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1 Introduction

Einstein-Maxwell-Dilaton (EMD) theories have a wide appeal because their field content

is suitable for describing finite charge density systems, possibly exhibiting condensates

via holography [1–16], which has obvious uses within condensed matter theory (CMT) in

particular.

We aim in this paper to provide a holographic dictionary for a class of EMD theories,

specifically containing two Maxwell fields, three neutral scalars and an axion. A similar

analysis was already done in [17], in which we listed and discussed the cases where the EMD

theory can be oxidized to a higher-dimensional AdS-Maxwell theory, and then specialized

to the EMD case involving one Maxwell field and two neutral scalars. The motivations

to study an EMD theory with two Maxwell fields and an axion are numerous. Firstly, a

family of theories that could be obtained from AdS was discussed in [17], and it would

be interesting to understand whether the generalization to many gauge fields is trivial or

if new issues arise. Studying the case of two gauge fields is a first step in this direction.

The case of many gauge fields may have applications in future, among them the possible

holographic description of imbalanced superconductors. In [17] it was also noted that the

bound suggested in [71] for the bulk to shear viscosity ratio is violated, and a new modified

bound was introduced, which was indeed satisfied by the system at hand. We also use our

transport coefficient results in this paper to verify this new modified bound. Furthermore,

in the context of AdS/CMT, it may also be possible to make a link to the systems studied

in [18], since they have a similar structure to the system dealt with here. Finally, due to the

presence of the axion in our theory, our analysis may allow for the holographic modelling

of axion physics. This has many applications, among them in cosmology, where axions are

considered a possible dark matter candidate.

Setting up holography for such EMD systems is nontrivial in general since a large pro-

portion of solutions are not asymptotically AdS. We bypass the difficulties associated with

the standard method for deriving the holographic dictionary (see [19, 20] for reviews) by

turning to a rather neat ‘trick’, namely ‘generalized dimensional reduction’. This method

allows us to start from a theory whose holographic dictionary is known, and infer the

holographic dictionary of the theory related to it via such a reduction.

This generalized dimensional reduction needs to be consistent, which means that all

lower-dimensional theory solutions must also be solutions of the higher dimensional the-

ory. This allows us to infer, among other things, the structure of the lower-dimensional

field equations from the higher-dimensional counterpart. This is particularly important

since one of the main ingredients in setting up holography is understanding the asymptotic

structure of the field equations. The term ‘generalized’ refers to the additional requirement

that the reduced theory depends smoothly on the dimension of the compactification man-

ifold, allowing one to continue this parameter to be any real number. In particular, this

generalized reduction method was successfully applied to higher-dimensional AdS gravity

coupled to matter fields in [28], to obtain the holographic setup for lower-dimensional grav-

ity coupled to a scalar field with exponential potential, which itself is associated with the

near-horizon limit of non-conformal branes [26, 27]. A diagonal reduction over a T2σ−d
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torus was used. In this paper we want to set up holography for a lower-dimensional the-

ory with two Maxwell fields. We do so by replacing the diagonal torus reduction by a

general non-diagonal reduction. In [17] this was done to yield one Maxwell field in the

lower-dimensional theory, and we simply extend this by a further reduction to obtain the

additional Maxwell field. An intermediate step in the process will give rise to the axion: the

Maxwell field introduced by the first reduction is itself reduced to ultimately yield the axion.

A particularly pleasing property of generalized dimensional reduction is that it yields

theories, from higher-dimensional AdS gravity (possibly coupled to a Maxwell field), which

have known non-extremal black hole solutions (with nontrivial scalar and Maxwell fields).

These solutions are not only complicated in structure, but also often have atypical asymp-

totic behaviour, so studying their holographic setup from scratch is quite an intricate affair.

However, we may deduce much about these solutions due to their simple higher-dimensional

origins. Among other things, they satisfy all expected thermodynamic identities as does

their AdS analogue [31], it becomes relatively straightforward to compute conserved charges

via the holographic stress tensor and holographic conserved current, and we may also gain

an insight into the lower-dimensional hydrodynamic regime. We explicitly use the gen-

eralized dimensional reduction to derive the relevant transport coefficients for our lower-

dimensional theory.

This paper is organised as follows. In section 2 we perform a generalized dimensional

reduction on AdS gravity to obtain the desired lower-dimensional theory containing three

neutral scalars, an axion and two Maxwell fields, and its corresponding holographic dictio-

nary. In section 3, we study a specific example of a black brane carrying a wave (whose

universal sector contains precisely the fields mentioned above), and use the dimensional

reduction to obtain a description of its hydrodynamic regime by calculating the relevant

transport coefficients. In the appendices we write down the equations of motion of the re-

duced theory with two gauge fields, give an explicit check of the quantities sourced by the

non-normalizable modes of fields within the theory, derive the transport coefficient relations

in a two charge hydrodynamic system, provide details regarding the computation of trans-

port coefficients, give a derivation for the relation used as an independent check of our result

for the bulk to shear viscosity ratio, and finally provide the explicit calculation of this check.

2 Holography for EMD theory with two Maxwell fields

In [17] we started from the higher-dimensional AdS-Maxwell action and wrote down the

(d+1)-dimensional action obtained via a general non-diagonal torus reduction over T(2σ−d)

involving M Kaluza-Klein gauge fields. We also worked out explicitly the case correspond-

ing to a lower-dimensional theory with one Maxwell field, starting from higher-dimensional

AdS gravity. In this section we will restrict ourselves to an analysis involving another partic-

ular example of this general case, where upon reduction of higher-dimensional AdS gravity

(with cosmological constant but no higher-dimensional Maxwell field), we obtain lower-

dimensional EMD theory with two Maxwell fields, three Kaluza-Klein scalars and an axion.

We may perform this reduction in two steps. The first involves a torus reduction of (2.1) in-

volving one Kaluza-Klein gauge field, as done explicitly in [17]. We then reduce the resulting
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intermediate action, including a second Kaluza-Klein gauge field. The axion comes from the

reduction of the Maxwell field present in the intermediate action due to the first reduction.

Here, we will provide the generalized Kaluza-Klein reduction map, write down the

resulting lower-dimensional action, and then move on to deriving the holographic dictionary

for the reduced theory. Note that by setting one of the scalar fields ξ, the gauge field A
(1)
M

as well as the axion A(0) to zero in this section, we recover the results of [17].

2.1 Generalized dimensional reduction

We begin with a higher-dimensional action without any Maxwell fields, namely Einstein

gravity with negative cosmological constant in (2σ + 1)-dimensions

S(2σ+1) = LAdS

∫

d2σ+1x
√

−g(2σ+1) [R+ 2σ(2σ − 1)] , (2.1)

where LAdS = ℓ2σ−1
(2σ+1)/(16πG2σ+1), ℓ(2σ+1) is the AdS radius and we used an appropriate

Weyl rescaling to move ℓ(2σ+1) as an overall constant in the action. We perform the re-

duction of such an action, ultimately ending up with a lower-dimensional theory with two

Maxwell fields, an axion and three scalars.

The full reduction ansatz for the theory on the torus T(2σ−d) is given by

ds2(2σ+1) = ds2(d+1)(ρ, z) + e2φ3(ρ,z)
(

dy2 −A
(2)
N dxN

)2

+e2φ1(ρ,z)
(

dy1 −A
(1)
M ′dx

M ′

)2

+e
2φ2(ρ,z)
(2σ−d−2)dyadya , (2.2)

where a = 1, . . . , (2σ − d− 2). The coordinates (y1, y2, y
a) are periodically identified with

period 2πR, xM = (ρ, zi) withM = 0, . . . , d, and xM
′

= (xM , y2). Furthermore, we include

the axion A(0) in the reduction of A
(1)
M ′ :

A
(1)
M ′ =

(

A
(1)
M , A(0)

)

. (2.3)

Using a more natural combination of the scalars, namely

ϕ = φ1 + φ2 , ξ = (2σ − d− 2)φ1 − φ2 , ψ = ϕ+ φ3 ,

ζ = (2σ − d− 1)φ3 − ϕ , (2.4)

the reduced action is calculated to be

S(d+1) = L

∫

dd+1x
√

−g(d+1)e
ψ

[

R(d+1) +
2σ − d− 1

(2σ − d)
(∂ψ)2

− 1

(2σ − d)(2σ − d− 1)
(∂ζ)2 − 1

(2σ − d− 1)(2σ − d− 2)
(∂ξ)2

−1

4
e

2(ψ+ζ)
(2σ−d)F

(2)
MNF

(2)MN − 1

4
e

2(ξ(2σ−d)+(2σ−d−1)ψ−ζ)
(2σ−d)(2σ−d−1) ×

×
(

F
(1)
MNF

(1)MN + 4∂MA(0)A(2)NF
(1)
MN − 2

(

A(2)M∂MA
(0)
)2
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+2

(

e
−2(ψ+ζ)
(2σ−d) +A

(2)
M A(2)M

)

(

∂A(0)
)2
)

+ 2σ(2σ − 1)

]

, (2.5)

where L = LAdS(2πR)
2σ−d, while the reduction ansatz becomes

ds2(2σ+1) = ds2(d+1)(ρ, z) + e
2(ψ+ζ)
(2σ−d)

(

dy2 −A
(2)
N dxN

)2

+e
2(ξ(2σ−d)+(2σ−d−1)ψ−ζ)

(2σ−d)(2σ−d−1)

(

dy1 −A
(1)
M dxM −A(0)dy(2)

)2

+e
2ψ

2σ−d
− 2ζ

(2σ−d)(2σ−d−1)
− 2ξ

(2σ−d−1)(2σ−d−2)dyadya . (2.6)

We include the equations of motion corresponding to the fields present in (2.5), in ap-

pendix A.

We bring the reduced action into Einstein frame by conformally rescaling it using the

metric rescaling

gMN = e−2ψ/(d−1)ḡMN , (2.7)

and further rescale the scalars as

ψ =

√

(2σ − d)(d− 1)

2(2σ − 1)
ψ̄ , ζ =

√

(2σ − d)(2σ − d− 1)

2
ζ̄ ,

and ξ =

√

(2σ − d− 1)(2σ − d− 2)

2
ξ̄ , (2.8)

to yield the action in the Einstein frame with canonically normalized scalar kinetic terms,

S(d+1) = L

∫

dd+1x
√

−ḡ(d+1)

[

R̄− 1

2
(∂ψ̄)2 − 1

2
(∂ζ̄)2 − 1

2
(∂ξ̄)2

−1

4
e

√

2(2σ−1)
(d−1)(2σ−d)

ψ̄+
√

2(2σ−d−1)
2σ−d

ζ̄
F

(2)
MNF

(2)MN

−1

4
e

√

2(2σ−d−2)
(2σ−d−1)

ξ̄+
√

2(2σ−1)
(d−1)(2σ−d)

ψ̄−
√

2
(2σ−d)(2σ−d−1)

ζ̄×

×
(

F
(1)
MNF

(1)MN + 4∂MA(0)A(2)NF
(1)
MN

−2
(

A(2)M∂MA
(0)
)2

+ 2A
(2)
M A(2)M

(

∂A(0)
)2
)

−1

2
e

√

2(2σ−d−2)
(2σ−d−1)

ξ̄−
√

2(2σ−d)
(2σ−d−1)

ζ̄
(

∂A(0)
)2

+2σ(2σ − 1)e
−ψ̄

√

2(2σ−d)
(d−1)(2σ−1)

]

. (2.9)

We may only canonically normalize positive kinetic terms, thus the rescaling (2.8) assumes

that 2σ > (d+ 2), since in (2.5) 2σ < (d+ 2) would render the ξ kinetic term negative.

2.2 Holographic dictionary

In this section we set up the holographic dictionary of our (d+1)-dimensional theory (2.9)

using generalized dimensional reduction, as in [17]. The beauty of this approach lies in the
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fact that the higher-dimensional theory (2.1) is relatively simple, with the most general

asymptotic solution given by

ds2(2σ+1) =
dρ2

4ρ2
+

1

ρ
gµνdx

µdxν , (2.10)

gµν = g(0)µν + ρg(2)µν + · · ·+ ρσ
(

g(2σ)µν + h(2σ)µν log ρ
)

+ · · · , (2.11)

where g(0)µν is the source. The quantities Trg(2σ) and ∇µg(2σ)µν are determined locally in

terms of the source and all other coefficients are completely determined, while the loga-

rithmic terms h(2σ) are present if σ is an integer.

Since all solutions of our theory of interest descend from solutions of (2.1), we simply

need to consider the class of asymptotic solutions which has the form of the reduction (2.6)

in order to obtain the general asymptotic solution of (2.5).

We begin by writing down the asymptotic expansions of the (d+1)-dimensional fields.

We then compute the local boundary counterterm action, needed to ensure that the on-

shell action is finite. We do this via generalized dimensional reduction, which we further

use to compute the holographic one-point functions of the lower-dimensional theory. We

then use linear combinations of these one-point functions to build the stress-energy tensor,

currents and naturally normalized scalar operators of the dual d-dimensional field theory.

Finally we reduce the higher-dimensional conformal dilatation Ward identity and stress

energy tensor conservation equation.

2.2.1 Asymptotic expansion

We expand the (d+1)-dimensional metric in the usual Fefferman-Graham form, as in (2.10),

ds2(d+1) =
dρ2

4ρ2
+

1

ρ
g̃ij(z, ρ)dz

idzj

=
dρ2

4ρ2
+

1

ρ

(

g̃(0)ij + · · ·+ ρσ g̃(2σ)ij
)

dzidzj , (2.12)

whilst the scalar fields can be expanded as

e
2ψ

(2σ−d) =
1

ρ
e

2κ
(2σ−d) , κ = κ(0) + ρκ(2) + · · ·+ ρσκ(2σ) ,

ζ = ζ(0) + ρζ(2) + · · ·+ ρσξ(2σ) ,

ξ = ξ(0) + ρξ(2) + · · ·+ ρσξ(2σ) , (2.13)

the gauge fields as

A
(1)
i (ρ, z) = A

(1)
i(0)(z) + ρA

(1)
i(2)(z) + · · ·+ ρσA

(1)
i(2σ)(z) + · · · ,

A
(2)
i (ρ, z) = A

(2)
i(0)(z) + ρA

(2)
i(2)(z) + · · ·+ ρσA

(2)
i(2σ)(z) + · · · , (2.14)

and the axion as

A(0)(ρ, z) = A
(0)
(0)(z) + ρA

(0)
(2)(z) + · · ·+ ρσA

(0)
(2σ)(z) + · · · . (2.15)

We are interested in cases with non-integral σ, so our expansions of interest do not contain

the logarithmic terms associated with integer σ.
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2.2.2 Counterterms and holographic one-point functions

With the asymptotic solution in hand, we would now like to compute the local boundary

counterterms. These are needed to ensure that the on-shell action is finite. Again we turn

to generalized dimensional reduction [28] to simplify the process, and perform the same

analysis as in [17]. So, as an example we consider the counterterm action for 1 < σ < 2,

for which we only need two counterterms. Reducing the two most singular counterterms

in AdS2σ̃+1 [21] to d dimensions, we obtain

Sct(d) = L

∫

ρ=ǫ
ddx

√−γdeψ
[

2(2σ − 1) +
1

2σ − 2

(

R̂d −
2σ − d− 1

(2σ − d)
(∂ψ)2

− 1

(2σ − d)(2σ − d− 1)
(∂ζ)2 − 1

(2σ − d− 1)(2σ − d− 2)
(∂ξ)2

−1

4
e

2(ψ+ζ)
(2σ−d)F

(2)
ij F

(2)ij − 1

4
e

2(ξ(2σ−d)+(2σ−d−1)ψ−ζ)
(2σ−d)(2σ−d−1) ×

×
(

F
(1)
ij F

(1)ij + 4∂iA(0)A(2)jF
(1)
ij − 2

(

A(2)i∂iA
(0)
)2

+2

(

e
−2(ψ+ζ)
(2σ−d) +A

(2)
i A(2)i

)

(

∂A(0)
)2
))]

. (2.16)

Next we would like to compute the holographic one-point functions of our lower-

dimensional theory. However, we know the formula for the higher-dimensional one-point

function,

〈Tµν〉2σ =
2

√−g(0),2σ
δSren
δgµν(0)

= 2σLAdSg(2σ)µν + · · · , (2.17)

with the actual quantity of interest being

〈tµν〉d ≡ eκ(0)(2πR)2σ−d〈Tµν〉2σ , (2.18)

since it takes into account the prefactors (eκ(0) , (2πR)2σ−d) resulting from the integration

over the torus and the change in the metric determinant when going to d-dimensions, re-

spectively. The ellipses in (2.17) again represent terms dependent locally on the source

which appear when σ is an integer, since in that instance g(0)µν is curved and there is a

conformal anomaly.

