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1 Introduction

The AdS/CFT correspondence allows us to study strongly coupled quantum field theories

at finite temperature by studying appropriate black hole solutions of a dual gravitational

theory. One focus has been the study of conformal field theories with AdS duals when

held at finite chemical potential with respect to a global U(1) symmetry. Depending on

the details of the gravitational theory, whose matter content includes a U(1) gauge-field,

various types of novel phases are possible, corresponding to the existence of fascinating

new classes of electrically charged black branes.
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One well-studied possibility is that the CFT undergoes a superfluid phase transition.

The first constructions were in the context of a bottom-up, Einstein-Maxwell theory of

gravity coupled to a charged scalar field [1–3] and then extended to top-down constructions

in [4, 5]. Another possibility is that the CFT undergoes a phase transition to a spatially

modulated phase, in which translation invariance is spontaneously broken. This has been

discussed in the context of electrically charged black holes [6–9] and also magnetically

charged black holes [10, 11]. Other work, utilising the brane probe approximation, can

be found in [12–15]. In some special examples in D = 5 it is possible to construct fully

back reacted black hole solutions that are spatially modulated, with a helical structure,

by solving ODEs [16, 17] (see also [18]). However, for most cases, including the D = 4

examples of interest in this paper, one will need to solve PDEs which is technically more

challenging.1

A simple diagnostic for the existence of new branches of black hole solutions at finite

temperature can often be obtained by analysing the zero temperature limit of the unbro-

ken, normal phase black hole solutions. Indeed, this is possible when the ground state that

is approached in this limit has a finite entropy density, s 6= 0. For example, focussing on

D = 4, if the zero temperature limit is described by a domain wall solution that interpolates

between AdS4 in the UV and AdS2×R2 in the IR, as in the AdS-RN black brane solution,

one can look for modes of the AdS2×R2 solution that violate the AdS2 BF bound. If such

modes exist, the T = 0 domain wall solution will also be unstable and hence, by continu-

ity, so will the finite-temperature black hole solutions, for low enough temperatures. To

determine the critical temperature at which this instability sets in and where a new branch

of black holes appears, one should look for static, normalisable, linearised perturbations

about the finite temperature unbroken phase black hole solutions. While this approach

is conceptually straightforward, one can encounter situations, as we will here, where the

critical temperature is so low that it is hard to stabilise the numerical integration to find

its precise value. One can nevertheless take the conceptual point of view that new phases

emerge at low temperatures due to the destabilising effect of the finite ground-state entropy

at T = 0 and thus that the qualitative features of the finite-temperature phase structure

are dictated by the nature of the mode spectrum in the s 6= 0 ground state itself. One is

thus naturally led to investigate the competition of possible sources of instabilities in the

finite-entropy state.

In this paper we will employ these methods to analyse the competition between su-

perfluid and spatially modulated or “striped”2 phases [8] in a top-down setting. More

specifically we will consider a D = 4 model in which both of these instabilities are present,

and then switch on a magnetic field, aiming to suppress the superfluid instability while

maintaining the striped instability. This scenario is in fact realised and we also find, for

1The PDEs associated with some of the holographic striped black holes discovered in [8] were recently

studied in [19].
2The word “striped” arises because the linearised mode for the spatially modulated branch has a striped

structure, being translationally invariant along a given direction. At the linearised level one can also

superpose such modes in different directions, losing this translation invariance. In order to determine the

precise nature of the spatially modulated phase will require constructing the backreacted black holes.
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Figure 1. A schematic figure of a plausible phase diagram as a function of applied magnetic

field. The solid lines denote second order phase transitions and the dashed lines first order. The

two solid dots denote tri-critical points and the open circle a second order critical point where the

metamagnetic transition ends. The phase diagram is symmetric under B → −B. For B > B(ii) as

T → 0 the solutions exhibit hyperscaling violation in the IR with z = 3/2 and θ = −2.

