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ABSTRACT: We use ‘generalized dimensional reduction’ to relate a specific Einstein-Max-
well-Dilaton (EMD) theory, including two gauge fields, three neutral scalars and an axion,
to higher-dimensional AdS gravity (with no higher-dimensional Maxwell field). In general,
this is a dimensional reduction over compact Einstein spaces in which the dimension of the
compact space is continued to non-integral values. Specifically, we perform a non-diagonal
Kaluza-Klein (KK) reduction over a torus, involving two KK gauge fields. Our aim is to de-
termine the holographic dictionary and hydrodynamic behaviour of the lower-dimensional
theory by performing the generalized dimensional reduction on AdS. We study a specific
example of a black brane carrying a wave, whose universal sector is described by gravity cou-
pled to two Maxwell fields, three neutral scalars and an axion, and compute the first order
transport coefficients of the dual theory. In these theories s /7 < 2 (1/(d—1) — é%), where
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1 Introduction

Einstein-Maxwell-Dilaton (EMD) theories have a wide appeal because their field content
is suitable for describing finite charge density systems, possibly exhibiting condensates
via holography [1-16], which has obvious uses within condensed matter theory (CMT) in
particular.

We aim in this paper to provide a holographic dictionary for a class of EMD theories,
specifically containing two Maxwell fields, three neutral scalars and an axion. A similar
analysis was already done in [17], in which we listed and discussed the cases where the EMD
theory can be oxidized to a higher-dimensional AdS-Maxwell theory, and then specialized
to the EMD case involving one Maxwell field and two neutral scalars. The motivations
to study an EMD theory with two Maxwell fields and an axion are numerous. Firstly, a
family of theories that could be obtained from AdS was discussed in [17], and it would
be interesting to understand whether the generalization to many gauge fields is trivial or
if new issues arise. Studying the case of two gauge fields is a first step in this direction.
The case of many gauge fields may have applications in future, among them the possible
holographic description of imbalanced superconductors. In [17] it was also noted that the
bound suggested in [71] for the bulk to shear viscosity ratio is violated, and a new modified
bound was introduced, which was indeed satisfied by the system at hand. We also use our
transport coefficient results in this paper to verify this new modified bound. Furthermore,
in the context of AdS/CMT, it may also be possible to make a link to the systems studied
in [18], since they have a similar structure to the system dealt with here. Finally, due to the
presence of the axion in our theory, our analysis may allow for the holographic modelling
of axion physics. This has many applications, among them in cosmology, where axions are
considered a possible dark matter candidate.

Setting up holography for such EMD systems is nontrivial in general since a large pro-
portion of solutions are not asymptotically AdS. We bypass the difficulties associated with
the standard method for deriving the holographic dictionary (see [19, 20] for reviews) by
turning to a rather neat ‘trick’, namely ‘generalized dimensional reduction’. This method
allows us to start from a theory whose holographic dictionary is known, and infer the
holographic dictionary of the theory related to it via such a reduction.

This generalized dimensional reduction needs to be consistent, which means that all
lower-dimensional theory solutions must also be solutions of the higher dimensional the-
ory. This allows us to infer, among other things, the structure of the lower-dimensional
field equations from the higher-dimensional counterpart. This is particularly important
since one of the main ingredients in setting up holography is understanding the asymptotic
structure of the field equations. The term ‘generalized’ refers to the additional requirement
that the reduced theory depends smoothly on the dimension of the compactification man-
ifold, allowing one to continue this parameter to be any real number. In particular, this
generalized reduction method was successfully applied to higher-dimensional AdS gravity
coupled to matter fields in [28], to obtain the holographic setup for lower-dimensional grav-
ity coupled to a scalar field with exponential potential, which itself is associated with the
near-horizon limit of non-conformal branes [26, 27]. A diagonal reduction over a T?7~¢



torus was used. In this paper we want to set up holography for a lower-dimensional the-
ory with two Maxwell fields. We do so by replacing the diagonal torus reduction by a
general non-diagonal reduction. In [17] this was done to yield one Maxwell field in the
lower-dimensional theory, and we simply extend this by a further reduction to obtain the
additional Maxwell field. An intermediate step in the process will give rise to the axion: the
Maxwell field introduced by the first reduction is itself reduced to ultimately yield the axion.

A particularly pleasing property of generalized dimensional reduction is that it yields
theories, from higher-dimensional AdS gravity (possibly coupled to a Maxwell field), which
have known non-extremal black hole solutions (with nontrivial scalar and Maxwell fields).
These solutions are not only complicated in structure, but also often have atypical asymp-
totic behaviour, so studying their holographic setup from scratch is quite an intricate affair.
However, we may deduce much about these solutions due to their simple higher-dimensional
origins. Among other things, they satisfy all expected thermodynamic identities as does
their AdS analogue [31], it becomes relatively straightforward to compute conserved charges
via the holographic stress tensor and holographic conserved current, and we may also gain
an insight into the lower-dimensional hydrodynamic regime. We explicitly use the gen-
eralized dimensional reduction to derive the relevant transport coefficients for our lower-
dimensional theory.

This paper is organised as follows. In section 2 we perform a generalized dimensional
reduction on AdS gravity to obtain the desired lower-dimensional theory containing three
neutral scalars, an axion and two Maxwell fields, and its corresponding holographic dictio-
nary. In section 3, we study a specific example of a black brane carrying a wave (whose
universal sector contains precisely the fields mentioned above), and use the dimensional
reduction to obtain a description of its hydrodynamic regime by calculating the relevant
transport coefficients. In the appendices we write down the equations of motion of the re-
duced theory with two gauge fields, give an explicit check of the quantities sourced by the
non-normalizable modes of fields within the theory, derive the transport coefficient relations
in a two charge hydrodynamic system, provide details regarding the computation of trans-
port coefficients, give a derivation for the relation used as an independent check of our result
for the bulk to shear viscosity ratio, and finally provide the explicit calculation of this check.

2 Holography for EMD theory with two Maxwell fields

In [17] we started from the higher-dimensional AdS-Maxwell action and wrote down the
(d+1)-dimensional action obtained via a general non-diagonal torus reduction over T(27~%)
involving M Kaluza-Klein gauge fields. We also worked out explicitly the case correspond-
ing to a lower-dimensional theory with one Maxwell field, starting from higher-dimensional
AdS gravity. In this section we will restrict ourselves to an analysis involving another partic-
ular example of this general case, where upon reduction of higher-dimensional AdS gravity
(with cosmological constant but no higher-dimensional Maxwell field), we obtain lower-
dimensional EMD theory with two Maxwell fields, three Kaluza-Klein scalars and an axion.
We may perform this reduction in two steps. The first involves a torus reduction of (2.1) in-
volving one Kaluza-Klein gauge field, as done explicitly in [17]. We then reduce the resulting



intermediate action, including a second Kaluza-Klein gauge field. The axion comes from the
reduction of the Maxwell field present in the intermediate action due to the first reduction.

Here, we will provide the generalized Kaluza-Klein reduction map, write down the
resulting lower-dimensional action, and then move on to deriving the holographic dictionary
for the reduced theory. Note that by setting one of the scalar fields &, the gauge field Ag&l)
as well as the axion A(®) to zero in this section, we recover the results of [17].

2.1 Generalized dimensional reduction

We begin with a higher-dimensional action without any Maxwell fields, namely Einstein
gravity with negative cosmological constant in (20 + 1)-dimensions

S(20+1) = LAdS/d20+1$ —9(20+1) [R + 20(20 - 1)] > (21)
where Laqs = 6%;(;11) [(167G2511), {(2541) is the AdS radius and we used an appropriate

Weyl rescaling to move £(5,,1) as an overall constant in the action. We perform the re-
duction of such an action, ultimately ending up with a lower-dimensional theory with two
Maxwell fields, an axion and three scalars.

(20—d)

The full reduction ansatz for the theory on the torus T is given by

2
d3%2a+1) = ds%dﬂ)(ﬂ, z) + e203(p:2) (dyg — A%)de)
A2
20109 (dyy - Af) ™)

2¢9(p,2)

+eCo-d=2)dydy®, (2.2)

where a = 1,...,(20 — d — 2). The coordinates (y1,y2,y”) are periodically identified with
period 27R, M = (p, 2') with M = 0,...,d, and 2™ = (2™ y,). Furthermore, we include
the axion A in the reduction of Ag\?,:

A = (4, 40) . (2.3)

Using a more natural combination of the scalars, namely

Q0:¢1+¢27 §:(20-_d_2)¢1_¢27 1/’:@+¢3,
(=20 —d-1)¢3— o, (2.4)
the reduced action is calculated to be
20—d—1
Sy = L/ddﬂl‘\/—g(dﬂ)ew Rig41y) + m(a¢)2
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—2(¢+ 2
+2 <e Goma 4 A )A@)M) (aA<0>) > +20(20 — 1)} ,(25)
where L = Lgqg(27R)?°~%, while the reduction ansatz becomes

2(+¢) 9 2
A5t sty = A8t (9 2) + B0 (dyy — A2

2(§(20—d)+(20—d—1)—()

+e  @-d(@o—d-1) (dy1 _ Ag\?dxM _ A(O)dy(2)>2

29 2¢ _ 2¢
+e20-d (20-d)(20-d-1) (207d71)(20—d72)dyadya‘ (2.6)

We include the equations of motion corresponding to the fields present in (2.5), in ap-
pendix A.
We bring the reduced action into Einstein frame by conformally rescaling it using the

metric rescaling

_ o 2/(d-1)

IMN JMN » (2.7)

and further rescale the scalars as

¢:\/(20—d)(d ). oo \/20— 20—d—1)§7

2(20 — 1)
o 52\/(20—d—1)2(20—d 25 (2.8)

to yield the action in the Einstein frame with canonically normalized scalar kinetic terms,
Sy = L [ e/ | R - 5(00 - 1(3@2 - 00
e = W
_,e\/2<(225—;—12>)5*\/@2(12)?201)d)i‘\/(zo—dxgo—d—l)fx
x (PN FOMY 4 49M AO AN FD),
> (4203, 40)" 2440 (40"

_1 Ve B¢ (3 A<o>) ?

1/} 2(20—d)
+20(20 — 1)e "V @ e 1)] . (2.9)

We may only canonically normalize positive kinetic terms, thus the rescaling (2.8) assumes
that 20 > (d + 2), since in (2.5) 20 < (d + 2) would render the { kinetic term negative.
2.2 Holographic dictionary

In this section we set up the holographic dictionary of our (d+ 1)-dimensional theory (2.9)
using generalized dimensional reduction, as in [17]. The beauty of this approach lies in the



fact that the higher-dimensional theory (2.1) is relatively simple, with the most general
asymptotic solution given by

dp? 1
ds? = 5 + —gudatda” 2.1
S(2a+1) 4p2 + pgu r-axr , ( O)
Guv = 9O)uv + PYI2) v +eee pa (9(20'),[“/ + h(QO')[I,V log p) +oee (211)

where g(g),,,, 1s the source. The quantities Trg(s,) and V#g(o4),, are determined locally in
terms of the source and all other coefficients are completely determined, while the loga-
rithmic terms o) are present if o is an integer.

Since all solutions of our theory of interest descend from solutions of (2.1), we simply
need to consider the class of asymptotic solutions which has the form of the reduction (2.6)
in order to obtain the general asymptotic solution of (2.5).

We begin by writing down the asymptotic expansions of the (d+ 1)-dimensional fields.
We then compute the local boundary counterterm action, needed to ensure that the on-
shell action is finite. We do this via generalized dimensional reduction, which we further
use to compute the holographic one-point functions of the lower-dimensional theory. We
then use linear combinations of these one-point functions to build the stress-energy tensor,
currents and naturally normalized scalar operators of the dual d-dimensional field theory.
Finally we reduce the higher-dimensional conformal dilatation Ward identity and stress
energy tensor conservation equation.

2.2.1 Asymptotic expansion

We expand the (d+1)-dimensional metric in the usual Fefferman-Graham form, as in (2.10),

dp?>  1_ .
2 %
Asiasn) = 35+ 0i(2,p)d2"d!
dp2 I o~ % j
= 42 T, i o A Gaey) de'de (2.12)
whilst the scalar fields can be expanded as
21 1 2k
e(2o—d) = —e(20-d) , K = K/(O) —+ pH’(Q) + -+ po"q/(2a') ,
p
¢ = oy trG2)++ 0720 5
§=¢&o) tr2)+ + 1720 (2.13)
the gauge fields as
A (p,2) = Ay (2) +pAL () + o 7 Ay () +
AP(p.2) = AR (2) + pAGY )+ + 0 A (2) + -+ (214

and the axion as

A (p,2) = A (2) + pAY () + -+ o7 A

(e

[(2) 4 (2.15)

We are interested in cases with non-integral o, so our expansions of interest do not contain
the logarithmic terms associated with integer o.



2.2.2 Counterterms and holographic one-point functions

With the asymptotic solution in hand, we would now like to compute the local boundary
counterterms. These are needed to ensure that the on-shell action is finite. Again we turn
to generalized dimensional reduction [28] to simplify the process, and perform the same
analysis as in [17]. So, as an example we consider the counterterm action for 1 < o < 2,
for which we only need two counterterms. Reducing the two most singular counterterms
in AdS2s41 [21] to d dimensions, we obtain

1 N 20 —d—1

iy = L/ps dey/=e” {2(2" AR (Rd 2o—a
1 1
(20— d)(20 —d—1) (00)° - (20 —d —1)(20 —d — 2) (9¢)°

1 2+9Q) 2) .. 1 2¢@o—d)+(20—d-1)—¢)
o= ) ()i (Zo—d)(20—d—1)
46 FZJ F 46 X

« <Fig1)F(1)ij T 487;A(O)A(2)jFi(jl) _9 <A(2)i8¢A(O))2
—2(+0) : 2
125 a2a) (0a0)) )] o

Next we would like to compute the holographic one-point functions of our lower-
dimensional theory. However, we know the formula for the higher-dimensional one-point

function,
2 dSren
<T,u1/>20 = = 2O—LAng(Z ) T (217)
V0 09
with the actual quantity of interest being
(tyw)a = O (21 R)* " UT,, )90 , (2.18)

20-d) resulting from the integration

since it takes into account the prefactors (e"©, (27 R)
over the torus and the change in the metric determinant when going to d-dimensions, re-
spectively. The ellipses in (2.17) again represent terms dependent locally on the source
which appear when o is an integer, since in that instance g(g),, is curved and there is a
conformal anomaly.