Thus, as in [17], we may again simply dimensionally reduce 〈tµν〉d to obtain the expec-

tation values of the operators in the d-dimensional field theory. The various components

are given by

〈tij〉d = 2σLeκ(0)

[

g̃(2σ)ij + 2e
2(κ(0)+ζ(0))

2σ−d

(

A
(2)
(i(0)A

(2)
j)(2σ)

+
A

(2)
i(0)A

(2)
j(0)

2σ − d

(

κ(2σ) + ζ(2σ)
)





+2e
2((2σ−d−1)κ(0)+(2σ−d)ξ(0)−ζ(0))

(2σ−d)(2σ−d−1) ×

– 7 –
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×
((

(2σ − d− 1)κ(2σ) + (2σ − d)ξ(2σ) − ζ(2σ)

(2σ − d)(2σ − d− 1)

)

A
(1)
i(0)A

(1)
j(0)

+A
(1)
(i(0)A

(1)
j)(2σ)

)]

,

〈tiy1〉d = −2σLeκ(0)e
2((2σ−d−1)κ(0)+(2σ−d)ξ(0)−ζ(0))

(2σ−d)(2σ−d−1) ×

×
(

A
(1)
i(2σ) +

(

2
(

(2σ − d− 1)κ(0) + (2σ − d)ξ(0) − ζ(0)
)

(2σ − d)(2σ − d− 1)

)

A
(1)
i(0)

)

, (2.19)

〈tiy2〉d = 2σLeκ(0)

[

−e
2(κ(0)+ζ(0))

2σ−d

(

2

(2σ − d)

(

κ(2σ) + ζ(2σ)
)

A
(2)
i(0) +A

(2)
i(2σ)

)

+e
2((2σ−d−1)κ(0)+(2σ−d)ξ(0)−ζ(0))

(2σ−d)(2σ−d−1) ×

×
((

2
(

(2σ − d− 1)κ(2σ) + (2σ − d)ξ(2σ) − ζ(2σ)
)

(2σ − d)(2σ − d− 1)

)

A
(1)
i(0)A

(0)
(0)

+A
(1)
i(2σ)A

(0)
(0) +A

(0)
(2σ)A

(1)
i(0)

)]

,

〈ty1y1〉d = 4σLeκ(0)e
2((2σ−d−1)κ(0)+(2σ−d)ξ(0)−ζ(0))

(2σ−d)(2σ−d−1) ×

×
(

(2σ − d− 1)κ(2σ) + (2σ − d)ξ(2σ) − ζ(2σ)

(2σ − d)(2σ − d− 1)

)

+ · · ·

≡ −e
2((2σ−d−1)κ(0)+(2σ−d)ξ(0)−ζ(0))

(2σ−d)(2σ−d−1) 〈O3〉d ,

〈ty2y2〉d = 4σLeκ(0)

[

e
2(κ(0)+ζ(0))

2σ−d

(

1

2σ − d

)

(

κ(2σ) + ζ(2σ)
)

+e
2((2σ−d−1)κ(0)+(2σ−d)ξ(0)−ζ(0))

(2σ−d)(2σ−d−1) ×

×
((

(2σ − d− 1)κ(2σ) + (2σ − d)ξ(2σ) − ζ(2σ)

(2σ − d)(2σ − d− 1)

)

A
(0) 2
(0)

+A
(0)
(0)A

(0)
(2σ)

)]

+ · · ·

≡ −e
2(κ(0)+ζ(0))

2σ−d 〈O1〉d ,

〈ty1y2〉d = −2σLeκ(0)e
2((2σ−d−1)κ(0)+(2σ−d)ξ(0)−ζ(0))

(2σ−d)(2σ−d−1) ×

×
((

2
(

(2σ − d− 1)κ(2σ) + (2σ − d)ξ(2σ) − ζ(2σ)
)

(2σ − d)(2σ − d− 1)

)

A
(0)
(0)

+A
(0)
(2σ)

)

+ · · ·

≡ −e
2((2σ−d−1)κ(0)+(2σ−d)ξ(0)−ζ(0))

(2σ−d)(2σ−d−1) 〈O4〉d ,

〈tab〉d = 4σLeκ(0)e
2((2σ−d−1)(2σ−d−2)κ(0)−(2σ−d−2)ζ(0)−(2σ−d)ξ(0))

(2σ−d)(2σ−d−1)(2σ−d−2) ×

×
(

1

(2σ − d)
κ(2σ) −

1

(2σ − d)(2σ − d− 1)
ζ(2σ)
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− 1

(2σ − d− 1)(2σ − d− 2)
ξ(2σ)

)

δab + · · ·

≡ −e
2((2σ−d−1)(2σ−d−2)κ(0)−(2σ−d−2)ζ(0)−(2σ−d)ξ(0))

(2σ−d)(2σ−d−1)(2σ−d−2) 〈O2〉dδab , (2.20)

and from these expressions we read off

〈O1〉d = − 4σL

2σ − d
eκ(0)

[

κ(2σ) + ζ(2σ) + e
2(ξ(0)−ζ(0))

(2σ−d−1) ×

×
(

A
(0) 2
(0)

(

κ(2σ) +
(2σ − d)

(2σ − d− 1)
ξ(2σ) −

1

(2σ − d− 1)
ζ(2σ)

)

+(2σ − d)A
(0)
(0)A

(0)
(2σ)

)]

+ · · · ,

〈O2〉d = − 4σL

2σ − d
eκ(0)

(

κ(2σ) −
1

(2σ − d− 1)
ζ(2σ)

− (2σ − d)

(2σ − d− 1)(2σ − d− 2)
ξ(2σ)

)

+ · · · ,

〈O3〉d = − 4σL

2σ − d
eκ(0)

(

κ(2σ) +
(2σ − d)

(2σ − d− 1)
ξ(2σ) −

1

(2σ − d− 1)
ζ(2σ)

)

+ · · · ,

〈O4〉d =
2σL

2σ − d
eκ(0)

(

2A
(0)
(0)

(

κ(2σ) +
(2σ − d)

(2σ − d− 1)
ξ(2σ) −

1

(2σ − d− 1)
ζ(2σ)

)

+(2σ − d)A
(0)
(2σ)

)

+ · · · .

In all of the above expressions, the ellipses represent terms containing derivatives of the

scalar sources (κ(0), ζ(0), ξ(0)) and curvatures of the boundary metric g(0)ij .

The reduction has thus yielded seven arbitrarily normalized operators: a symmetric

tensor 〈tij〉d, two vectors 〈tiy1〉d and 〈tiy2〉d, as well as four scalar operators.

2.2.3 Stress-energy tensor, currents and scalar operators

With the reduced one-point functions in hand, we now wish to form appropriate linear

combinations of them to yield the stress energy tensor 〈T̂ij〉, currents 〈Ĵ (1)
i 〉 and 〈Ĵ (2)

i 〉,
and naturally normalized scalar operators of the dual d-dimensional field theory, namely

〈Oψ〉d, 〈Oζ〉d, 〈Oξ〉d and 〈OA(0)〉d. The specific combinations we use become clear when we

study the reduction of the higher-dimensional Ward identities in the next section.

We introduce linear combinations of the scalar operators as follows

〈Oψ〉d =
1

(2σ − d)

[

(2σ − d− 2)〈O2〉d + 〈O1〉d + 2A
(0)
(0)e

2
(2σ−d−1)(ξ(0)−ζ(0))〈O4〉d

+
(

1 + e
2

(2σ−d−1)(ξ(0)−ζ(0))A
(0) 2
(0)

)

〈O3〉d
]

,

〈Oξ〉d =
1

(2σ − d− 1)
[〈O3〉d − 〈O2〉d] ,

〈Oζ〉d =
1

(2σ − d)

[

〈O1〉d + 2A
(0)
(0)e

2
(2σ−d−1)(ξ(0)−ζ(0))〈O4〉d

+
1

(2σ − d− 1)

[(

(2σ − d− 1)e
2

(2σ−d−1)(ξ(0)−ζ(0))A
(0) 2
(0) − 1

)

〈O3〉d
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−(2σ − d− 2)〈O2〉d]] ,
〈OA(0)〉d = −e

2
(2σ−d−1)(ξ(0)−ζ(0))

[

〈O4〉d +A
(0)
(0)〈O3〉d

]

, (2.21)

so that

〈Oψ〉d = − 4σL

(2σ − d)
eκ(0)κ(2σ) ,

〈Oξ〉d = − 4σL

(2σ − d− 1)(2σ − d− 2)
eκ(0)ξ(2σ) ,

〈Oζ〉d = − 4σL

(2σ − d)(2σ − d− 1)
eκ(0)ζ(2σ) ,

〈OA(0)〉d = −2σLeκ(0)e
2

(2σ−d−1)(ξ(0)−ζ(0))A
(0)
(2σ) . (2.22)

Furthermore, we write

A
(3)
(0)i ≡ A

(1)
(0)i +A

(0)
(0)A

(2)
(0)i ,

〈Ĵ (1)
i 〉d = 〈tiy1〉d +A

(3)
(0)i〈ty1y1〉d +A

(2)
(0)i〈ty1y2〉d ,

〈Ĵ (2)
i 〉d = 〈tiy2〉d +A

(3)
(0)i〈ty1y2〉d +A

(2)
(0)i〈ty2y2〉d ,

〈T̂ij〉d = 〈tij〉d +
(

A
(3)
(0)i〈Ĵ

(1)
j 〉d +A

(3)
(0)j〈Ĵ

(1)
i 〉d

)

+
(

A
(2)
(0)i〈Ĵ

(2)
j 〉d +A

(2)
(0)j〈Ĵ

(2)
i 〉d

)

+A
(3)
(0)iA

(3)
(0)je

2((2σ−d−1)κ(0)+(2σ−d)ξ(0)−ζ(0))
(2σ−d)(2σ−d−1) 〈O3〉d +A

(2)
(0)iA

(2)
(0)je

2(κ(0)+ζ(0))
2σ−d 〈O1〉d

+
(

A
(3)
(0)iA

(2)
(0)j +A

(2)
(0)iA

(3)
(0)j

)

e
2((2σ−d−1)κ(0)+(2σ−d)ξ(0)−ζ(0))

(2σ−d)(2σ−d−1) 〈O4〉d , (2.23)

so that

〈Ĵ (1)
i 〉d = −2σLeκ(0)e

2((2σ−d−1)κ(0)+(2σ−d)ξ(0)−ζ(0))
(2σ−d)(2σ−d−1)

(

A
(1)
i(2σ) +A

(0)
(2σ)A

(2)
i(0)

)

+ · · · , (2.24)

〈Ĵ (2)
i 〉d = −2σLeκ(0)

(

e
2(κ(0)+ζ(0))

2σ−d A
(2)
i(2σ) − e

2((2σ−d−1)κ(0)+(2σ−d)ξ(0)−ζ(0))
(2σ−d)(2σ−d−1) ×

×
(

A
(1)
i(2σ) +A

(0)
(2σ)A

(2)
i(0)

)

A
(0)
(0)

)

+ · · · , (2.25)

〈T̂ij〉d = 2σLeκ(0) g̃(2σ)ij + · · · . (2.26)

In fact, we may also check that varying the renormalized on-shell action with respect to

the appropriate source yields each of these combinations in turn. In appendix B we show

explicitly that 〈Ĵ (1)
i 〉d is the current sourced by A

(3)i
(0) , and 〈Ĵ (2)

i 〉d is the current sourced by

A
(2)i
(0) . The metric elements of g(0)µν and its inverse are also supplied in this appendix.

Now, a distinctive property of the axion is that it enters the action with a derivative,

which means that the action remains invariant if one shifts the axion by a constant. Thus,

a non-trivial check of the formulas for the one-point functions is that they are all invariant

under such a shift. This is true for all of the one-point functions except for Ĵ
(2)
i . One

can easily see this by looking at the form of (2.22) and (2.24)–(2.26): the only one-point
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function which has A
(0)
(0) in it is clearly (2.25), and under a constant shift in the axion

(A
(0)
(0) → A

(0)
(0) + c), it transforms as

〈Ĵ (2)
i 〉d → 〈Ĵ (2)

i 〉d − c〈Ĵ (1)
i 〉d . (2.27)

This is actually consistent with the invariance of the action under the axion shift, and

arises due to the transformation of A
(3)
(0)i → A

(3)i
(0) + cA

(2)i
(0) . More precisely, from the last

line in (2.33) it follows that the coupling in the action is A
(3)i
(0) Ĵ

(1)
i + A

(2)i
(0) Ĵ

(2)
i , and under

the axion shift this combination remains unchanged.

2.2.4 Reduced Ward identities

Beginning with the conformal Ward identity in the 2σ-dimensional theory,

〈Tµµ 〉2σ ≡ gµν(0)〈Tµν〉2σ = A2σ , (2.28)

we use (B.2) and reduce it to

〈tii〉d + 2
(

A
(1)i
(0) +A

(2)i
(0) A

(0)
(0)

)

〈tiy1〉d + 2A
(2)i
(0) 〈tiy2〉d

−
(

1 + e
2

(2σ−d−1)(ξ(0)−ζ(0))A
(0) 2
(0) + e

2((2σ−d−1)κ(0)+(2σ−d)ξ(0)−ζ(0))
(2σ−d)(2σ−d−1) ×

×
(

A
(1)
(0)nA

(1)n
(0) +A

(2)
(0)nA

(2)n
(0) A

(0) 2
(0) + 2A

(1)
(0)nA

(2)n
(0) A

(0)
(0)

))

〈O3〉d

−2

(

e
2

(2σ−d−1)(ξ(0)−ζ(0))A
(0)
(0) + e

2((2σ−d−1)κ(0)+(2σ−d)ξ(0)−ζ(0))
(2σ−d)(2σ−d−1) ×

×
(

A
(1)
(0)nA

(2)n
(0) +A

(2)
(0)nA

(2)n
(0) A

(0)
(0)

))

〈O4〉d

−
(

1 + e
2(κ(0)+ζ(0))

2σ−d A
(2)
(0)nA

(2)n
(0)

)

〈O1〉d − (2σ − d− 2)〈O2〉d

= eκ(0)(2πR)2σ−dA2σ ≡ Ad ,

and using (2.26) and (2.21) we see that this becomes

〈T̂ ii 〉d − (2σ − d)〈Oψ〉d = Ad . (2.29)

Note in particular that the new scalar operators Oζ and Oξ, and the axion operator OA(0)

do not contribute to the dilatation Ward identity above.