very large magnetic fields, a first-order metamagnetic phase transition at non-zero temper-

ature. Such transitions, involving a discontinuous jump in the magnetisation of the system

and not usually associated with symmetry breaking, are seen in a variety of materials, such

as heavy fermion systems. They have also been discussed in a holographic context involving

probe branes in [20], but as far as we are aware our construction with T 6= 0 is the first in a

gravitational setting. Following these solutions down to zero temperature, we find that they

exhibit hyperscaling violation in the far IR. Holographic hyperscaling violating solutions

have been studied in [21–23] and top-down constructions appear3 in [25–28]. Our solutions

become purely magnetic in the IR with dynamical exponent z = 3/2 and hyperscaling

violation exponent θ = −2. In particular, the entropy scales like s ∝ T 8/3 as T → 0.

A schematic picture of the likely phase diagram incorporating our findings is given

in figure 1; there are some assumptions going into this figure which will be discussed in

detail in the text. Notice that the metamagnetic transition ends in a critical point which

is second-order (as in the liquid-vapour case) or higher, at finite temperature.

The D = 4 top-down model that we shall consider couples the metric with a gauge

field, a charged scalar field and a neutral pseudo-scalar field, σ and arises from a consistent

Kaluza-Klein (KK) reduction on an arbitrary D = 7 Sasaki-Einstein space SE7 [24, 29].

This means that any solution of this D = 4 theory can be uplifted to D = 11 on an

arbitrary SE7 space leading to an infinite class of D = 11 solutions. In particular, the

vacuum AdS4 solution uplifts to the skew-whiffed AdS4 × SE7 solutions which should4 be

dual to d = 3 CFTs with an abelian global symmetry and, generically, no supersymmetry,

apart from the special case when SE7 = S7 which preserves all of the supersymmetry.

3In fact the T → 0 limit of the uncharged and also the charged normal phase black holes of [24] approach

top-down hyperscaling violating solutions in the IR with z = 1 and θ = −1.
4A dual CFT will exist provided that the skew-whiffed AdS4 × SE7 solution is stable. It is known that

skew-whiffed solutions are perturbatively stable [30]. A discussion of possible dual CFTs can be found

in [31, 32].
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The unbroken phase of these d = 3 CFTs at finite temperature, T , and chemical

potential with respect to the abelian symmetry, µ, is described by the electrically charged

AdS-RN black brane solution. A branch of superfluid black hole solutions appears at

a critical temperature [33] and the fully back-reacted solutions were constructed in [24].

On the other hand at very low temperatures the AdS-RN black brane also connects with

a spatially modulated “striped” branch of black holes [8]. This was demonstrated by

constructing BF violating modes in the AdS2 × R2 solution arising in the IR limit of

the T = 0 AdS-RN black hole solution. By analysing linearised modes about the finite

temperature AdS-RN black holes, it was shown in [8] that the critical temperature for

this transition is extremely low, but the precise value was not found. With these results

we cannot be certain about what happens to the superfluid phase as it is cooled. The

simplest possibility is that the system stays on the superfluid branch of black holes all the

way down to zero temperature. However, it is possible that the system moves to a striped

phase at low temperatures either via a first order or a second order phase transition. It is

also possible that there are transitions to other phases. To establish this one would need

to know, in principle, all of the black holes that exist at low temperatures, including the

fully back reacted spatially modulated black holes. In this paper, we will not address these

issues as they remain technically out of reach.

Here, instead, we will analyse the class of d = 3 skew-whiffed CFTS at finite T, µ

after switching on a magnetic field, B. The presence of both electric and magnetic fields

provides a source for the D = 4 neutral, pseudo-scalar field, σ, and this leads to a very rich

structure for the unbroken, normal-phase black hole solutions (i.e. with vanishing charged

scalar field). Indeed the study of these dyonic black hole solutions and related domain

wall solutions that appear at zero temperature, both of which are solutions of a simple