Thus, as in [17], we may again simply dimensionally reduce (t,,,)4 to obtain the expec-
tation values of the operators in the d-dimensional field theory. The various components
are given by

o | 2(r0+¢w) @) 42
(tij)a = 20Le"® | Gragy;j + 2~ 204 (A(i(O)Aj)(QJ)

@ 4@
Ai0%50

+ 20 —d

(F(20) +C20))

2((20-d—1)r () +(20—d)¢(9) ¢ (0) )
_|_2€ (20—d)(20—d—1) X




(20 —d = 1)kpe) + (20 = d)§20) = C20) ) (1) ()
- (( (20 —d)(20 —d— 1) >A’(°)AJ“

W 4
+ A(z<o>Aa>(2o>)} )

2((20—d—1)r () +(20—d)é0)~C(0) )
(tiy,)a = —20Le" e Go—d)@r=d-1) X

(1) 2 ((20 —d — 1)k + (20 — d)§(0) — C) | )
(‘4@@0) < (20 —d) 20 —d—1) Ay | - (219)

2(50)+() 2
o) (2 @ 4@
e ? <(20 —3 (F20) +C20) Aif) + Ai(%))

2((20—d—1)r () +(20—d)¢(0)~C(0) )
“+e (20—d)(20—d—1) X

2((20 —d = 1)k0) + (20 = d)20) = C20) | (1) 40
* (( (20 — d)(20 —d — 1) 4040

(tiyo)d = 20Le™O

+4W A(§+A()A()>],

i(20)77(0 (20)°74(0)
2((20-d—1)r () +(20-d)é(0)~C(0) )
(tyry,)a = 4oLe" e Co—d)@r=d-1) X

(20— d= Do) + (20 = o) — o)
(20 —d)(20 —d — 1)
2((20—d—1)r(g)+(20—d)é0)~C(0) )

= —¢ (20—d)(20—d—1) 3>d;
2(5)+¢() 1
{tyoye)a = doLe™© je 2a=d <20 — d> (K/(2o') + C(20'))

2((20-d—1)r () +(20—d)¢(0)—C(0) )
“+e (20—d)(20—d—1) X

§ <<(20 —d — 1)Ko + (20 — d)(20) — C(zo>) 40 2
(20 —d)(20 —d —1) ©

FAQAD V] 4.

(0772

Aotm)
—€ <Ol>d )

2((20 d— 1)m(0)+(2a—d)£(0)—C<0))
(tyrys)d = —20Le e @o—d)(27—d-1) X

y ((2 ((20 —d = 1)K(20) + (20 — d)(20) — C(z@)) 40

(20‘—d)(20‘—d—1) 0)
4(0)
(20)) T

2((20—d—1)r(g)+(20—d)é0)~C(0) )

= _¢ (2o—d)(20—d—1) 4>d;
2((20-d—1)(20—d—2)r ) — (20 —d—2)C gy — (20 —d)€ ¢y )
<tab>d — 4O'L€K(O)€ (20—d)(20—d—1)(20—d—2) X

1 1
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1

_(20—d— 1)(20_d_2)§(20—)> Oap + -+ -

2((207d71)(2a'7d72);1(0)7(207d72)c(0)7(207d)§(0))
= _¢ (o—d)(20—d—1)(20—d—2) (O2)qbap , (2.20)

and from these expressions we read off

doL (s ~¢0)
<01>d = g 65(0) [/{(20_) =+ C(Qo’) +e (20—-d-1) x

20 —d

(0) 2 (20’ — d) B 1
8 <A<0> (””<20> TR —d=1°®) T Gr—d—1)°®

_ 1 40) 40
(20 d)A(O)A(%))M :

4oL 1
e — H(O) -
(O2)a = =5 —4¢ (“‘20) (20 —d—1) C(20)
B (20 —d)
(20 —d—1)(20 —d — 2)5(2") te
4o (20 — d) 1
- _ K(0) 978 S
(O3)d 50— d¢ (Ks(za) + (2o —d— 1)5(20) (2o —d— 1)C(20)> e

20L (0) (20 — d) 1
_ ©) _\o—4d) v
(O4)a 50— ¢ (QA(O) (K(Qa) + B0 —d— 1)5(20) (90 —d— I)C(Qo)
(0)
+(20 —d)A) )+

In all of the above expressions, the ellipses represent terms containing derivatives of the
scalar sources (k(q), ((0),§(0)) and curvatures of the boundary metric g);;-

The reduction has thus yielded seven arbitrarily normalized operators: a symmetric
tensor (;;)q, two vectors (tiy,)q and (tiy,)qd, as well as four scalar operators.

2.2.3 Stress-energy tensor, currents and scalar operators

With the reduced one-point functions in hand, we now wish to form appropriate linear

combinations of them to yield the stress energy tensor (7j;), currents (jf”) and <ji(2)),

and naturally normalized scalar operators of the dual d-dimensional field theory, namely
(Oy)ds (Oc¢)d, (Og)ag and (O 40))a- The specific combinations we use become clear when we
study the reduction of the higher-dimensional Ward identities in the next section.

We introduce linear combinations of the scalar operators as follows

(Oy)a = (201_61) (20 —d— 2)(O)a + (01)4 + 240} 00 (0,
(14 el <o) 40 2) (0]
(s = =5 [O3)a— (2}
Ocha = (201—d) [<01>d + 2‘458;6@(&0)_4(0))((94%
Y Ge =D _1d -y [((20 —d—1)errrnE0 o) 402 1) (O34



_(20' —d— 2) <02>d]] )

(Oa0)d = —eﬁ(ﬁ(m*((m) (O4)g + A58§<03>d ’ (2.21)
so that
(O)a = ~ g Pz
(O¢)a = — 0 —d- i‘éa —— 2)6”“)5(20) :
(O¢)a = — (20 = d)?;:_ = 1)6“<°>C(20),
(Oq0)a = —20Le"0 e 0 ~C0) 40) (2.22)

Furthermore, we write

3) _ 4 | 40 42

A = Ay T A A0
3 2

(TVa = (tigs)a + ARty da + Al (tyageda

<jz(2)>d - < iy2>d + AE ;Z<ty1y2>d + Agg§i<ty2y2>d )

(2
(0
3
0
3
0
il Tf e+ A ) + (AG T a + AG 1))
(

(Tij)a = (tij)a+ ( ;

2((20—d— 1)»@(0 +(20— d)&(o) C(0>)

2(x <o>+<<o>)
HAQAG e T (Ona+ AGAG e T (O
2((20—d—1)n(0)+(20—d)5(0) C(o))
<A§g§ AE ;J n A%ZA&) e @o—d)@o—d-1) (O4)a, (2.23)
so that
R 2((207(171)&(0)+(2a7d)5(0)7g(0))
(JWy, = —20Le" e G030 (Aggga) + Aggg)Aggg)) Foee, (2.24)
(20—d—1)x (g +(20—d)E gy ¢
(JPyy = —20Le"© ( g tm) (§3+<(0))A(.(22) - 62( L et o) «
(1) 0) 4(2) (0)

X (Ai(2cf) + A(QU)Ai(O)) A(O)) T (225)
(Tij)a = 20Le"® giogyij + -+ - (2.26)

In fact, we may also check that varying the renormalized on-shell action with respect to
the appropriate source yields each of these combinations in turn. In appendix B we show

explicitly that (J; 7 )>d is the current sourced by Agg;i, and <ji(2)>d is the current sourced by

AEO; . The metric elements of g(g),, and its inverse are also supplied in this appendix.
Now, a distinctive property of the axion is that it enters the action with a derivative,
which means that the action remains invariant if one shifts the axion by a constant. Thus,
a non-trivial check of the formulas for the one-point functions is that they are all invariant
under such a shift. This is true for all of the one-point functions except for ji(z). One
can easily see this by looking at the form of (2.22) and (2.24)—(2.26): the only one-point

,10,



(0)

function which has A(o) in it is clearly (2.25), and under a constant shift in the axion

(Aggg Aggg + ¢), it transforms as

(TPVa = (TP)a = (I Ma. (2.27)

This is actually consistent with the invariance of the ac‘pion under the axion shift, and
arises due to the transformation of A%i — AE ; + Agog . More precisely, from the last

line in (2.33) it follows that the coupling in the action is Agggiji(l) + Agggiji@), and under

the axion shift this combination remains unchanged.
2.2.4 Reduced Ward identities
Beginning with the conformal Ward identity in the 20-dimensional theory,
(T )20 = 90y (Tuw)20 = Azo (2.28)
we use (B.2) and reduce it to
(tha+2 (AQ) + A AD) {tigsda + 240 i )a

2((20—d—1)r(g)+(20-d)€ 0y~ (o
_ (1 + em(é(ovw)z‘lgg; “te : e S . X

W) 4Wn | @) 4@ 02 o (1) 4@n 40
x (Ao Ay +AomAo) Ao T 240 A0) Ao ))) (O3)a
(20—d—1)k (20—d) —¢
-9 <6M(£(O)<(O))AE8; +e ( : (120£(21>)J(r2:7d71§)(0) (O)) X

1) 42)n (2) 4(2)n 4(0)
x (A AR + ARG AD) ) (Os)a

2(r0) <)) .
_ (1 team - AD 4D ) (01)g — (20 — d — 2)(O2)4

= "0 (27 R)* Ay, = Ay,
and using (2.26) and (2.21) we see that this becomes
(T7)a — (20 — d)(Oy)a = Aq. (2.29)

Note in particular that the new scalar operators O and O, and the axion operator O 4o
do not contribute to the dilatation Ward identity above.
In addition, reducing the conservation equation for the higher-dimensional stress en-

ergy tensor, namely
VT w)2e =0, (2.30)

yields

ViTi)a + 9550y (Op)a + 05¢0)(Oc)d + 95€(0) (Ot )

+ AN (O )+ BT+ ES) <J52>> =0, (2:31)
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and the divergence equations for two currents
VitiMy=0, and VI(J®),=0. (2.32)

The form of (2.31) is a further justification for the combinations (2.21) and (2.23) we made
in the previous section, since it clearly corresponds to the standard diffeomorphism Ward
identity for a theory with stress energy tensor T,;j in which the other operators are defined
in terms of the generating functional W

1 ow 1 1)
(Oy)a = — , (O¢)a =~ —,
v/~ 9(0) K (0) vV =9(0) 9¢(0)
1 oW 1 ow
(O¢)a = — — (O 0)d = ——F—=—757»
V=90) %) V790 6AY)
o 1 1) Ao\ 1 1)
(JOiy, = W (J@y, = W (2.33)

V790 5AG), V90 6AG),

We thus see that the non-normalizable modes of the fields (w,C,f,A(O)) indeed source
(Oy, ?C’ O¢, O 40)) respectively, whilst A%i and A%i source the conserved currents .J(1)?
and J®) respectively.

3 Black brane universal sector with two Maxwell fields

We wish to study the universal hydrodynamics of non-conformal branes, and specifically
we want to make use of the holographic results obtained in section 2, which correspond to
action (2.5), so we begin by writing down a black brane solution which carries a wave, and
whose universal sector contains the fields we encountered, namely three scalars, an axion
and two Maxwell fields. We do this by applying generalized dimensional reduction to a
higher-dimensional conformal black brane solution. Now, universal hydrodynamics may be
derived by studying the long wavelength fluctuation equations around boosted black brane
geometries. Conformal hydrodynamics was derived in this way using the boosted black
D3 brane geometry [62], and it is possible to derive non-conformal hydrodynamics using
the boosted black Dp brane geometry. Thus, once we have our lower-dimensional boosted
brane of interest, we may calculate the transport coefficients corresponding to first-order
non-conformal hydrodynamics on the boundary. In [17] we worked out the transport coef-
ficients of a boundary theory dual to a boosted black brane whose universal sector has only
one Maxwell field. We may recover all results obtained in [17] by setting w; = 0, wy = w,

flgé; =0 and fl% = fl(o) in the results of this section.

3.1 Black branes

In this section we show an explicit realization of the setup discussed in section 2 for a partic-
ular example: a black brane carrying a wave, whose universal sector is described by gravity
coupled to two Maxwell fields, three neutral scalars and an axion. Specifically, we show the
dimensional reduction involved in producing this system starting from a higher-dimensional
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conformal black brane solution, and then use the general setup developed in section 2.2 to
determine the equilibrium thermodynamic quantities of the boundary non-conformal hy-
drodynamics. In principle, we mirror the analysis of [17], but additionally perform another
Lorentz transformation on the conformal black brane background in order to get it into
the desired form.

3.1.1 Conformal black brane with wave

As in [17], our starting point is a (conformal) black brane solution in (20 + 1) dimensions:

dp? 1
dSQU _ + = —f(p)dt/2+dy/2+dy”2+d2’ dzr—i—dy dya ;
(20+1) 102f(p) ' p [ T a ]
flp) =1 —m?p%, (3.1)
where (v, 4", y%, 2") run over all transverse coordinates (a = d+1,...,20 —2). Note that

we highlight the transverse coordinates 3’ and 1 because we will boost along each of them
by performing successive Lorentz transformations.

Now, the metric (3.1) is Einstein with negative curvature when 2¢ is an integer, and
has an event horizon at p = m~2. The Hawking temperature 7' and Bekenstein-Hawking
entropy density s are given by

mo
T=—, s = 4w Laggm?° 1. (3.2)

27
We introduce a wave into this metric by performing a first Lorentz transformation ¢t =
coshwy t' —sinhwy 9/, y1 = coshw; 3 — sinhw; t/, followed by a second t” = coshws t —

sinhws 4", y2 = coshws y” — sinhws ¢, which gives:

dp? _ _ _ _ _
d82 — _ IK IK 1 dt//2—|— leTdZT—F ld ad a
CGot) = 32700 7 1(p) ' Ka(p) "' f(p) P P dyady
Ki(p)

—i—T [dy; — ((K{(p))_1 — 1) coshw, dt”

— ((K}(p))~" = 1) sinhwy dys]”

Ks(p _ 2
20 [y, ((Ry(p)) ! - 1) 0]
flp) = 1—=m*p7,
- -1 ~ _
Ki(p) = (1+Q1p%) , (Ki(p) " = (1 —-Q1p°Ki(p)™"),
o _ —1 = _ _
Ka(p) = (14+Qap"Ki(p)™") . (K5(p) =(1-Qup"Ki(p) " Ka(p)™") , (3.3)
where
Q1 = m?° sinh? wy , Q1 = m?? sinh wy coshwy |
Q2 = m?? sinh? wy cosh? wy | Q2 = m?? sinh ws cosh wsy cosh? wy .

We remove the wave by setting w; = wo = 0, and recover the extremal limit by setting
m — 0 with wy,ws — 0o and @1, Q2 finite.
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Our aim is to perform a dimensional reduction as in section 2.1, so we first rewrite
the geometry (3.3) to fit the structure of (2.2), or equivalently (2.6), and then insist that
the coordinates (y1,y2,y*) are periodically identified with period 2w R. We then boost this
resulting geometry along the non-compact boundary dimensions with boost parameter ;,
satisfying 7;;4'4’/ = —1, where now 2z = (¢,2"). We also wish to include two external,
uniform gauge fields flgégidzi and flgggidzi. We do so by performing coordinate transfor-

mations on y; and yo, as dy; — dy; = dy; + flgé;idzi and dys — dye = dys + AP gy

(0)i
respectively. All of these considerations ultimately yield

dp
ds?
(20’+1) f( )

(

(dzldzl) (1- Kl(p)_lKg(p)_lf(p)) i;dz'dz?