In addition, reducing the conservation equation for the higher-dimensional stress en-

ergy tensor, namely

∇µ〈Tµν〉2σ = 0 , (2.30)

yields

∇̃i〈T̂ij〉d + ∂jκ(0)〈Oψ〉d + ∂jζ(0)〈Oζ〉d + ∂jξ(0)〈Oξ〉d
+ ∂jA

(0)
(0)〈OA(0)〉d + F̃

(3) i
(0)j 〈Ĵ (1)

i 〉d + F̃
(2) i
(0)j 〈Ĵ (2)

i 〉d = 0 , (2.31)
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and the divergence equations for two currents

∇̃i〈Ĵ (1)
i 〉d = 0 , and ∇̃i〈Ĵ (2)

i 〉d = 0 . (2.32)

The form of (2.31) is a further justification for the combinations (2.21) and (2.23) we made

in the previous section, since it clearly corresponds to the standard diffeomorphism Ward

identity for a theory with stress energy tensor T̂ij in which the other operators are defined

in terms of the generating functional W

〈Oψ〉d = − 1
√−g(0)

δW

δκ(0)
, 〈Oζ〉d = − 1

√−g(0)
δW

δζ(0)
,

〈Oξ〉d = − 1
√−g(0)

δW

δξ(0)
, 〈OA(0)〉d = − 1

√−g(0)
δW

δA
(0)
(0)

,

〈Ĵ (1)i〉d = − 1
√−g(0)

δW

δA
(3)
(0)i

, 〈Ĵ (2)i〉d = − 1
√−g(0)

δW

δA
(2)
(0)i

. (2.33)

We thus see that the non-normalizable modes of the fields
(

ψ, ζ, ξ, A(0)
)

indeed source

(Oψ,Oζ ,Oξ,OA(0)) respectively, whilst A
(3)
(0)i and A

(2)
(0)i source the conserved currents Ĵ (1)i

and Ĵ (2)i respectively.

3 Black brane universal sector with two Maxwell fields

We wish to study the universal hydrodynamics of non-conformal branes, and specifically

we want to make use of the holographic results obtained in section 2, which correspond to

action (2.5), so we begin by writing down a black brane solution which carries a wave, and

whose universal sector contains the fields we encountered, namely three scalars, an axion

and two Maxwell fields. We do this by applying generalized dimensional reduction to a

higher-dimensional conformal black brane solution. Now, universal hydrodynamics may be

derived by studying the long wavelength fluctuation equations around boosted black brane

geometries. Conformal hydrodynamics was derived in this way using the boosted black

D3 brane geometry [62], and it is possible to derive non-conformal hydrodynamics using

the boosted black Dp brane geometry. Thus, once we have our lower-dimensional boosted

brane of interest, we may calculate the transport coefficients corresponding to first-order

non-conformal hydrodynamics on the boundary. In [17] we worked out the transport coef-

ficients of a boundary theory dual to a boosted black brane whose universal sector has only

one Maxwell field. We may recover all results obtained in [17] by setting ω1 = 0, ω2 = ω,

Ã
(1)
(0) = 0 and Ã

(2)
(0) = Ã(0) in the results of this section.

3.1 Black branes

In this section we show an explicit realization of the setup discussed in section 2 for a partic-

ular example: a black brane carrying a wave, whose universal sector is described by gravity

coupled to two Maxwell fields, three neutral scalars and an axion. Specifically, we show the

dimensional reduction involved in producing this system starting from a higher-dimensional
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conformal black brane solution, and then use the general setup developed in section 2.2 to

determine the equilibrium thermodynamic quantities of the boundary non-conformal hy-

drodynamics. In principle, we mirror the analysis of [17], but additionally perform another

Lorentz transformation on the conformal black brane background in order to get it into

the desired form.

3.1.1 Conformal black brane with wave

As in [17], our starting point is a (conformal) black brane solution in (2σ+ 1) dimensions:

ds2(2σ+1) =
dρ2

4ρ2f(ρ)
+

1

ρ

[

−f(ρ)dt′2 + dy′2 + dy′′2 + dzrdz
r + dyady

a
]

,

f(ρ) = 1−m2σρσ , (3.1)

where (y′, y′′, ya, zr) run over all transverse coordinates (a = d+ 1, . . . , 2σ − 2). Note that

we highlight the transverse coordinates y′ and y′′ because we will boost along each of them

by performing successive Lorentz transformations.

Now, the metric (3.1) is Einstein with negative curvature when 2σ is an integer, and

has an event horizon at ρ = m−2. The Hawking temperature T and Bekenstein-Hawking

entropy density s are given by

T =
mσ

2π
, s = 4πLAdSm

2σ−1 . (3.2)

We introduce a wave into this metric by performing a first Lorentz transformation t =

coshω1 t
′ − sinhω1 y

′ , y1 = coshω1 y
′ − sinhω1 t

′, followed by a second t′′ = coshω2 t −
sinhω2 y

′′ , y2 = coshω2 y
′′ − sinhω2 t, which gives:

ds2(2σ+1) =
dρ2

4ρ2f(ρ)
− ρ−1K1(ρ)

−1K2(ρ)
−1f(ρ)dt′′2 + ρ−1dzrdz

r + ρ−1dyady
a

+
K1(ρ)

ρ

[

dy1 −
(

(K ′
1(ρ))

−1 − 1
)

coshω2 dt′′

−
(

(K ′
1(ρ))

−1 − 1
)

sinhω2 dy2
]2

+
K2(ρ)

ρ

[

dy2 −
(

(K ′
2(ρ))

−1 − 1
)

dt′′
]2
,

f(ρ) = 1−m2σρσ ,

K1(ρ) = (1 +Q1ρ
σ) ,

(

K ′
1(ρ)

)−1
=
(

1− Q̄1ρ
σK1(ρ)

−1
)

,

K2(ρ) =
(

1 +Q2ρ
σK1(ρ)

−1
)

,
(

K ′
2(ρ)

)−1
=
(

1−Q̄2ρ
σK1(ρ)

−1K2(ρ)
−1
)

, (3.3)

where

Q1 = m2σ sinh2 ω1 , Q̄1 = m2σ sinhω1 coshω1 ,

Q2 = m2σ sinh2 ω2 cosh
2 ω1 , Q̄2 = m2σ sinhω2 coshω2 cosh

2 ω1 .

We remove the wave by setting ω1 = ω2 = 0, and recover the extremal limit by setting

m→ 0 with ω1, ω2 → ∞ and Q1, Q2 finite.
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Our aim is to perform a dimensional reduction as in section 2.1, so we first rewrite

the geometry (3.3) to fit the structure of (2.2), or equivalently (2.6), and then insist that

the coordinates (y1, y2, y
a) are periodically identified with period 2πR. We then boost this

resulting geometry along the non-compact boundary dimensions with boost parameter ûi,

satisfying ηij û
iûj = −1, where now zi = (t, zr). We also wish to include two external,

uniform gauge fields Ã
(1)
(0)idz

i and Ã
(2)
(0)idz

i. We do so by performing coordinate transfor-

mations on y1 and y2, as dy1 → dỹ1 = dy1 + Ã
(1)
(0)idz

i and dy2 → dỹ2 = dy2 + Ã
(2)
(0)idz

i

respectively. All of these considerations ultimately yield

ds2(2σ+1) =
dρ2

4ρ2f(ρ)
+

1

ρ

(

dzidzi
)

+
1

ρ

(

1−K1(ρ)
−1K2(ρ)

−1f(ρ)
)

ûiûjdz
idzj

+
K1(ρ)

ρ

[

dỹ1 −
(

Ã
(1)
i(0) +

(

(K ′
1(ρ))

−1 − 1
)

coshω2 ûi

−
(

(K ′
1(ρ))

−1 − 1
)

sinhω2Ã
(2)
i(0)

)

dzi

−
(

(K ′
1(ρ))

−1 − 1
)

sinhω2 dỹ2
]2

+
K2(ρ)

ρ

[

dỹ2 −
(

Ã
(2)
i(0) +

(

(K ′
2(ρ))

−1 − 1
)

ûi

)

dzi
]2

+
1

ρ
dyady

a . (3.4)

The next step towards deriving the universal hydrodynamics involves allowing the

temperature, charge, fluid velocity and external gauge field to become position dependent,

and correcting the metric at each order to satisfy the field equations.

3.1.2 Dimensional reduction

The dimensional reduction involves comparing the metric with (2.2) and reading off the

reduced metric, scalar fields, gauge fields and axion (we choose to read off φ1, φ2 and φ3
and then use (2.4) and (2.4) to evaluate ψ, ζ, and ξ, as opposed to reading these off (2.6),

but the latter will yield the same answer). Since we are making contact with section 2.2,

in which the reduced metric is written in Fefferman-Graham form and all the fields are ex-

panded using the Fefferman-Graham coordinate ρ (which we call ρ̃ in this section), we will

also write all of our quantities of interest in Fefferman-Graham coordinates. This involves

a redefinition of the radial coordinate ρ as per [28]:

ρ̃(ρ) =

(

2

1 +
√

1−m2σρσ

)2/σ

ρ ⇒ ρ(ρ̃) =

(

1 +
m2σρ̃σ

4

)−2/σ

ρ̃ . (3.5)

The reduced metric is thus given by

ds2(d+1) =
dρ2

4ρ2f(ρ)
+

1

ρ

(

dzidzi
)

+
1

ρ

(

1−K1(ρ)
−1K2(ρ)

−1f(ρ)
)

ûiûjdz
idzj

=
dρ̃2

4ρ̃2
+

1

ρ̃

(

1 +
m2σρ̃σ

4

)
2
σ

dzidz
i
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+
1

ρ̃

(

1 +
m2σρ̃σ

4

)
2
σ
[

1−K1(ρ(ρ̃))
−1K2(ρ(ρ̃))

−1f(ρ(ρ̃))
]

ûiûjdz
idzj , (3.6)

with the scalar fields being

e2φ1 =
K1(ρ)

ρ
=
K1(ρ(ρ̃))

ρ̃

(

1 +
m2σρ̃σ

4

)
2
σ

,

e
2φ2

(2σ−d−2) =
1

ρ
=

1

ρ̃

(

1 +
m2σρ̃σ

4

)
2
σ

,

e2φ3 =
K2(ρ)

ρ
=
K2(ρ(ρ̃))

ρ̃

(

1 +
m2σρ̃σ

4

)
2
σ

. (3.7)

Rewriting the scalar fields in terms of (ψ, ζ, ξ) we obtain

eψ =
1

ρσ−d/2
K1(ρ)

1/2K2(ρ)
1/2 =

K1(ρ(ρ̃))
1
2K2(ρ(ρ̃))

1
2

ρ̃
2σ−d

2

(

1 +
m2σρ̃σ

4

)
2σ−d
σ

,

eξ = K1(ρ(ρ̃))
2σ−d−2

2 ,

eζ = K2(ρ(ρ̃))
2σ−d−1

2 K1(ρ(ρ̃))
− 1

2 . (3.8)

Furthermore, since

e
2ψ

2σ−d =
1

ρ̃
e

2κ
2σ−d ,

we get that

eκ = K1(ρ(ρ̃))
1
2K2(ρ(ρ̃))

1
2

(

1 +
m2σρ̃σ

4

)
2σ−d
σ

. (3.9)

The gauge field A(2) is given by

A(2) = Ã
(2)
(0)idz

i +
[

((K
′

2(ρ(ρ̃)))
−1 − 1)ûi

]

dzi , (3.10)

with

A(1) = Ã
(1)
(0)idz

i +
[

((K
′

1(ρ))
−1 − 1) coshω2 ûi − ((K

′

1(ρ))
−1 − 1) sinhω2 Ã

(2)
(0)i

]

dzi , (3.11)

and the axion is

A(0) =
(

(K ′
1(ρ(ρ̃)))

−1 − 1)
)

sinhω2 . (3.12)

The other gauge field we are actually interested in, and which sources Ĵ (1) in the previous

section (see (2.23) and (B.7)) is

A(3) = A(1) +A(0)A(2) (3.13)

=
(

Ã
(1)
(0)i + ((K

′

1(ρ(ρ̃)))
−1 − 1)

(

coshω2 + sinhω2((K
′

2(ρ(ρ̃)))
−1 − 1)

)

ûi

)

dzi .
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3.1.3 Expansion in Fefferman-Graham coordinates

The next step is to expand the results in the previous section in the Fefferman-Graham

radial co-ordinate ρ̃, which gives us

κ(0) = 0; κ(2σ) =
1

2
(Q1 +Q2) +

(2σ − d)

σ

m2σ

4
, (3.14)

ζ(0) = 0; ζ(2σ) = −1

2
Q1 +

(2σ − d− 1)

2
Q2 ,

ξ(0) = 0; ξ(2σ) =
(2σ − d− 2)

2
Q1 ,

A
(0)
(0) = 0; A

(0)
(2σ) = −Q̄1 sinhω2 ,

A
(1)
i(0) = Ã

(1)
i(0); A

(1)
i(2σ) = Q̄1

(

sinhω2Ã
(2)
(0)i − coshω2ûi

)

,

A
(2)
i(0) = Ã

(2)
i(0); A

(2)
i(2σ) = −Q̄2ûi ,

A
(3)
i(0) = Ã

(1)
i(0); A

(3)
i(2σ) = −Q̄1 coshω2ûi ,

g̃(0)ij = ηij ; g̃(2σ)ij =
m2σ

2σ
ηij +

(

Q1 +Q2 +m2σ
)

ûiûj .

We now have all the ingredients necessary to extract the expectation values of the dual

operators from (2.20), and we obtain

〈T̂ij〉d = Lm2σηij + 2σL(Q1 +Q2 +m2σ)ûiûj

= Lm2σ
(

ηij + 2σ cosh2 ω1 cosh
2 ω2 ûiûj

)

,

〈Ĵ (1)
i 〉d = 2σLQ̄1 coshω2 ûi

= 2σLm2σ sinhω1 coshω1 coshω2 ûi ,

〈Ĵ (2)
i 〉d = 2σLQ̄2 ûi

= 2σLm2σ sinhω2 coshω2 cosh
2 ω1 ûi ,

〈O1〉d = −Lm2σ − 2σLQ2

= −Lm2σ
(

1 + 2σ sinh2 ω2 cosh
2 ω1

)

,

〈O2〉d = −Lm2σ ,

〈O3〉d = −Lm2σ − 2σLQ1

= −Lm2σ
(

1 + 2σ sinh2 ω1

)

,

〈O4〉d = −2σLQ̄1 sinhω2

= −2σLm2σ sinhω1 coshω1 sinhω2 , (3.15)

and using (2.21)

〈Oψ〉d = −Lm2σ − 2σL

(2σ − d)
(Q1 +Q2)

= −Lm2σ − 2σLm2σ

(2σ − d)

(

sinh2 ω1 + sinh2 ω2 cosh
2 ω1

)

,

〈Oξ〉d = − 2σLQ1

(2σ − d− 1)
= − 2σLm2σ

(2σ − d− 1)
sinh2 ω1 ,
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〈Oζ〉d =
2σL

(2σ − d)

(

Q1

(2σ − d− 1)
−Q2

)

=
2σLm2σ

(2σ − d)

(

sinh2 ω1

(2σ − d− 1)
− sinh2 ω2 cosh

2 ω1

)

,

〈OA(0)〉d = 2σLQ̄1 sinhω2 = 2σLm2σ sinhω1 coshω1 sinhω2 . (3.16)

Upon plugging the above into (2.29), we see that the dilatation Ward identity is satisfied.