Einstein-Maxwell-pseudo-scalar theory in D = 4, and which are of interest in their own

right, will be the focus for much of our analysis.5

We begin by showing that the D = 4 Einstein-Maxwell-pseudo-scalar model admits

two families of dyonic AdS2×R2 solutions carrying, generically, both electric and magnetic

charges and σ 6= 0. One family, the “electric family”, contains the purely electrically

charged AdS2 × R2 solution, arising in the electric AdS-RN solution at T = 0, while the

other, the “magnetic family”, contains the purely magnetic solution, arising in the magnetic

AdS-RN solution at T = 0. We then investigate which of these solutions can arise as the IR

limit of a domain wall solution that asymptotes to AdS4 in the UV, with deformation data

given by µ,B. Such domain walls are possible zero temperature limits of finite temperature

black holes describing the unbroken phase. Interestingly we find that there can be more

than one domain wall solution with the same UV data µ,B and yet different AdS2 × R2

solutions in the IR. These solutions differ in the normalisable data in the UV and the

parameters governing the irrelevant operators in the IR. Another surprising result is that

while we find that some of the domain wall solutions can be heated up to arbitrarily high

temperatures some cannot. Further insight into the unbroken phase can be obtained by

5It is worth comparing and contrasting our charged pseudo-scalar black holes with the charged, dilatonic

black holes i.e. with neutral scalar fields, which have been studied in a holographic context in many works,

including [21, 34–37].
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calculating the free energy of the black holes and, in particular, we will see the first order

metamagnetic phase transition appearing for large B. In contrast to the dyonic AdS-RN

black holes of Einstein-Maxwell theory which are always strongly diamagnetic [3, 38] (as

we review in appendix A), we will also see paramagnetic behaviour.

The plan of the rest of the paper is as follows. In section 2 we introduce the top-down

Einstein-Maxwell pseudo-scalar model that will be used in sections 2–6. The new dyonic-

pseudo-scalar AdS2 × R2 solutions are presented in section 3. In section 4 we introduce

our ansatz for domain wall and black hole solutions and discuss some aspects of the ther-

modynamics. In particular we include a discussion of the definition of magnetisation and

magnetic susceptibility. Sections 5 and 6 construct domain wall and black hole solutions,

including some discussion of the magnetisation properties of the domain walls and the

metamagnetic phase transition. Section 7 analyses the striped and superfluid instabilities

of the AdS2×R2 and the black hole solutions. In analysing the striped instabilities, which

do not involve the charged scalar fields, we find the surprising result that, after a scaling

of the wave-number, the spectrum of perturbations is the same for all dyonic AdS2 × R2

solutions. At the end of section 7 we summarise our conclusions about the full phase

diagram, which lead to figure 1. We briefly conclude in section 8. Finally, we have one

appendix where we calculate the magnetisation and susceptibility of dyonic black holes in

Einstein-Maxwell theory to compare with the results that we obtain in our model.

2 Top down Einstein-Maxwell-pseudo-scalar model

For most of the paper we will consider the D = 4 model of [24] which couples the metric

to a gauge-field, A, and a neutral pseudo-scalar field, σ. The action is given by

S =
1

16πG

∫
d4x
√
−g
(
R− 1

2
(∂σ)2 − τ(σ)

4
F 2 − V (σ)

)
+

1

32πG

∫
ϑ(σ)F ∧ F (2.1)

where F = dA and

V (σ) ≡ −24 cosh
σ√
3
, τ(σ) ≡ 1

cosh
√

3σ
, ϑ(σ) ≡ tanh

√
3σ . (2.2)

The inclusion of the charged field of [24] will be treated later when we discuss superfluid

instabilities. Note that to compare6 with [24] we should set h = tanh σ√
3

and also rescale

the gauge field Ahere = 2Athere. Occasionally we will find it convenient to use the field h

instead of σ in some plots.