—~ b"“

[dgl - (;1((1 )+
o ((Ki (P))_l - 1) Sinhwzz‘igso))) dz!
— ((&1(p)™" — 1) sinhws dg)”
0 3+ oy
P Y2 i(0) 2(p i

(Kj(p)~* — 1) coshws

1
+ ;dyadya . (3.4)

The next step towards deriving the universal hydrodynamics involves allowing the
temperature, charge, fluid velocity and external gauge field to become position dependent,
and correcting the metric at each order to satisfy the field equations.

3.1.2 Dimensional reduction

The dimensional reduction involves comparing the metric with (2.2) and reading off the
reduced metric, scalar fields, gauge fields and axion (we choose to read off ¢1, ¢o and ¢3
and then use (2.4) and (2.4) to evaluate v, ¢, and &, as opposed to reading these off (2.6),
but the latter will yield the same answer). Since we are making contact with section 2.2,
in which the reduced metric is written in Fefferman-Graham form and all the fields are ex-
panded using the Fefferman-Graham coordinate p (which we call p in this section), we will
also write all of our quantities of interest in Fefferman-Graham coordinates. This involves
a redefinition of the radial coordinate p as per [28]:

2/o mQU.,U —2/c
>p - p(ﬁ)=<1+ p) 5. (35)

4

o 2
p(”)‘<1+m

The reduced metric is thus given by

dp? 1
ds? = -
(d+1) 402 f(p P

)
2
dp? 1 2050\ o )
— €2+ﬁ<1+m ,0> dzidz’

(dz'dz;) + ; (1—K1(p) ' Ka(p) ' f(p)) @itijd2"dz?

4
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+

m2g~0 ; . .
(1+ 4p> [1— K1(p(p)) " Ka(p(p) " £(p(p))] tiitjdz"dz? | (3.6)

=

with the scalar fields being

20 _ Ki(p) _ Ei(p() (1 N m2<fﬁff>3

2¢9
e(20—-d-2) —

2
K. K ~ 20 0\ &
o203 — 2(p) _ 2(@(0)) <1+m P ) _ (3.7)
p 4
Rewriting the scalar fields in terms of (¢, (, &) we obtain
1 K (p(5)) K p(p)) AN
1(p(p))2 Ka(p(p m¥ 57\ e
eV = a—d/zKl(P)l/2K2(P)1/2 = “5o=d (1 +—2 ) ;
p p 2
o = Kip(p)
¢ 20—d—1 1
e* = Ka(p(p)) 2 Ki(p(p)) 2 (3.8)
Furthermore, since
24 1 2k
e20—d — t62¢77d
p
we get that
2% ~ 20—d
. 1 1 m2o 50 -
" = Ki(p(p))2 K2(p(p))? <1+ 4p > : (3.9)
The gauge field A is given by
A® = A a2+ [(Ky(p(p)) ™ = V)] 2" (3.10)

with

AD = A d2 + (K (p)) ! = 1) coshws @i — ((K;(p)) ™" — 1) sinhw Agggi] dzt, (3.11)

and the axion is

A©) = ((K(p(p))) ™" — 1)) sinhay (3.12)

The other gauge field we are actually interested in, and which sources J) in the previous
section (see (2.23) and (B.7)) is

AB) = A 4 A0) 4(2) (3.13)
AG), + (K1 (p(p) ™ = 1) (coshaws + sinhen(Ky(p(p)) ™ = 1)) @) =
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3.1.3 Expansion in Fefferman-Graham coordinates

The next step is to expand the results in the previous section in the Fefferman-Graham
radial co-ordinate p, which gives us

1 20 —d) m*®
r(0) = 05 K(20) = 5(@1 +Q2) + (2o —d) 1 (3.14)
1 20 —d—1
(o) = 0 C20) = —§Q1 + (2)Q2,
20—d—2
o) = 0; §(20) = ( 5 )Ql :
AES; =0 Agng) = —Q sinhwy,
1 _ z@) . O _ A : 1(2) -
Ai(O) = Az’(o)’ Ai(%) =@ <smhw2A(0)i - coshwgui> ,
©) 7(2) . 2 _ A
Aiy = Ay Ajygy = —Q2li
3 _ ;1) B _ _A N
Az’(O) - Ai(O)’ Ai(gg) = —Q1 coshwoil;,
5 ~ m20’ o
9(0yij = Nz 9oyij = 5+ (Q1 + Q2 +m™) a4t .

We now have all the ingredients necessary to extract the expectation values of the dual
operators from (2.20), and we obtain

(Tij)a = Lm* nij + 20 L(Q1 + Q2 + m™ )i
= Lm?*° (77ij + 20 cosh? wy cosh? we aiaj) ,
<jl.(1))d = 20LQ1 coshws 1;
= 20 Lm?? sinh w; cosh wy coshws ;
(JPa = 20LQs 4
= 20 Lm?? sinh wy cosh wy cosh? wy ; ,
(O1)g = —Lm*” - 20LQs
= —Lm*° (1 + 20 sinh? wy cosh? wl) ,
(O2)q = —Lm™
(O3)q = —Lm* —20LQy
= —Lm?%* (1 + 20 sinh? wl) ,
(O4)g = —20LQ1 sinhwsy

— —20Lm?° sinh w; coshw; sinh ws , (3.15)
and using (2.21)
(©O)a = ~Lm** = 5272 (@ +Qo)
= —Lm* — M (sinh2 w1y + sinh? wy cosh? wl) ,
(Oc)a = — 200Q1 20 Lm?° sinh? ;|

(20 —d—1) (20 —d—1)
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©0a = ot (e - @)

(20 —d) \ (20 —d —1)
20 Lm?2° sinh? w .
= 0 —d) <(20 — _1 1 — sinh? wy cosh? w1> ,
(O ) = 20LQ; sinhwy = 20 Lm?? sinh wy cosh wy sinh ws . (3.16)

Upon plugging the above into (2.29), we see that the dilatation Ward identity is satisfied.

3.1.4 Thermodynamic quantities

Now, at thermal equilibrium

(Tij)a = Pnij + (P + &)y, <j»(1)>d = (1, <ji(2)>d = Q2l; , (3.17)

where € is the energy density, ¢; and ¢s the charge densities and P the pressure of the fluid
dual to the reduced spacetime (3.6). Thus, from the expressions (3.15) we can also read
off the thermodynamic quantities,

¢ = Lm*® (20 cosh? wy cosh? wy — 1),
g1 = 20LQ1 coshwy = 20 L'm?° sinh wy cosh wy cosh ws ,
Go = 20LQo = 20 Lm®> sinh ws cosh ws cosh? wy |

P =Lm*. (3.18)

In addition, from (3.10) and (3.13) we obtain that the chemical potentials! are equal to

i = — <ﬂiA§3)‘po - aiAg?’)‘pW) - m
flg = — <ﬁiAz(2)‘p:0 — mAZQ)‘p:m?) = tanhws . (3.19)
The thermodynamic identities
Pye=Ts+qju+dofia,  dP =3dT + Gidju + Godjia, (3.20)

indeed hold under these thermodynamic values.
Inverting the expressions in (3.18) to express m, wy and we in terms of €, §; and §a,
and then using the result in the last expression gives us the equation of state

A 1

(Vo =) =@l + @ — (@ + 2?20 — 1)
—é(c = 1)+ G1G2) (3.21)

"'We may use regularity at the horizon, namely ﬂiAEI)’ , = 0 (I = 2,3), to relate the chemical
potentials with the external gauge fields, respectively. Howgvg" we choose not to do this, since we would
like to keep the external gauge fields and chemical potentials as separate quantities when discussing the
universal hydrodynamics in the next section. This allows us to make use of previously obtained results
which also keep the two quantities distinct, especially the equations from which we extract transport
coefficients in section 3.2.
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which we may use to evaluate the adiabatic speed of sound [65],

1
_ : 3.22
9¢|  2(oc—1)cosh®w; cosh?wy + 1 (3.22)
5/41, 3/42

® 1o
o))
o

>,

where the ratios §/¢; and §/go are kept fixed, and § is the reduced entropy density given by
§ = 4L cosh wy coshwym? 1. (3.23)

Analysing (3.21) we see that if §1,¢2 — 0, we get P = ¢/(20 — 1), the equation of state
for non-conformal branes. Furthermore, in the extremal limit, where é — |§1 + G2|, P =0
as expected, while above extremality € > [g1 + 2| the expression under the square root is
manifestly positive. Lastly, from (3.21) and (3.18) we see that

m= [L(%l_l) (\/(g(ff —1) — G1G2)2 + (2 — (41 + G2)?) (20 — 1)

1/2c0
—aa—n+@@g} . (3.24)

The reduced temperature 7' is given by

T: mao

) .25
27 cosh wq cosh wy (3.25)

With the thermodynamic quantities in hand, we also notice that the expectation value
of the scalar operator (Oy)q can be expressed in terms of the energy density and pressure as
(Oha = oo lTiha = o [(d~ )P —¢] (3.26)
=—THy= —— — — €|, .
T e —d) T (20 — d)
1

(O¢)a+ (O¢)a = @20 —d)

[@a—nﬁ—q, (3.27)
which shows that (O,)q characterizes the deviation of the equation of state from confor-
mality (as one would expect). The combination (O¢)q + (O¢)q is zero in the uncharged
case, which yields the equation of state of the non-conformal branes. This is also obtained
by taking ¢1,g2 — 0 in (3.21).

3.2 Universal hydrodynamics

In this section we again turn to generalised dimensional reduction in order to obtain the
universal hydrodynamics of the charged dilatonic solutions. We are interested in hydrody-
namics at first-derivative order. Thus, in the upstairs picture we consider a conformal fluid
on a curved manifold in the Landua-Lifshitz frame. Dimensionally reducing the upstairs
energy-momentum tensor should in principle yield the transport coefficients of the lower-
dimensional theory, but we find that the reduction does not leave us in the Landau-Lifshitz
frame in the downstairs picture. Thus, we employ a frame-independent analysis to simplify
things. This method uses the requirement that the divergence of the entropy current is
positive semi-definite to write down equations from which we may extract the transport
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coefficients. With these transport coefficients in hand, we discuss various bounds which
they might satisfy. Our analysis follows that in [17], except that now we are dealing with
an additional charge in our system. Again, by setting w; = 0 and ws = w in all results in
this section, we recover the results in [17].

3.2.1 Conformal fluid in higher dimension

As in [17], we begin with a conformal fluid in (20) dimensions on a curved manifold with
metric g(p)u, whose hydrodynamic energy-momentum tensor at first-derivative order is

given by
<T;w>20 = <T52>20 + <T'L(31ijss>20' ) (328)
(T30)20 = P90y + 20uuuy) (T8) 20 = =220
1
O = PPV i) = 5 Pun(V - w), Buv = 9(0)w + uptln

where T', u, and 72, denote the temperature, velocity and shear viscosity respectively
of the fluid and V, is the covariant derivative corresponding to the metric g(g).,. The
conservation of the energy-momentum tensor,

VAT )20 = 0, (3.29)

determines the evolution of the fluid; note also that we are working in Landau-Lifshitz

frame, where
U (T )96 = 0. (3.30)

For later reference, note that for the AdS black brane,

S

— =17 201 31
An Ads™m ) (3 3 )

2
P = Lpqsm™, N2o =

by (3.2).
As a first step towards writing down the universal hydrodynamics at first derivative
order, we determine the reduced fluid velocity.

3.2.2 Reduced fluid velocity
We reduce the higher-dimensional fluid velocity u* by setting

Ug =0, Uy, = sinhwy , Uy, = coshwy sinhws , (3.32)

with (y1,y2,y®) being compact dimensions, while ensuring that both

utu, = —1, ut = gég;uu, (3.33)
and
W', = —1, ot =nay, (3.34)

hold. In the above, @’ is the lower-dimensional fluid velocity. The convention we have cho-
sen in (3.32) serves as a link to the wave generating coordinate transformation of the pre-
vious subsection, and allows us to compare what we get via (3.28), with what we obtained
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previously in (3.15). This requires us to first compute the boundary metric g(g),,,, which we

read off by using the reduction anzats (2.6) and the expansions of the fields (2.10), (2.13)
and (2.14). This yields

_ (1) 4 (2) 4@ _ (1) _ (2)
9(oyig = Mij + A(O)iA(O)j + A(O)iA(O)j ’ 9(0)iy1 = _A(O)i’ 9(0)iy> = _A(O)i’
g(o)ylyl = 17 g(O)y2y2 = 1) g(o)y1y2 = 0, (335)

with the inverse metric given by

i ij iy 4(1)i iya _ 4(2)
I =1"" 90 = 4) > 90 = 40 -
_ ij 4(1) 4(1) _ ij 4(2) 4(2)
90y = 1+17 A4 ) 90" = 1+17 A4
@ 4@
90" = 1" Aoy (3.36)

For simplicity, and to make a connection to the case of the AdS black brane (3.14), we
have set gy = (o) = §0) = AES; = 0 in the above, and in what follows. Note that the
reduced boundary metric is the Minkowski metric.

With all this in mind, the reduction yields

)

1) 2
0)i’

. . 1 .
u; = coshwi coshwyt; — sinh wlA(O)i — cosh wy sinh (,(.)QAE
Uy, = sinhwy,
Uy, = coshwysinhwy,
u' = coshwi coshwo@’,
(1)

. N 1
uY' = sinh wy + cosh wy cosh ws 1 - A(o) ,

uY? = cosh wy sinh ws + cosh wy coshws 1 - AE(Q)g ) (3.37)

3.2.3 Equilibrium quantities

We may now insert the values (3.37) into (3.28), and using (2.23) obtain the equilibrium
(zero-derivative order) values for the stress-energy tensor, currents and operators:

~ o A 1 2 1 2
(T;jYa =P [Wij + 20 (“1 + UylAEogi + “yzAgogi) (“J' + uylAEogj * “WAgﬂgjﬂ ’
2(1)e » 1 2

< z( ) q>d = 2O'Puy1 <Uz + uylAE();i + uygAEOgi) )
2(2)e > 1 2
(01" = —P (1+20u3,) ,
<O§q>d6ab —_p (Oap + 20uqup)
(05a = =P (1+20u;,)
<OZq>d = —20Puy, uy, ,
which yields
<1A“Z.C1>d —p (771'3‘ + 20 cosh? w1 cosh? wgﬁiﬁj) , (3.38)
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< 7 eq>d — 20 P sinh w; cosh wy cosh wail; , (3.39)
(J 1(2 Ny = 20 P cosh? wq cosh ws sinh woal; (3.40)
(07 = —P (1 + 20 cosh? wy sinh? wy) (3.41)
(05%a =P, (3.42)
(0594 = =P (1+20sinh?wy) | (3.43)
(0594 = —20 P sinhw; coshwy sinhws , (3.44)
with
(O5H . (20 cosh? wy cosh? wy — d) (3.45)
20P
g = ——————sinh® 4
(O Na o —d=1) sinh® wy , (3.46)
(02N, = 20P (s.inh2 wi— (20—d—-1) cosh? wy sinh? wg) (3.47)
¢ (20 —d)(20 —d —1) T
((’)e%) Ya = 20 P sinh wy cosh wq sinh ws . (3.48)

(0)

Using (3.17), we can read off the equilibrium quantities

o L N
P = P, €= (20 cosh? wy cosh? wy — 1) P,
Laas
g1 = 20 P sinh wy cosh w; cosh ws | Gs = 20 P cosh ws sinh ws cosh? wy . (3.49)

Using (3.31) for the pressure density of the AdS black brane recovers (3.18) as well as the
dual operators in (3.15).

