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1 Introduction

The distribution of quarks and gluons inside hadrons can be described by means of parton

distribution functions (PDFs). In a parton model picture, PDFs describe combinations of

number densities of quarks and gluons in a fast-moving hadron. The knowledge of PDFs is

crucial for our understanding of QCD and for the interpretation of high-energy experiments

involving hadrons. At leading twist, the quark structure of spin-half hadrons is described

by three PDFs: the unpolarized distribution f1(x), the longitudinal polarization (helicity)

distribution g1(x), and the transverse polarization (transversity) distribution h1(x) [1–

4]. From the phenomenological point of view, the unpolarized PDFs are well-known, as

can be evinced by the large number of parametrizations available (see, e.g., ref. [5] and

references therein). Apart from giving us invaluable information about the structure of

nucleons, they have a fundamental importance for the interpretation of measurements in

any hadronic colliders, e.g., the LHC. The helicity PDFs are known to some extent, see

e.g. refs. [6–9]. On the other hand, the transversity distribution is poorly known (see, e.g.,

refs. [10] and references therein). This is mainly due to the fact that transversity can be

measured only in processes with two hadrons in the initial state [11], e.g. proton-proton

collision, or one hadron in the initial state and at least one hadron in the final state, e.g.

semi-inclusive DIS (SIDIS).

Combining data from HERMES [12] and COMPASS [13] on polarized SIDIS with one

hadron in the final state, together with data from Belle [14] on almost back-to-back emis-

sion of two hadrons in e+e− annihilations, the transversity distribution was extracted for

the first time by the Torino group [15]. The main difficulty of such analysis lies in the

factorization framework used to interpret the data, since they involve Transverse Momen-

tum Dependent PDFs (TMDs). In spite of exceptional progress in the understanding of
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Figure 1: Depiction of the azimuthal angles φR of the dihadron and φS of the compo-
nent ST of the target-polarization transverse to both the virtual-photon and target-
nucleon momenta q and P , respectively. Both angles are evaluated in the virtual-
photon-nucleon center-of-momentum frame. Here, RT = R − (R · P̂h)P̂h, i.e., RT is
the component of P1 orthogonal to Ph; up to subleading-twist corrections, it can be
identified with its projection on the plane perpendicular to q and containing also ST .
Thus, the angle φR is the azimuthal angle of RT about the virtual-photon direction.
Explicitly, φR ≡ (q×k)·RT

|(q×k)·RT | arccos (q×k)·(q×RT )
|q×k||q×RT | and φS ≡ (q×k)·ST

|(q×k)·ST | arccos (q×k)·(q×ST )
|q×k||q×ST | .

Also included is a description of the polar angle θ, which is evaluated in the center-
of-momentum frame of the pion pair.

To leading-order, the cross section for two-particle inclusive DIS can be written

6

H1 H2 P1

P2

venerdì 4 maggio 2012

Figure 1. Kinematics of the two-hadron semi-inclusive production. The azimuthal angles φR
of the dihadron, and φS of the component ST of the target-polarization, transverse to both the

virtual-photon and target-nucleon momenta q and P , respectively, are evaluated in the virtual-

photon-nucleon center-of-momentum frame.

TMDs [16–21], we have still limited information on their evolution equations, which are

needed when analyzing measurements at very different scales.

In this paper, we extract the transversity distribution for the valence combination of

up and down quarks, applying for the first time an approach based on standard collinear

factorization. We use data on SIDIS with two hadrons detected in the final state, where the

transversity distribution is combined with the so-called Dihadron Fragmentation Functions

(DiFFs) [22–24]. The collinear framework allows us to keep under control the evolution

equations of DiFFs [25].

In section 2, we summarize the theoretical framework for two-hadron SIDIS. The

parametrization of the valence transversity and its error analysis is described in section 3.

The results are discussed in section 4. We finally illustrate the possible applications and

extensions of our analysis and draw our conclusions in section 5.

2 Theoretical framework for two-hadron SIDIS

We consider the process

`(k) +N(P )→ `(k′) +H1(P1) +H2(P2) +X , (2.1)

where ` denotes the beam lepton, N the nucleon target, H1 and H2 the produced hadrons,

and where four-momenta are given in parentheses. We work in the one-photon exchange

approximation and neglect the lepton mass. We denote by M the mass of the nucleon and

by S its polarization. The final (unpolarized) hadrons, with mass M1, M2 and momenta P1,

P2, have invariant mass squared P 2
h = M2

h (which we consider much smaller than the hard

scale Q2 = −q2 ≥ 0 of the SIDIS process). The Ph = P1 +P2 is the total momentum of the

pair; we define also its relative momentum R = (P1 − P2)/2. The momentum transferred

to the nucleon target is q = k − k′. The kinematics of the process is depicted in figure 1

(see also ref. [26]).
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The component ST of the target polarization is transverse to both the virtual-photon

and target momenta q and P , respectively. Instead, RT = R − (R · P̂h)P̂h is orthogonal

to P̂h but, up to subleading-twist corrections, it can be identified with its projection on

the plane perpendicular to q and containing also ST . The azimuthal angle φR is the angle

of RT about the virtual-photon direction; similarly for the azimuthal angle φS of ST . The

explicit expressions are

φR ≡
(q × k) ·RT

|(q × k) ·RT |
arccos

(q × k) · (q ×RT )

|q × k||q ×RT |
,

φS ≡
(q × k) · ST
|(q × k) · ST |

arccos
(q × k) · (q × ST )

|q × k||q × ST |
. (2.2)

We also define the polar angle θ which is the angle between the direction of the back-to-

back emission in the center-of-mass (cm) frame of the two hadrons, and the direction of

Ph in the photon-proton cm frame (see figure 1). We have

|R| = 1

2

√
M2
h − 2(M2

1 +M2
2 ) + (M2

1 −M2
2 )2/M2

h ,

RT = R sin θ . (2.3)

As usual in SIDIS, we define also the following kinematic invariants

x =
Q2

2P · q , y =
P · q
P · k , γ =

2Mx

Q
, (2.4)

z =
P · Ph
P · q ≡ z1 + z2 , ζ =

z1 − z2

z
, (2.5)

where z1, z2, are the fractional energies carried by the two final hadrons. The invariant ζ

can be shown to be a linear polynomial in cos θ [27].