The equations of motion are given by

Rab =
1

2
∂aσ∂bσ +

V

2
gab +

τ

2

(
F 2
ab −

1

4
gabF

2

)
,

d (τ ∗ F ) = dϑ ∧ F,

d ∗ dσ = −V ′ ∗ 1− τ ′

2
F ∧ ∗F +

ϑ

2

′
F ∧ F . (2.3)

6To compare with [8] we should set σ =
√

2ϕ, rescale the metric ghere = (1/2)gthere, identify the

potentials V here = 4V there and also ϑhere = −ϑthere.
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Any solution of these equations of motion, for the specific functions given in (2.2), can be

uplifted on an arbitrary SE7 manifold to obtain an exact solution of D = 11 supergravity

using the formulae in [24]. For example the basic vacuum AdS4 solution with σ = A = 0

and radius squared 1/4 uplifts to the standard skew-whiffed AdS4 × SE7 solution, which

doesn’t preserve any supersymmetry except in the special case of SE7 = S7 in which it

preserves all of the supersymmetry.

It is interesting to observe that given7 (2.2), the equations of motion exhibit the fol-

lowing electric/magnetic duality symmetry

F → −τ(σ) ∗ F + ϑ(σ)F, σ → −σ (2.4)

The origin of this symmetry should be related to the fact that the action comes from a

truncation of an N = 2 supergravity theory [24, 29]. We also observe that, for the specific

functions given in (2.2), it is only consistent to set σ = 0 for configurations that have

F ∧ F = 0. For such configurations, the equations of motion collapse to those of Einstein-

Maxwell theory. We will concentrate on the functions given in (2.2) but many of our results

have simple generalisations for different choices of functions.

3 Dyonic AdS2 × R2 solutions

We consider the following ansatz

ds2 = L2ds2 (AdS2) + ds2(R2) ,

F = −EL2Vol(AdS2) +BVol(R2) , (3.1)

where ds2 (AdS2) and Vol(AdS2) are the metric and volume form for a unit radius AdS2,

and σ, L,E and B are constants, and the minus sign appearing is for later convenience.

Substituting into the equations of motion for (4.2) we are led to the following algebraic

conditions

E2 +B2 = −2V

τ
,

τ ′

2
(E2 −B2)− ϑ′EB − V ′ = 0 , (3.2)

with the AdS2 radius given by

L−2 = −V . (3.3)

Notice that these equations are invariant under simultaneously flipping the sign of B and

σ. In addition the duality transformation (2.4) corresponds to

E → τB + ϑE, B → −τE + ϑB, σ → −σ (3.4)

Up to flipping the sign of both E and B, for the specific functions given in (2.2), these

relations define two one-parameter families of dyonic AdS2 × R2 solutions, labelled by σ,

7More generally, we require that (τ, V ) and ϑ are even and odd functions of σ, respectively, that are

analytic at σ = 0.
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Figure 2. Two families of dyonic AdS2 × R2 solutions. The left and right panels display the

dependence of E and B on the value of the pseudo-scalar σ, respectively. For convenience of

presentation we use tanh(σ/
√

3) for the horizontal axis. The blue line is the electric family which

contains a purely electric solution and the red line is the magnetic family which contains a purely

magnetic solution. There are two more families of solutions obtained by simultaneously flipping the

signs of E,B.

which we have summarised in figure 2. Notice that one family, which we call the “electric

family”, contains a purely electric solution, while the other “magnetic family”, contains a

purely magnetic solution. As we discuss below, the purely electric and magnetic AdS2×R2

solutions, both of which have σ = 0, arise as the near horizon limit of the standard electric

and magnetic AdS-RN black brane solutions, respectively.