3.2.4 Dissipative extension and transport coefficient formulae

We now move on to the dissipative part. We wish to evaluate the transport coefficients char-
acterizing the reduced dual field theory. Since the upstairs picture comprises a conformal
fluid in (20') dimensions governed by (3.28), (3.29) and (3.30), we see that the only transport
coefficient in the upstairs picture is the shear viscosity 72,. In the downstairs picture we
will also end up with a shear viscosity 7, but also bulk viscosity Q:S and heat conductivity Ap.
We may obtain these transport coefficients by dimensionally reducing (Te:%)o, in (3.28)
using u” = (u’, 0, u¥", u¥?) from (3.37). However, we find that reducing the Landau-Lifshitz
frame condition (3.30) doesn’t result in the reduced frame also being the Landau-Lifshitz
frame. More precisely, as a first step in reducing u* (T diss) o, = 0 we write

ve=3j: UHTE®) 95 + uV (T5) 50 + u¥? (T955)s, = 0, (3.50)
v=y: UHTE )20 + u¥ (T3 Yo + u¥ (T )2y = 0, (3.51)
v=1ys: U (THE%) 00 + UV (T05 ) 50 + u¥ (Tiss Yo, = 0. (3.52)

Using (2.23) these become

tanhwy , ~(1)diss

WH(T=) g = — ) — tanhwy (JIP4),

coshwy ' 7
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— O 1SS t h O 1SS ,
coshw2< 5 )a + tanh we (O 4

~q 7 $(2)diss tanhwl iss iss
at (SN = coshon (OF5) 4 tanh wy (O ;. (3.53)

7

More precisely, (3.50) becomes
~i /rdiss ~i 4 (1 2(1)diss ~i 4 (2 2(2)diss
A (T3 — it A (TR g — 0t AT (TP,

7(1)diss (1) diss (2) diss
cosh wo [Uj Jat Aj(0)<o3 Ja+ Aj(0)<04 )d}

+tanh ws [<j§2)diss>d + AL (O + A%)w?i%] —0, (3.54)

tanh wi

which yields the first expression in (3.53) once the last two expressions in (3.53) are sub-
stituted into it.

It is clear that (3.53) does not represent a Landau-Lifshitz frame in the reduced theory.
As a result, we will use the frame-independent analysis developed in [66], which relies on
ensuring that the divergence of the entropy current is positive semi-definite. In this case,
starting from the (20 + 1)-dimensional entropy current in Landau-Lifshitz frame

(JE)9s = sut, (3.55)
obeying divergence relation
14 — Uy 24 _ 1 THY
VH<JS >2<7 - _vﬂ T <Tdiss>2‘7 - _TJNV< diss>2‘7’ (356)

upon reduction we obtain

L cosh wy cosh wy

(Jha=3s0", 5= o (3.57)
with
v A (U iy A Uk (k| 51
vl(‘]s)d - 61 <T> <Tdiss>d |:81 T j—, F(O) z:| <Jdiss>d
2 Uk @2k |, 5(2)i
a [61 77 F(O) 7,:| (aiss 1 -
(@-a) | (T )Py oP ST opP S(1)i
— _ iss o T ; Ju ;
T (d_ 1) Oé o < dlSS> Uy + 8(?1 B < dlSS>u
q1,92 €,q2
op i | (Tahe)8ig
e )ity | — s
<8q2> o < dlSS>u T
€,4q1
0 [+ (G1) @]
+e€
2 [+ (52) dhow] (3:59)

— 922 —



where, for I = 1,2,

(1) o
o0 Fooal
viD = — [ pyortd 4 Z05 (3.59)
T

We obtain the last equality in (3.58) above by following the logic outlined in [66], but ex-
tended to include an extra charge (in [66] they deal with a singly charged system). For more
details on how we used the method of [66] to derive the above, and hence the following equa-
tions, refer to appendix C. Requiring (3.58) to be positive semi-definite leads to the formulae

PP/ (T%)a — q_ 1szpij (T%)q = — 2063, (3.60)
. - N Y
S 2(1)diss 91 .k ndi . S g M1 (0)ij
B (Ut gl ) = b | 0 )
o FP o
—K19 (Pm@]? + (0;] ) , (3.61)
(2) g i Floy®
NI 2(2)diss 2 Ak di S 5. aj M2 i
P; << ;T a+ " <kass>d> = Ry | Byt o+ ——
o B
— (Pl-jaﬂ % + (O;fj 7 (3.62)
P (diss 9P . . .. OP . v OP - iovs: o
; - Ja _ Sz (Tdiss) + % al(JOdy 4 a—@a2<J}2)d‘ss>d = (051" . (3.63)

In the above § > 0, {; > 0, while &1; > 0, Ags > 0, with det & = (&11/%22 - (/%12)2> > 0.
We may obtain these latter conditions involving &;;, (4,7 = 1,2) by noting that if we
substitute (3.61) and (3.62) into the last two lines of (3.58), we get

Vl(l) (,%11‘/1(1) + /%12‘/1(2)> + Vl(2) (,%21‘/1(1) + ,%22‘/1(2))
2 2
= i (V) 4 280V IV 4 e (VD) (3.64)
where /12 = fo1. The quadratic polynomial above is positive for all Vl(l), V1(2) if it is pos-

itive somewhere and has no real roots. Now, if Vl(l) > VI(Q), the polynomial is positive if
k11 > 0. No real roots implies

(2h12)? — 4fs11hng < 0= detih >0, (3.65)

which then implies that &9 > 0. Similarly, if V1(2) > Vl(l) the polynomial is positive if
koo > 0, such that det & > 0 = &11 > 0.

Now applying the reduced conditions (3.53) on the equations (3.61), (3.62) and (3.63)
yields

PN iss 7 tanh w1 ~ii s 7(2)diss (jl
pii(jhd - I _ pii ¢ _ tanh
{J; )a ¢ + P coshwy W) Ja e+ P e
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RO,
= —hn Pwaj% + % — R12 P”aj% + (O)T 7

<

PN s - N ) -
PZJ<J](2)d >d (1 — QQP tanhw2> N Pz]( (1)d >d< qo an OJ1>

e+ ¢ + P coshwy
4, F@g, o PO
= —Ra P”Bj'u—A2 T Pmaj/i} + = )
T T T T
P <jvi<;iss> d N tanhwy [ tanh w, @ @ { (’)diss>
(d—1) coshwy \ coshwy 0¢ ~ 0¢ 5 Jd
P 0P :
+ tanh we (tanh w9 %g + g@) ((’)f‘ss>d
2 tanh w; tanh wy @ 4 tanhw @ " tanh w; 8715 dissy
cosh wo 0é 2(9@1 coshwy 0g2 4l
= —(0:0° .

(3.66)

(3.67)

(3.68)

From these formulae we may thus extract the reduced transport coefficients 7, fs and the

heat conductivity matrix &;;, for 7, j = 1,2. The details of this are given in appendix D.

We obtain

fj = ngcoshwi coshwy = Lm? ™! cosh wy cosh wy

9 T 20—1
7T N ~9\ —O
=L<) (1—p3—p3)7 .

o
R om sinh? wq oLm?° sinh? wq
Rin =nao— (1— 5 5] = 1- 2 2
27 cosh” wy cosh” wo 2 cosh” wy cosh? wo
AN\ 20
oL (27T -
_ oL [emh 1- 42— 02 1— ;2
o ( pu > ( 2% Mz) ( 1)
R om 1 oLm?° 1
K = —_— =
22 = 27 cosh? wy 21 cosh?ws
AN\ 20
oL (27T -
_ oL [emh 1- 42— 32 1— 2
o ( pn > ( 2% Mz) ( 13) ,
R R om sinh wi sinh wy oLm?? sinhwy sinh wo
K12 = R21 = —Nld—+— 5 == 5
27 cosh wi cosh” wy 27 cosh wi cosh® wy
~\ 20
UL 27TT ~92 A2\~ 0 ~ A
- =z 1- 12—
o ( - ) (1—pf —f3) 7 fnfia,
és = 214 cosh wy cosh wy
" [ I (2(c — 1) cosh? wy cosh* ws + 2 cosh? wy cosh? wy — 1)
(d—1) (2(o — 1) cosh? wy cosh? wy + 1)2

_on | L 2oL (it 3)°)
a1 - -]

— 24 —

(3.69)

(3.70)

(3.71)

(3.72)

(3.73)

(3.74)

(3.75)

(3.76)

(3.77)

(3.78)



where 74 is the shear viscosity of the reduced uncharged case,

B L
Lags

Nd Mo = Lm? 1. (3.79)
In the above we have also re-expressed all the transport coefficients for the reduced AdS
black brane in terms of the temperature and chemical potentials. Note also that the con-
ditions required for our transport coefficients are indeed satisfied: (s > 0, 7 > 0, while

o\ 2
k11 > 0, koo > 0, with A11Rk99 — (/%12)2 = ("LQ”;Q ) /(cosh2 wi cosh? wg) > 0. We may use

the heat conductivity matrix &;; for ¢, 7 = 1,2 to obtain the heat conductivity using [67, 68],

LN\ 2
R (é + P) 1 2rLm2 =2 cosh? w; cosh? wey
RT =

r - 3.80

r : SR o (cosh2 wi cosh? wy — 1) ( )
Z Tikiz dj

17]:1

AN\ 20-2 N o\ 1l—0
_ 2nL (2nT (1— 43— 43) (3.81)
o \ o i+ i

A recent formula for C,/# first developed in [75], allows us to check our value for the
shear to bulk viscosity ratio formed from (3.77) and (3.69)

As 1 2(0 — 1) cosh™ wy cosh™ wo 4+ 2 cosh” wy cosh” wy — 1
Gy B h* h* h? h? (3.82)
nol(d—1) (2(o — 1) cosh? wy cosh? wy + 1)2 . ‘
The formula is quoted in [75] as
2 2
G _ Jdep . dgf
n o EI S + qa e ) (3.83)

where §, are conserved charge densities and gzﬁ,ll are a collection of scalar fields, evaluated at
the event horizon, and the formula is valid in the Einstein frame where the entropy density
§ is given by the quarter of the horizon area. This formula was derived for an action in
which the scalar fields ¢! are canonically normalised. However, in our case we need to
adjust this formula slightly to account for the non-standard normalisation of the axion
kinetic term in our action (2.9). Following the same procedure in appendix E as outlined
in [75], we arrive at the following formula:

G _ g (299 ad6L) (dop | ,de)
P =Qr |3 1 +q g T +4q g ) (3.84)
o 2
where ¢! = {,(,E, A0}, and Q;; = diag{l,1,1, (ggzﬁgé) }. Note that

Qry = diag{l1,1,...,1} reproduces (3.83), and corresponds to all the scalar kinetic
terms being canonically normalised as done in [75]. The entropy and charge density in the
Einstein frame are still given by (3.23) and (3.18), the scalars we use in (3.84) are obtained
from (3.8) but further normalized as in (2.8), and the axion is obtained from (3.12). We
provide the details in re-evaluating (; /7 using formula (3.84) in appendix F.
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The DC conductivity can be deduced using the Wiedemann-Franz law:

R R A2 Lm2°=3  cosh? wy cosh? wo
Oopc —Cl—= — (1
T o?

(cosh? wy cosh? wy — 1)

~\ 203 j—
27\? [ 2#T 1— 42 — i
. <7r> L (”) (17— 5) , (3.85)

o o i+ i3

where ¢; is a proportionality constant. Furthermore we note that the ratio of thermal
conductivity and shear viscosity obeys a simple relation similar to the Wiedemann-Franz
law, even in the presence of multiple chemical potential:

A ~9 ~ 2

R + 2

T(M}A M2)2<7T> ' (3.86)
77T oam

Again, using the results in [17] for the single charge case, we obtain the same value for this

ratio (with fi2 + i3 replaced by fi?).

3.2.5 Discussion of various bounds

Note that the transport coefficients (3.69)—(3.77) are universally valid for any solution with
the same asymptotics as the black brane solution discussed in the previous section.

We first consider the bulk to shear viscosity ratio, given by (3.82), whose value is
fixed kinematically by the reduction, and will be different depending on the asymptotics
of the system. This is also true for the ratio A7 /7.

As in [17], the bound proposed in [71] for the bulk to shear viscosity ratio

s (1 - 2) , (3.87)

doesn’t hold. And again, for a general system there is no reason to expect that such a
bound would necessarily apply, since (;/7 is fixed kinematically. Indeed, rewriting (3.82)
using (3.22), we obtain

& 5 < 1 A2> 4((o—1) cosh? wy cosh® wy+(2—0) cosh? wy cosh? wy—1) (3.88)
- — — —C - ) N
n d-1 ° (2(c = 1) cosh? wy cosh? wy + 1)2
so that clearly this bound is always violated, except if
o< pi4ps. (3.89)

Since fi? + 2 = 1 — 1/(cosh? wy cosh? wy) < 1, the above is only possible if ¢ < 1. The
equality is achieved when either fi; = fio = 0 (neutral case) or else i3 + i3 = o.
However, an inequality which is satisfied in this case, and was also satisfied in [17], is

L
2o t-a). (3.90)
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where for our case

vl

0
0e

_ 2 cosh? W12COSh2 w22— 1 . (3.91)
2(o — 1) cosh® wy cosh® wy + 1

O,
Q0
Il

41,42

2
q

our ratio as follows

¢5 reduces to the speed of sound of the conformal branes when w; = wy = 0. If we rewrite

Gy ( 1 A2> 40 — 1) cosh®wy cosh® wp(cosh®wy cosh®wy =1) g o)
- — —_ —C fr— 9 N
) d—1 4 (2(0 — 1) cosh? wy cosh? wy + 1)2

we see that the right hand side is manifestly positive when ¢ > 1. It still remains interesting
to check whether there are any counterexamples to this inequality.

We also note that the KSS bound is saturated for this dual charge system, since we
may use (3.69) and (3.23) to see that

w | 3>
—

_ b (3.93)

which results due to the fact that this bound is saturated for conformal branes. The same
holds true for the uncharged case, and results due to the fact that in all these cases we
require regularity in the interior.

