 + 3)(r − r+)(r − r−)

4ρ2
, (3.6)

Nϕ =
2νr −

√

(ν2 + 3)r+r−
2ρ2

. (3.7)

As mentioned, WAdS3 black holes are specific identifications of the WAdS3 space [1].

That is, black hole geometry (3.3) is constructed as a quotient of WAdS3 space by a discrete

subgroup of SL(2,R) × U(1), identifying points of the original manifold along a direction

∂ϕ = πl(J2/βL − J̄2/βR), with J2 ∈ SL(2,R) and J̄2 ∈ U(1), and βL,R ∈ R. This allows to

define the left- and right-temperature as the inverse of the periods βR,L; namely

TL = β−1
L =

(ν2 + 3)

8πl2

(

r+ + r− − 1

ν

√

(ν2 + 3)r+r−

)

,

TR = β−1
R =

(ν2 + 3)

8πl2
(r+ − r−).

Because of being locally equivalent to WAdS3 space (3.2), and despite having a richer

causal structure, the local geometry of black holes (3.3) is remarkably simple. In particular,

the curvature scalars result to be independent of the integration constants r±. Moreover,

all the curvature invariants turn out to be constant, given only in terms of parameters ν

and l; for instance,

R = − 6

l2
, RµνR

µν =
6

l4
(3− 2ν2 + ν4),

RµνR
ν
ρR

ρµ = − 6

l6
(9− 9ν2 + 3ν4 + ν6).

As we will see, this geometric simplicity of WAdS3 black holes is, paradoxically, one of

the aspects that make difficult to deal with them.

3.4 NMG WAdS3 black holes

It has been shown in [27] that WAdS3 black holes (3.3) solve the equations of motion of

NMG if the parameters satisfy the relations

m2 = −(20ν2 − 3)

2l2
, Λ = −m2(9− 48ν2 + 4ν2)

(9− 120ν2 + 400ν4)
. (3.8)

The same type of solution for the case of NMG theory coupled to TMG was studied

in ref. [30].

Entropy of WAdS3 black hole in NMG can be evaluated by means of Wald formula [34],

yielding

S =
8πν3

(20ν2 − 3)G
(r+ − 1

2ν

√

(ν2 + 3)r+r−). (3.9)

Remarkably, the entropy results proportional to TL + TR, which means that it admits

to be written in the Cardy like form

S =
π2l

3
c(TL + TR) (3.10)
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with c being independent of r±. Then, one may identify the central charge of the dual

theory to be

c =
96ν3l

(20ν4 + 57ν2 − 9)G
. (3.11)

Notice that, in the limit ν → 1, central charge (3.11) tends to its AdS3 value c =

24l/(17G); recall that in NMG the Brown-Henneaux central charge 3l/(2G) gets multiplied

by a factor 1 + 1/(2m2l2), and, according (3.8), ν = 1 corresponds to m2l2 = −17/2.

4 Brown-York stress-tensor

4.1 ADM decomposition

Now, let us analyze the definition of the Brown-York tensor in NMG. This has been orig-

inally studied in ref. [35]. To define the stress-tensor, it is convenient to write the metric

in its ADM decomposition for the radial coordinate, r, namely

ds2 = N2dr2 + γij(dx
i +N idr)(dxj +N jdr), (4.1)

whereN2 is the radial lapse function, and γij is the two-dimensional metric on the constant-

r surfaces. The Latin indices i, j = 0, 1, refer to the coordinates on the constant-r surfaces,

while the Greek indices are µ, ν = 0, 1, 2, and include the radial direction r as well. In

the case of asymptotically AdS3 spaces, one knows how to restrict the r-dependence of γij
as it comes from the Fefferman-Graham expansion [36], which in three-dimensions results

consistent with the Brown-Henneaux asymptotic boundary conditions [37]. For WAdS3
the asymptotic boundary conditions were studied in refs. [2–4, 8, 9] for the case of TMG;

in particular, it has been shown in [4] that the theory admits more than one set of con-

sistent boundary conditions, all of them being defined in a way that WAdS3 black hole

solutions (3.3) are gathered. We assume such kind of asymptotic behavior. More precisely,

we consider perturbation of the r+ = r− = 0 configuration (3.3) of the form

ds2 = dt2 + 2νrdtdϕ+
l2dr2

r2(ν2 + 3)
+

3r

4
(ν2 − 1)dϕ2 + hµνdx

µdxν , (4.2)

gathering metrics with falling-off conditions

hrr ≃ O(r−3), hϕϕ ≃ O(r),

htϕ ≃ O(1), htt ≃ O(r−3).