3.1.4 Thermodynamic quantities

Now, at thermal equilibrium

〈T̂ij〉d = P̂ ηij + (P̂ + ǫ̂)ûiûj , 〈Ĵ (1)
i 〉d = q̂1ûi , 〈Ĵ (2)

i 〉d = q̂2ûi , (3.17)

where ǫ̂ is the energy density, q̂1 and q̂2 the charge densities and P̂ the pressure of the fluid

dual to the reduced spacetime (3.6). Thus, from the expressions (3.15) we can also read

off the thermodynamic quantities,

ǫ̂ = Lm2σ(2σ cosh2 ω1 cosh
2 ω2 − 1) ,

q̂1 ≡ 2σLQ̄1 coshω2 = 2σLm2σ sinhω1 coshω1 coshω2 ,

q̂2 ≡ 2σLQ̄2 = 2σLm2σ sinhω2 coshω2 cosh
2 ω1 ,

P̂ = Lm2σ . (3.18)

In addition, from (3.10) and (3.13) we obtain that the chemical potentials1 are equal to

µ̂1 = −
(

ûiA
(3)
i

∣

∣

∣

ρ=0
− ûiA

(3)
i

∣

∣

∣

ρ=m−2

)

=
tanhω1

coshω2
,

µ̂2 = −
(

ûiA
(2)
i

∣

∣

∣

ρ=0
− ûiA

(2)
i

∣

∣

∣

ρ=m−2

)

= tanhω2 . (3.19)

The thermodynamic identities

P̂ + ǫ̂ = T̂ ŝ+ q̂1µ̂1 + q̂2µ̂2 , dP̂ = ŝdT̂ + q̂1dµ̂1 + q̂2dµ̂2 , (3.20)

indeed hold under these thermodynamic values.

Inverting the expressions in (3.18) to express m, ω1 and ω2 in terms of ǫ̂, q̂1 and q̂2,

and then using the result in the last expression gives us the equation of state

P̂ (ǫ̂, q̂1, q̂2) =
1

2σ − 1

(

√

(ǫ̂(σ − 1)− q̂1q̂2)2 + (ǫ̂2 − (q̂1 + q̂2)2)(2σ − 1)

−ǫ̂(σ − 1) + q̂1q̂2) , (3.21)

1We may use regularity at the horizon, namely ûiA
(I)
i

∣

∣

∣

ρ=m−2

= 0 (I = 2, 3), to relate the chemical

potentials with the external gauge fields, respectively. However we choose not to do this, since we would

like to keep the external gauge fields and chemical potentials as separate quantities when discussing the

universal hydrodynamics in the next section. This allows us to make use of previously obtained results

which also keep the two quantities distinct, especially the equations from which we extract transport

coefficients in section 3.2.
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which we may use to evaluate the adiabatic speed of sound [65],

ĉ2s ≡
∂P̂

∂ǫ̂

∣

∣

∣

∣

∣

ŝ/q̂1, ŝ/q̂2

=
1

2(σ − 1) cosh2 ω1 cosh
2 ω2 + 1

, (3.22)

where the ratios ŝ/q̂1 and ŝ/q̂2 are kept fixed, and ŝ is the reduced entropy density given by

ŝ = 4πL coshω1 coshω2m
2σ−1 . (3.23)

Analysing (3.21) we see that if q̂1, q̂2 → 0, we get P̂ = ǫ̂/(2σ − 1), the equation of state

for non-conformal branes. Furthermore, in the extremal limit, where ǫ̂→ |q̂1 + q̂2|, P̂ → 0

as expected, while above extremality ǫ̂ > |q̂1 + q̂2| the expression under the square root is

manifestly positive. Lastly, from (3.21) and (3.18) we see that

m =

[

1

L(2σ − 1)

(

√

(ǫ̂(σ − 1)− q̂1q̂2)2 + (ǫ̂2 − (q̂1 + q̂2)2)(2σ − 1)

−ǫ̂(σ − 1) + q̂1q̂2

)

]1/2σ

. (3.24)

The reduced temperature T̂ is given by

T̂ =
mσ

2π coshω1 coshω2
. (3.25)

With the thermodynamic quantities in hand, we also notice that the expectation value

of the scalar operator 〈Oψ〉d can be expressed in terms of the energy density and pressure as

〈Oψ〉d =
1

(2σ − d)
〈T ii 〉d =

1

(2σ − d)

[

(d− 1)P̂ − ǫ̂
]

, (3.26)

〈Oζ〉d + 〈Oξ〉d =
1

(2σ − d)

[

(2σ − 1)P̂ − ǫ̂
]

, (3.27)

which shows that 〈Oψ〉d characterizes the deviation of the equation of state from confor-

mality (as one would expect). The combination 〈Oζ〉d + 〈Oξ〉d is zero in the uncharged

case, which yields the equation of state of the non-conformal branes. This is also obtained

by taking q1, q2 → 0 in (3.21).

3.2 Universal hydrodynamics

In this section we again turn to generalised dimensional reduction in order to obtain the

universal hydrodynamics of the charged dilatonic solutions. We are interested in hydrody-

namics at first-derivative order. Thus, in the upstairs picture we consider a conformal fluid

on a curved manifold in the Landua-Lifshitz frame. Dimensionally reducing the upstairs

energy-momentum tensor should in principle yield the transport coefficients of the lower-

dimensional theory, but we find that the reduction does not leave us in the Landau-Lifshitz

frame in the downstairs picture. Thus, we employ a frame-independent analysis to simplify

things. This method uses the requirement that the divergence of the entropy current is

positive semi-definite to write down equations from which we may extract the transport
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coefficients. With these transport coefficients in hand, we discuss various bounds which

they might satisfy. Our analysis follows that in [17], except that now we are dealing with

an additional charge in our system. Again, by setting ω1 = 0 and ω2 = ω in all results in

this section, we recover the results in [17].

3.2.1 Conformal fluid in higher dimension

As in [17], we begin with a conformal fluid in (2σ) dimensions on a curved manifold with

metric g(0)µν , whose hydrodynamic energy-momentum tensor at first-derivative order is

given by

〈Tµν〉2σ = 〈T eq
µν〉2σ + 〈T diss

µν 〉2σ , (3.28)

〈T eq
µν〉2σ = P (g(0)µν + 2σuµuν) , 〈T diss

µν 〉2σ = −2η2σσµν ,

σµν = P κµP
λ
ν ∇(κuλ) −

1

2σ − 1
Pµν(∇ · u) , Pµν = g(0)µν + uµuν ,

where T , uµ and η2σ denote the temperature, velocity and shear viscosity respectively

of the fluid and ∇µ is the covariant derivative corresponding to the metric g(0)µν . The

conservation of the energy-momentum tensor,

∇µ〈Tµν〉2σ = 0 , (3.29)

determines the evolution of the fluid; note also that we are working in Landau-Lifshitz

frame, where

uµ〈T diss
µν 〉2σ = 0 . (3.30)

For later reference, note that for the AdS black brane,

P = LAdSm
2σ , η2σ =

s

4π
= LAdSm

2σ−1 , (3.31)

by (3.2).

As a first step towards writing down the universal hydrodynamics at first derivative

order, we determine the reduced fluid velocity.

3.2.2 Reduced fluid velocity

We reduce the higher-dimensional fluid velocity uµ by setting

ua = 0 , uy1 = sinhω1 , uy2 = coshω1 sinhω2 , (3.32)

with (y1, y2, y
a) being compact dimensions, while ensuring that both

uµuµ = −1 , uµ = gµν(0)uµ , (3.33)

and

ûiûi = −1 , ûi = ηij ûj , (3.34)

hold. In the above, ûi is the lower-dimensional fluid velocity. The convention we have cho-

sen in (3.32) serves as a link to the wave generating coordinate transformation of the pre-

vious subsection, and allows us to compare what we get via (3.28), with what we obtained
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previously in (3.15). This requires us to first compute the boundary metric g(0)µν , which we

read off by using the reduction anzats (2.6) and the expansions of the fields (2.10), (2.13)

and (2.14). This yields

g(0)ij = ηij +A
(1)
(0)iA

(1)
(0)j +A

(2)
(0)iA

(2)
(0)j , g(0)iy1 = −A(1)

(0)i, g(0)iy2 = −A(2)
(0)i ,

g(0)y1y1 = 1 , g(0)y2y2 = 1 , g(0)y1y2 = 0 , (3.35)

with the inverse metric given by

gij(0) = ηij , giy1(0) = A
(1)i
(0) , giy2(0) = A

(2)i
(0) ,

gy1y1(0) = 1 + ηijA
(1)
(0)iA

(1)
(0)j , gy2y2(0) = 1 + ηijA

(2)
(0)iA

(2)
(0)j ,

gy1y2(0) = ηijA
(1)
(0)iA

(2)
(0)j . (3.36)

For simplicity, and to make a connection to the case of the AdS black brane (3.14), we

have set κ(0) = ζ(0) = ξ(0) = A
(0)
(0) = 0 in the above, and in what follows. Note that the

reduced boundary metric is the Minkowski metric.

With all this in mind, the reduction yields

ui = coshω1 coshω2ûi − sinhω1A
(1)
(0)i − coshω1 sinhω2A

(2)
(0)i ,

uy1 = sinhω1 ,

uy2 = coshω1 sinhω2 ,

ui = coshω1 coshω2û
i ,

uy1 = sinhω1 + coshω1 coshω2 û ·A(1)
(0) ,

uy2 = coshω1 sinhω2 + coshω1 coshω2 û ·A(2)
(0) . (3.37)

3.2.3 Equilibrium quantities

We may now insert the values (3.37) into (3.28), and using (2.23) obtain the equilibrium

(zero-derivative order) values for the stress-energy tensor, currents and operators:

〈T̂ eq
ij 〉d = P̂

[

ηij + 2σ
(

ui + uy1A
(1)
(0)i + uy2A

(2)
(0)i

)(

uj + uy1A
(1)
(0)j + uy2A

(2)
(0)j

)]

,

〈Ĵ (1)eq
i 〉d = 2σP̂uy1

(

ui + uy1A
(1)
(0)i + uy2A

(2)
(0)i

)

,

〈Ĵ (2)eq
i 〉d = 2σP̂uy2

(

ui + uy1A
(1)
(0)i + uy2A

(2)
(0)i

)

,

〈Oeq
1 〉d = −P̂

(

1 + 2σu2y2
)

,

〈Oeq
2 〉dδab = −P̂ (δab + 2σuaub) ,

〈Oeq
3 〉d = −P̂

(

1 + 2σu2y1
)

,

〈Oeq
4 〉d = −2σP̂uy1uy2 ,

which yields

〈T̂ eq
ij 〉d = P̂

(

ηij + 2σ cosh2 ω1 cosh
2 ω2ûiûj

)

, (3.38)
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〈Ĵ (1)eq
i 〉d = 2σP̂ sinhω1 coshω1 coshω2ûi , (3.39)

〈Ĵ (2)eq
i 〉d = 2σP̂ cosh2 ω1 coshω2 sinhω2ûi , (3.40)

〈Oeq
1 〉d = −P̂

(

1 + 2σ cosh2 ω1 sinh
2 ω2

)

, (3.41)

〈Oeq
2 〉d = −P̂ , (3.42)

〈Oeq
3 〉d = −P̂

(

1 + 2σ sinh2 ω1

)

, (3.43)

〈Oeq
4 〉d = −2σP̂ sinhω1 coshω1 sinhω2 , (3.44)

with

〈Oeq
ψ 〉d = − P̂

(2σ − d)

(

2σ cosh2 ω1 cosh
2 ω2 − d

)

, (3.45)

〈Oeq
ξ 〉d = − 2σP̂

(2σ − d− 1)
sinh2 ω1 , (3.46)

〈Oeq
ζ 〉d =

2σP̂

(2σ − d)(2σ − d− 1)

(

sinh2 ω1 − (2σ − d− 1) cosh2 ω1 sinh
2 ω2

)

, (3.47)

〈Oeq

A
(1)
(0)

〉d = 2σP̂ sinhω1 coshω1 sinhω2 . (3.48)

Using (3.17), we can read off the equilibrium quantities

P̂ =
L

LAdS
P , ǫ̂ =

(

2σ cosh2 ω1 cosh
2 ω2 − 1

)

P̂ ,

q̂1 = 2σP̂ sinhω1 coshω1 coshω2 , q̂2 = 2σP̂ coshω2 sinhω2 cosh
2 ω1 . (3.49)

Using (3.31) for the pressure density of the AdS black brane recovers (3.18) as well as the

dual operators in (3.15).

3.2.4 Dissipative extension and transport coefficient formulae

We now move on to the dissipative part. We wish to evaluate the transport coefficients char-

acterizing the reduced dual field theory. Since the upstairs picture comprises a conformal

fluid in (2σ) dimensions governed by (3.28), (3.29) and (3.30), we see that the only transport

coefficient in the upstairs picture is the shear viscosity η2σ. In the downstairs picture we

will also end up with a shear viscosity η̂, but also bulk viscosity ζ̂s and heat conductivity κ̂T .

We may obtain these transport coefficients by dimensionally reducing 〈T diss
µν 〉2σ in (3.28)

using uµ = (ui, 0, uy1 , uy2) from (3.37). However, we find that reducing the Landau-Lifshitz

frame condition (3.30) doesn’t result in the reduced frame also being the Landau-Lifshitz

frame. More precisely, as a first step in reducing uµ〈T diss
µν 〉2σ = 0 we write

ν = j : ui〈T diss
ij 〉2σ + uy1〈T diss

y1j 〉2σ + uy2〈T diss
y2j 〉2σ = 0 , (3.50)

ν = y1 : ui〈T diss
iy1 〉2σ + uy1〈T diss

y1y1〉2σ + uy2〈T diss
y2y1〉2σ = 0 , (3.51)

ν = y2 : ui〈T diss
iy2 〉2σ + uy1〈T diss

y1y2〉2σ + uy2〈T diss
y2y2〉2σ = 0 . (3.52)

Using (2.23) these become

ûi〈T̂ diss
ij 〉d = −tanhω1

coshω2
〈Ĵ (1)diss
j 〉 − tanhω2〈Ĵ (2)diss

j 〉d ,
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ûi〈Ĵ (1)diss
i 〉d =

tanhω1

coshω2
〈Odiss

3 〉d + tanhω2〈Odiss
4 〉d ,

ûi〈Ĵ (2)diss
i 〉d =

tanhω1

coshω2
〈Odiss

4 〉d + tanhω2〈Odiss
1 〉d . (3.53)

More precisely, (3.50) becomes

ûi〈T̂ diss
ij 〉d − ûiA

(1)
j(0)〈Ĵ

(1)diss
i 〉d − ûiA

(2)
j(0)〈Ĵ

(2)diss
i 〉d

+
tanhω1

coshω2

[

〈Ĵ (1)diss
j 〉d +A

(1)
j(0)〈O

diss
3 〉d +A

(2)
j(0)〈O

diss
4 〉d

]

+tanhω2

[

〈Ĵ (2)diss
j 〉d +A

(1)
j(0)〈O

diss
4 〉d +A

(2)
j(0)〈O

diss
1 〉d

]

= 0 , (3.54)

which yields the first expression in (3.53) once the last two expressions in (3.53) are sub-

stituted into it.

It is clear that (3.53) does not represent a Landau-Lifshitz frame in the reduced theory.

As a result, we will use the frame-independent analysis developed in [66], which relies on

ensuring that the divergence of the entropy current is positive semi-definite. In this case,

starting from the (2σ + 1)-dimensional entropy current in Landau-Lifshitz frame

〈Jµs 〉2σ = suµ , (3.55)

obeying divergence relation

∇µ〈Jµs 〉2σ = −∇µ

(uν
T

)

〈Tµνdiss〉2σ = − 1

T
σµν〈Tµνdiss〉2σ , (3.56)

upon reduction we obtain

〈J is〉d = ŝûi , ŝ =
L coshω1 coshω2

LAdS
s , (3.57)

with

∇i〈J is〉d = −∂i
(

ûj

T̂

)

〈T̂ ijdiss〉d −
[

∂i
µ̂1

T̂
− ûk

T̂
F

(1)k
(0) i

]

〈Ĵ (1)i
diss 〉d

−
[

∂i
µ̂2

T̂
− ûk

T̂
F

(2)k
(0) i

]

〈Ĵ (2)i
diss 〉d .