4 Discussion and conclusions

In this paper, we use generalized dimensional reduction of AdS gravity to determine the
holographic dictionary of a specific EMD theory containing two gauge fields, three neutral
scalars and an axion. We also study the hydrodynamic behaviour of the dual theory, and
compute its first order transport coefficient. Such an analysis was performed in [17] for a
reduced EMD theory with one gauge field and two scalars. We reproduce all results in [17]
by removing the extra fields from the results in this paper.

In contrast to [17], when considering the universal hydrodynamics of the reduced
theory, we find that the presence of the extra charge in the system leads us, wia the
modified frame-independent analysis of [66], to a matrix of conductivities, from which
we may then calculate the thermal conductivity. In this paper we also have to modify
the formula of [75] used to check the bulk to shear viscosity ratio, since that formula
applies to the case of canonically normalized scalars and we have a non-standard axion
normalization. Lastly, the system studied in this paper also satisfies the the modified
bound on the bulk to shear viscosity ratio found in [17].

There are numerous possible extensions to this work, the most obvious being the
generalization of this analysis to include many gauge fields, which may be useful in the
study of imbalanced superconductors. Making connections to similar systems in the
context of AdS/CMT or cosmology are other possible avenues of future work.
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A Equations of motion of reduced theory with two Maxwell fields

In this appendix we give the equations of motion for each of the fields stemming from the
action (2.5).
The equation of motion for ( is

Vale?9M ) = (20 —d— 1)et ( et p) pemN

1 2604 (o=d—1)y=0
—_— ¢ 20— 20—d—1 X
20 —d—1

2
« <FJS3VF(1)MN n 43MA(0)A(2)NF]E2V _9 (A(2)M8MA(O))

o (A aom ) 2a0)")

90 g AO N A(o)) , (A1)

while the equation of motion for 1 is

waM. 1 20 —d " (20 —d—1) 9
Vule" O] = S i 1)° [R(‘“lﬁ o —a) Y

1 5 1
’(2a—d)(20—d— 1)(80 (20 —d-— 1)(20_65_2)(

0¢)?

+20(20 — 1) —

4 ( —d) MN
120-—d—|—2 2(£(20—d)+(20—d—1)¥—¢)
(20—d)(20—d—1) X
4 20—d

2
« <F152\7F(1)MN + 48MA(0)A(2)NFJ$2V _9 (A(2)M3MA(0)>

oy aZaom ) (2a0)")

bl mra gy AN 40| (A.2)
20 —d
and finally for &
1 2(6(20—d)+(20-d—1)$—()
VauletoMe) = —1(20 —d—2)e¥e  CraCsdD X

2
« (Fj&lng(l)MN i 43MA(0)A(2)NFJE2V _9 (A(2)M3MA(0)>
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—2(44Q) 2
+2 <e G +Agj)A<2>M> (04) > . (A.3)
The gravitational field equation is
1
0= Run = 59unBa+) = Vnout + VE0py gun
1 20 —d+1),_ ., 1 ,
g IMN ( o= M T @ aee d - 1) (96)
— — — (20‘ d)F F
20 —d—1)(20 —d—2) (06)° — 3¢

1 ¥ 2(£(20—d)+(20—d—1)¥—¢)
+20(20 — 1) — Z@ e (Zo—d)(20—d—1) x

2
X (FI%F(UPQ + 497 A0 APREL) 2 (A@)PapA(O))

2 (B A aer) (040)°))

1
“9g —gOMvONY - (20 —d)(20 —d — )aMCaNC
1 D1EONE — 2o i) pDQ F)

(20—d—1)(20 —d—2)

1 26@Ro—d)+(20-d-1)y—¢)
——e (20—d)(20—d—1) X

x (2P Y + 4 (0w A0 AP — 0P A0 4D FD,

4ADA@P YL A0 9y, AO) 4 96T 9y, A0 9y A©)
+2 (A5 AD0p AV A0 4 AR AP0 A9 4O ) | (A.4)

the gauge field equations are

2(§(20—d)+(20—d—1)—()

Y [e% G (FWMN 4 gM A© AN _ g 4O A(z)M)] —0, (A5)

and

2(64+) 2620 —d)+(20—d-1)p—C)
\aY: [ewe(%_@ F(Q)MN:| = e¥e (2U—d)((20—d—1) <8MA(O)FJS)N

— AP GM A0 9N A©0) 4 AN (&4“”)2) . (AB)

and the axion field equation is

2(6(20=d)+(20—d=1)y—()

Vs [eiﬁe (Zo—d)(20—d—1) (F(l)MNA(Q)N — A(Z)MA(Q)NBNA(O)

+< L= A<2>N> oM A(O))} 0. (A7)

Poles exist in the equations of motion for 20 = d, so we have to go back to the reduction
ansatz to see that this corresponds to the case where there is no reduction. Furthermore,
for 20 = d+ 1 the reduction is along a circle and there are no additional scalar fields ¢ and
¢, while 20 = d + 2 corresponds to a reduction along T? with no scalar field &.
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B Check of quantities sourced by non-normalizable modes of fields

iz

In this appendix we will write down the explicit component forms of g, and 900y

0%
and then we will show that A%i sources current (J(V1), while (J®)?); is the current

sourced by Aggi. Showing that the scalars (“(0)’C(0)’€(0)’A283> respectively source

(O, O¢, O¢, O 40) follows along the same lines.
We first write down the elements of g(g),,, in (2.10), using the anzats (2.6), as well as
expansions (2.12)(2.15). More precisely, we need to find the coefficient of p° in (2.6).
This gives

_ = NG (2) 42 Ak(0)+20€0)—AO (1) 4@
90y = Joyij +e (K (0 C(O))Ai(o)Aj(O) + M0 T20¢(0) C<0)Ai(0)‘4j(0) ,

— ¢ MR(0) +20(0) —AB( () A(l)

9(0yiyn = i(0) 2
_ Ao+ (2 Ak(0)+20¢0)—AO (1) 4(0)
IOyigs = —€ (% (0) C<0))Az‘(0) + M) +20¢(0) C(O)Ai(O)A(O)’
IOy = e 12040 =A% o) )
_ 0)2
IO)yoys = eAE©)H0) 4 oAr0) 20 (0) A@C(O)AEO; ’
ki) +20¢,0—AOCo) 4(0)
IOy = —e O TIONO A0 4
gy = MO AKX 205, (B.1)
2 1 . 1
Where A = m and @ = m, Whlle Q = m
With these values in hand, it is now easy to check that gé‘oy), the inverse metric of (B.1),
is given by
ij _ ~ij iy 4 (3)i iy (21
99 =90 %0 Ao Y0 =4
2((20=d=Ln(p) + (2o =)o) ~¢(p)) 2(50)+(0))
y - o)+ Bod 2roHo) )0 @) 4@
9oy =€ ey te A T+ A o
2(x0)*+() 2(x0) <))
Yiyz2 _ o~ ——si=aq (0) (3) (2)n Y292 _ 5 =g (2) (2)n
9o =¢ 7T AgtAeede - S0 =€ T TAeAw o
2((20——d—1)(20—d—2)n(0)—(20—(1—2)((0)—(2o—d)§(0))
g?(l))) — Go—d)2o—d—1)(2o—d—2) 5“17’ (B.2)

and indeed satisfies g(O)M/\QE\OV) = 4. We may write this inverse metric (B.2) more simply

by setting
a0y = MKy + o)) » By = Ak(o) +20¢0) — AO((gy ,
Y(0) = Aoy — AOC0) — 20¢(0) , (B.3)
so that
i ~ij iy (3)i iy@ L (2)i
90 =90 Y0 =40 90 =40
- o 4@ 2 43) 4@
gt = e Bo) + e O A "+ A A
L — (0) (3) 4,(2)n Y2y2 _  —a (2) 4@)n
90 =¢ QA tAg.dp) 0 g0 =€ O HAgnde)
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g?é’) = e 0§ (B.4)

We also set

Q20 = ME20) + C20)) 5 Bi2o) = Mr(20) + 208(25) — AO((20) ,
Y20) = M(20) — AO((20) — 20€ (20 -

We may now move on to the quantities sourced by A%i and A%i. Now, recall that

(Tu)2o = \/g%f;i@ (= ORI N D) (BS)
so that the current \71-(2) sourced by Ag;i is given by
(7P, = 1 5Sren‘ _ e 557:” 39(0) _ 1k <Tﬁp>20597(’€6))'
Z VIO SAG  VIO2 99 5L 2 SAG)
1 oy 39(0)
= S TR () Mgi
= %(QWR)CF% <2<tjyz> 514?57)4); + y1y2>d(wg; tywaﬁiﬁ%i)

1 2
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)

o @ L 4@\ 4B s © 4 40
e (O‘@ yAio) T Aiao )) Ai( e (5< A 0) T Ao >)
©
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(0
+4p

+AZ(.(3) (60‘(0)04(20) + PO < ﬂ(gg + 24 8

4D

) 40
A y4i0)

()()

() 40 L 940 4@
—AQ 4D +240 4D D) ]

_ =209 1 o) [0 A B 4O (4D 4 4@) 4O
= —@rR)*2720 Lo |20 AQ) | — P A (Al )+ A AD) Y]
N4, (B.6)

= (27R)*2 20 Le o) [—e%) A®) 4 o (A(

A

= (J;

while the current jiu) sourced by A%i is

1 0Smen 1 6Smen 990) 1 oy 390,
<‘Z(1)>d = (3)1 = 5 Kp Eg;l = 5(27TR)d 2 <tl€p>d 5331
V/9(0),d 5A(0) V9(0),d 29(0) 5A(0) 5A(0)
1 sy sy st
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1 9o 3 2
- 5(sz)d 2 (2<tiy1>d + 2(ty1y1>dAE0§i + 2<ty1y2>dz4§o§¢>

) 2((2cr7d7I)N(O)HQU*‘”E(O)*<(0)> 1 0 2
_ —(27TR)d 2095 Lef 0 e (20=d)(20—d—1) (AE(Q)U) T AEQL)AE(g))
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C Transport coefficient relations in two charge hydrodynamic system

In this appendix we derive the equations from which we may extract the transport
coefficients for a two-charge hydrodynamic system, using the frame-independent method
of [66]. Note that we may reproduce the one-charge results of [66] by setting o = F,EQ) =0,
while p; = p and F,E,lj) — —Fu.

In [66], beginning with a one charge system in 4 dimensions with degrees of freedom
(i, T, u,) and entropy current divergence

V= -V, (@) e (8 po F,wuy> P

T diss MT T diss (Cl)
the first step involves writing down all possible scalars, vectors and tensors in the theory,
and then expanding each term on the r.h.s. of (C.1) in terms of these. Having found
which quantities participate in this expansion, the next step involves using the first order
equations of motion of the system to show that the scalars and vectors are proportional
to each other, respectively.

The procedure we employ is equivalent, except that we extend the analysis to include
an extra chemical potential (as well as an extra field strength and current). Furthermore,
we will be using the notation developed in the rest of this paper, namely hatted quantities
and Latin indices, as opposed to the Greek indices used in [66].

Thus, our d-dimensional two charge system has degrees of freedom (i1, fio, T, 4;) and
entropy current divergence given by

(1) ~j
A AN . Folal\ ..
vir = v (2) 1, - (o (2) - 22 ) g

T T diss
(2) ~j
0 Fl.al\ ..
~|a (‘”) S I (C.2)
T T

with all possible scalars, vectors and tensors in the theory given by the obvious extension
of table 1 in [66]. Expanding the r.h.s. of (C.2) in terms of these, we get

| =By (@-0) (@-0)T . 1 [~ 0T\ . 6y
ViJ. =T J — = it + = | Pp—— + (- 0)0y | 0 — =2
diss (d o 1) T T2 J T k T ( ) J T

g (@ )i + VP + JEL |- 9t + Vi (C3)

where we have defined 4 = iy /T and 9 = fig/ T for simplicity, and VE (I =1,2) is as
defined in (3.59). It is clear from this that the SO(d — 1)-invariant quantities involved in
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the expansion are

scalars: (@ j(?)T , (G- 0)in, (G- 0)by, (0-1),
. OFT
vectors: Vl(il) , Vl(f) , Vl(f’) = (sz aT + (@ - (9)&1) ,
tensor: Gij - (C4)

Now, to see that all the scalars may be written in terms of (0-«), while the vector V1(3)
may be written as a linear combination of Vl(l) and V1(2), we also use the equations of motion

0,1 = F((()l))ijjl(l) + F(((f))”ff” ’ 8, J Vi — 0, 8, ]2 — 0, (C.5)
with
T = (e+ Pya'ed + P + T, JO =gl + 707 J®I = gl + S (C6)

so that at first order

WO =0 = (4-9)é = —(é+ P)(0- 1), (C.7)
9JV' =0 = (4-8)G1 = —q(9-4), (C.8)
0 JP'=0= (4-0)Gy = —G2(d- 1) (C.9)

By making various combinations of the equations (C.7)—(C.9) above, following the
example of [66], and simplifying the r.h.s. and Lh.s. of these resulting equations, we may

show that
“‘?T _ (%f) 0. (C.10)
R q1,92
(it~ D)y = —; <§£> ) 0-1), (C.11)
(it D) = —; ((’322) 3 0-1). (C.12)

To obtain (C.10), we take the combination

or 04z 0N en- (2| < s
86 i1 8V2 T,ffl 81/1 T,f/z 81/1 T,f/z
o¢ 3@2) (%1)
+ - - x (C.8) — - x (C.9
<8V2> T.in [(81/1 T ©8) o T2 ()
552) 5| (a0r) (35x)
— [ = x (C.7)— x(C.9 , (C.13
(‘%2 T, [ ) |5, (@) O ) ¢, (9 ( )
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while for (C.11) we use

<8q1> {( Z)T (22) L ien- () ey
(il | GE), 9= (52) = oo
- )L (GG xem]} o
and to get (C.12),
@P) x(en+ (g;) x (C®)+ (gqi) o (e

In order to simplify the r.h.s. and Lh.s. of each of these combinations in turn, we make
use of the following, as done equivalently in [66]: Via the chain rule (for i = 1,2,3) we get

<aﬁ> B (aﬁ) <ae> . (a?) <aql>
822' AB; 0€ s ox A;.B; 8q1 e 821-
opr Do
N (8)| (%) ©16)
€,q1

Ai,B;
where (21,22,23) = (T, ﬁl,ﬁg), (Al,AQ,Ag) = (ﬁl,T,T) and (Bl,BQ,Bg) = (ﬁg,ﬁg,ﬁl),

while
. _[(or ) . or N ) or
(@-0)' = <8T> (w-0)T + (am) - (@-0)oy + (8ﬁ2>

where (I' = €, ¢1, G2). Furthermore, from the first law,

Ai,B;

(- 0)e, (C.17)
.01

1,02

A~

R R . P+
P+é= T(§ + 101 + (jQﬁQ) , dP = < ) dT + qudl/l + Tq2dl/2 , (C.18)
we know that
aﬁ) pe <ap> ) <8P> .
s = < ) a~ =141, A~ = TQQ ) (Clg)
0 0 .
( 8T 1,02 T V1 AR b2 1,01
and also
< e ) =772 (8(]1) : ( oe ) =772 <8QQ) (C.20)
o ) |4 5, T ) p,,00 o2 ) |4 5, OT ) 151,00
We also use the fact that o6 o6
@)~
8V1 TJ/Q 81/2 T,V1
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which is a Maxwell relation obtained by wusing the grand potential density
p=€e—T8— g1 — f2go.
Finally, using (C.6), we may write

~

L A [P+
P07 = (P + &)(a - 9)it; + P, * ( -

COT + Tg10in + ngaka2> , (C.22)

where in the last line above we used (C.19) and the fact that
0

p A P p
8kp 4 o1 + ~ opin + 0 O0kl9 . (C23)
or )| . o J|. . 0y
1,09 T,02 T,
From the equation of motion in (C.5) this is equivalent to
> (1)jk 7(1) 2)jk §2) _ 5 p)i )
P (F(O)J JW 4 p@k ) = @EY) iy + G Fy i (C.24)
where we used (C.6), so that we get
T T
v = ng y 4 2T o) (C.25)

~ 1
€

P—i—e

With the results in (C.10), (C.11), (C.12) and (C.25) in hand, we may rewrite (C.3)
as given in (3.58). Requiring this to be positive semi-definite allows us to write down the
equations from which we may extract the transport coefficients.