To leading order in the couplings and leading twist, the differential cross section for

the two-hadron SIDIS of an unpolarized lepton off a transversely polarized nucleon target

contains only two nonvanishing structure functions:

dσ

dx dy dψ dz dφR dM2
h d cos θ

=

α2

xy Q2

y2

2 (1− ε)

(
1 +

γ2

2x

){
FUU + |ST | ε sin(φR + φS)F

sin(φR+φS)
UT

}
, (2.6)

where α is the fine structure constant and the structure functions F depend on x, Q2, z,

cos θ, and Mh. The first and second subscripts of F indicate the polarization of beam and

target, respectively. Here, the target polarization refers to the virtual-photon direction; the

conversion to the experimental polarization with respect to the lepton beam is straightfor-

ward and given in ref. [28]. The angle ψ is the azimuthal angle of `′ around the lepton beam

axis with respect to an arbitrary fixed direction, which in case of a transversely polarized

target we choose to be the direction of S. The corresponding relation between ψ and φS
is given in ref. [28]; in DIS kinematics it turns out dψ ≈ dφS .
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The ratio ε of longitudinal and transverse photon flux in eq. (2.6) is given by [29]

ε =
1− y − 1

4γ
2y2

1− y + 1
2y

2 + 1
4γ

2y2
, (2.7)

so that the depolarization factors can be written as

y2

2 (1− ε) =
1

1 + γ2

(
1− y +

1

2
y2 +

1

4
γ2y2

)
≈
(

1− y +
1

2
y2

)
≡ A(y) ,

y2

2 (1− ε) ε =
1

1 + γ2

(
1− y − 1

4
γ2y2

)
≈ (1− y) ≡ B(y) . (2.8)

The ε turns out to be also the ratio between the two depolarization factors: ε = B(y)/A(y).

Neglecting target-mass corrections, we will assume that in each experimental bin

〈A(y)〉 ≈ A(〈y〉) , 〈B(y)〉 ≈ B(〈y〉) ,

ε ≈ B(〈y〉)
A(〈y〉) ≡ Cy . (2.9)

In the limit M2
h � Q2, the structure functions can be written as products of PDFs

and DiFFs [24, 27, 30]1

FUU = x
∑
q

e2
q f

q
1 (x;Q2)Dq

1

(
z, cos θ,Mh;Q2

)
, (2.10)

F
sin(φR+φS)
UT =

|R| sin θ
Mh

x
∑
q

e2
q h

q
1(x;Q2)H^ q

1

(
z, cos θ,Mh;Q2

)
, (2.11)

where eq is the fractional charge of a parton with flavor q. The Dq
1 is the unpolarized DiFF

describing the hadronization of a parton with flavor q into an unpolarized hadron pair

plus anything else, averaging over the parton polarization. The H^ q
1 is a chiral-odd DiFF

describing the correlation between the transverse polarization of the fragmenting parton

with flavor q and the azimuthal orientation of the plane containing the momenta of the

detected hadron pair.

For Mh � Q, the hadron pair can be assumed to be produced mainly in relative s

or p waves, suggesting that the DiFFs can be conveniently expanded in partial waves.

In the two-hadron cm frame, the relevant changes in the kinematics are summarized in

eq. (2.3). From the simple relation between ζ and cos θ, DiFFs can be expanded in Legendre

polynomials in cos θ as [27]

D1 → D1,ss+pp +D1,sp cos θ +D1,pp

1

4
(3 cos2 θ − 1) ,

H^
1 → H^

1,sp +H^
1,pp cos θ . (2.12)

All the cos θ−dependent terms disappear after integrating upon d cos θ; they still vanish

even if the θ dependence of the acceptance is not complete but symmetric about θ = π/2.

1For some discussion of the case M2
h ≈ Q2, see ref. [31].
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Of the remaining terms, the subscript ss+ pp refers to the unpolarized pair being created

in a relative ∆L = 0 state, while sp indicates the interference in |∆L| = 1. For simplicity,

we will use the notation D1,ss+pp ≡ D1 since no ambiguity arises in the following.

From the cross section of eq. (2.6), and by inserting the structure functions of

eqs. (2.10), (2.11) with the approximation of eq. (2.12), we obtain the following single-

spin asymmetry (SSA) [24, 27, 32]

A
sin(φR+φS) sin θ
UT (x, z,Mh;Q) =

=
1

|ST |
8
π

∫
dφR d cos θ sin(φR + φS) (dσ↑ − dσ↓)∫

dφR d cos θ (dσ↑ + dσ↓)
=

4
π ε
∫
d cos θ F

sin(φR+φS)
UT∫

d cos θ FUU

= −Cy
|R|
Mh

∑
q e

2
q h

q
1(x;Q2)H^ q

1,sp(z,Mh;Q2)∑
q e

2
q f

q
1 (x;Q2)Dq

1(z,Mh;Q2)

≡ ASIDIS . (2.13)

We are interested in the specific case of semi-inclusive production of π+π− pairs. Then,

isospin symmetry and charge conjugation suggest [32, 33]

Du
1 = Dū

1 , Dd
1 = Dd̄

1 , Ds
1 = Ds̄

1 , (2.14)

H^u
1 = −H^ d

1 = −H^ ū
1 = H^ d̄

1 , H^ s
1 = −H^ s̄

1 = 0 . (2.15)

For a proton target, the SSA (2.13) simplifies to [33]

ApSIDIS(x, z,Mh;Q2) = − Cy
|R|
Mh

H^u
1,sp(z,Mh;Q2)

[
huv1 (x;Q2)− 1

4
hdv1 (x;Q2)

]
×
{
fu+ū

1 (x;Q2)Du
1 (z,Mh;Q2) +

1

4
fd+d̄

1 (x;Q2)Dd
1(z,Mh;Q2)

+
1

4
fs+s̄1 (x)Ds+s̄

1 (z,Mh;Q2)

}−1

, (2.16)

and for a deuteron target to

ADSIDIS(x, y, z,Mh;Q2) = − Cy
3

4

|R|
Mh

H^u
1,sp(z,Mh;Q2)

[
huv1 (x;Q2) + hdv1 (x;Q2)

]
×
{[

fu+ū
1 (x;Q2) + fd+d̄

1 (x;Q2)
]
×

×
[
Du

1 (z,Mh;Q2) +
1

4
Dd

1(z,Mh;Q2)

]
+

1

2
fs+s̄1 (x;Q2)Ds+s̄

1 (z,Mh;Q2)

}−1

, (2.17)

where hqv1 ≡ hq1 − hq̄1 and f q+q̄1 ≡ f q1 + f q̄1 .