= −(∂ · û)
T̂





〈T̂ ijdiss〉P̂ij
(d− 1)

−
(

∂P̂

∂ǫ̂

)∣

∣

∣

∣

∣

q̂1,q̂2

〈T̂ ijdiss〉ûiûj +
(

∂P̂

∂q̂1

)∣

∣

∣

∣

∣

ǫ̂,q̂2

〈Ĵ (1)i
diss 〉ûi

+

(

∂P̂

∂q̂2

)∣

∣

∣

∣

∣

ǫ̂,q̂1

〈Ĵ (2)i
diss 〉ûi



− 〈T̂ ijdiss〉σ̂ij
T̂

+ V
(1)
1i

[

〈Ĵ (1)i
diss 〉+

(

q̂1

P̂ + ǫ̂

)

〈T̂ ijdiss〉ûj
]

+ V
(2)
1i

[

〈Ĵ (2)i
diss 〉+

(

q̂2

P̂ + ǫ̂

)

〈T̂ ijdiss〉ûj
]

, (3.58)
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where, for I = 1, 2,

V
(I)
1i = −



Pij∂
j µ̂I

T̂
+
F

(I)
(0)ij û

j

T̂



 . (3.59)

We obtain the last equality in (3.58) above by following the logic outlined in [66], but ex-

tended to include an extra charge (in [66] they deal with a singly charged system). For more

details on how we used the method of [66] to derive the above, and hence the following equa-

tions, refer to appendix C. Requiring (3.58) to be positive semi-definite leads to the formulae

P̂ ikP̂
j
l 〈T̂ diss

ij 〉d −
1

d− 1
P̂klP̂

ij〈T̂ diss
ij 〉d = −2η̂σ̂kl , (3.60)

P̂ ji

(

〈Ĵ (1)diss
j 〉d +

q̂1

ǫ̂+ P̂
ûk〈T̂ diss

kj 〉d
)

= −κ̂11



P̂ij∂
j µ̂1

T̂
+
F

(1)
(0)ij û

j

T̂





−κ̂12



P̂ij∂
j µ̂2

T̂
+
F

(2)
(0)ij û

j

T̂



 , (3.61)

P̂ ji

(

〈Ĵ (2)diss
j 〉d +

q̂2

ǫ̂+ P̂
ûk〈T̂ diss

kj 〉d
)

= −κ̂22



P̂ij∂
j µ̂2

T̂
+
F

(2)
(0)ij û

j

T̂





−κ̂21



P̂ij∂
j µ̂1

T̂
+
F

(1)
(0)ij û

j

T̂



 , (3.62)

P̂ ij〈T̂ diss
ij 〉d

d− 1
− ∂P̂

∂ǫ̂
ûiûj〈T̂ diss

ij 〉d +
∂P̂

∂q̂1
ûi〈Ĵ (1)diss

i 〉d +
∂P̂

∂q̂2
ûi〈Ĵ (2)diss

i 〉d = −ζ̂s∂iûi . (3.63)

In the above η̂ ≥ 0, ζ̂s ≥ 0, while κ̂11 > 0, κ̂22 > 0, with det κ̂ =
(

κ̂11κ̂22 − (κ̂12)
2
)

> 0.

We may obtain these latter conditions involving κ̂ij , (i, j = 1, 2) by noting that if we

substitute (3.61) and (3.62) into the last two lines of (3.58), we get

V
(1)
1

(

κ̂11V
(1)
1 + κ̂12V

(2)
1

)

+ V
(2)
1

(

κ̂21V
(1)
1 + κ̂22V

(2)
1

)

= κ̂11

(

V
(1)
1

)2
+ 2κ̂12V

(1)
1 V

(2)
1 + κ̂22

(

V
(2)
1

)2
, (3.64)

where κ̂12 = κ̂21. The quadratic polynomial above is positive for all V
(1)
1 , V

(2)
1 if it is pos-

itive somewhere and has no real roots. Now, if V
(1)
1 ≫ V

(2)
1 , the polynomial is positive if

κ̂11 > 0. No real roots implies

(2κ̂12)
2 − 4κ̂11κ̂22 < 0 ⇒ det κ̂ > 0 , (3.65)

which then implies that κ̂22 > 0. Similarly, if V
(2)
1 ≫ V

(1)
1 the polynomial is positive if

κ̂22 > 0, such that det κ̂ > 0 ⇒ κ̂11 > 0.

Now applying the reduced conditions (3.53) on the equations (3.61), (3.62) and (3.63)

yields

P̂ ij〈Ĵ (1)diss
j 〉d

(

1− q̂1

ǫ̂+ P̂

tanhω1

coshω2

)

− P̂ ij〈Ĵ (2)diss
j 〉d

(

q̂1

ǫ̂+ P̂
tanhω2

)
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= −κ̂11



P̂ ij∂j
µ̂1

T̂
+
F

(1)ij
(0) ûj

T̂



− κ̂12



P̂ ij∂j
µ̂2

T̂
+
F

(2)ij
(0) ûj

T̂



 , (3.66)

P̂ ij〈Ĵ (2)diss
j 〉d

(

1− q̂2

ǫ̂+ P̂
tanhω2

)

− P̂ ij〈Ĵ (1)diss
j 〉d

(

q̂2

ǫ̂+ P̂

tanhω1

coshω2

)

= −κ̂22



P̂ ij∂j
µ̂2

T̂
+
F

(2)ij
(0) ûj

T̂



− κ̂21



P̂ ij∂j
µ̂1

T̂
+
F

(1)ij
(0) ûj

T̂



 , (3.67)

P̂ ij〈T̂ diss
ij 〉d

(d− 1)
+

tanhω1

coshω2

(

tanhω1

coshω2

∂P̂

∂ǫ̂
+
∂P̂

∂q̂1

)

〈Odiss
3 〉d

+tanhω2

(

tanhω2
∂P̂

∂ǫ̂
+
∂P̂

∂q̂2

)

〈Odiss
1 〉d

+

(

2 tanhω1 tanhω2

coshω2

∂P̂

∂ǫ̂
+ tanhω2

∂P̂

∂q̂1
+

tanhω1

coshω2

∂P̂

∂q̂2

)

〈Odiss
4 〉d

= −ζ̂s∂iûi . (3.68)

From these formulae we may thus extract the reduced transport coefficients η̂, ζ̂s and the

heat conductivity matrix κ̂ij , for i, j = 1, 2. The details of this are given in appendix D.

We obtain

η̂ = ηd coshω1 coshω2 = Lm2σ−1 coshω1 coshω2 (3.69)

= L

(

2πT̂

σ

)2σ−1
(

1− µ̂21 − µ̂22
)−σ

, (3.70)

κ̂11 = ηd
σm

2π

(

1− sinh2 ω1

cosh2 ω1 cosh
2 ω2

)

=
σLm2σ

2π

(

1− sinh2 ω1

cosh2 ω1 cosh
2 ω2

)

(3.71)

=
σL

2π

(

2πT̂

σ

)2σ
(

1− µ̂21 − µ̂22
)−σ

(1− µ̂21) , (3.72)

κ̂22 = ηd
σm

2π

1

cosh2 ω2

=
σLm2σ

2π

1

cosh2 ω2

(3.73)

=
σL

2π

(

2πT̂

σ

)2σ
(

1− µ̂21 − µ̂22
)−σ

(1− µ̂22) , (3.74)

κ̂12 = κ̂21 = −ηd
σm

2π

sinhω1 sinhω2

coshω1 cosh
2 ω2

= −σLm
2σ

2π

sinhω1 sinhω2

coshω1 cosh
2 ω2

(3.75)

= −σL
2π

(

2πT̂

σ

)2σ
(

1− µ̂21 − µ̂22
)−σ

µ̂1µ̂2 , (3.76)

ζ̂s = 2ηd coshω1 coshω2

×
[

1

(d− 1)
− (2(σ − 1) cosh4 ω1 cosh

4 ω2 + 2 cosh2 ω1 cosh
2 ω2 − 1)

(2(σ − 1) cosh2 ω1 cosh
2 ω2 + 1)2

]

(3.77)

= 2η̂

[

1

d− 1
−
(

2σ − 1− (µ̂21 + µ̂22)
2
)

(

2σ − 1− µ̂21 − µ̂22
)2

]

, (3.78)
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where ηd is the shear viscosity of the reduced uncharged case,

ηd =
L

LAdS
η2σ = Lm2σ−1 . (3.79)

In the above we have also re-expressed all the transport coefficients for the reduced AdS

black brane in terms of the temperature and chemical potentials. Note also that the con-

ditions required for our transport coefficients are indeed satisfied: ζ̂s ≥ 0, η̂ ≥ 0, while

κ̂11 > 0, κ̂22 > 0, with κ̂11κ̂22 − (κ̂12)
2 =

(

σLm2σ

2π

)2
/(cosh2 ω1 cosh

2 ω2) > 0. We may use

the heat conductivity matrix κ̂ij for i, j = 1, 2 to obtain the heat conductivity using [67, 68],

κ̂T ≡
(

ǫ̂+ P̂

T̂

)2
1

2
∑

i,j=1

q̂iκ̂
−1
ij q̂j

=
2πLm2σ−2

σ

cosh2 ω1 cosh
2 ω2

(

cosh2 ω1 cosh
2 ω2 − 1

) (3.80)

=
2πL

σ

(

2πT̂

σ

)2σ−2 (
1− µ̂21 − µ̂22

)1−σ

µ̂21 + µ̂22
. (3.81)

A recent formula for ζ̂s/η̂ first developed in [75], allows us to check our value for the

shear to bulk viscosity ratio formed from (3.77) and (3.69)

ζ̂s
η̂

= 2

[

1

(d− 1)
− (2(σ − 1) cosh4 ω1 cosh

4 ω2 + 2 cosh2 ω1 cosh
2 ω2 − 1)

(2(σ − 1) cosh2 ω1 cosh
2 ω2 + 1)2

]

. (3.82)

The formula is quoted in [75] as

ζ̂s
η̂

=
∑

I

(

ŝ
dφIh
dŝ

+ q̂a
dφIh
dq̂a

)2

, (3.83)

where q̂a are conserved charge densities and φIh are a collection of scalar fields, evaluated at

the event horizon, and the formula is valid in the Einstein frame where the entropy density

ŝ is given by the quarter of the horizon area. This formula was derived for an action in

which the scalar fields φI are canonically normalised. However, in our case we need to

adjust this formula slightly to account for the non-standard normalisation of the axion

kinetic term in our action (2.9). Following the same procedure in appendix E as outlined

in [75], we arrive at the following formula:

ζ̂s
η̂

= ΩIJ

(

ŝ
dφIh
dŝ

+ q̂a
dφIh
dq̂a

)(

ŝ
dφJh
dŝ

+ q̂a
dφJh
dq̂a

)

, (3.84)

where φI = {ψ̄, ζ̄, ξ̄, A(0)}, and ΩIJ = diag{1, 1, 1,
(

coshω1
coshω2

)2
}. Note that

ΩIJ = diag{1, 1, . . . , 1} reproduces (3.83), and corresponds to all the scalar kinetic

terms being canonically normalised as done in [75]. The entropy and charge density in the

Einstein frame are still given by (3.23) and (3.18), the scalars we use in (3.84) are obtained

from (3.8) but further normalized as in (2.8), and the axion is obtained from (3.12). We

provide the details in re-evaluating ζ̂s/η̂ using formula (3.84) in appendix F.
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The DC conductivity can be deduced using the Wiedemann-Franz law:

σ̂DC = c1
κ̂T

T̂
= c1

4π2Lm2σ−3

σ2
cosh3 ω1 cosh

3 ω2

(cosh2 ω1 cosh
2 ω2 − 1)

= c1

(

2π

σ

)2

L

(

2πT̂

σ

)2σ−3 (
1− µ̂21 − µ̂22

)1−σ

µ̂21 + µ̂22
, (3.85)

where c1 is a proportionality constant. Furthermore we note that the ratio of thermal

conductivity and shear viscosity obeys a simple relation similar to the Wiedemann-Franz

law, even in the presence of multiple chemical potential:

κ̂T
(

µ̂21 + µ̂22
)

η̂T̂
=

(

2π

σm

)2

. (3.86)

Again, using the results in [17] for the single charge case, we obtain the same value for this

ratio (with µ̂21 + µ̂22 replaced by µ̂2).

3.2.5 Discussion of various bounds

Note that the transport coefficients (3.69)–(3.77) are universally valid for any solution with

the same asymptotics as the black brane solution discussed in the previous section.

We first consider the bulk to shear viscosity ratio, given by (3.82), whose value is

fixed kinematically by the reduction, and will be different depending on the asymptotics

of the system. This is also true for the ratio κ̂T /η̂.

As in [17], the bound proposed in [71] for the bulk to shear viscosity ratio

ζ̂s
η̂

≥ 2

(

1

d− 1
− ĉ2s

)

, (3.87)

doesn’t hold. And again, for a general system there is no reason to expect that such a

bound would necessarily apply, since ζ̂s/η̂ is fixed kinematically. Indeed, rewriting (3.82)

using (3.22), we obtain

ζ̂s
η̂
=2

(

1

d−1
−ĉ2s

)

− 4
(

(σ−1) cosh4 ω1 cosh
4 ω2+(2−σ) cosh2 ω1 cosh

2 ω2−1
)

(

2(σ − 1) cosh2 ω1 cosh
2 ω2 + 1

)2 , (3.88)

so that clearly this bound is always violated, except if

σ < µ̂21 + µ̂22 . (3.89)

Since µ̂21 + µ̂22 = 1 − 1/(cosh2 ω1 cosh
2 ω2) ≤ 1, the above is only possible if σ < 1. The

equality is achieved when either µ̂1 = µ̂2 = 0 (neutral case) or else µ̂21 + µ̂22 = σ.

However, an inequality which is satisfied in this case, and was also satisfied in [17], is

ζ̂s
η̂

≥ 2

(

1

d− 1
− ĉ2q

)

, (3.90)
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where for our case

ĉ2q ≡
∂P̂

∂ǫ̂

∣

∣

∣

∣

∣

q̂1,q̂2

=
2 cosh2 ω1 cosh

2 ω2 − 1

2(σ − 1) cosh2 ω1 cosh
2 ω2 + 1

. (3.91)

ĉ2q reduces to the speed of sound of the conformal branes when ω1 = ω2 = 0. If we rewrite

our ratio as follows

ζ̂s
η̂

− 2

(

1

d− 1
− ĉ2q

)

=
4(σ − 1) cosh2 ω1 cosh

2 ω2(cosh
2 ω1 cosh

2 ω2 − 1)
(

2(σ − 1) cosh2 ω1 cosh
2 ω2 + 1

)2 , (3.92)

we see that the right hand side is manifestly positive when σ > 1. It still remains interesting

to check whether there are any counterexamples to this inequality.

We also note that the KSS bound is saturated for this dual charge system, since we

may use (3.69) and (3.23) to see that

η̂

ŝ
=

1

4π
, (3.93)

which results due to the fact that this bound is saturated for conformal branes. The same

holds true for the uncharged case, and results due to the fact that in all these cases we

require regularity in the interior.

4 Discussion and conclusions

In this paper, we use generalized dimensional reduction of AdS gravity to determine the

holographic dictionary of a specific EMD theory containing two gauge fields, three neutral

scalars and an axion. We also study the hydrodynamic behaviour of the dual theory, and

compute its first order transport coefficient. Such an analysis was performed in [17] for a

reduced EMD theory with one gauge field and two scalars. We reproduce all results in [17]

by removing the extra fields from the results in this paper.