D Computing transport coefficients

In this appendix we extract the transport coefficients from (3.60), and (3.66)—(3.68). We
first use the conservation equations for the fluid, namely

S 1)ij , (1 2
04T 0 = Fio (T )a+ Fig) "7 )a. (D)
az< z(l)>d — 07
(TP =0, (D.3)
to get
coshwy N 9 9 o
Jjlogm = — @ - Owy U — cosh®wy cosh™ wy 1 - O1;
sinh wq
+ sinh wq cosh wq cosh wo ﬁiF((Ol))ij + cosh? w1 cosh wy sinh woy ﬁiF(((]Q))ij ,
R sinh wy cosh wy cosh? w9 R
- 0wy = 5 5 J-u,
2(0 — 1) cosh” wy cosh” wy + 1
inh h tanh
Q- Oy = sin w22 Cos w22 0 -4 = an—{ygﬁ 0w, (D.4)
2(o — 1) cosh” wy cosh® wy + 1 cosh wi sinh wq
and then we evaluate
(d—1)

pi (’f’%isﬂd = —2n4 | coshw; cosh wgpijﬁ(iﬂj) — (coshwy coshwa 0 -1

(20 — 1)
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+ cosh wsy sinh wy 4 - Owy + cosh wy sinh wsy 4 - 8w2)]

(d — 1) cosh? w; cosh? woy ] 9.4,

= —2ng4coshwj coshwy |1 —
K ! 2 [ 2(0—1) cosh? wy cosh? wy + 1

Pi ]5lj (TgiSS} 4= —2n4 [ cosh wy cosh wy Py ]5lj Otz
1

—mlﬁkl (coshwi coshws 0 -1

+ coshwy sinhwy 4 - Qwy + coshwy sinhws 4 - Qws) ] ,
pu <jj(1)diss>d = —ndlsij cosh w1 0w — cosh® wy cosh ngF((Ol))mjﬁm

. . 2) .
— cosh? wy cosh ws sinh wy sinh wsy F ((0))mjum

+ cosh? wy cosh? woy sinh wq i - 0|,

pi <j](2)diss>d = —ndfjij [sinh wy sinh wedjwi + cosh wy cosh wadjwy

. . .
— cosh? wy cosh wy sinh wy sinh wy F ((0))mjum

— cosh wy coshwsy(1 + cosh? wy sinh? WQ)F(Q)

+ cosh?® wy cosh? we sinh wo i - 812]-] ,
<(9(1hss> 4 = 214 | cosh? wy cosh wy sinh wy sinh? wati - dwy

+ cosh? wy cosh? wy sinh wati - Aws
1

—ﬁ(l + cosh? w; sinh? wa) (coshwy coshwsy O - 4
o —

+ coshws sinhwy 4 - Qwy 4 coshwy sinhws 4 - dws)
= (05",

<(93155>d = —Qndm (coshwi coshwe O - G 4 coshws sinhwy 4 - Qwy
+ cosh wy sinh ws 4 - Qws)

diss

:< 3 >d7

(05 ) = 2n, cosh? w; [cosh wy sinh w4 - dwy — (coshwy coshwy 0 - i

1
(20 — 1)
+ coshwy sinhwy 4 - Qwy + coshwy sinhws 4 - Qws)

cosh® wy cosh® woy
2(c —1) cosh? wy cosh? ws + 1

. 1
(Of) ;= 2ny [2 cosh wy cosh ws sinh wy cosh (2w )t - Owq

1
+§ cosh? wy cosh? wy sinh wy i - Owsy
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———— cosh wy sinh wy sinhws (coshwy coshwsy 9 - 4
(20 — 1)

+ coshws sinhwy @ - Qwy + coshwy sinhws 4 - dws)

0,
< Odlss>
< dlSS>

dlSS>

(O
<Odlss> _ <Odiss >d —=0. (DG)

Evaluating 63 from (3.68) also requires us to calculate the variations of P with respect
to €, ¢1 and o respectively, for which we use

20 sinh wy cosh wy cosh? woy d7m
(2 cosh?wy cosh?wy — 1) m
20 cosh ws sinh wq dm
dwy = — 2 2 S
(2 cosh”wy cosh®we — 1) m
20 cosh? h? wy — 2 cosh? 1)d
dézO&ndng:O#dW1:—(UCOS W1COS‘WQ cos2 ek )ﬂ7
2 cosh wq sinh wy cosh” wy m
sinh wq dﬁ

dq1:Oanddq2:O:>dw1:—

)

dWQ = - 9 )
cosh” wy coshwy m

inh wi (20 cosh? wi cosh?ws + 1) d
d€=()andd(j1:0:>dwlz_sm w1 (20 cosh” wy cosh” wy + 1) dm

2 cosh? wy cosh? wy m’
d (20 cosh? wy cosh? wy — 2 cosh? wy + 1)dm
Wy = — ——
2 2 cosh? wy cosh wy sinh wo m
From these relations it follows that
oP 0P B (2 cosh? wy cosh? wy — 1)
0  Oé i (2(c — 1) cosh? wy cosh? wo + 1) ’
1,92
opP _ opP . 2 cosh wy sinh wy cosh we
941 04 > "~ (2(0 — 1) cosh®w; cosh?wy + 1)
142
opP . opP B 2 cosh? wy cosh ws sinh w (D.7)
0¢2  0da|. s (2(0 — 1) cosh? wy cosh? wy + 1) '
€,q1
Using (O§5); = (0$%),; and (O$*%),; = 0, the equation from which we may extract the
bulk viscosity (3.68) becomes
P 0P (tant?
PITT00 oy, |OF (tanhZen e,
(d—1) 0¢ \ cosh” wy
OP tanhw, 9P .
— =—(; 01 D.8
8(}1 cosh w2 * 86_?2 ] CS “ ( )

Plugging (D.5) and (D.7) into the equation above yields the bulk viscosity (3.77), while
substituting the results in (D.4) and (D.6) into the other transport coefficient equations,
namely (3.60), (3.66) and (3.67), gives (3.69)—(3.75).
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E Derivation of formula for bulk to shear viscosity ratio

Equation (3.83) was derived in [75], and expresses the bulk viscosity to shear viscosity
ratio in terms of the dependence of scalar fields at the horizon on thermodynamic variables
such as entropy and charge densities. It is derived using the null focusing (Raychaudhuri)
equation, which is equivalent via the fluid/gravity correspondence to the entropy/balance
law of the fluid.

In [75] the action under consideration is a (d + 1)-dimensional gravitational action
in the Einstein frame, where the kinetic terms for the various scalar fields are canonically
normalized. However, we are interested in action (2.9), where the axion kinetic term is
clearly not canonically normalized, so we cannot simply apply (3.83) to our case. In this
appendix we thus repeat the derivation given in [75] (while also adjusting the notation to
match our conventions) for a general action of the form

_ 1
Seny =L [ d*a/~gu |[R- 591J(¢)3M¢15M¢J —V(¢N)| + Sgange,  (E1)

where ;7 parametrizes the normalization of the scalar field kinetic terms. In [75],

Qry = diag{1,1,---, 1}, while in our case ¢! = {1, (, ¢, A%i} and

Qry = diag{1,1,1,exp(c1£ — e20)}, (E.2)
where

2(20 — d —2) [ 2020 -d)

Qo—d-1 "\ (@r—d- (£3)

The derivation in [75] follows through exactly, except that all occurrences of >°;(9¢)? (or
equivalent expressions) are replaced by Q7 ;¢! ¢”, in particular the Raychaudhuri equation.

The procedure involves considering the focusing equation at subsequent orders in
derivatives of ¢, the local coordinates on the horizon (with 2™ = (p,2"), M =0,--- ,d, and
p a transverse coordinate, with p = pj on the horizon). Following the procedure outlined
in [75], we are ultimately lead to the Raychaudhuri equation to second order

i 5 . .y 8 dep o Ldep\ (Ldep o doy .
0u(30') = o Fou0Y + L E <S s T ) B g ) @7 (B

where § is the entropy density, T is the temperature, ¢ are charge densities, all quantities
with subscript (or superscript) h are evaluated at the horizon, @™ = (0, 4?) is a vector field
obtained by raising the null cotangent vector to the horizon with the bulk metric, and

1 - R

é-ij = plmpjna(man) o mf)ijapﬂp, })ij = 771']' + ﬂiﬂj .

(E.4) has the form of a fluid entropy balance law

0,(301) = ?aija—ij + gj(apapf , (E.5)
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via the fluid/gravity correspondence (the shear viscosity obeys 7/§ = 1/4m). We may thus
extract the bulk to shear viscosity ratio, which is

- 1 1 J J
f; =, <.§d£h + qad¢h) (éd(bh + gad¢h> : (E.6)

dge ds dge

In our case, Q?J = diag{1,1,1,exp(c1€ — c2()} ,» and the horizon occurs at p = m~2. Now,

2
6015—025 _ eclfh—@fh — M (E.7)
h coshwy ) '
where

_ 220 —d —2)

=4/ —21 h
h (20 —d—1) n cosh wy ,
_ 2 (cosh wy)?o—d-1

= 1 . E.
h \/(2a—d)(2a—d—1) n( coshwr (E-8)

In (E.8) above we used (2.8) and (3.8) evaluated at p = m 2.

F Checking bulk to shear viscosity ratio

Having derived the formula (3.84) in appendix E, we now re-evaluate the bulk to shear
viscosity ratio given in (3.82) using this formula.
The charge densities and entropy are given by (3.18) and (3.23), and the scalars are

&h = 1;(,0 = m_2) = \/(202(_22)?6112 1) log |:p0'—1d/2K1(p)1/2K2(p)1/2:| -
- \/(202(—2 Z)?dlz 7y loglm? ™ coshw coshews)]
h=Clp=m"?) = \/(20 — d)(220 5 log [KQ<p)%(20—d—1)Kl(p)—1/2} ‘p:m,2
e L
= £l =m™) = \/(2a —d- 1)2(20 “d—2) %8 |1 (p) 327 =42)] ‘p:m_Q
2 coshw{? 41
N \/(20d1)(20d2) log! coshon ] : (F.1)

as obtained from (3.8) and (3.3) with canonical normalization (2.8), and further evaluated
at the horizon. The axion is given by (3.12)

. sinh wy sinh w
AELO) = ((K{(p))_1 -1) smth’p:nr2 Bt Rt (F.2)

cosh wy
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Notice that

d(j1:0anddcjz:O:>dw1:—

ds=0and djgs =0 = dw; = —

ds=0and dg; =0 = dw; = —

20 cosh wy sinh wq

d(,UQ =

cosh wy

sinh wq

(2 cosh? wy cosh?wy — 1) m

dm

dwy = 2(0 — 1) coshwy sinhwg—m ,
m

sinh wy dm

coshw; m ’

20 sinh wj cosh wq cosh? wo dﬂ
(2 cosh? wy cosh? wy — 1) m

)

(2(o — 1) cosh? wy +1)—

dCL)Q:_

from which it is then straightforward to derive

d(log 8)|4,,5, =

d(log 1) ls.4,

d(log 42)ls,,
d(¥n)ar,2
d(¥n)]s.4:
d(¥n)lsa

d(Ch)lgr.an =

d(Ch)ls,4.

d(Cn) 5,4,

A(€n) a1 a2
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)

)
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B Q1 3,42 B sinh? w1 m
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B 2
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m

)

m

m

9
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- 220 —d —2) dm
d(En)lag = — m@(a— 1) cosh®wy + 1) — —
- 2(20 — d — 2) sinh? w; dm
d&)lsa = ,
E)lsan (20 —d—1) cosh?w; m
d(A(O))]A o 40 sinh wy sinh wy cosh? wy dm
he Tl coshwy (2 cosh? wy cosh?wy — 1) m
inh
d(A,(zO))\g,qu e (2(0 — 1) cosh? wy cosh? wy

sinh wyq cosh wy
d
—4(0 — 1) cosh® wy — 1) an ,
m
sinh wq

d A(O) so1 = 2(o — 1) cosh? wy cosh? w
( h )‘S’ql sinh wq cosh3w1 ( (o ) ! 2

d
+2 cosh? wy — 1) — m (F.3)

m

We substitute the values in (F.3) into

. _ _ 2
G _ dlbh dyy, dyp,
U dlo 41,42 d log g1 3,42 dlog g2 3,41
_ _ 2
d¢p d¢p
ql q2 d log QI §7(§2 d log qAQ §7(§1
_ _ 2
dép, dép
é 41,42 d log 1 3,G2 dlog g 3,q1
coshwy \ 2 dA( ) dA;ZD) dA;ZO)
cosh wo dlogs| dlogqi|. dlogga|
ql 42 $,q2 $,41

and obtain precisely the ratio as evaluated from (3.69) and (3.77).

References

[1] M. Taylor, Non-relativistic holography, arXiv:0812.0530 [INSPIRE].

[2] S.S. Gubser and F.D. Rocha, Peculiar properties of a charged dilatonic black hole in AdSs,
Phys. Rev. D 81 (2010) 046001 [arXiv:0911.2898] [INSPIRE].

[3] K. Goldstein, S. Kachru, S. Prakash and S.P. Trivedi, Holography of charged dilaton black
holes, JHEP 08 (2010) 078 [arXiv:0911.3586] [INSPIRE].