Eqs. (2.16) and (2.17) contains two sets of unknowns: the transversity h1 (in various

flavor combinations) and the DiFFs. Before the measurement by the Belle collaboration

of the angular distribution of two pion pairs produced in e+e− annihilations [34], the only

information available on DiFFs were coming from model calculations in the context of the

– 5 –
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spectator approximation [24, 32, 35] (and, recently, also using the NJL-jet model [36]). The

unpolarized D1 was tuned to the Monte Carlo event generator [32] and the polarized H^
1 sp

compared to the asymmetry measured by the HERMES collaboration in SIDIS on proton

targets [37], the only available set of experimental data at that time [26].

The first analysis of the so-called Artru-Collins asymmetry [38] in e+e− annihilations

by the Belle collaboration made possible a direct extraction of H^
1 sp for the production

of π+π− pairs. In the absence of a measurement of the unpolarized e+e− cross section

(planned at Belle in the near future), D1 was parametrized to reproduce the two-hadron

yield of the PYTHIA event generator, which is known to give a good description of data.

Combining such a parametrization with the fit of the azimuthal asymmetry presented in

ref. [34], it was possible to extract for the first time the H^
1 sp [39].

The knowledge of DiFFs in eq. (2.16) allowed us to get a glimpse of the combination

huv1 − hdv1 /4 directly from the HERMES data for ApSIDIS [33]. The effects produced by

evolving DiFFs between the HERMES and Belle very different scales were properly included

by using standard evolution equations in a collinear framework [25] and by implementing

leading-order (LO) chiral-odd splitting functions in the HOPPET code [40]. Recently, the

COMPASS collaboration has released new data for ApSIDIS on a proton target and for ADSIDIS

on a deuteron target, with higher statistics and wider kinematic coverage [41]. Thus, the

combination of SSA of eqs. (2.16) and (2.17) makes it possible to separately parametrize

each valence flavor of the transversity distribution, which we present here for the first time

(see also ref. [42] for a first attempt to obtain a flavor separation point by point).

In the collinear framework, the dependence of the SSA on the momentum fraction x

gets factorized from the dependence on (z,Mh), as it is evident in eqs. (2.16) and (2.17).

This suggests that the dependence of the SSA on x comes only from the involved PDFs.

Therefore, it is more convenient to study it by integrating the z- and Mh-dependence

of DiFFs. Then, the actual combinations of transversity used in the analysis are, for

the proton,

xhp1(x;Q2) ≡ xhuv1 (x;Q2)− 1

4
xhdv1 (x;Q2)

= −A
p
SIDIS(x;Q2)

Cy n
↑
u(Q2)

×
[
nu(Q2)xfu+ū

1 (x;Q2)+
1

4
nd(Q

2)xfd+d̄
1 (x;Q2)

+
1

4
ns(Q

2)xfs+s̄1 (x;Q2)

]
,

(2.18)

and, for the deuteron,

xhD1 (x;Q2) ≡ xhuv1 (x;Q2) + xhdv1 (x;Q2)

= −A
D
SIDIS(x;Q2)

Cy n
↑
u(Q2)

4

3

×
[(
xfu+ū

1 (x;Q2) + xfd+d̄
1 (x;Q2)

)(
nu(Q2) +

nd(Q
2)

4

)
+
ns(Q

2)

2
xfs+s̄1 (x;Q2)

]
,

(2.19)
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where

nq(Q
2) =

∫ zmax

zmin

∫ Mhmax

Mhmin

dz dMhD
q
1(z,Mh;Q2) , (2.20)

n↑q(Q
2) =

∫ zmax

zmin

∫ Mhmax

Mhmin

dz dMh
|R|
Mh

H^ q
1 sp(z,Mh;Q2) . (2.21)

Using the unpolarized PDFs from the MSTW08LO set [43], early explorations were pre-

sented in ref. [44].

3 Fitting procedure

Here, we describe our fitting procedure to obtain the valence transversity distribution

functions for up and down quarks. We discuss first the choice of the functional form.

The main theoretical constraint we have is Soffer’s inequality [45] (see also [46])

2|hq1(x;Q2)| ≤ |f q1 (x;Q2) + gq1(x;Q2)| ≡ 2 SBq(x;Q2) . (3.1)

We impose this condition by multiplying the functional form by the corresponding Soffer

bound at the starting scale of the parameterization. If the Soffer bound is fulfilled at

some initial Q2
0, it will hold also at higher Q2 ≥ Q2

0 [47, 48]. The implementation of the

Soffer bound depends on the choice of the unpolarized and helicity PDFs. We use the

MSTW08 set [43] for the unpolarized PDF, combined to the DSSV parameterization [7]

for the helicity distribution, at the scale of Q2
0 = 1 GeV2. Our analysis was carried out

at LO in αS . To be as consistent as possible, we decided to use the MSTW08LO set for

f1 and the DSSV set for g1, even if the DSSV fit provides only a NLO parametrization

of g1. For convenience, in appendix A we list the explicit form of SBq. The result for the

Soffer bound is affected by an error coming mainly from the uncertainty in the knowledge

of the helicity PDF g1. We checked that at the explored hard scales this error is much

smaller than the experimental errors on ASIDIS data and the statistical error on the DiFF

parametrization; hence, we will neglect it.