4.2 Boundary terms

Boundary terms SB are introduced in (2.1) for the variational principle to be defined in

such a way that both the metric gµν and the auxiliary field fµν are fixed on the boundary

∂Σ. With this prescription, the boundary action SB reads

SB = − 1

8πG

∫

∂Σ
d2x

√
−γ

(

K +
1

2
f̂ ij(Kij − γijK)

)

. (4.3)
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Here, γij is the metric induced on ∂Σ and Kij is the extrinsic curvature, with K = γijKij .

On the other hand, f̂ ij in (4.3) comes from decomposing the contravariant field fµν as

fµν =

(

f ij hj

hi s

)

and defining

f̂ ij ≡ f ij + 2h(iN j) + sN iN j , f̂ ≡ γij f̂
ij .

The first term in (4.3) corresponds to the Gibbons-Hawking term. The other two terms

come from the higher-curvature terms of NMG. Notice that in (4.3) the field f̂ ij couples

to the Israel tensor Kij − γijK in the same manner as the field fµν couples to the Einstein

tensor in the bulk action (2.3).

Then, the Brown-York stress-tensor can be obtained by varying action (2.1) with re-

spect to the metric γij ; namely

Tij =
2√−γ

δS

δγij |r=const

. (4.4)

This yields two distinct contributions, T ij = T ij
EH+T ij

NMG. First, we have the Israel term

T ij
EH =

1

8πG
(Kij −Kγij),

and, secondly, we have the contribution coming from the higher-curvature terms [35]

T ij
NMG = − 1

8πG

(

1

2
f̂Kij +∇(iĥj) − 1

2
∇rf̂

ij +K
(i
k f̂

j)k − 1

2
ŝKij

−γij
(

∇kĥ
k − 1

2
ŝK +

1

2
f̂K − 1

2
∇rf̂

))

,

where ĥi = N(hi + sN iN j), ŝ = N2s, and where the covariant r-derivative ∇r is defined

as follows

∇rf̂
ij =

1

N

(

∂rf̂
ij −Nk∂kf̂

ij + 2f̂k(i∂kN
j)
)

,

∇rf̂ =
1

N

(

∂rf̂ −Nk∂kf̂
)

.

4.3 Counterterms

The next step towards the definition of the boundary stress-tensor is adding counterterms

to regularize (4.4) in the limit r → ∞. In asymptotically AdS3 space this is achieved by

the holographic renormalization recipe, which amounts to add boundary terms that only

involve intrinsic boundary quantities. Here, such terms would be of the form

SC =
1

8πG

∫

∂Σ
d2x

√
−γ(a0 + a1 f̂ + a2 f̂2 + b2 f̂ij f̂

ij + . . .) (4.5)
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The ellipses stand for higher-order intrinsic terms. From the boundary viewpoint these

terms are thought of as counterterms in the dual theory; meaning that the renormalized

boundary stress-tensor is defined by taking the r → ∞ limit of the improved stress-tensor

Tij → T ∗
ij = Tij +

2√−γ

δSC

δγij
. (4.6)

The choice of counterterms (4.5), namely the choice of coefficients ai, bi, is partially

determined by demanding the action to be finite. Regarding this point, it is worthwhile

mentioning a peculiarity of WAdS3 space, which is the fact that WAdS3 space does not

admit a real Euclidean section. Therefore, one has to specify precisely what does requiring

finiteness in the action actually mean in this context. We will circumvent the problem by

saying that here we are dealing with stationary solutions, so we will demand the Lorentzian

action integrated over a finite time interval to be finite. This is achieved by choosing

a0 = −8ν2
√
ν2 + 3

(20ν2 − 3)l
. (4.7)

Nevertheless, one may ask whether (4.7) is the only possible choice. It turns out that

the answer is in the affirmative: in contrast to what happens with other solutions of mas-

sive gravity, like the ones found in refs. [38] and [39], whose boundary stress-tensors can

be regularized by introducing additional counterterms, here the geometrical simplicity of

the WAdS3 spaces happens to play against us: for WAdS3 we have

f̂ = − 2ν2

m2l2
, f̂ij f̂

ij =
2

m4l4
(9− 18ν2 + 10ν4),

f̂ij f̂
j
k f̂

ki = − 2ν2

m6l6
(27− 54ν2 + 28ν4), . . .

and, therefore, there are no many options as all the terms are constant. Thus, the frugal

menu of counterterms we have at hand has only one independent option, say (4.7). This is

precisely what we meant when we said that the geometric simplicity of WAdS3 black holes

is one of the aspects that make difficult to deal with them.