[4] M. Cadoni, G. D’Appollonio and P. Pani, Phase transitions between Reissner-Nordstrém and
dilatonic black holes in 4D AdS spacetime, JHEP 03 (2010) 100 [arXiv:0912.3520]
[INSPIRE].

[5] C.-M. Chen and D.-W. Pang, Holography of charged dilaton black holes in general
dimensions, JHEP 06 (2010) 093 [arXiv:1003.5064] [INSPIRE].

— 41 —


http://arxiv.org/abs/0812.0530
http://inspirehep.net/search?p=find+EPRINT+arXiv:0812.0530
http://dx.doi.org/10.1103/PhysRevD.81.046001
http://arxiv.org/abs/0911.2898
http://inspirehep.net/search?p=find+EPRINT+arXiv:0911.2898
http://dx.doi.org/10.1007/JHEP08(2010)078
http://arxiv.org/abs/0911.3586
http://inspirehep.net/search?p=find+EPRINT+arXiv:0911.3586
http://dx.doi.org/10.1007/JHEP03(2010)100
http://arxiv.org/abs/0912.3520
http://inspirehep.net/search?p=find+EPRINT+arXiv:0912.3520
http://dx.doi.org/10.1007/JHEP06(2010)093
http://arxiv.org/abs/1003.5064
http://inspirehep.net/search?p=find+EPRINT+arXiv:1003.5064

(6]

[10]

[11]

[12]

[13]

C. Charmousis, B. Gouteraux, B. Kim, E. Kiritsis and R. Meyer, Effective holographic
theories for low-temperature condensed matter systems, JHEP 11 (2010) 151
[arXiv:1005.4690] INSPIRE].

B.-H. Lee, S. Nam, D.-W. Pang and C. Park, Conductivity in the anisotropic background,
Phys. Rev. D 83 (2011) 066005 [arXiv:1006.0779] INSPIRE].

B.-H. Lee, D.-W. Pang and C. Park, Strange metallic behavior in anisotropic background,
JHEP 07 (2010) 057 [arXiv:1006.1719] [INSPIRE].

E. Perlmutter, Domain wall holography for finite temperature scaling solutions,
JHEP 02 (2011) 013 [arXiv:1006.2124] [INSPIRE].

Y. Liu and Y.-W. Sun, Holographic superconductors from FEinstein-Mazwell-dilaton gravity,
JHEP 07 (2010) 099 [arXiv:1006.2726] [NSPIRE].

K. Goldstein et al., Holography of dyonic dilaton black branes, JHEP 10 (2010) 027
[arXiv:1007.2490] [INSPIRE].

M. Cadoni and P. Pani, Holography of charged dilatonic black branes at finite temperature,
JHEP 04 (2011) 049 [arXiv:1102.3820] [INSPIRE].

N. Tizuka, N. Kundu, P. Narayan and S.P. Trivedi, Holographic Fermi and non-Fermi liquids
with transitions in dilaton gravity, JHEP 01 (2012) 094 [arXiv:1105.1162] [INSPIRE].

B. Gouteraux and E. Kiritsis, Generalized holographic quantum criticality at finite density,
JHEP 12 (2011) 036 [arXiv:1107.2116] [iNSPIRE].

S.A. Hartnoll, Horizons, holography and condensed matter, arXiv:1106.4324 [INSPIRE].

A. Salvio, Holographic superfluids and superconductors in dilaton-gravity,
JHEP 09 (2012) 134 [arXiv:1207.3800] [inSPIRE].

B. Gouteraux, J. Smolic, M. Smolic, K. Skenderis and M. Taylor, Holography for
FEinstein-Mazwell-dilaton theories from generalized dimensional reduction,
JHEP 01 (2012) 089 [arXiv:1110.2320] [NSPIRE].

L. Huijse, S. Sachdev and B. Swingle, Hidden Fermi surfaces in compressible states of
gauge-gravity duality, Phys. Rev. B 85 (2012) 035121 [arXiv:1112.0573] [INSPIRE].

K. Skenderis, Lecture notes on holographic renormalization,
Class. Quant. Grav. 19 (2002) 5849 [hep-th/0209067] [INSPIRE].

I. Papadimitriou and K. Skenderis, AdS/CFT correspondence and geometry,
hep-th/0404176 [INSPIRE].

S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and
renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595
[hep-th/0002230] [INSPIRE].

M. Bianchi, D.Z. Freedman and K. Skenderis, Holographic renormalization,
Nucl. Phys. B 631 (2002) 159 [hep-th/0112119] INSPIRE].

I. Papadimitriou and K. Skenderis, Correlation functions in holographic RG flows,
JHEP 10 (2004) 075 [hep-th/0407071] [INnSPIRE].

T. Wiseman and B. Withers, Holographic renormalization for coincident Dp-branes,
JHEP 10 (2008) 037 [arXiv:0807.0755] [INSPIRE].

— 492 —


http://dx.doi.org/10.1007/JHEP11(2010)151
http://arxiv.org/abs/1005.4690
http://inspirehep.net/search?p=find+EPRINT+arXiv:1005.4690
http://dx.doi.org/10.1103/PhysRevD.83.066005
http://arxiv.org/abs/1006.0779
http://inspirehep.net/search?p=find+EPRINT+arXiv:1006.0779
http://dx.doi.org/10.1007/JHEP07(2010)057
http://arxiv.org/abs/1006.1719
http://inspirehep.net/search?p=find+EPRINT+arXiv:1006.1719
http://dx.doi.org/10.1007/JHEP02(2011)013
http://arxiv.org/abs/1006.2124
http://inspirehep.net/search?p=find+EPRINT+arXiv:1006.2124
http://dx.doi.org/10.1007/JHEP07(2010)099
http://arxiv.org/abs/1006.2726
http://inspirehep.net/search?p=find+EPRINT+arXiv:1006.2726
http://dx.doi.org/10.1007/JHEP10(2010)027
http://arxiv.org/abs/1007.2490
http://inspirehep.net/search?p=find+EPRINT+arXiv:1007.2490
http://dx.doi.org/10.1007/JHEP04(2011)049
http://arxiv.org/abs/1102.3820
http://inspirehep.net/search?p=find+EPRINT+arXiv:1102.3820
http://dx.doi.org/10.1007/JHEP01(2012)094
http://arxiv.org/abs/1105.1162
http://inspirehep.net/search?p=find+EPRINT+arXiv:1105.1162
http://dx.doi.org/10.1007/JHEP12(2011)036
http://arxiv.org/abs/1107.2116
http://inspirehep.net/search?p=find+EPRINT+arXiv:1107.2116
http://arxiv.org/abs/1106.4324
http://inspirehep.net/search?p=find+EPRINT+arXiv:1106.4324
http://dx.doi.org/10.1007/JHEP09(2012)134
http://arxiv.org/abs/1207.3800
http://inspirehep.net/search?p=find+EPRINT+arXiv:1207.3800
http://dx.doi.org/10.1007/JHEP01(2012)089
http://arxiv.org/abs/1110.2320
http://inspirehep.net/search?p=find+EPRINT+arXiv:1110.2320
http://dx.doi.org/10.1103/PhysRevB.85.035121
http://arxiv.org/abs/1112.0573
http://inspirehep.net/search?p=find+EPRINT+arXiv:1112.0573
http://dx.doi.org/10.1088/0264-9381/19/22/306
http://arxiv.org/abs/hep-th/0209067
http://inspirehep.net/search?p=find+EPRINT+hep-th/0209067
http://arxiv.org/abs/hep-th/0404176
http://inspirehep.net/search?p=find+EPRINT+hep-th/0404176
http://dx.doi.org/10.1007/s002200100381
http://arxiv.org/abs/hep-th/0002230
http://inspirehep.net/search?p=find+EPRINT+hep-th/0002230
http://dx.doi.org/10.1016/S0550-3213(02)00179-7
http://arxiv.org/abs/hep-th/0112119
http://inspirehep.net/search?p=find+EPRINT+hep-th/0112119
http://dx.doi.org/10.1088/1126-6708/2004/10/075
http://arxiv.org/abs/hep-th/0407071
http://inspirehep.net/search?p=find+EPRINT+hep-th/0407071
http://dx.doi.org/10.1088/1126-6708/2008/10/037
http://arxiv.org/abs/0807.0755
http://inspirehep.net/search?p=find+EPRINT+arXiv:0807.0755

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

I. Kanitscheider, K. Skenderis and M. Taylor, Precision holography for non-conformal branes,
JHEP 09 (2008) 094 [arXiv:0807.3324] [INSPIRE].

N. Ttzhaki, J.M. Maldacena, J. Sonnenschein and S. Yankielowicz, Supergravity and the
large-N limit of theories with sizteen supercharges, Phys. Rev. D 58 (1998) 046004
[hep-th/9802042] [INSPIRE].

H. Boonstra, K. Skenderis and P. Townsend, The domain wall/QFT correspondence,
JHEP 01 (1999) 003 [hep-th/9807137] [INSPIRE].

I. Kanitscheider and K. Skenderis, Universal hydrodynamics of non-conformal branes,
JHEP 04 (2009) 062 [arXiv:0901.1487] [INSPIRE].

P. Benincasa, A note on holographic renormalization of probe D-branes, arXiv:0903.4356
[INSPIRE].

A. Karch, A. O’'Bannon and K. Skenderis, Holographic renormalization of probe D-branes in
AdS/CFT, JHEP 04 (2006) 015 [hep-th/0512125] [INSPIRE].

I. Papadimitriou and K. Skenderis, Thermodynamics of asymptotically locally AdS
spacetimes, JHEP 08 (2005) 004 [hep-th/0505190] [INSPIRE].

F. Bigazzi and A.L. Cotrone, An elementary stringy estimate of transport coefficients of large
temperature QCD, JHEP 08 (2010) 128 [arXiv:1006.4634| [INSPIRE].

K.C. Chan, J.H. Horne and R.B. Mann, Charged dilaton black holes with unusual
asymptotics, Nucl. Phys. B 447 (1995) 441 [gr-qc/9502042] INSPIRE].

R.-G. Cai and Y.-Z. Zhang, Black plane solutions in four-dimensional space-times,
Phys. Rev. D 54 (1996) 4891 [gr-qc/9609065] [INSPIRE].

R.-G. Cai, J.-Y. Ji and K.-S. Soh, Topological dilaton black holes,
Phys. Rev. D 57 (1998) 6547 [gr-qc/9708063] [INSPIRE].

C. Charmousis, Dilaton space-times with a Liouville potential,
Class. Quant. Grav. 19 (2002) 83 [hep-th/0107126] INSPIRE].

S. Mignemi and D. Wiltshire, Spherically symmetric solutions in dimensionally reduced
space-times, Class. Quant. Grav. 6 (1989) 987 [INSPIRE].

D.L. Wiltshire, Spherically symmetric solutions in dimensionally reduced space-times with a
higher dimensional cosmological constant, Phys. Rev. D 44 (1991) 1100 [iNSPIRE].

R.-G. Cai and A. Wang, Non-asymptotically AdS/ds solutions and their higher dimensional
origins, Phys. Rev. D 70 (2004) 084042 [hep-th/0406040] [INSPIRE].

U. Girsoy, E. Kiritsis and F. Nitti, Fxploring improved holographic theories for QCD: part
II, JHEP 02 (2008) 019 [arXiv:0707.1349] [INSPIRE].

U. Giirsoy, E. Kiritsis, L. Mazzanti and F. Nitti, Holography and thermodynamics of 5D
dilaton-gravity, JHEP 05 (2009) 033 [arXiv:0812.0792] INSPIRE].

K. Skenderis, Asymptotically Anti-de Sitter space-times and their stress energy tensor,
Int. J. Mod. Phys. A 16 (2001) 740 [hep-th/0010138] [INSPIRE].

A. Chamblin, R. Emparan, C.V. Johnson and R.C. Myers, Holography, thermodynamics and
fluctuations of charged AdS black holes, Phys. Rev. D 60 (1999) 104026 [hep-th/9904197]
[INSPIRE].

— 43 —


http://dx.doi.org/10.1088/1126-6708/2008/09/094
http://arxiv.org/abs/0807.3324
http://inspirehep.net/search?p=find+EPRINT+arXiv:0807.3324
http://dx.doi.org/10.1103/PhysRevD.58.046004
http://arxiv.org/abs/hep-th/9802042
http://inspirehep.net/search?p=find+EPRINT+hep-th/9802042
http://dx.doi.org/10.1088/1126-6708/1999/01/003
http://arxiv.org/abs/hep-th/9807137
http://inspirehep.net/search?p=find+EPRINT+hep-th/9807137
http://dx.doi.org/10.1088/1126-6708/2009/04/062
http://arxiv.org/abs/0901.1487
http://inspirehep.net/search?p=find+EPRINT+arXiv:0901.1487
http://arxiv.org/abs/0903.4356
http://inspirehep.net/search?p=find+EPRINT+arXiv:0903.4356
http://dx.doi.org/10.1088/1126-6708/2006/04/015
http://arxiv.org/abs/hep-th/0512125
http://inspirehep.net/search?p=find+EPRINT+hep-th/0512125
http://dx.doi.org/10.1088/1126-6708/2005/08/004
http://arxiv.org/abs/hep-th/0505190
http://inspirehep.net/search?p=find+EPRINT+hep-th/0505190
http://dx.doi.org/10.1007/JHEP08(2010)128
http://arxiv.org/abs/1006.4634
http://inspirehep.net/search?p=find+EPRINT+arXiv:1006.4634
http://dx.doi.org/10.1016/0550-3213(95)00205-7
http://arxiv.org/abs/gr-qc/9502042
http://inspirehep.net/search?p=find+EPRINT+gr-qc/9502042
http://dx.doi.org/10.1103/PhysRevD.54.4891
http://arxiv.org/abs/gr-qc/9609065
http://inspirehep.net/search?p=find+EPRINT+gr-qc/9609065
http://dx.doi.org/10.1103/PhysRevD.57.6547
http://arxiv.org/abs/gr-qc/9708063
http://inspirehep.net/search?p=find+EPRINT+gr-qc/9708063
http://dx.doi.org/10.1088/0264-9381/19/1/305
http://arxiv.org/abs/hep-th/0107126
http://inspirehep.net/search?p=find+EPRINT+hep-th/0107126
http://dx.doi.org/10.1088/0264-9381/6/7/006
http://inspirehep.net/search?p=find+J+Class.Quant.Grav.,6,987
http://dx.doi.org/10.1103/PhysRevD.44.1100
http://inspirehep.net/search?p=find+J+Phys.Rev.,D44,1100
http://dx.doi.org/10.1103/PhysRevD.70.084042
http://arxiv.org/abs/hep-th/0406040
http://inspirehep.net/search?p=find+EPRINT+hep-th/0406040
http://dx.doi.org/10.1088/1126-6708/2008/02/019
http://arxiv.org/abs/0707.1349
http://inspirehep.net/search?p=find+EPRINT+arXiv:0707.1349
http://dx.doi.org/10.1088/1126-6708/2009/05/033
http://arxiv.org/abs/0812.0792
http://inspirehep.net/search?p=find+EPRINT+arXiv:0812.0792
http://dx.doi.org/10.1142/S0217751X0100386X
http://arxiv.org/abs/hep-th/0010138
http://inspirehep.net/search?p=find+EPRINT+hep-th/0010138
http://dx.doi.org/10.1103/PhysRevD.60.104026
http://arxiv.org/abs/hep-th/9904197
http://inspirehep.net/search?p=find+EPRINT+hep-th/9904197

[44] A. Chamblin, R. Emparan, C.V. Johnson and R.C. Myers, Charged AdS black holes and
catastrophic holography, Phys. Rev. D 60 (1999) 064018 [hep-th/9902170] [INSPIRE].