In contrast to [17], when considering the universal hydrodynamics of the reduced

theory, we find that the presence of the extra charge in the system leads us, via the

modified frame-independent analysis of [66], to a matrix of conductivities, from which

we may then calculate the thermal conductivity. In this paper we also have to modify

the formula of [75] used to check the bulk to shear viscosity ratio, since that formula

applies to the case of canonically normalized scalars and we have a non-standard axion

normalization. Lastly, the system studied in this paper also satisfies the the modified

bound on the bulk to shear viscosity ratio found in [17].

There are numerous possible extensions to this work, the most obvious being the

generalization of this analysis to include many gauge fields, which may be useful in the

study of imbalanced superconductors. Making connections to similar systems in the

context of AdS/CMT or cosmology are other possible avenues of future work.
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A Equations of motion of reduced theory with two Maxwell fields

In this appendix we give the equations of motion for each of the fields stemming from the

action (2.5).

The equation of motion for ζ is

∇M [eψ∂Mζ] =
1

4
(2σ − d− 1)eψ

(

e
2(ψ+ζ)
(2σ−d)F

(2)
MNF

(2)MN

− 1

2σ − d− 1
e

2(ξ(2σ−d)+(2σ−d−1)ψ−ζ)
(2σ−d)(2σ−d−1) ×

×
(

F
(1)
MNF

(1)MN + 4∂MA(0)A(2)NF
(1)
MN − 2

(

A(2)M∂MA
(0)
)2

+2

(

e
−2(ψ+ζ)
(2σ−d) +A

(2)
M A(2)M

)

(

∂A(0)
)2
)

−2e
2(ξ−ζ)

(2σ−d−1)∂NA
(0)∂NA(0)

)

, (A.1)

while the equation of motion for ψ is

∇M [eψ∂Mψ] =
2σ − d

2(2σ − d− 1)
eψ
[

R(d+1) +
(2σ − d− 1)

(2σ − d)
(∂ψ)2

− 1

(2σ − d)(2σ − d− 1)
(∂ζ)2 − 1

(2σ − d− 1)(2σ − d− 2)
(∂ξ)2

+2σ(2σ − 1)− 1

4

(2σ − d+ 2)

(2σ − d)
e

2(ψ+ζ)
(2σ−d)F

(2)
MNF

(2)MN

−1

4

2σ − d+ 2

2σ − d
e

2(ξ(2σ−d)+(2σ−d−1)ψ−ζ)
(2σ−d)(2σ−d−1) ×

×
(

F
(1)
MNF

(1)MN + 4∂MA(0)A(2)NF
(1)
MN − 2

(

A(2)M∂MA
(0)
)2

+2

(

e
−2(ψ+ζ)
(2σ−d) +A

(2)
M A(2)M

)

(

∂A(0)
)2
)

+
1

2σ − d
e

2(ξ−ζ)
(2σ−d−1)∂NA

(0)∂NA(0)

]

, (A.2)

and finally for ξ

∇M [eψ∂Mξ] = −1

4
(2σ − d− 2)eψe

2(ξ(2σ−d)+(2σ−d−1)ψ−ζ)
(2σ−d)(2σ−d−1) ×

×
(

F
(1)
MNF

(1)MN + 4∂MA(0)A(2)NF
(1)
MN − 2

(

A(2)M∂MA
(0)
)2
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+2

(

e
−2(ψ+ζ)
(2σ−d) +A

(2)
M A(2)M

)

(

∂A(0)
)2
)

. (A.3)

The gravitational field equation is

0 = RMN − 1

2
gMNR(d+1) −∇N∂Mψ +∇P∂Pψ gMN

−1

2
gMN

(−(2σ − d+ 1)

(2σ − d)
(∂ψ)2 − 1

(2σ − d)(2σ − d− 1)
(∂ζ)2

− 1

(2σ − d− 1)(2σ − d− 2)
(∂ξ)2 − 1

4
e

2(ψ+ζ)
(2σ−d)F

(2)
PQF

(2)PQ

+2σ(2σ − 1)− 1

4
eψe

2(ξ(2σ−d)+(2σ−d−1)ψ−ζ)
(2σ−d)(2σ−d−1) ×

×
(

F
(1)
PQF

(1)PQ + 4∂PA(0)A(2)QF
(1)
PQ − 2

(

A(2)P∂PA
(0)
)2

+2

(

e
−2(ψ+ζ)
(2σ−d) +A

(2)
P A(2)P

)

(

∂A(0)
)2
))

− 1

2σ − d
∂Mψ∂Nψ − 1

(2σ − d)(2σ − d− 1)
∂Mζ∂Nζ

− 1

(2σ − d− 1)(2σ − d− 2)
∂Mξ∂Nξ −

1

2
e

2(ψ+ζ)
(2σ−d)F

(2)Q
M F

(2)
NQ

−1

4
e

2(ξ(2σ−d)+(2σ−d−1)ψ−ζ)
(2σ−d)(2σ−d−1) ×

×
(

2F
(1)
MPF

(1)P
N + 4

(

∂NA
(0)A(2)P − ∂PA(0)A

(2)
N

)

F
(1)
MP

−4A
(2)
N A(2)P∂PA

(0)∂MA
(0) + 2e

−2(ψ+ζ)
(2σ−d) ∂MA

(0)∂NA
(0)

+2
(

A
(2)
M A

(2)
N ∂PA

(0)∂PA(0) +A
(2)
P A(2)P∂MA

(0)∂NA
(0)
))

, (A.4)

the gauge field equations are

∇M

[

eψe
2(ξ(2σ−d)+(2σ−d−1)ψ−ζ)

(2σ−d)(2σ−d−1)

(

F (1)MN + ∂MA(0)A(2)N − ∂NA(0)A(2)M
)

]

= 0 , (A.5)

and

∇M

[

eψe
2(ψ+ζ)
(2σ−d)F (2)MN

]

= eψe
2(ξ(2σ−d)+(2σ−d−1)ψ−ζ)

(2σ−d)(2σ−d−1)

(

∂MA(0)F
(1)N
M

−A(2)
M ∂MA(0)∂NA(0) +A(2)N

(

∂A(0)
)2
)

, (A.6)

and the axion field equation is

∇M

[

eψe
2(ξ(2σ−d)+(2σ−d−1)ψ−ζ)

(2σ−d)(2σ−d−1)

(

F
(1)M

NA
(2)N −A(2)MA(2)N∂NA

(0)

+

(

e
−2(ψ+ζ)
(2σ−d) +A

(2)
N A(2)N

)

∂MA(0)

)]

= 0 . (A.7)

Poles exist in the equations of motion for 2σ = d, so we have to go back to the reduction

ansatz to see that this corresponds to the case where there is no reduction. Furthermore,

for 2σ = d+1 the reduction is along a circle and there are no additional scalar fields ζ and

ξ, while 2σ = d+ 2 corresponds to a reduction along T2 with no scalar field ξ.
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B Check of quantities sourced by non-normalizable modes of fields

In this appendix we will write down the explicit component forms of g(0)µν and gµν(0),

and then we will show that A
(3)i
(0) sources current 〈Ĵ (1)i〉d, while 〈Ĵ (2)i〉d is the current

sourced by A
(2)i
(0) . Showing that the scalars

(

κ(0), ζ(0), ξ(0), A
(0)
(0)

)

respectively source

(Oψ,Oζ ,Oξ,OA(0)) follows along the same lines.

We first write down the elements of g(0)µν in (2.10), using the anzats (2.6), as well as

expansions (2.12)–(2.15). More precisely, we need to find the coefficient of ρ0 in (2.6).

This gives

g(0)ij = g̃(0)ij + eΛ(κ(0)+ζ(0))A
(2)
i(0)A

(2)
j(0) + eΛκ(0)+2Θξ(0)−ΛΘζ(0)A

(1)
i(0)A

(1)
j(0) ,

g(0)iy1 = −eΛκ(0)+2Θξ(0)−ΛΘζ(0)A
(1)
i(0) ,

g(0)iy2 = −eΛ(κ(0)+ζ(0))A(2)
i(0) + eΛκ(0)+2Θξ(0)−ΛΘζ(0)A

(1)
i(0)A

(0)
(0) ,

g(0)y1y1 = eΛκ(0)+2Θξ(0)−ΛΘζ(0) ,

g(0)y2y2 = eΛ(κ(0)+ζ(0)) + eΛκ(0)+2Θξ(0)−ΛΘζ(0)A
(0)2
(0) ,

g(0)y1y2 = −eΛκ(0)+2Θξ(0)−ΛΘζ(0)A
(0)
(0) ,

g(0)ab = eΛκ(0)−ΛΘζ(0)−2ΘΩξ(0)δab , (B.1)

where Λ = 2
(2σ−d) and Θ = 1

(2σ−d−1) , while Ω = 1
(2σ−d−2) .

With these values in hand, it is now easy to check that gµν(0), the inverse metric of (B.1),

is given by

gij(0) = g̃ij(0) , giy
(1)

(0) = A
(3)i
(0) , giy

(2)

(0) = A
(2)i
(0) ,

gy1y1(0) = e
−

2((2σ−d−1)κ(0)+(2σ−d)ξ(0)−ζ(0))
(2σ−d)(2σ−d−1) + e−

2(κ(0)+ζ(0))
2σ−d A

(0) 2
(0) +A

(3)
(0)nA

(3)n
(0) ,

gy1y2(0) = e−
2(κ(0)+ζ(0))

2σ−d A
(0)
(0) +A

(3)
(0)nA

(2)n
(0) , gy2y2(0) = e−

2(κ(0)+ζ(0))
2σ−d +A

(2)
(0)nA

(2)n
(0) ,

gab(0) = e
−

2((2σ−d−1)(2σ−d−2)κ(0)−(2σ−d−2)ζ(0)−(2σ−d)ξ(0))
(2σ−d)(2σ−d−1)(2σ−d−2) δab , (B.2)

and indeed satisfies g(0)µλg
λν
(0) = δνµ. We may write this inverse metric (B.2) more simply

by setting

α(0) = Λ(κ(0) + ζ(0)) , β(0) = Λκ(0) + 2Θξ(0) − ΛΘζ(0) ,

γ(0) = Λκ(0) − ΛΘζ(0) − 2Θξ(0) , (B.3)

so that

gij(0) = g̃ij(0) , giy
(1)

(0) = A
(3)i
(0) , giy

(2)

(0) = A
(2)i
(0) ,

gy1y1(0) = e−β(0) + e−α(0)A
(0) 2
(0) +A

(3)
(0)nA

(3)n
(0) ,

gy1y2(0) = e−α(0)A
(0)
(0) +A

(3)
(0)nA

(2)n
(0) , gy2y2(0) = e−α(0) +A

(2)
(0)nA

(2)n
(0) ,
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gab(0) = e−γ(0)δab . (B.4)

We also set

α(2σ) = Λ(κ(2σ) + ζ(2σ)) , β(2σ) = Λκ(2σ) + 2Θξ(2σ) − ΛΘζ(2σ) ,

γ(2σ) = Λκ(2σ) − ΛΘζ(2σ) − 2Θξ(2σ) .

We may now move on to the quantities sourced by A
(2)i
(0) and A

(3)i
(0) . Now, recall that

〈Tµν〉2σ =
2

√
g(0),2σ

δSren
δgµν(0)

, 〈tµν〉d = eκ(0)(2πR)2σ−d〈Tµν〉2σ , (B.5)

so that the current J (2)
i sourced by A

(2)i
(0) is given by

〈J (2)
i 〉d ≡ 1

√
g(0),d

δSren

δA
(2)i
(0)

=
eκ(0)

√
g(0),2σ

δSren
δgκρ(0)

δgκρ(0)

δA
(2)i
(0)

=
1

2
eκ(0)〈Tκρ〉2σ

δgκρ(0)

δA
(2)i
(0)

=
1

2
(2πR)d−2σ〈tκρ〉d

δgκρ(0)

δA
(2)i
(0)

=
1

2
(2πR)d−2σ



2〈tjy2〉d
δgjy2(0)

δA
(2)i
(0)

+ 2〈ty1y2〉d
δgy1y2(0)

δA
(2)i
(0)

+ 〈ty2y2〉d
δgy2y2(0)

δA
(2)i
(0)





=
1

2
(2πR)d−2σ

(

2〈tiy2〉d + 2〈ty1y2〉dA
(3)
(0)i + 2〈ty2y2〉dA

(2)
(0)i

)

= (2πR)d−2σ2σLeκ(0)

×
[

eβ(0)
(

β(2σ)A
(1)
i(0)A

(0)
(0) +A

(1)
i(2σ)A

(0)
(0) +A

(0)
(2σ)A

(1)
i(0)

)

−eα(0)

(

α(2σ)A
(2)
i(0) +A

(2)
i(2σ)

)

−A
(3)
i(0)e

β(0)
(

β(2σ)A
(0)
(0) +A

(0)
(2σ)

)

+A
(2)
i(0)

(

eα(0)α(2σ) + eβ(0)
(

A
(0)2
(0) β(2σ) + 2A

(0)
(0)A

(0)
(2σ)

))]

= (2πR)d−2σ2σLeκ(0)
[

−eα(0)A
(2)
i(2σ) + eβ(0)

(

A
(1)
i(2σ)A

(0)
(0) +A

(0)
(2σ)A

(1)
i(0)

−A(3)
i(0)A

(0)
(2σ) + 2A

(0)
(0)A

(2)
i(0)A

(0)
(2σ)

)]

= −(2πR)d−2σ2σLeκ(0)
[

eα(0)A
(2)
i(2σ) − eβ(0)A

(0)
(0)

(

A
(1)
i(2σ) +A

(2)
i(0)A

(0)
(2σ)

)]

= 〈Ĵ (2)
i 〉d , (B.6)

while the current J (1)
i sourced by A

(3)i
(0) is

〈J (1)
i 〉d ≡ 1

√
g(0),d

δSren

δA
(3)i
(0)

=
1

√
g(0),d

δSren
δgκρ(0)

δgκρ(0)

δA
(3)i
(0)

=
1

2
(2πR)d−2σ〈tκρ〉d

δgκρ(0)

δA
(3)i
(0)

=
1

2
(2πR)d−2σ



2〈tjy1〉d
δgjy1(0)

δA
(3)i
(0)

+ 〈ty1y1〉d
δgy1y1(0)

δA
(3)i
(0)

+ 2〈ty1y2〉d
δgy1y2(0)

δA
(3)i
(0)
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=
1

2
(2πR)d−2σ

(

2〈tiy1〉d + 2〈ty1y1〉dA
(3)
(0)i + 2〈ty1y2〉dA

(2)
(0)i

)

= −(2πR)d−2σ2σLeκ(0)e
2((2σ−d−1)κ(0)+(2σ−d)ξ(0)−ζ(0))

(2σ−d)(2σ−d−1)

(

A
(1)
i(2σ) +A

(0)
(2σ)A

(2)
i(0)

)

= 〈Ĵ (1)
i 〉d . (B.7)

C Transport coefficient relations in two charge hydrodynamic system

In this appendix we derive the equations from which we may extract the transport

coefficients for a two-charge hydrodynamic system, using the frame-independent method

of [66]. Note that we may reproduce the one-charge results of [66] by setting µ2 = F
(2)
µν = 0,

while µ1 = µ and F
(1)
µν → −Fµν .

In [66], beginning with a one charge system in 4 dimensions with degrees of freedom

(µ, T, uµ) and entropy current divergence

∇µJ
µ
s = −∇µ

(uν
T

)

Tµνdiss −
(

∂µ
µ

T
− Fµνu

ν

T

)

Jµdiss , (C.1)

the first step involves writing down all possible scalars, vectors and tensors in the theory,

and then expanding each term on the r.h.s. of (C.1) in terms of these. Having found

which quantities participate in this expansion, the next step involves using the first order

equations of motion of the system to show that the scalars and vectors are proportional

to each other, respectively.