Notice that counterterm (4.7) is consistent with the fact that WAdS3 black holes

reduce to BTZ black hole (in a rotating frame) when ν = 1. For ν = 1 we have

a0 = −16/(17l), which is the expected value for the case in which there is no warping

and WAdS3 space reduces to AdS3. Recall that m
2 = −(20ν2 − 3)/(2l2), so that for ν = 1

we have 2l2m2 = −17; on the other hand, in NMG the counterterm needed to regular-

ize the boundary stress-tensor in AdS3 is a boundary cosmological term with coefficient

a0 = −(1 + 2m2l2)/(2m2l3) = −16/(17l).

5 Conserved charges

5.1 Quasilocal energy

Once the stress-tensor has been improved by adding to it the boundary contributions SC

that render the Lagrangian finite, one can define the conserved charges as follows [28]

Q[ξ] =

∫

ds uiT ∗
ijξ

j , (5.1)
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where ds is the line element of the constant-t surfaces at the boundary, u is a unit vector

orthogonal to the constant-t surfaces, and ξ is the Killing vector that generates the isome-

try in ∂Σ to which the charge is associated. In the case of the mass, the components of this

vector are ξi = Ntu
i, where N t(r) is the lapse function in (3.4). This defines the energy

density; see [28, 40] for discussions. From (3.4) we see that the line element ds in the case

we are interested in is simply ds = ρdϕ.

However, before going further, let us express a concern about the finiteness of (5.1).

This is because the fact that counterterm (4.5) achieves to make the action finite in the way

we discussed it, does not necessarily imply that the stress-tensor is finite as well. In fact,

it can be explicitly verified that the inclusion of counterterm (4.5) with (4.7) in the case of

WAdS3 black holes does not suffice to make all the components of T ∗
ij finite. Nevertheless,

it turns out that, despite the divergences in the improved stress-tensor, the charge (5.1)

defined with ξ = Ntu at the boundary r = ∞ results finite. It gives

M =
ν2(ν2 + 3)

2(20ν2 − 3)lG

(

r+ + r− − 1

ν

√

(ν2 + 3)r+r−

)

. (5.2)

This agrees with the result obtained in [27, 30, 31] up to a factor 1/2. The comparison

with the mass computed in [27] is discussed in appendix C of ref. [30]. Finiteness of (5.2)

follows from cancellations that take place in the near boundary limit. This can be verified

by the large r expansion of the T ∗
ij components

T ∗
tt ≃ t

(0)
tt + t

(−1)
tt r−1 + t

(−2)
tt r−2 +O(r−3),

T ∗
tϕ ≃ t

(1)
tϕ r + t

(0)
tϕ + t

(−1)
tϕ r−1 +O(r−2),

where t
(n)
ij are constant coefficients that can be found in the appendix, and the large r

expansion of the unit vector components

ut ≃ ut(0) + ut(−1)r
−1 +O(r−2),

uϕ ≃ uϕ(−1)r
−1 +O(r−2).

Coefficient ut(−1) results proportional to (5.2).

As mentioned in ref. [29] in a similar context, mass formula (5.2) is cumbersome enough

for not to doubt about its calculation by means of (4.6)–(5.1) actually makes sense. Never-

theless, to convince ourselves about it, let us revise the same type of calculation for TMG

and see that it also works when the gravitational Chern-Simons term is included.

5.2 Gravitational Chern-Simons term

Certainly, WAdS3 spaces were first obtained as exact solutions to the equations of mo-

tion of TMG [25, 26]. WAdS3 space and WAdS3 black holes are solutions to TMG if the

coupling of the Chern-Simons term,

SCS =
1

32πGµ

∫

Σ
d3xεµνρΓη

µα

(

∂νΓ
α
ρη +

2

3
Γα
νβΓ

β
ρη

)

, (5.3)
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and the parameters ν, l satisfy the relation ν = µl/3. For WAdS3 black holes of TMG, it

had already been observed in [29] that the computation of the mass using the Brown-York

tensor in the boundary yielded the result

M =
(ν2 + 3)

48lG

(

r+ + r− − 1

ν

√

(ν2 + 3)r+r−

)

, (5.4)

which, again, is in notable agreement with other calculations using different methods, cf. [1].