4 Ansatz and thermodynamics

4.1 Ansatz for domain wall and black hole solutions

In the sequel we will consider the following ansatz

ds2 = −e−β(r)g(r)dt2 +
dr2

g(r)
+ r2(dx2 + dy2) ,

A = φ(r)dt+B
1

2
(xdy − ydx) ,

σ = σ(r) . (4.1)

After substituting into the equations of motion (2.3) we obtain differential equations for the

functions β, g, φ and σ. These equations can also be obtained by substituting the ansatz

directly into the action (2.1), leading to

S = c0

∫
drr2e−β/2

[
− g′′ + g′

(
3

2
β′ − 4

r

)
+ g

(
β′′ − 1

2
(β′)2 + 2

β′

r
− 2

r2

)
− 1

2
gσ′2 +

1

2
τ(σ)

(
eβφ′2 − B2

r4

)
− V (σ)−Bϑ(σ)

eβ/2φ′

r2

]
, (4.2)

– 7 –
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where c0 = (16πG)−1
∫
dtdxdy, and then varying. It is helpful to observe that the ansatz

and hence the equations of motion are invariant under the two scalings

t→ λt, eβ → λ2eβ, φ→ λ−1φ ;

r → λr, (t, x, y)→ λ−1(t, x, y), g → λ2g, φ→ λφ, B → λ2B . (4.3)

We also note the symmetry

B → −B, σ → −σ (4.4)

When σ = 0, the standard electrically charged AdS-RN black brane solves the equa-

tions of motion. It is given by

g = 4r2 −
(

4r2
+ +

µ2

4

)
r+

r
+
µ2r2

+

4r2
, φ = µ

(
1− r+

r

)
(4.5)

with β = B = 0. When µ = 4
√

3r+, the temperature T = 0 and the solution is a domain

wall interpolating between AdS4 in the UV and the purely electrically charged AdS2 ×R2

solution in the IR given in (3.1), (3.2), (3.3) with L2 = 1/24 and E = −4
√

3. Although we

will be principally interested in black hole solutions with non-vanishing electric charge, we

recall here the purely magnetic AdS-RN black brane solution:

g = 4r2 −
(

4r2
+ +

B2

4r2
+

)
r+

r
+
B2

4r2
, (4.6)

with β = φ = 0. The T = 0 limit is when B = 4
√

3r2
+ and the solution becomes a

domain wall approaching the purely magnetically charged AdS2 × R2 solution in the IR

given in (3.1), (3.2), (3.3) with L2 = 1/24 and B = 4
√

3.

Notice that the standard dyonic AdS-RN black hole is not a solution to the equations

of motion, since the presence of both electric and magnetic fields sources the pseudo-scalar

σ. We will construct dyonic black hole and domain wall solutions with σ 6= 0 numerically

in later sections.

4.2 Asymptotic expansions

4.2.1 UV expansion

We are interested in studying the d = 3 CFTs with chemical potential µ and magnetic field

B. In the UV, as r →∞, we will impose the following expansions

g = 4r2 + σ2
1 −

1

2r
(ε− 4σ1σ2) + . . . ,

β = βa +
σ2

1

4r2
+

2σ1σ2

3r3
. . . ,

φ = e−
βa
2

(
µ− q

r
−
√

3Bσ1

2r2
+ . . .

)
,

σ =
σ1

r
+
σ2

r2
+

5σ3
1

72r3
. . . . (4.7)
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Note that for simplicity8 we focus on the quantisation of the pseudo-scalar so that the

dual operator has dimension ∆(Oσ) = 2. For the most part, we will consider the CFT

with no deformation in the UV by Oσ corresponding to setting σ1 = 0. For simplicity of

presentation, we have set

16πG = 1 (4.8)

The appropriate factors can easily be reinstated if required. It is also worth repeating here

that the radius of the asymptotic AdS4 is 1/2.

4.2.2 IR expansion: finite temperature

In this case we are interested in black hole solutions with regular event horizons located at

r = r+ where there is an analytic expansion of the form

g = g+(r − r+) + . . . ,

β = β+ + . . . ,

φ = φ+(r − r+) + . . . ,

σ = σ+ + . . . . (4.9)

This expansion is fixed by 4 constants, β+, φ+, σ+ and r+ with, for example,

g+ = 12r+ cosh
σ+√

3
−
B2 + r+e

β+φ2
+

4 cosh
√

3σ+

. (4.10)

A black hole solution is then specified by 6 UV parameters (with σ1 = 0) and 4 IR

parameters. From (4.2) we have two first order equations of motion, for g, β, and two

second order equations, for φ, σ and so a solution is specified by 6 integration constants.