The Soffer bound is valid for each quark and antiquark. Since we need to parametrize

the transversity valence combinations for up and down quarks, we have necessarily to

constrain it by taking the sum of Soffer bounds for both quarks and antiquarks. This likely

leads to a loose bound, especially at low x. In particular, due to the divergent behavior

of PDFs the “valence” Soffer bound is not even integrable in the range x ∈ [0, 1], which

would result in a divergent tensor charge. Given the chosen analytical form of the PDFs

at low x, the SBq has to be multiplied by at least x0.16276.

Based on the above considerations, we adopted the following functional form for the

valence transversity distributions at Q2
0 = 1 GeV2:

xhqV1 (x;Q2
0) = tanh

[
x1/2

(
Aq+Bq x+Cq x

2+Dq x
3
)] [

x SBq(x;Q2
0)+x SBq̄(x;Q2

0)
]
. (3.2)

The hyperbolic tangent is such that the Soffer bound is always fulfilled. The functional

form is very flexible and can contain up to three nodes. The low-x behavior is however

– 7 –
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determined by the x1/2 term, which is imposed by hand. Present fixed-target data do not

allow to constrain it.

The fit, and in particular the error analysis, was carried out in two different ways: using

the standard Hessian method and using a Monte Carlo approach. As usual, we remind

the reader that both methods are suitable to estimate the errors of statistical nature only,

assuming a specific choice of the theoretical function. Care must be taken especially when

using error bands outside the region where data exist.

The standard fitting procedure consists in minimizing the usual χ2 function, defined as

χ2({p}) =
∑
i

(
xi h

p/D
1,data(xi;Q

2
i )− xi h

p/D
1,theo(xi, Q

2
i ; {p})

)2

(
∆h

p/D
1,data(xi;Q

2
i )
)2 , (3.3)

where the sum runs over the experimental points, the expressions for xh
p/D
1 are listed in

eqs. (2.18) and (2.19), and {p} denotes the vector of parameters. The evolution of the

functional form (3.2) to the values Q2
i for each data bin has been implemented using the

HOPPET code [40], set to the MS renormalization scheme and modified to include also

the LO chiral-odd splitting functions needed for transversity evolution. The input value

for the running coupling constant at Q2
0 = 1 GeV2 is chosen to be the best-fit value of

the MSTW08LO set, i.e. αLO
S (Q2

0) = 0.13939. It is true for all the evolved quantities of

our analysis, including the Soffer bound. The minimization has been carried out using the

MINUIT code and led to a vector of best-fit parameters, {p0} (and a covariance matrix).

The standard method allows to compute the errors on any theoretical quantity under

the assumption that the parameter dependence of χ2 can be approximated by a quadratic

expansion around the minimum, and the parameter dependence of the theoretical quantity

can be approximated by a linear expansion around the minimum.

For the standard method, the error on the extracted transversity was estimated using

the formula(
∆h1(x,Q2; {p})

)2
=

Np∑
i,j

∂h1,theo(x,Q
2; {p})

∂pi

∣∣∣∣
{p0}

Covij
∂h1,theo(x,Q

2; {p})
∂pj

∣∣∣∣
{p0}

, (3.4)

where NP is the number of parameters. The covariance matrix Covij has been obtained

using the condition ∆χ2 = 1. Therefore, within the limits of applicability of the standard

approach, the obtained error band corresponds to the 1σ or 68% confidence level. In typical

PDF global fits, often the value of ∆χ2 is increased of one or even two orders of magnitude,

with a corresponding increase in the error estimate (see, e.g., [7]). In the present analysis,

we find no need of such an increase, as demonstrated by the agreement with the Monte

Carlo approach.

The Monte Carlo approach does not rely on the assumptions of a quadratic dependence

of χ2 and a linear expansion of the theoretical quantity around {p0}, respectively. In our

case, the need of such an approach is essential whenever the minimization pushes the

theoretical functions towards their upper or lower bounds, where it is not possible to

assume a simple linear expansion in the parameters.

– 8 –
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For the implementation of this approach, we took inspiration from the work of the

NNPDF collaboration (see, e.g., [49–51]), although our results are not based on a neural-

network fit. The approach consists in creating N replicas of the data points. In each

replica (denoted by the index r), each data point i is shifted by a Gaussian noise with the

same variance as the measurement. Each replica, therefore, represents a possible outcome

of an independent experimental measurement, which we denote by h
p/D
1,r (xi;Q

2
i ). The

number of replicas is chosen so that the mean and standard deviation of the set of replicas

accurately reproduces the original data points. In our case, we have found that 100 replicas

are sufficient.

The standard minimization procedure is applied to each replica separately, by mini-

mizing the following error function2

E2
r ({p}) =

∑
i

(
xi h

p/D
1,r (xi;Q

2
i )− xi h

p/D
1,theo(xi, Q

2
i ; {p})

)2

(
∆h

p/D
1,data(xi;Q

2
i )
)2 , (3.5)

resulting in N different vectors of best-fit parameter values, {p0r}, r = 1, . . . N . These

parameter vectors can be used to produce N values for any theoretical quantity. The N

theoretical outcomes can have any distribution, not necessarily Gaussian. For non-Gaussian

distributions, the 1σ confidence interval is in general different from the 68% interval. Both

of them can be easily computed from the N theoretical outcomes. For instance, for the

68% interval we simply take for each experimental point i the N values and we reject the

largest and the lowest 16% of them.

Although the minimization is performed on the function defined in eq. (3.5), the agree-

ment of the N theoretical outcomes with the original data is better expressed in terms of

the original χ2 function defined in eq. (3.3), i.e. with respect to the original data set with-

out the Gaussian noise. If the model is able to give a good description of the data, the

distribution of the N values of χ2/d.o.f. should be peaked at around one. In real situations,

the rigidity of the model shifts the position of the peak to higher values of χ2/d.o.f..

In our case, we determined N = 100 best-fit parameter vectors and we used them

to produce 100 curves for the up and down valence transversity. Each one of the result-

ing curves respects the Soffer bound by construction. The results are discussed in the

next section.