In the case of TMG, the large r limit of Q[ξ] is regularized by introducing a boundary cos-

mological term with coefficient

a0 = −
√
ν2 + 3

2l
,

which also tends to the AdS3 value, −1/l, in the limit ν = 1. Therefore, the computation

of the WAdS3 black hole mass in terms of the boundary stress-tensor is seen to work in

different scenarios.

5.3 Angular momentum

Now, let us go back to NMG. In contrast to the computation of the mass M = Q[Ntu],

charge Q[∂ϕ], which is associated to the WAdS3 black hole angular momentum, does not

yield a finite result in the limit r → ∞. In fact, boundary terms (4.5) do not suffice to

regularize the divergences appearing in the charge Q[∂ϕ] =
∫

dsuiT ∗
iϕ. This is simply ex-

pressed by the fact that uϕ = 0. Nevertheless, the finite part of the large r expansion of

Q[∂ϕ] happens to capture the physically relevant information. This can be seen by looking

at the stress-tensor expansion

T ∗
ϕϕ ≃ t(1)ϕϕr + t(0)ϕϕ +O(r−1),

which results in an expansion of the form

Q[∂ϕ] ≃ J(2)r
2 + J(1)r + J(0) +O(r−1),

where the coefficient J(2) depends only on ν, while coefficient J(1) depends both on ν and

r±; namely

J(2) =
9

8

ν(ν2 − 1)2

(20ν2 − 3)l
,

J(1) =
3

8

ν(ν2 − 1)

(20ν2 − 3)l

(

(ν2 + 3)(r+ + r−)− 4ν
√

(ν2 + 3)r+r−

)

.

From this expansion it is not hard to verify that, in contrast to the case of the mass,

for ν2 6= 1 the introduction of only local counterterms (4.5) does not produce contributions

to cancel the divergences in Q[∂ϕ]. However, remarkably enough, the finite part J(0) gives

the correct result for the black hole angular momentum; that is,

J(0) =
ν(ν2 + 3)

4(20ν2 − 3)Gl

(

(5ν2 + 3)r+r− − 2ν
√

(ν2 + 3)r+r−(r+ + r−)

)

. (5.5)
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To see that (5.5) actually reproduces the correct result one may resort to the computa-

tion done in ref. [27], where the Abbott-Deser-Tekin [42, 43] method to compute conserved

charges was used to obtain the WAdS3 black hole angular momentum. The result obtained

in [27] reads

J̃ =
ζ3η2

4Gm2l2

(

(1− η2)ω2 − ρ20
(1− η2)

)

, (5.6)

where ζ = 2ν, η = −
√
ν2 + 3/(2ν), ω = (r+ + r− + 2η

√
r+r−)/(2 − 2η2), and ρ20 =

(r+ − r−)
2/4. Then, after translating (5.6) to our notation, one verifies that (5.5) is pro-

portional to (5.6), namely J̃ = J(0)ζ
2(1− η2)/4, and the proportionality factor is precisely

the (square of the) one that relates the angular coordinates φ used in ref. [27] and our

angular coordinate ϕ; more precisely, we have φ = ϕ
√

ζ2(1− η2)/2. This proportionality

factor ζ2(1− η2)/4 is also explained in appendix C of ref. [30]; see equation (C.15) therein.

In conclusion, the finite part of charge Q[∂ϕ] captures the physically relevant contribution

and gives the correct value of the black hole angular momentum (5.5). The question re-

mains as to how to understand the failure in regularizing Q[∂ϕ] as a consequence of the

abstruse asymptotic structure of WAdS3 spaces.

6 Discussion

In this paper we have studied holographic renormalization for three-dimensional massive

gravity about WAdS spacetime. The motivation we had for studying this was to investi-

gate to what extent the standard holographic renormalization techniques can be applied

mutatis mutandis to spaces that asymptote WAdS3.

The results of our analysis show that the attempt of directly applying the holographic

renormalization recipe to WAdS3 spaces partially fails and partially succeeds: While, on

one hand, such procedure leads to an exact computation of conserved charges of asymp-

totically WAdS3 black holes, it does not suffice to define a fully regularized stress-tensor

at the boundary of the space. Still, it provides a finite definition of the quasilocal energy

density, which gives the right value for the black hole mass. Also, the precise value of the

black hole angular momentum is given by the finite part of the large radius expansion of

the adequate contraction of the stress-tensor.