[45] C. Charmousis, B. Gouteraux and J. Soda, Einstein-Mazwell-dilaton theories with a Liouville
potential, Phys. Rev. D 80 (2009) 024028 [arXiv:0905.3337] [INSPIRE].

[46] G. Gibbons, G.T. Horowitz and P. Townsend, Higher dimensional resolution of dilatonic
black hole singularities, Class. Quant. Grav. 12 (1995) 297 [hep-th/9410073] [INSPIRE].

[47] M.M. Caldarelli, R. Emparan and B. Van Pol, Higher-dimensional rotating charged black
holes, JHEP 04 (2011) 013 [arXiv:1012.4517] [INSPIRE].

[48] G. Gibbons and K.-1. Maeda, Black holes and membranes in higher dimensional theories with
dilaton fields, Nucl. Phys. B 298 (1988) 741 InSPIRE].

[49] M. Banados, M. Henneaux, C. Teitelboim and J. Zanelli, Geometry of the (2 + 1) black hole,
Phys. Rev. D 48 (1993) 1506 [gr-qc/9302012] [INSPIRE].

[50] M. Banados, C. Teitelboim and J. Zanelli, The black hole in three-dimensional space-time,
Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [INSPIRE].

[51] J. Lemos, Cylindrical black hole in general relativity, Phys. Lett. B 353 (1995) 46
[gr-qc/9404041) [INSPIRE].

[52] J.P. Lemos and V.T. Zanchin, Rotating charged black string and three-dimensional black
holes, Phys. Rev. D 54 (1996) 3840 [hep-th/9511188] [INSPIRE].

[53] AM. Awad, Higher dimensional charged rotating solutions in (A)dS space-times,
Class. Quant. Grav. 20 (2003) 2827 [hep-th/0209238] [INSPIRE].

[54] J. Stachel, Globally stationary but locally static space-times: a gravitational analog of the
Aharonov-Bohm effect, Phys. Rev. D 26 (1982) 1281 [InSPIRE].

[65] M. Cveti¢, H. Lii and C. Pope, Space-times of boosted p-branes and CFT in infinite
momentum frame, Nucl. Phys. B 545 (1999) 309 [hep-th/9810123] [INSPIRE].

[56] H. Li and C. Pope, P-brane solitons in maximal supergravities,
Nucl. Phys. B 465 (1996) 127 [hep-th/9512012] [INSPIRE].

[57] C.N. Pope, Lectures on Kaluza-Klein theory, http://faculty.physics.tamu.edu/pope/.

[58] W. Chemissany, B. Janssen and T. Van Riet, Einstein branes, JHEP 10 (2011) 002
[arXiv:1107.1427] NSPIRE].

v
L

C. Hull, A new gauging of N = 8 supergravity, Phys. Rev. D 30 (1984) 760 [INSPIRE].

=)
=

C. Hull, Noncompact gaugings of N = 8 supergravity, Phys. Lett. B 142 (1984) 39 [INSPIRE].

[61] R.-G. Cai and N. Ohta, Surface counterterms and boundary stress energy tensors for
asymptotically non Anti-de Sitter spaces, Phys. Rev. D 62 (2000) 024006 [hep-th/9912013]
[INSPIRE].

[62] S. Bhattacharyya, V.E. Hubeny, S. Minwalla and M. Rangamani, Nonlinear fluid dynamics
from gravity, JHEP 02 (2008) 045 [arXiv:0712.2456] [INSPIRE].

[63] M. Cveti¢ and A.A. Tseytlin, Nonextreme black holes from nonextreme intersecting
M-branes, Nucl. Phys. B 478 (1996) 181 [hep-th/9606033] [INSPIRE].

[64] K. Skenderis, Black holes and branes in string theory, Lect. Notes Phys. 541 (2000) 325
[hep-th/9901050] [iNSPIRE].

— 44 —


http://dx.doi.org/10.1103/PhysRevD.60.064018
http://arxiv.org/abs/hep-th/9902170
http://inspirehep.net/search?p=find+EPRINT+hep-th/9902170
http://dx.doi.org/10.1103/PhysRevD.80.024028
http://arxiv.org/abs/0905.3337
http://inspirehep.net/search?p=find+EPRINT+arXiv:0905.3337
http://dx.doi.org/10.1088/0264-9381/12/2/004
http://arxiv.org/abs/hep-th/9410073
http://inspirehep.net/search?p=find+EPRINT+hep-th/9410073
http://dx.doi.org/10.1007/JHEP04(2011)013
http://arxiv.org/abs/1012.4517
http://inspirehep.net/search?p=find+EPRINT+arXiv:1012.4517
http://dx.doi.org/10.1016/0550-3213(88)90006-5
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B298,741
http://dx.doi.org/10.1103/PhysRevD.48.1506
http://arxiv.org/abs/gr-qc/9302012
http://inspirehep.net/search?p=find+EPRINT+gr-qc/9302012
http://dx.doi.org/10.1103/PhysRevLett.69.1849
http://arxiv.org/abs/hep-th/9204099
http://inspirehep.net/search?p=find+EPRINT+hep-th/9204099
http://dx.doi.org/10.1016/0370-2693(95)00533-Q
http://arxiv.org/abs/gr-qc/9404041
http://inspirehep.net/search?p=find+EPRINT+gr-qc/9404041
http://dx.doi.org/10.1103/PhysRevD.54.3840
http://arxiv.org/abs/hep-th/9511188
http://inspirehep.net/search?p=find+EPRINT+hep-th/9511188
http://dx.doi.org/10.1088/0264-9381/20/13/327
http://arxiv.org/abs/hep-th/0209238
http://inspirehep.net/search?p=find+EPRINT+hep-th/0209238
http://dx.doi.org/10.1103/PhysRevD.26.1281
http://inspirehep.net/search?p=find+J+Phys.Rev.,D26,1281
http://dx.doi.org/10.1016/S0550-3213(99)00002-4
http://arxiv.org/abs/hep-th/9810123
http://inspirehep.net/search?p=find+EPRINT+hep-th/9810123
http://dx.doi.org/10.1016/0550-3213(96)00048-X
http://arxiv.org/abs/hep-th/9512012
http://inspirehep.net/search?p=find+EPRINT+hep-th/9512012
http://faculty.physics.tamu.edu/pope/
http://dx.doi.org/10.1007/JHEP10(2011)002
http://arxiv.org/abs/1107.1427
http://inspirehep.net/search?p=find+EPRINT+arXiv:1107.1427
http://dx.doi.org/10.1103/PhysRevD.30.760
http://inspirehep.net/search?p=find+J+Phys.Rev.,D30,760
http://dx.doi.org/10.1016/0370-2693(84)91131-6
http://inspirehep.net/search?p=find+J+Phys.Lett.,B142,39
http://dx.doi.org/10.1103/PhysRevD.62.024006
http://arxiv.org/abs/hep-th/9912013
http://inspirehep.net/search?p=find+EPRINT+hep-th/9912013
http://dx.doi.org/10.1088/1126-6708/2008/02/045
http://arxiv.org/abs/0712.2456
http://inspirehep.net/search?p=find+EPRINT+arXiv:0712.2456
http://dx.doi.org/10.1016/0550-3213(96)00411-7
http://arxiv.org/abs/hep-th/9606033
http://inspirehep.net/search?p=find+EPRINT+hep-th/9606033
http://arxiv.org/abs/hep-th/9901050
http://inspirehep.net/search?p=find+EPRINT+hep-th/9901050

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

(73]

[74]

[75]

[76]

[77]

(78]

[79]

L.D. Landau and E.M. Lifshitz, Fluid mechanics, course of theoretical physics, volume 6, 2"
edition, translated from the Russian by J.B. Sykes and W.H. Reid, Pergamon Press, London
U.K. (1987).

J. Bhattacharya, S. Bhattacharyya, S. Minwalla and A. Yarom, A theory of first order
dissipative superfluid dynamics, arXiv:1105.3733 [INSPIRE].

D.T. Son and A.O. Starinets, Hydrodynamics of R-charged black holes, JHEP 03 (2006) 052
[hep-th/0601157] [INSPIRE].

S. Jain, Holographic electrical and thermal conductivity in strongly coupled gauge theory with
multiple chemical potentials, JHEP 03 (2010) 101 [arXiv:0912.2228] [INSPIRE].

P. Kovtun, D.T. Son and A.O. Starinets, Holography and hydrodynamics: diffusion on
stretched horizons, JHEP 10 (2003) 064 [hep-th/0309213] [INSPIRE].

P. Kovtun, D. Son and A. Starinets, Viscosity in strongly interacting quantum field theories
from black hole physics, Phys. Rev. Lett. 94 (2005) 111601 [hep-th/0405231] [INSPIRE].

A. Buchel, Bulk viscosity of gauge theory plasma at strong coupling,
Phys. Lett. B 663 (2008) 286 [arXiv:0708.3459] [INSPIRE].

A. Buchel, Violation of the holographic bulk viscosity bound, Phys. Rev. D 85 (2012) 066004
[arXiv:1110.0063] [INSPIRE].

A. Karch and A. O’Bannon, Metallic AdS/CFT, JHEP 09 (2007) 024 [arXiv:0705.3870]
[INSPIRE].

S.A. Hartnoll, J. Polchinski, E. Silverstein and D. Tong, Towards strange metallic
holography, JHEP 04 (2010) 120 [arXiv:0912.1061] [INSPIRE].

C. Eling and Y. Oz, A novel formula for bulk viscosity from the null horizon focusing
equation, JHEP 06 (2011) 007 [arXiv:1103.1657] [INSPIRE].

G. Bertoldi, B.A. Burrington and A.W. Peet, Thermal behavior of charged dilatonic black
branes in AdS and UV completions of Lifshitz-like geometries,
Phys. Rev. D 82 (2010) 106013 [arXiv:1007.1464] [INSPIRE].

G. Bertoldi, B.A. Burrington, A.W. Peet and 1.G. Zadeh, Lifshitz-like black brane
thermodynamics in higher dimensions, Phys. Rev. D 83 (2011) 126006 [arXiv:1101.1980]
[INSPIRE].

J. Erdmenger, V. Grass, P. Kerner and T.H. Ngo, Holographic superfluidity in imbalanced
miztures, JHEP 08 (2011) 037 [arXiv:1103.4145] [INSPIRE].

C. Charmousis, B. Gouteraux and E. Kiritsis, Higher-derivative scalar-vector-tensor theories:
black holes, galileons, singularity cloaking and holography, JHEP 09 (2012) 011
[arXiv:1206.1499] [INSPIRE].

— 45 —


http://arxiv.org/abs/1105.3733
http://inspirehep.net/search?p=find+EPRINT+arXiv:1105.3733
http://dx.doi.org/10.1088/1126-6708/2006/03/052
http://arxiv.org/abs/hep-th/0601157
http://inspirehep.net/search?p=find+EPRINT+hep-th/0601157
http://dx.doi.org/10.1007/JHEP03(2010)101
http://arxiv.org/abs/0912.2228
http://inspirehep.net/search?p=find+EPRINT+arXiv:0912.2228
http://dx.doi.org/10.1088/1126-6708/2003/10/064
http://arxiv.org/abs/hep-th/0309213
http://inspirehep.net/search?p=find+EPRINT+hep-th/0309213
http://dx.doi.org/10.1103/PhysRevLett.94.111601
http://arxiv.org/abs/hep-th/0405231
http://inspirehep.net/search?p=find+EPRINT+hep-th/0405231
http://dx.doi.org/10.1016/j.physletb.2008.03.069
http://arxiv.org/abs/0708.3459
http://inspirehep.net/search?p=find+EPRINT+arXiv:0708.3459
http://dx.doi.org/10.1103/PhysRevD.85.066004
http://arxiv.org/abs/1110.0063
http://inspirehep.net/search?p=find+EPRINT+arXiv:1110.0063
http://dx.doi.org/10.1088/1126-6708/2007/09/024
http://arxiv.org/abs/0705.3870
http://inspirehep.net/search?p=find+EPRINT+arXiv:0705.3870
http://dx.doi.org/10.1007/JHEP04(2010)120
http://arxiv.org/abs/0912.1061
http://inspirehep.net/search?p=find+EPRINT+arXiv:0912.1061
http://dx.doi.org/10.1007/JHEP06(2011)007
http://arxiv.org/abs/1103.1657
http://inspirehep.net/search?p=find+EPRINT+arXiv:1103.1657
http://dx.doi.org/10.1103/PhysRevD.82.106013
http://arxiv.org/abs/1007.1464
http://inspirehep.net/search?p=find+EPRINT+arXiv:1007.1464
http://dx.doi.org/10.1103/PhysRevD.83.126006
http://arxiv.org/abs/1101.1980
http://inspirehep.net/search?p=find+EPRINT+arXiv:1101.1980
http://dx.doi.org/10.1007/JHEP08(2011)037
http://arxiv.org/abs/1103.4145
http://inspirehep.net/search?p=find+EPRINT+arXiv:1103.4145
http://dx.doi.org/10.1007/JHEP09(2012)011
http://arxiv.org/abs/1206.1499
http://inspirehep.net/search?p=find+EPRINT+arXiv:1206.1499

	Introduction
	Holography for EMD theory with two Maxwell fields 
	Generalized dimensional reduction
	Holographic dictionary
	Asymptotic expansion
	Counterterms and holographic one-point functions
	Stress-energy tensor, currents and scalar operators
	Reduced Ward identities


	Black brane universal sector with two Maxwell fields
	Black branes
	Conformal black brane with wave
	Dimensional reduction
	Expansion in Fefferman-Graham coordinates
	Thermodynamic quantities

	Universal hydrodynamics
	Conformal fluid in higher dimension
	Reduced fluid velocity
	Equilibrium quantities
	Dissipative extension and transport coefficient formulae
	Discussion of various bounds


	Discussion and conclusions
	Equations of motion of reduced theory with two Maxwell fields 
	Check of quantities sourced by non-normalizable modes of fields
	Transport coefficient relations in two charge hydrodynamic system
	Computing transport coefficients
	Derivation of formula for bulk to shear viscosity ratio
	Checking bulk to shear viscosity ratio