4 Results and discussion

In the following, we discuss the results obtained by fitting the expressions of eqs. (2.18)

and (2.19) when inserting the HERMES and COMPASS measurements for the single-

spin asymmetries ApSIDIS and ADSIDIS on π+π− SIDIS production off transversely polarized

proton and deuteron targets, respectively. By combining the two fits, we can determine for

2Note that the error for each replica is taken to be equal to the error on the original data points. This

is consistent with the fact that the variance of the N replicas should reproduce the variance of the original

data points.
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HERMES data

x y Q2[GeV2] ASIDIS huv
1 − hdv

1 /4

0.033 0.734 1.232 0.015± 0.010 0.086± 0.061

0.047 0.659 1.604 0.002± 0.011 0.010± 0.054

0.068 0.630 2.214 0.035± 0.011 0.167± 0.069

0.133 0.592 4.031 0.020± 0.010 0.092± 0.054

COMPASS proton data

x Q2[GeV2] ASIDIS huv
1 − hdv

1 /4

0.0065 1.232 0.026± 0.030 0.10± 0.12

0.0105 1.476 0.010± 0.016 0.038± 0.059

0.0164 1.744 0.015± 0.013 0.057± 0.049

0.1330 2.094 0.008± 0.010 0.031± 0.039

0.0398 2.802 0.027± 0.011 0.107± 0.049

0.0626 4.342 0.029± 0.014 0.118± 0.060

0.1006 6.854 0.051± 0.016 0.208± 0.079

0.1613 10.72 0.108± 0.023 0.42± 0.12

0.2801 21.98 0.080± 0.033 0.24± 0.11

COMPASS deuteron data

x Q2[GeV2] ASIDIS huv
1 + hdv

1

0.0064 1.253 0.005± 0.024 0.05± 0.24

0.0105 1.508 −0.004± 0.012 −0.04± 0.12

0.0163 1.792 0.028± 0.010 0.28± 0.11

0.0253 2.266 −0.005± 0.009 −0.051± 0.094

0.0396 3.350 0.006± 0.011 0.06± 0.12

0.0623 5.406 −0.006± 0.014 −0.06± 0.14

0.0996 8.890 −0.029± 0.019 −0.30± 0.20

0.1597 15.65 −0.017± 0.030 −0.16± 0.28

0.2801 33.22 0.078± 0.054 0.50± 0.36

Table 1. HERMES data for π+π− production in SIDIS off a transversly polarized proton [26]

and COMPASS data for the same process off a transversly polarized proton and deuteron [41]. The

last column shows the combinations of valence transversities obtained using eqs. (2.18) and (2.19).

each valence flavor uv and dv the vector of fitting parameters that gives the corresponding

transversity distribution, according to eq. (3.2).

As discussed in the previous section, the error analysis has been performed in two ways:

using the standard Hessian method summarized in eqs. (3.3) and (3.4), or the Monte Carlo

approach by fitting N = 100 replicas of the experimental points according to eq. (3.5).

For each strategy, we explored three different scenarios in the parametrization (3.2) of the
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transversity distribution:

• the rigid scenario, described by the choice Cu = Cd = Du = Dd = 0, i.e. with only 4

free parameters;

• the flexible scenario, with Du = Dd = 0 (6 free parameters);

• the extra-flexible scenario, with all 8 free parameters.

4.1 Experimental data

In table 1, we list the data for the asymmetries ApSIDIS and ADSIDIS of eqs. (2.16) and (2.17),

as they were measured by the HERMES [26] and COMPASS [41] collaborations in the

π+π− SIDIS production off transversely polarized proton and deuteron targets, respec-

tively. The first three columns indicate the average values of the corresponding kinematic

variables in each experimental bin. The indicated errors include statistical and system-

atic contributions added in quadrature. The depolarization factor Cy in the expression

of the asymmetries depends on the average y according to eq. (2.9). In its analysis, the

COMPASS collaboration already divided the Cy factor out of the measured cross section;

as such, the SSA does no longer depend on y and, correspondingly, there are no y values

in the second column of table 1 for COMPASS. Consistently, we have used Cy = 1 when

fitting the COMPASS data.

The last column in table 1 contains the values of the combination in eq. (2.18) for

the proton target, and of eq. (2.19) for the deuteron target, when the corresponding ex-

perimental values for the SSA are inserted in ApSIDIS and ADSIDIS, respectively. As already

anticipated in the previous sections, for the unpolarized PDFs we adopted the MSTW08LO

set [43]. The remaining ingredients in eqs. (2.18) and (2.19) are the nq and n↑q defined in

eqs. (2.20) and (2.21), where the DiFFs Dq
1 and H^ q

1 sp are parametrized as in ref. [39]. The

integrals are evaluated according to the appropriate experimental cuts: 0.2 < z < 1 and

0.5 GeV < Mh < 1 GeV for HERMES, 0.2 < z < 1 and 0.29 GeV < Mh < 1.29 GeV for

COMPASS. In table 2, the results are given for the relevant flavors at the average scales

Q2
i for each experimental bin i. The statistical error is indicated only for n↑u, since the large

statistics achievable in the Monte Carlo simulation of the unpolarized e+e− → (π+π−)X

cross section makes the error of nq negligible.

In the standard Hessian method, the best fit parameters and their 1σ error (corre-

sponding to ∆χ2 = 1) at the initial scale Q2
0 = 1 GeV2 are given in table 3. The χ2/d.o.f.

is 1.23 for the rigid scenario, 1.12 for the flexible scenario, and 1.26 for the extra-flexible

scenario. For the 100 replicas, the average χ2/d.o.f. are 1.35, 1.56 and 1.86, respectively.