At this point, a natural question arises as to why the standard holographic renormaliza-

tion technique does not suffice to define a finite boundary tensor. To this regard, we would

like to discuss an interesting possibility: there is strong evidence that gravity in WAdS3
is dual to a two-dimensional theory that violates Lorentz invariance, being invariant only

under SL(2,R) × U(1) group. Then, it is natural to ask whether supplementing T ∗
ij with

counterterms that do not preserve Lorentz invariance could ultimately result in a finite

boundary tensor. Precisely because of the lack of Lorentz invariance, such a tensor would

likely be non-symmetric and, in turn, it would not take the form of a Belinfante tensor

associated to improved boundary counterterms as in (4.6). Still, the question remains as

to whether improving T ∗
ij by adding other kind of Lorentz violating contributions would

result in a regularized boundary quantity. Nevertheless, an exhaustive inspection of all the

contributions one has at hand, which we collect in the appendix for completeness, shows

that there is no a clear way of improving the boundary tensor without spoiling the right

values of conserved charges.
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A Asymptotic expansion

Let us collect the explicit expressions corresponding to the large r expansion of the rele-

vant quantities at the boundary: the components of the stress tensor, given the expansion

T ∗
ij = t

(1)
ij r + t

(0)
ij + t

(−1)
ij r−1 + t

(−2)
ij r−2 + . . ., are given by

t
(0)
tt =

ν2
√
ν2 + 3

(20ν2 − 3)πlG
, t

(−1)
tt = 0, (A.1)

t
(−2)
tt =

ν2
√
ν2 + 3 (r+ − r−)

2

4 (20ν2 − 3)πlG
, (A.2)

t
(1)
tϕ =

3ν(ν2 − 1)
√
ν2 + 3

8(20ν2 − 3)πlG
, (A.3)

t
(0)
tϕ =

ν
√
ν2 + 3

16 (20ν2 − 3)πlG
((5ν2 + 3)(r+ + r−) + 8ν

√

ν2 + 3r+r−), (A.4)

t(1)ϕϕ =
3ν(ν2 − 1)

√
ν2 + 3

8 (20ν2 − 3)πlG
(ν(r+ + r−)−

√

ν2 + 3r+r−), (A.5)

t(0)ϕϕ =
ν
√
ν2 + 3

32(20ν2 − 3)πlG
(ν(13ν2 + 3)(r2+ + r2−)

−2(5ν2 + 3)
√

ν2 + 3r+r−(r+ + r−)− 2ν(5ν2 − 21)r+r−). (A.6)

On the other hand, the non-vanishing components of boundary metric, denoted as

γij ≃ γ
(2)
ij r2 + γ

(1)
ij r + γ

(0)
ij + . . ., are the following

γ
(0)
tt = 1, (A.7)

γ
(1)
tϕ = ν, (A.8)

γ
(0)
tϕ = −1

2

√

(ν2 + 3)r+r−, (A.9)

γ(2)ϕϕ =
3

4
(ν2 − 1), (A.10)

γ(1)ϕϕ =
1

4
(ν2 + 3)(r+ + r−)− ν

√

(ν2 + 3)r+r−. (A.11)

The components of f̂ij , following the same notation, namely f̂ij = f̂
(2)
ij r2 + f̂

(1)
ij r +

f̂
(0)
ij + . . ., are given by

f̂
(0)
tt = −4ν2 − 3

m2l2
, (A.12)
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f̂
(1)
tϕ = −ν(4ν2 − 3)

m2l2
, (A.13)

f̂
(0)
tϕ =

(4ν2 − 3)
√

(ν2 + 3)r+r−
2m2l2

, (A.14)

f̂ (2)
ϕϕ = −9(ν2 − 1)(2ν2 − 1)

4m2l2
, (A.15)

f̂ (1)
ϕϕ =

(2ν2 − 3)(ν2 + 3)(r+ + r−)

4m2l2
+

ν(4ν2 − 3)
√

(ν2 + 3)r+r−
m2l2

, (A.16)

f̂ (0)
ϕϕ = −3(ν2 − 1)(ν2 + 3)r+r−

2m2l2
. (A.17)