The procedure we employ is equivalent, except that we extend the analysis to include

an extra chemical potential (as well as an extra field strength and current). Furthermore,

we will be using the notation developed in the rest of this paper, namely hatted quantities

and Latin indices, as opposed to the Greek indices used in [66].

Thus, our d-dimensional two charge system has degrees of freedom (µ̂1, µ̂2, T̂ , ûi) and

entropy current divergence given by

∇iJ
i
s = −∇i

(

ûj

T̂

)

T̂ ijdiss −



∂i

(

µ̂1

T̂

)

−
F

(1)
(0)jiû

j

T̂



 Ĵ
(1)i
diss

−



∂i

(

µ̂2

T̂

)

−
F

(2)
(0)jiû

j

T̂



 Ĵ
(2)i
diss , (C.2)

with all possible scalars, vectors and tensors in the theory given by the obvious extension

of table 1 in [66]. Expanding the r.h.s. of (C.2) in terms of these, we get

∇iJ
i
s = T̂ ijdiss

[

−P̂ij
(d− 1)

(∂ · û)
T̂

− (û · ∂)T̂
T̂ 2

ûiûj +
1

T̂

(

P̂ik
∂kT̂

T̂
+ (û · ∂)ûi

)

ûj −
σ̂ij

T̂

]

+Ĵ
(1)i
diss

[

(û · ∂)ν̂1ûi + V
(1)
1i

]

+ Ĵ
(2)i
diss

[

(û · ∂)ν̂2ûi + V
(2)
1i

]

, (C.3)

where we have defined ν̂1 ≡ µ̂1/T̂ and ν̂2 ≡ µ̂2/T̂ for simplicity, and V I
1i (I = 1, 2) is as

defined in (3.59). It is clear from this that the SO(d − 1)-invariant quantities involved in
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the expansion are

scalars:
(û · ∂)T̂

T̂
, (û · ∂)ν̂1 , (û · ∂)ν̂2 , (∂ · û) ,

vectors: V
(1)
1i , V

(2)
1i , V

(3)
1i ≡

(

P̂ik
∂kT̂

T̂
+ (û · ∂)ûi

)

,

tensor: σ̂ij . (C.4)

Now, to see that all the scalars may be written in terms of (∂ · û), while the vector V (3)
1

may be written as a linear combination of V
(1)
1 and V

(2)
1 , we also use the equations of motion

∂iT̂
ij = F

(1)ij
(0) Ĵ

(1)
i + F

(2)ij
(0) Ĵ

(2)
i , ∂iĴ

(1)i = 0 , ∂iĴ
(2)i = 0 , (C.5)

with

T̂ ij = (ǫ̂+ P̂ )ûiûj + P̂ η̂ij + T̂ ijdiss , Ĵ (1)i = q̂1u
i + Ĵ

(1)i
diss , Ĵ (2)i = q̂2u

i + Ĵ
(2)i
diss , (C.6)

so that at first order

ûj∂iT̂
ij = 0 ⇒ (û · ∂)ǫ̂ = −(ǫ̂+ P̂ )(∂ · û) , (C.7)

∂iĴ
(1)i = 0 ⇒ (û · ∂)q̂1 = −q̂1(∂ · û) , (C.8)

∂iĴ
(2)i = 0 ⇒ (û · ∂)q̂2 = −q̂2(∂ · û) . (C.9)

By making various combinations of the equations (C.7)–(C.9) above, following the

example of [66], and simplifying the r.h.s. and l.h.s. of these resulting equations, we may

show that

(û · ∂)T̂
T̂

= −
(

∂P̂

∂ǫ̂

)∣

∣

∣

∣

∣

q̂1,q̂2

(∂ · û) , (C.10)

(û · ∂)ν̂1 = − 1

T̂

(

∂P̂

∂q̂1

)∣

∣

∣

∣

∣

ǫ̂,q̂2

(∂ · û) , (C.11)

(û · ∂)ν̂2 = − 1

T̂

(

∂P̂

∂q̂2

)∣

∣

∣

∣

∣

ǫ̂,q̂1

(∂ · û) . (C.12)

To obtain (C.10), we take the combination

(

∂P̂

∂ǫ̂

)∣

∣

∣

∣

∣

q̂1,q̂2

{

(

∂q̂2
∂ν̂2

)∣

∣

∣

∣

T̂ ,ν̂1

[

(

∂q̂1
∂ν̂1

)∣

∣

∣

∣

T̂ ,ν̂2

× (C.7)−
(

∂ǫ̂

∂ν̂1

)∣

∣

∣

∣

T̂ ,ν̂2

× (C.8)

]

+

(

∂ǫ̂

∂ν̂2

)∣

∣

∣

∣

T̂ ,ν̂1

[

(

∂q̂2
∂ν̂1

)∣

∣

∣

∣

T̂ ,ν̂2

× (C.8)−
(

∂q̂1
∂ν̂1

)∣

∣

∣

∣

T̂ ,ν̂2

× (C.9)

]

−
(

∂q̂1
∂ν̂2

)∣

∣

∣

∣

T̂ ,ν̂1

[

(

∂q̂2
∂ν̂1

)∣

∣

∣

∣

T̂ ,ν̂2

×(C.7)−
(

∂ǫ̂

∂ν̂1

)∣

∣

∣

∣

T̂ ,ν̂2

×(C.9)

]}

, (C.13)
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while for (C.11) we use

(

∂P̂

∂q̂1

)∣

∣

∣

∣

∣

ǫ̂,q̂2

{

(

∂q̂2
∂ν̂2

)∣

∣

∣

∣

T̂ ,ν̂1

[

(

∂q̂1

∂T̂

)∣

∣

∣

∣

ν̂1,ν̂2

× (C.7)−
(

∂ǫ̂

∂T̂

)∣

∣

∣

∣

ν̂1,ν̂2

× (C.8)

]

+

(

∂ǫ̂

∂ν̂2

)∣

∣

∣

∣

T̂ ,ν̂1

[

(

∂q̂2

∂T̂

)∣

∣

∣

∣

ν̂1,ν̂2

× (C.8)−
(

∂q̂1

∂T̂

)∣

∣

∣

∣

ν̂1,ν̂2

× (C.9)

]

−
(

∂q̂1
∂ν̂2

)∣

∣

∣

∣

T̂ ,ν̂1

[

(

∂q̂2

∂T̂

)∣

∣

∣

∣

ν̂1,ν̂2

×(C.7)−
(

∂ǫ̂

∂T̂

)∣

∣

∣

∣

ν̂1,ν̂2

×(C.9)

]}

, (C.14)

and to get (C.12),

(

∂P̂

∂ǫ̂

)∣

∣

∣

∣

∣

q̂1,q̂2

× (C.7) +

(

∂P̂

∂q̂1

)∣

∣

∣

∣

∣

ǫ̂,q̂2

× (C.8) +

(

∂P̂

∂q̂2

)∣

∣

∣

∣

∣

ǫ̂,q̂1

× (C.9) . (C.15)

In order to simplify the r.h.s. and l.h.s. of each of these combinations in turn, we make

use of the following, as done equivalently in [66]: Via the chain rule (for i = 1, 2, 3) we get

(

∂P̂

∂Σi

)∣

∣

∣

∣

∣

Ai,Bi

=

(

∂P̂

∂ǫ̂

)∣

∣

∣

∣

∣

q̂1,q̂2

(

∂ǫ

∂Σi

)∣

∣

∣

∣

Ai,Bi

+

(

∂P̂

∂q̂1

)∣

∣

∣

∣

∣

ǫ̂,q̂2

(

∂q̂1
∂Σi

)∣

∣

∣

∣

Ai,Bi

+

(

∂P̂

∂q̂2

)∣

∣

∣

∣

∣

ǫ̂,q̂1

(

∂q̂2
∂Σi

)∣

∣

∣

∣

Ai,Bi

, (C.16)

where (Σ1,Σ2,Σ3) = (T, ν̂1, ν̂2), (A1, A2, A3) = (ν̂1, T̂ , T̂ ) and (B1, B2, B3) = (ν̂2, ν̂2, ν̂1),

while

(û · ∂)Γ =

(

∂Γ

∂T̂

)∣

∣

∣

∣

ν̂1,ν̂2

(û · ∂)T̂ +

(

∂Γ

∂ν̂1

)∣

∣

∣

∣

T̂ ,ν̂2

(û · ∂)ν̂1 +
(

∂Γ

∂ν̂2

)∣

∣

∣

∣

T̂ ,ν̂1

(û · ∂)ν̂2 , (C.17)

where (Γ = ǫ̂, q̂1, q̂2). Furthermore, from the first law,

P̂ + ǫ̂ = T̂ (ŝ+ q̂1ν̂1 + q̂2ν̂2) , dP̂ =

(

P̂ + ǫ̂

T̂

)

dT̂ + T̂ q̂1dν̂1 + T̂ q̂2dν̂2 , (C.18)

we know that
(

∂P̂

∂T̂

)∣

∣

∣

∣

∣

ν̂1,ν̂2

=
P̂ + ǫ̂

T̂
,

(

∂P̂

∂ν̂1

)∣

∣

∣

∣

∣

T̂ ,ν̂2

= T̂ q̂1 ,

(

∂P̂

∂ν̂2

)∣

∣

∣

∣

∣

T̂ ,ν̂1

= T̂ q̂2 , (C.19)

and also
(

∂ǫ̂

∂ν̂1

)∣

∣

∣

∣

T̂ ,ν̂2

= T̂ 2

(

∂q̂1

∂T̂

)∣

∣

∣

∣

ν̂1,ν̂2

,

(

∂ǫ̂

∂ν̂2

)∣

∣

∣

∣

T̂ ,ν̂1

= T̂ 2

(

∂q̂2

∂T̂

)∣

∣

∣

∣

ν̂1,ν̂2

. (C.20)

We also use the fact that
(

∂q̂2
∂ν̂1

)∣

∣

∣

∣

T̂ ,ν̂2

=

(

∂q̂1
∂ν̂2

)∣

∣

∣

∣

T̂ ,ν̂1

, (C.21)
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which is a Maxwell relation obtained by using the grand potential density

ϕ ≡ ǫ̂− T̂ ŝ− µ̂1q̂1 − µ̂2q̂2.

Finally, using (C.6), we may write

P̂ik∂jT̂
jk = (P̂ + ǫ̂)(û · ∂)ûi + P̂ k

i

(

P̂ + ǫ̂

T̂
∂kT̂ + T̂ q̂1∂kν̂1 + T̂ q̂2∂kν̂2

)

, (C.22)

where in the last line above we used (C.19) and the fact that

∂kP̂ =

(

∂P̂

∂T̂

)∣

∣

∣

∣

∣

ν̂1,ν̂2

∂kT̂ +

(

∂P̂

∂ν̂1

)∣

∣

∣

∣

∣

T̂ ,ν̂2

∂kν̂1 +

(

∂P̂

∂ν̂2

)∣

∣

∣

∣

∣

T̂ ,ν̂1

∂κν̂2 . (C.23)

From the equation of motion in (C.5) this is equivalent to

P̂ik

(

F
(1)jk
(0) Ĵ

(1)
j + F (2)jkĴ

(2)
j

)

= q̂1F
(1)j
(0) iûj + q̂2F

(2)j
(0) iûj , (C.24)

where we used (C.6), so that we get

V
(3)
1i =

q̂1T̂

P̂ + ǫ̂
V

(1)
1i +

q̂2T̂

P̂ + ǫ̂
V

(2)
1i . (C.25)

With the results in (C.10), (C.11), (C.12) and (C.25) in hand, we may rewrite (C.3)

as given in (3.58). Requiring this to be positive semi-definite allows us to write down the

equations from which we may extract the transport coefficients.

D Computing transport coefficients

In this appendix we extract the transport coefficients from (3.60), and (3.66)–(3.68). We

first use the conservation equations for the fluid, namely

∂i〈T̂ ij〉d = F
(1)ij
(0) 〈Ĵ (1)

i 〉d + F
(2)ij
(0) 〈Ĵ (2)

i 〉d , (D.1)

∂i〈Ĵ (1)
i 〉d = 0 , (D.2)

∂i〈Ĵ (2)
i 〉d = 0 , (D.3)

to get

∂j logm =
coshω1

sinhω1
û · ∂ω1 ûj − cosh2 ω1 cosh

2 ω2 û · ∂ûj

+sinhω1 coshω1 coshω2 û
iF

(1)
(0)ij + cosh2 ω1 coshω2 sinhω2 û

iF
(2)
(0)ij ,

û · ∂ω1 =
sinhω1 coshω1 cosh

2 ω2

2(σ − 1) cosh2 ω1 cosh
2 ω2 + 1

∂ · û ,

û · ∂ω2 =
sinhω2 coshω2

2(σ − 1) cosh2 ω1 cosh
2 ω2 + 1

∂ · û =
tanhω2

coshω1 sinhω1
û · ∂ω1 , (D.4)

and then we evaluate

P̂ ij〈T̂ diss
ij 〉d = −2ηd

[

coshω1 coshω2P̂
ij∂(iûj) −

(d− 1)

(2σ − 1)
(coshω1 coshω2 ∂ · û

– 35 –



J
H
E
P
0
3
(
2
0
1
3
)
1
2
4

+coshω2 sinhω1 û · ∂ω1 + coshω1 sinhω2 û · ∂ω2)

]

= −2ηd coshω1 coshω2

[

1− (d− 1) cosh2 ω1 cosh
2 ω2

2(σ − 1) cosh2 ω1 cosh
2 ω2 + 1

]

∂ · û ,

P̂ ikP̂
j
l 〈T̂ diss

ij 〉d = −2ηd

[

coshω1 coshω2P̂
i
kP̂

j
l ∂(iûj)

− 1

(2σ − 1)
P̂kl (coshω1 coshω2 ∂ · û

+coshω2 sinhω1 û · ∂ω1 + coshω1 sinhω2 û · ∂ω2)

]

,

P̂ ij〈Ĵ (1)diss
j 〉d = −ηdP̂ ij

[

coshω1∂jω1 − cosh3 ω1 coshω2F
(1)
(0)mj û

m

− cosh2 ω1 coshω2 sinhω1 sinhω2F
(2)
(0)mj û

m

+cosh2 ω1 cosh
2 ω2 sinhω1û · ∂ûj

]

,

P̂ ij〈Ĵ (2)diss
j 〉d = −ηdP̂ ij [sinhω1 sinhω2∂jω1 + coshω1 coshω2∂jω2

− cosh2 ω1 coshω2 sinhω1 sinhω2F
(1)
(0)mj û

m

− coshω1 coshω2(1 + cosh2 ω1 sinh
2 ω2)F

(2)
(0)mj û

m

+cosh3 ω1 cosh
2 ω2 sinhω2û · ∂ûj

]

,

〈Odiss
1 〉d = 2ηd

[

cosh2 ω1 coshω2 sinhω1 sinh
2 ω2û · ∂ω1

+cosh3 ω1 cosh
2 ω2 sinhω2û · ∂ω2

− 1

(2σ − 1)
(1 + cosh2 ω1 sinh

2 ω2) (coshω1 coshω2 ∂ · û

+coshω2 sinhω1 û · ∂ω1 + coshω1 sinhω2 û · ∂ω2)

]

= 〈Odiss
3 〉d ,

〈Odiss
2 〉d = −2ηd

1

(2σ − 1)
(coshω1 coshω2 ∂ · û+ coshω2 sinhω1 û · ∂ω1

+coshω1 sinhω2 û · ∂ω2)

= 〈Odiss
3 〉d ,

〈Odiss
3 〉d = 2ηd cosh

2 ω1

[

coshω2 sinhω1û · ∂ω1 −
1

(2σ − 1)
(coshω1 coshω2 ∂ · û

+coshω2 sinhω1 û · ∂ω1 + coshω1 sinhω2 û · ∂ω2)

]

= −2ηd
cosh3 ω1 cosh

3 ω2

2(σ − 1) cosh2 ω1 cosh
2 ω2 + 1

∂ · û , (D.5)

〈Odiss
4 〉d = 2ηd

[

1

2
coshω1 coshω2 sinhω2 cosh(2ω1)û · ∂ω1

+
1

2
cosh2 ω1 cosh

2 ω2 sinhω1û · ∂ω2
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− 1

(2σ − 1)
coshω1 sinhω1 sinhω2 (coshω1 coshω2 ∂ · û

+coshω2 sinhω1 û · ∂ω1 + coshω1 sinhω2 û · ∂ω2)

]

= 0 ,

〈Odiss
ψ 〉d = 〈Odiss

3 〉d ,
〈Odiss

ζ 〉d = 〈Odiss
ξ 〉d = 〈Odiss

A
(1)
(0)

〉d = 0 . (D.6)

Evaluating ζ̂s from (3.68) also requires us to calculate the variations of P̂ with respect

to ǫ̂, q̂1 and q̂2 respectively, for which we use

dq̂1 = 0 and dq̂2 = 0 ⇒ dω1 = −2σ sinhω1 coshω1 cosh
2 ω2

(2 cosh2 ω1 cosh
2 ω2 − 1)

dm

m
,

dω2 = − 2σ coshω2 sinhω2

(2 cosh2 ω1 cosh
2 ω2 − 1)

dm

m
,

dǫ̂ = 0 and dq̂2 = 0 ⇒ dω1 = −(2σ cosh2 ω1 cosh
2 ω2 − 2 cosh2 ω2 + 1)

2 coshω1 sinhω1 cosh
2 ω2

dm

m
,

dω2 = − sinhω2

cosh2 ω1 coshω2

dm

m
,

dǫ̂ = 0 and dq̂1 = 0 ⇒ dω1 = −sinhω1(2σ cosh
2 ω1 cosh

2 ω2 + 1)

2 cosh3 ω1 cosh
2 ω2

dm

m
,

dω2 = −(2σ cosh2 ω1 cosh
2 ω2 − 2 cosh2 ω1 + 1)

2 cosh4 ω1 coshω2 sinhω2

dm

m
.