4.2 Fitting results

In figure 2, the points with error bars represent the transversity combinations for proton

(left panel) and deuteron target (right panel) quoted in the last column of table 1. The

central value of our best-fit result in the standard approach with the flexible scenario is

given by the thick solid line, and it is in good agreement with the data. The error band is

the outcome of the merging of all the straight lines connecting the statistical error bars of
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HERMES range for proton

Q2 [GeV2] nu nd ns n↑u

1.232 0.607 0.614 0.393 −0.157± 0.037

1.604 0.589 0.595 0.380 −0.152± 0.037

2.214 0.569 0.575 0.365 −0.146± 0.037

4.031 0.536 0.542 0.341 −0.137± 0.037

COMPASS range for proton

Q2 [GeV2] nu nd ns n↑u

1.232 0.897 0.906 0.580 −0.183± 0.031

1.476 0.876 0.885 0.565 −0.178± 0.031

1.744 0.858 0.867 0.552 −0.175± 0.031

2.094 0.840 0.849 0.539 −0.171± 0.031

2.802 0.813 0.822 0.520 −0.165± 0.031

4.342 0.776 0.785 0.494 −0.158± 0.031

6.854 0.742 0.751 0.471 −0.151± 0.031

10.720 0.713 0.721 0.451 −0.145± 0.031

21.985 0.671 0.679 0.422 −0.136± 0.031

COMPASS range for deuteron

Q2 [GeV2] nu nd ns n↑u

1.253 0.895 0.904 0.578 −0.182± 0.031

1.508 0.874 0.883 0.563 −0.178± 0.031

1.792 0.855 0.865 0.550 −0.174± 0.031

2.266 0.832 0.841 0.534 −0.169± 0.031

3.350 0.797 0.806 0.509 −0.162± 0.031

5.406 0.759 0.768 0.483 −0.154± 0.031

8.890 0.725 0.733 0.459 −0.147± 0.031

15.652 0.690 0.698 0.435 −0.140± 0.031

33.219 0.650 0.657 0.408 −0.132± 0.031

Table 2. The integrated DiFFs according to eqs. (2.20) and (2.21). The error has been computed

at the average Q2 for each indicated experimental bin.

the fit for each experimental point. The other scenarios do not show significant qualitative

differences in the range where data exist.

In figure 3, we show the same comparison in the same conditions as in the previous

figure, but for the Monte Carlo approach. The band now represents the result of the 68%

of all replicas, obtained by rejecting the largest 16% and the lowest 16% of the replicas’
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Rigid scenario

up down χ2/d.o.f.

A 0.76± 0.35 2.3± 2.7 22.2/18 = 1.23

B 0.5± 2.0 −81± 69

Flexible scenario

up down χ2/d.o.f.

A 1.41± 0.62 −0.5± 6.8 17.9/16 = 1.12

B −11± 10 104± 413

C 35± 35 (−22± 54)× 102

Extra-flexible scenario

up down χ2/d.o.f.

A 1.79± 0.53 2.6± 5.0 17.6/14 = 1.26

B −24.7± 8.7 −239± 352

C 136± 53 (82± 99)× 102

D −183± 101 (−9.2± 10)× 104

Table 3. Best-fit parameters and χ2 values obtained in the standard approach for the three

scenarios described in the text and based on eq. (3.2).

 0.0

 0.2

 0.4

 0.01  0.10
x

x h1
uV(x)-x h1

dV(x)/4

fit

data HERMES 

data COMPASS 

-0.4

-0.2

 0.0

 0.2

 0.4

 0.6

 0.01  0.10
x

x h1
uV(x)+x h1

dV(x)

fit

data COMPASS 

Figure 2. The combinations of eq. (2.18), left panel, and eq. (2.19), right panel. The squares

and triangles are obtained from the COMPASS and HERMES data, respectively (the values are

indicated in the last column of table 1). The thick solid line indicates the central value of the

best-fit result in the standard approach with the flexible scenario (see text). The error band is the

outcome of the merging of all the straight lines connecting the statistical error bars of the fit for

each experimental point.

values in each x point. We observe no substantial difference between the standard and

Monte Carlo approaches.

The resulting transversity distribution is plotted in figure 4. The left panel displays the

q = uv contribution in eq. (3.2), while q = dv is in the right one. From top to bottom row,

the results for the rigid, flexible, and extra-flexible, scenarios are shown, respectively. For
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 0.0

 0.2

 0.4

 0.01  0.10
x

x h1
uV(x)-x h1

dV(x)/4

68% CL replica

data HERMES 

data COMPASS 

-0.4

-0.2

 0.0

 0.2

 0.4

 0.6

 0.01  0.10
x

x h1
uV(x)+x h1

dV(x)

68% CL replica

data COMPASS 

Figure 3. Same observables and data symbols as in the previous figure. The uncertainty band

represents in the Monte Carlo approach the selected 68% of all fitting replicas (see text).

each panel, the outcome in the standard approach with the Hessian method is represented

by the uncertainty band with solid boundaries, the central thick solid line visualizing the

central value. The partially overlapping band with dashed boundaries is the outcome when

adopting the Monte Carlo approach, where the band width corresponds to the 68% of all

the 100 replicas, again produced as before by rejecting the largest 16% and the lowest

16% among the replicas’ values in each x point. As such, the set of selected replicas in

the 68% band can change in each different x point; consequently, the band itself can show

some irregular wiggles. For sake of comparison, each panel displays also the corresponding

results for the only other existing parametrization available [15], depicted as a band with

short-dashed boundaries. Since the latter was extracted at the scale Q2 = 2.4 GeV2, our

results are properly evolved at the same scale. Finally, the dark thick solid lines indicate

the Soffer bound, also evolved at the same scale Q2 = 2.4 GeV2 (using LO evolution as in

the rest of the analysis).

For the flexible scenario (middle row of figure 4), the uncertainty bands in the standard

and Monte Carlo approaches are quite similar. The main difference is that in the former

case the boundaries of the band can occasionally cross the Soffer bound. This is due to the

fact that the assumed quadratic dependence of χ2 on the parameters around its minimum

is not a reliable one, when getting close to the bounds. On the contrary, in the Monte Carlo

approach each replica is built such that it never violates the Soffer bound; the resulting

68% band is always within those limits.

For the valence up contribution (left panel), the standard approach tends to saturate

the Soffer bound at x ∼ 0.4 (outside the range where data exist). In the Monte Carlo

approach, some of the replicas saturate the bound already at lower values. However, there

are also a few replicas that do not saturate the bound at all, or even saturate the lower

Soffer bound. These replicas typically fall outside the 68% band drawn in the figures.

Nevertheless, they can still have a good χ2 when compared to the data.