That is, the large r behavior of these tensors is given, in particular, by

γtt ≃ O(1), γtϕ ≃ O(r), γϕϕ ≃ O(r2), (A.18)

and

f̂tt ≃ O(1), f̂tϕ ≃ O(r), f̂ϕϕ ≃ O(r2), (A.19)

f̂ t
t ≃ O(1), f̂ t

ϕ ≃ O(r), f̂ ϕ
ϕ ≃ O(1). (A.20)

Other relevant quantity for the boundary terms is tensor ∇rf̂ij , whose components in

the large r expansion, ∇rf̂
(n)
ij , are the following

∇rf̂
(0)
tt = 0, (A.21)

∇rf̂
(1)
tϕ = −6ν(2ν2 − 3)

√
ν2 + 3r

m2l3
, (A.22)

∇rf̂
(0)
tϕ =

ν
√
ν2 + 3(2ν2 − 3)(r+ + r−)

2m2l3
, (A.23)

∇rf̂
(2)
ϕϕ = −2(ν2 − 1)(6ν2 − 9)

√
ν2 + 3

4m2l3
, (A.24)

∇rf̂
(1)
ϕϕ =

(2ν2 − 3)
√
ν2 + 3

2m2l3
((ν2 − 3)(r+ + r−) + 2ν

√

(ν2 + 3)r+r−) (A.25)

∇rf̂
(0)
ϕϕ =

(2ν2 − 3)(ν2 + 3)

2m2l3
(
√

ν2 + 3(r2+ + r2−)

−4ν
√
r+r−(r+ + r−) +

√

ν2 + 3r+r−). (A.26)

Contributions to charges M = 2πρuiT ∗
ijξ

j and J = 2πρuiT ∗
iϕ coming from the large r

expansions M ≃ M(1)r + M(0) + . . . and J ≃ J(2)r
2 + J(1)r + J(0) + . . . are composed as

follows: for the mass, we have

M(1)

2π
= ρ(1)ut(0)t

(0)
tt + ρ(1)ut(0)t

(1)
tϕ ξϕ−1 + ρ(1)uϕ(−1)t

(1)
ϕt = 0,

M(0)

2π
= ρ(1)ut(−1)t

(0)
tt + ρ(0)ut(0)t

(0)
tt + ρ(1)ut(0)t

(0)
tϕ ξϕ(−1) + ρ(1)ut(0)t

(1)
tϕ ξϕ(−2) + ρ(1)ut(−1)t

(1)
tϕ ξϕ(−1)

+ρ(0)ut(0)t
(1)
tϕ ξϕ(−1) + ρ(1)uϕ(−1)t

(0)
ϕt + ρ(1)uϕ(−2)t

(1)
ϕt + ρ(0)uϕ(−1)t

(1)
ϕt + ρ(1)uϕ(−1)t

(1)
ϕϕξ

ϕ
(−1),

– 13 –



J
H
E
P
0
3
(
2
0
1
3
)
1
3
0

where ρ(n) refer to the components of the large expansion of metric function (3.5) in

powers of r; analogously for the large r expansion of ut = ut(0) + ut(−1)r
−1 + ut(−2)r

−2,

uϕ ≃ uϕ(−1)r
−1 + uϕ(−2)r

−2, and the Killing vectors ξt = ξt(0) = 1, ξϕ ≃ ξϕ(−1)r
−1 + ξϕ(−2)r

−2.

For the angular momentum, the analogous expression is

J(2)

2π
= ρ(1)ut(0)t

(1)
tϕ ,

J(1)

2π
= ρ(1)ut(0)t

(0)
tϕ + ρ(1)ut(−1)t

(1)
tϕ + ρ(0)ut(0)t

(1)
tϕ + ρ(1)uϕ(−1)t

(1)
ϕt ,

J(0)

2π
= ρ(1)ut(0)t

(−1)
tϕ + ρ(1)ut(−1)t

(0)
tϕ + ρ(1)ut(−2)t

(1)
tϕ + ρ(0)ut(0)t

(0)
tϕ

+ρ(0)ut(−1)t
(1)
tϕ + ρ(−1)ut(0)t

(1)
tϕ + ρ(1)uϕ(−1)t

(0)
ϕϕ + ρ(1)uϕ(−2)t

(1)
ϕϕ + ρ(0)uϕ(−1)t

(1)
ϕϕ.

Then, one finds that the mass of the black hole is given byM(0) while its angular momentum

is given by J(0).
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