From these relations it follows that

∂P̂

∂ǫ̂
≡ ∂P̂

∂ǫ̂

∣

∣

∣

∣

∣

q̂1,q̂2

=
(2 cosh2 ω1 cosh

2 ω2 − 1)

(2(σ − 1) cosh2 ω1 cosh
2 ω2 + 1)

,

∂P̂

∂q̂1
≡ ∂P̂

∂q̂1

∣

∣

∣

∣

∣

ǫ̂,q̂2

= − 2 coshω1 sinhω1 coshω2

(2(σ − 1) cosh2 ω1 cosh
2 ω2 + 1)

,

∂P̂

∂q̂2
≡ ∂P̂

∂q̂2

∣

∣

∣

∣

∣

ǫ̂,q̂1

= − 2 cosh2 ω1 coshω2 sinhω2

(2(σ − 1) cosh2 ω1 cosh
2 ω2 + 1)

. (D.7)

Using 〈Odiss
1 〉d = 〈Odiss

3 〉d and 〈Odiss
4 〉d = 0, the equation from which we may extract the

bulk viscosity (3.68) becomes

P̂ ij〈T̂ diss
ij 〉d

(d− 1)
+ 〈Odiss

3 〉d
[

∂P̂

∂ǫ̂

(

tanh2 ω1

cosh2 ω2

+ tanh2 ω2

)

+
∂P̂

∂q̂1

tanhω1

coshω2
+
∂P̂

∂q̂2
tanhω2

]

= −ζ̂s ∂ · û . (D.8)

Plugging (D.5) and (D.7) into the equation above yields the bulk viscosity (3.77), while

substituting the results in (D.4) and (D.6) into the other transport coefficient equations,

namely (3.60), (3.66) and (3.67), gives (3.69)–(3.75).
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E Derivation of formula for bulk to shear viscosity ratio

Equation (3.83) was derived in [75], and expresses the bulk viscosity to shear viscosity

ratio in terms of the dependence of scalar fields at the horizon on thermodynamic variables

such as entropy and charge densities. It is derived using the null focusing (Raychaudhuri)

equation, which is equivalent via the fluid/gravity correspondence to the entropy/balance

law of the fluid.

In [75] the action under consideration is a (d + 1)-dimensional gravitational action

in the Einstein frame, where the kinetic terms for the various scalar fields are canonically

normalized. However, we are interested in action (2.9), where the axion kinetic term is

clearly not canonically normalized, so we cannot simply apply (3.83) to our case. In this

appendix we thus repeat the derivation given in [75] (while also adjusting the notation to

match our conventions) for a general action of the form

S(d+1) = L

∫

dd+1x
√

−ḡ(d+1)

[

R̄− 1

2
ΩIJ(φ)∂Mφ

I∂MφJ − V (φI)

]

+ Sgauge , (E.1)

where ΩIJ parametrizes the normalization of the scalar field kinetic terms. In [75],

ΩIJ = diag{1, 1, · · · , 1}, while in our case φI = {ψ̄, ζ̄, ξ̄, A(1)
(0)} and

ΩIJ = diag{1, 1, 1, exp(c1ξ̄ − c2ζ̄)} , (E.2)

where

c1 =

√

2(2σ − d− 2)

(2σ − d− 1)
, c2 =

√

2(2σ − d)

(2σ − d− 1)
. (E.3)

The derivation in [75] follows through exactly, except that all occurrences of
∑

I(∂φ
I)2 (or

equivalent expressions) are replaced by ΩIJφ
IφJ , in particular the Raychaudhuri equation.

The procedure involves considering the focusing equation at subsequent orders in

derivatives of zi, the local coordinates on the horizon (with xM = (ρ, zi),M = 0, · · · , d, and
ρ a transverse coordinate, with ρ = ρh on the horizon). Following the procedure outlined

in [75], we are ultimately lead to the Raychaudhuri equation to second order

∂i(ŝû
i) =

ŝ

2πT̂
σ̂ij σ̂

ij +
ŝ

4πT̂
ΩhIJ

(

ŝ
dφIh
dŝ

+ q̂a
dφIh
dq̂a

)(

ŝ
dφJh
dŝ

+ q̂a
dφJh
dq̂a

)

(∂pû
p)2 , (E.4)

where ŝ is the entropy density, T̂ is the temperature, q̂a are charge densities, all quantities

with subscript (or superscript) h are evaluated at the horizon, ûM = (0, ûi) is a vector field

obtained by raising the null cotangent vector to the horizon with the bulk metric, and

σ̂ij = P̂mi P̂
n
j ∂(mûn) −

1

(d− 1)
P̂ij∂pû

p , P̂ij = η̂ij + ûiûj .

(E.4) has the form of a fluid entropy balance law

∂i(ŝû
i) =

2η̂

T̂
σ̂ij σ̂

ij +
ζ̂s

T̂
(∂pû

p)2 , (E.5)
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via the fluid/gravity correspondence (the shear viscosity obeys η̂/ŝ = 1/4π). We may thus

extract the bulk to shear viscosity ratio, which is

ζ̂s
η̂

= ΩhIJ

(

ŝ
dφIh
dŝ

+ q̂a
dφIh
dq̂a

)(

ŝ
dφJh
dŝ

+ q̂a
dφJh
dq̂a

)

. (E.6)

In our case, ΩhIJ = diag{1, 1, 1, exp(c1ξ̄ − c2ζ̄)}
∣

∣

h
, and the horizon occurs at ρ = m−2. Now,

ec1ξ̄−c2ζ̄
∣

∣

∣

h
= ec1ξ̄h−c2ζ̄h =

(

coshω1

coshω2

)2

, (E.7)

where

ξ̄h =

√

2(2σ − d− 2)

(2σ − d− 1)
ln coshω1 ,

ζ̄h =

√

2

(2σ − d)(2σ − d− 1)
ln

(

(coshω2)
2σ−d−1

coshω1

)

. (E.8)

In (E.8) above we used (2.8) and (3.8) evaluated at ρ = m−2.

F Checking bulk to shear viscosity ratio

Having derived the formula (3.84) in appendix E, we now re-evaluate the bulk to shear

viscosity ratio given in (3.82) using this formula.

The charge densities and entropy are given by (3.18) and (3.23), and the scalars are

ψ̄h ≡ ψ̄(ρ = m−2) =

√

2(2σ − 1)

(2σ − d)(d− 1)
log

[

1

ρσ−d/2
K1(ρ)

1/2K2(ρ)
1/2

]∣

∣

∣

∣

ρ=m−2

=

√

2(2σ − 1)

(2σ − d)(d− 1)
log[m2σ−d coshω1 coshω2] ,

ζ̄h ≡ ζ̄(ρ = m−2) =

√

2

(2σ − d)(2σ − d− 1)
log
[

K2(ρ)
1
2
(2σ−d−1)K1(ρ)

−1/2
]∣

∣

∣

ρ=m−2

=

√

2

(2σ − d)(2σ − d− 1)
(2σ − d− 2) log[coshω1] ,

ξ̄h ≡ ξ̄(ρ = m−2) =

√

2

(2σ − d− 1)(2σ − d− 2)
log
[

K1(ρ)
1
2
(2σ−d−2)

]∣

∣

∣

ρ=m−2

=

√

2

(2σ − d− 1)(2σ − d− 2)
log

[

coshω
(2σ−d−1)
2

coshω1

]

, (F.1)

as obtained from (3.8) and (3.3) with canonical normalization (2.8), and further evaluated

at the horizon. The axion is given by (3.12)

A
(0)
h ≡ ((K ′

1(ρ))
−1 − 1) sinhω2

∣

∣

ρ=m−2 = −sinhω1 sinhω2

coshω1
. (F.2)

– 39 –



J
H
E
P
0
3
(
2
0
1
3
)
1
2
4

Notice that

dq̂1 = 0 and dq̂2 = 0 ⇒ dω1 = −2σ sinhω1 coshω1 cosh
2 ω2

(2 cosh2 ω1 cosh
2 ω2 − 1)

dm

m
,

dω2 = − 2σ coshω2 sinhω2

(2 cosh2 ω1 cosh
2 ω2 − 1)

dm

m
,

dŝ = 0 and dq̂2 = 0 ⇒ dω1 = −coshω1

sinhω1
(2(σ − 1) cosh2 ω2 + 1)

dm

m
,

dω2 = 2(σ − 1) coshω2 sinhω2
dm

m
,

dŝ = 0 and dq̂1 = 0 ⇒ dω1 = − sinhω1

coshω1

dm

m
,

dω2 = −coshω2(2(σ − 1) cosh2 ω1 + 1)

cosh2 ω1 sinhω2

dm

m
,

from which it is then straightforward to derive

d(log ŝ)|q̂1,q̂2 =
dŝ

ŝ

∣

∣

∣

∣

q̂1,q̂2

=
(2(σ − 1) cosh2 ω1 cosh

2 ω2 + 1)

(2 cosh2 ω1 cosh
2 ω2 − 1)

dm

m
,

d(log q̂1)|ŝ,q̂2 =
dq̂1
q̂1

∣

∣

∣

∣

ŝ,q̂2

= −(2(σ − 1) cosh2 ω1 cosh
2 ω2 + 1)

sinh2 ω1

dm

m
,

d(log q̂2)|ŝ,q̂1 =
dq̂2
q̂2

∣

∣

∣

∣

ŝ,q̂1

= −(2(σ − 1) cosh2 ω1 cosh
2 ω2 + 1)

cosh2 ω1 sinh
2 ω2

dm

m
,

d(ψ̄h)|q̂1,q̂2 =

√

2(2σ − 1)

(d− 1)(2σ − d)

(2(σ − d) cosh2 ω1 cosh
2 ω2 + d)

(2 cosh2 ω1 cosh
2 ω2 − 1)

dm

m
,

d(ψ̄h)|ŝ,q̂2 = −
√

2(2σ − 1)(d− 1)

(2σ − d)

dm

m
,

d(ψ̄h)|ŝ,q̂1 = −
√

2(2σ − 1)(d− 1)

(2σ − d)

dm

m
,

d(ζ̄h)|q̂1,q̂2 =

√

2

(2σ − d)(2σ − d− 1)

×2σ(cosh2 ω1 cosh
2 ω2 − (2σ − d) sinh2 ω2 − 1)

(2 cosh2 ω1 cosh
2 ω2 − 1)

dm

m
,

d(ζ̄h)|ŝ,q̂2 =

√

2

(2σ − d)(2σ − d− 1)
(2(σ − 1)(2σ − d) sinh2 ω2 + 2σ − 1)

dm

m
,

d(ζ̄h)|ŝ,q̂1 =

√

2

(2σ − d)(2σ − d− 1)

×(−(2σ − d)(2(σ − 1) cosh2 ω1 + 1) + (2σ − 1) cosh2 ω1)

cosh2 ω1

dm

m
,

d(ξ̄h)|q̂1,q̂2 = −
√

2(2σ − d− 2)

(2σ − d− 1)

2σ sinh2 ω1 cosh
2 ω2

(2 cosh2 ω1 cosh
2 ω2 − 1)

dm

m
,
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d(ξ̄h)|ŝ,q̂2 = −
√

2(2σ − d− 2)

(2σ − d− 1)
(2(σ − 1) cosh2 ω2 + 1)

dm

m
,

d(ξ̄h)|ŝ,q̂1 = −
√

2(2σ − d− 2)

(2σ − d− 1)

sinh2 ω1

cosh2 ω1

dm

m
,

d(A
(0)
h )|q̂1,q̂2 =

4σ sinhω1 sinhω2 cosh
2 ω2

coshω1(2 cosh
2 ω1 cosh

2 ω2 − 1)

dm

m
,

d(A
(0)
h )|ŝ,q̂2 = − sinhω2

sinhω1 coshω1

(

2(σ − 1) cosh2 ω1 cosh
2 ω2

−4(σ − 1) cosh2 ω2 − 1
) dm

m
,

d(A
(0)
h )|ŝ,q̂1 =

sinhω1

sinhω2 cosh
3 ω1

(

2(σ − 1) cosh2 ω1 cosh
2 ω2

+2 cosh2 ω2 − 1
) dm

m
. (F.3)

We substitute the values in (F.3) into

ζ̂s
η̂

=

(

dψ̄h
d log ŝ

∣

∣

∣

∣

q̂1,q̂2

+
dψ̄h

d log q̂1

∣

∣

∣

∣

ŝ,q̂2

+
dψ̄h

d log q̂2

∣

∣

∣

∣

ŝ,q̂1

)2

+

(

dζ̄h
d log ŝ

∣

∣

∣

∣

q̂1,q̂2

+
dζ̄h

d log q̂1

∣

∣

∣

∣

ŝ,q̂2

+
dζ̄h

d log q̂2

∣

∣

∣

∣

ŝ,q̂1

)2

+

(

dξ̄h
d log ŝ

∣

∣

∣

∣

q̂1,q̂2

+
dξ̄h

d log q̂1

∣

∣

∣

∣

ŝ,q̂2

+
dξ̄h

d log q̂2

∣

∣

∣

∣

ŝ,q̂1

)2

+

(

coshω1

coshω2

)2




dA
(0)
h

d log ŝ

∣

∣

∣

∣

∣

q̂1,q̂2

+
dA

(0)
h

d log q̂1

∣

∣

∣

∣

∣

ŝ,q̂2

+
dA

(0)
h

d log q̂2

∣

∣

∣

∣

∣

ŝ,q̂1





2

,

and obtain precisely the ratio as evaluated from (3.69) and (3.77).
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