For the down valence contribution (right panel), both approaches saturate the lower

limit of the Soffer bound already at x ∼ 0.1, i.e. in a region where data exist. This

behavior is driven by the data, in particular by the bins number 7 and 8 in the deuteron

measurement. No such trend is evident in the corresponding single-hadron measurement
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Figure 4. The up (left) and down (right) valence transversities coming from the present analysis

evolved to Q2 = 2.4 GeV2. From top row to bottom, results with the rigid, flexible, and extra-flexible

scenarios are shown, respectively. The dark thick solid lines are the Soffer bound. The uncertainty

band with solid boundaries is the best fit in the standard approach at 1σ, whose central value is

given by the central thick solid line. The uncertainty band with dashed boundaries is the 68% of

all fitting replicas obtained in the Monte Carlo approach. As a comparison, the uncertainty band

with short-dashed boundaries is the transversity extraction from the Collins effect [15].

of the Collins effect, from which the other parametrization of ref. [15] is extracted. As a

matter of fact, this is the only source of significant discrepancy between the two extractions,

which otherwise show a high level of compatibility despite the fact that they are obtained

from very different procedures. Note that if the Soffer bound is saturated at some scale, it

is likely to be significantly violated at a lower scale [46]. Therefore, if we want to maintain
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the validity of the Soffer bound at Q2 < 1 GeV2, we would expect transversity to be clearly

below the Soffer bound at Q2 ≥ 1 GeV2. In fact, in our analysis with the Monte Carlo

approach there are a few replicas that do not saturate the Soffer bound. They fall outside

the 68% band drawn in the figure, but they are still compatible with the data due to the

large experimental error bars (this is true in particular for the deuteron bins number 7 and

8). Therefore, at present we cannot conclude that the the Soffer bound is saturated or

violated, even though the fit seems to point in that direction. We mention that interesting

speculations concerning violations of the Soffer bound were presented in ref. [52].

At low x, the functional form in the flexible scenario tends to zero by construction,

and similarly in all other scenarios. However, the behavior down to x ∼ 0.005 is driven by

data. In fact, the functional form can have up to two nodes in x ∈ [0, 1]. In the Monte

Carlo approach, most of the replicas for xhuv1 have no node, while for xhdv1 have one or

even two nodes.

In the rigid scenario (upper row in figure 4), most of the features are similar to the

flexible scenario in the region where data exist, but there are some differences outside that

range. For the valence up quark (left panel), both standard and Monte Carlo approaches

give uncertainty bands that saturate the Soffer bound at higher x, almost completely

overlapping with the result obtained from the Collins effect. For the valence down quark

(right panel), the trend is very similar to the flexible scenario: the parametrization saturates

the lower Soffer bound at x & 0.1. This demonstrates that this unexpected behavior is

not an artefact of the functional form, but is due to the experimental data. In the Monte

Carlo approach, the majority of replicas show the same behavior, but a few ones (falling

outside the 68% band) do not, again as in the flexible scenario.

Finally, for the extra-flexible scenario (bottom row in figure 4) the distinction between

regions with and without experimental data is even more clear. Where there are data,

the results are highly compatible with the other scenarios. But at x & 0.4 for the uv
case (left panel), the uncertainty band in the standard approach substantially violates the

Soffer bound. This is an artefact of the assumptions used in error propagation, together

with the lack of data at high x. In the Monte Carlo approach, the replicas entirely fill

the area between the upper and lower Soffer bound, both for the up quark at x & 0.4 and

for the down quark at x & 0.25. This is an explicit visualization of the realistic degree of

uncertainty about transversity in the x range where there are no experimental data points.

We have explored other scenarios for the transversity functional form. We tried dif-

ferent arguments in the hyperbolic tangent, specifically different powers in the first factor,

but with no significant change for x & 0.01. Using the x1/4 factor, the error band at low

x becomes considerably wider. The valence transversities remain integrable, but stable

values of the tensor charge can be reached only by pushing the lower limit in the integral

to extremely small values x . 10−10 (see below).

A qualitative comparison between the results of the present work and the available

model predictions can be done using the results collected in ref. [53]. In particular, we

note that the extracted transversity for the up quark is smaller than most of the model

calculations at intermediate x ∈ [0.1, 0.2], while it is larger at lower x (x ∼ 0.01). The down

transversity is much larger in absolute value than all model calculations at intermediate x
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δu δd δu δd

Q2
0 = 1 GeV2 x ∈ [0.0064, 0.28] x ∈ [0.0064, 0.28] x ∈ [0, 1] x ∈ [0, 1]

Standard rigid 0.30± 0.09 −0.26± 0.17 0.57± 0.21 −0.18± 0.33

MC rigid 0.30± 0.07 −0.22± 0.11 0.56± 0.12 −0.08± 0.27

Standard flex. 0.29± 0.13 −0.26± 0.22 0.72± 0.24 −0.33± 0.61

MC flex. 0.32± 0.09 −0.24± 0.11 0.77± 0.22 −0.45± 0.48

Standard extra-flex. 0.32± 0.12 −0.25± 0.15 0.61± 0.40 −0.16± 0.44

MC extra-flex. 0.34± 0.10 −0.20± 0.14 0.68± 0.22 −0.12± 0.69

Table 4. Table of the results for the tensor charge at Q2
0 = 1 GeV, truncated in the range where data

exist (second and third column) and extended to the whole x range (third and fourth column). The

results are given for the standard and Monte Carlo approach and for the three scenarios considered

in the fit.

(as observed before, this is due to the deuterium data points), while the error band is too

large to draw any conclusion at lower x.

Transversity is directly related to the tensor charge, a fundamental quantity of hadrons

at the same level as the vector, axial, and scalar charges. The tensor charge remains at the

moment largely unconstrained. It can be directly compared with lattice QCD predictions

(see, e.g., refs. [54, 55]) or models (see, e.g., refs. [56–60]). There is no sum rule related to

the tensor current, due to the property of the anomalous dimensions governing the QCD

evolution of transversity. The contribution of a flavor q to the tensor charge is defined as

δq(Q2) =

∫
dxhqv1 (x;Q2) . (4.1)

The region of validity of our fit is restricted to the experimental data range. We

can therefore give a reliable estimate for the tensor charge truncated to the interval x ∈
[0.0064, 0.28]. In the first two columns from left of table 4 we list the results obtained in

the different approaches and scenarios. We tried also to extend the range of integration

outside the experimental data to x ∈ [0, 1]. The result is heavily influenced by the adopted

functional form, in particular by the low-x exponent. Nevertheless, we quote our result in

the last two columns of table 4.

Our results for the tensor charges in the flexible scenario are slightly larger in absolute

value compared to the ones in ref. [15]. They are compatible within errors. Results obtained

in several models can be found in, e.g., refs. [15, 61, 62]. As emphasized in ref. [62], care

must be taken when comparing results at different scales. The ratio between the up and

down tensor charges is scale invariant. The values we obtain in all our scenarios are

compatible with all models within the large errors. In order to better determine the tensor

charge, more data at high and low x are needed.

5 Conclusions and outlook

The transversity parton distribution function (PDF) is an essential missing piece of our

knowledge on the proton at leading-twist. It is a chiral-odd object, whose Q2 dependence
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obeys the non-singlet QCD evolution. Its integral over x is related to the nucleon tensor

charge. Positivity bounds constrain its absolute value to be smaller than the absolute value

of the number density and helicity, the so-called Soffer bound. Due to its chiral-odd nature,

transversity cannot be accessed in fully inclusive deep-inelastic scattering. It is however

possible to access it in two-particle-inclusive DIS [22–24] in combination with Dihadron

Fragmentation Functions (DiFFs).

In this paper, we have obtained for the first time the parameterization of the up

and down valence transversities based on a collinear framework, using data for π+π−

semi-inclusive DIS off transversely polarized targets from the HERMES and COMPASS

collaborations [26, 41], combined with the Belle data on almost back-to-back emission of

two π+π− pairs in e+e− annihilations [34]. We have explored different scenarios for the

functional form, all subject to the theoretical constraint of the Soffer bound [45, 46]. We

have also performed the error analysis in two independent ways. The first one is a standard

one based on the Hessian method. The second one is based on the random generation of

a large number of replicas of the experimental points, and on the fit of each of these

replicas, producing an envelope of trajectories whose spread is the generalization of the 1σ

uncertainty band when the distribution is not necessarily a Gaussian. As such, the second

method is more reliable particularly when the fitting curves hit the Soffer bound, and the

χ2 function cannot be expected to have the quadratic dependence on the fit parameters as

required by the Hessian method. Nevertheless, in the kinematical range of the experimental

measurements the two methods give almost overlapping results in all explored scenarios.

In the range where data exist, our results are compatible with the only other existing

parametrization of transversity, which is determined from the Collins effect in single-hadron

SIDIS off transversely polarized targets [15]. The only source of discrepancy lies in the range

0.1 . x . 0.16 for the valence down quark, where two experimental data for the deuteron

target drive our fitting curves to saturate the lower Soffer bound. However, the large error

bars of these two points prevent us from drawing any conclusion about a possible violation

of the Soffer inequality.

Outside the kinematical range of experiments, the lack of data reflects itself in a large

uncertainty in the parametrization. For the extra-flexible scenario and the error analysis

based on the random approach, the replicas take all the available values between the upper

and lower Soffer bound at large x. This illustrates in a very effective way the need for new

large−x data in order to reduce the degree of uncertainty in the knowledge of transversity.

In the near future, more data are expected from the HERMES and COMPASS collab-

orations. They will include also different types of hadron pairs (e.g., Kπ), which should

allow us to improve the flavour separation of transversity. Two-particle inclusive DIS will

be measured also at JLab in the future, which should considerably increase our knowledge

of transversity at high x. Finally, invaluable information will come also from polarized

proton-proton collisions [63]: data are expected from the PHENIX and STAR collabora-

tions (see, e.g., [64]).

– 18 –



J
H
E
P
0
3
(
2
0
1
3
)
1
1
9

Acknowledgments

We are grateful to Marco Guagnelli for providing us with a modified version of the HOPPET

evolution code. We acknowledge useful discussions with Andrea Bianconi, Stefano Melis,

and Emanuele Nocera. A. Courtoy is working under the Belgian Fund F.R.S.-FNRS via the

contract of Chargée de recherches. This work is partially supported by the Italian MIUR

through the PRIN 2008EKLACK, and by the Joint Research Activity “Study of Strongly

Interacting Matter” (acronym HadronPhysics3, Grant Agreement No. 283286) under the

7th Framework Programme of the European Community.

A Analytic expression of Soffer bound

For convenience, we reproduce here the explicit analytic forms of the Soffer bound used

in our analysis, which is based on the MSTW08LO set [43] for the unpolarized PDF,

combined to the DSSV parameterization [7] for the helicity distribution. The equations

hold at Q2
0 = 1 GeV2.

xSBu(x) + xSBū(x) =
1

2

[
xfuv1 (x) + 2xf ū1 (x) + xgu1 (x) + xgū1 (x)

]
, (A.1)

xfuv1 (x) = 1.4335x0.45232(1− x)3.0409
(
1 + 8.9924x− 2.3737

√
x
)
, (A.2)

2xf ū1 (x) =
1

2

[(
1 + 16.865x− 2.9012

√
x
)

× 0.59964(1− x)8.8801 − 0.10302(1− x)13.242

x0.16276

− 17.8826x1.876(1− x)10.8801
(
1− 36.507x2 + 8.4703x

)]
,

(A.3)

xgu1 (x) + xgū1 (x) = 0.677x0.692(1− x)3.34
(
1 + 15.87x− 2.18

√
x
)
, (A.4)

xSBd(x) + xSBd̄(x) =
1

2

[
xfdv1 (x) + 2xf d̄1 (x) + xgd1(x) + xgd̄1(x)

]
, (A.5)

xfdv1 (x) = 5.0903x0.71978(1− x)5.1244
(
1 + 7.473x− 4.3654

√
x
)
, (A.6)

2xf d̄1 (x) = 2xf ū1 (x)

+ 17.8826x1.876(1− x)10.8801
(
1− 36.507x2 + 8.4703x

)
,

(A.7)

xgd1(x) + xgd̄1(x) = −0.015x0.164(1− x)3.89
(
1 + 98.94x+ 22.4

√
x
)
. (A.8)
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