Taking into account the scaling symmetries (4.3), we expect two-parameter families of black

hole solutions which can be labelled by temperature T and magnetic field B, or better, by

the dimensionless quantities T/µ and B/µ2.

For later use we notice that the equation of motion for φ arising from (4.2) (i.e. the

equation of motion for the gauge-field in (2.3)) can be integrated from r = r+ to r = ∞
and from (4.9) and (4.7) we obtain the charge conservation condition

q = τ(σ+)eβ+/2φ+r
2
+ −Bϑ(σ+) , (4.11)

with the first and second terms on the right hand side arising from the F 2 term and the

F ∧F terms in the action (2.1), respectively. This condition can be satisfied in the far IR of

a black hole solution in the zero temperature limit in different ways. For example, we will

construct dyonic black hole solutions which approach domain walls at T = 0 with non-zero

entropy density, which will get get contributions from both terms. We will also construct

black hole solutions with vanishing entropy density as T → 0 with all of the contribution

to q coming from the F ∧ F term.

8For the special case of uplifting the D = 4 solutions on an S7, the choice ∆(Oσ) = 2 is associated with

maximal supersymmetry.
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4.2.3 IR expansion: zero temperature

We are also interested in domain wall solutions that asymptote in the IR, as r → r+, to

the dyonic AdS2 × R2 solutions given in (3.1)–(3.3). We focus on the following expansion

g(r) = g0 (r − r+)2 + . . .

σ(r) = σ0 + . . .+ σ+ (r − r+)∆−1 + . . .

φ(r) = φ0 (r − r+) + . . .+ σ+δφ (r − r+)∆ + . . .

β(r) = β0 + . . .+ σ+δβ (r − r+)∆−1 + . . . . (4.12)

where g0 is determined via

g0 = −V (σ0) , (4.13)

together with the relations

E2 + B̃2 = −2V (σ0)

τ(σ0)
,

τ ′(σ0)

2
(E2 − B̃2)− ϑ′(σ0)EB̃ − V ′(σ0) = 0 , (4.14)

where E ≡ e
β0
2 φ0 and B̃ ≡ B/r2

+. Also, σ+ parametrises a deformation by an irrelevant

operator of dimension ∆, with

∆ =
1

6
(3 +

√
105) , (4.15)

which we discuss further below. As r → r+ this expansion approaches the exact dyonic

AdS2 × R2 solutions given in (3.1)–(3.3). The irrelevant deformation with ∆ as (4.15)

is obtained by linearising about an exact dyonic AdS2 × R2 solution. We find that the

corresponding mode has

δβ = −2
√

3 tanh
σ0√

3
,

δφ = e
−β0
2

√
3

2∆

B̃ + 2E sinh
√

3σ0 − 2E sinh σ0√
3

cosh
√

3σ0

. (4.16)

A domain wall solution is specified by 6 UV parameters (with σ1 = 0) and 3 IR

parameters (i.e. σ0, φ0, β0, r+, σ+ subject to the two constraints (4.14)). Now from (4.2) we

have two first order equations of motion, for g, β, and two second order equations, for φ, σ

and so a solution is specified by 6 integration constants. Taking into account the scaling

symmetries (4.3), we expect a one-parameter family of black hole solutions which can be

labelled by the magnetic field B.

4.3 Thermodynamics

Building on [3, 39], we generalise the discussion of [24] to include B 6= 0. We analytically

continue by setting t = −iτ , together with I = −iS. We can then obtain two expressions

for the on-shell action for the class of solutions we are studying. The first expression is

given by the integral of a total derivative

IOS = ∆τvol2

∫
dr
[
r2e−

β
2

(
g′ − gβ′ − τ(σ)eβφφ′

)
+Bϑ(σ)φ

]′
. (4.17)
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The second can be written

IOS = ∆τvol2

∫
dr

{[
2rge−β/2

]′
+B2r−2e−β/2τ(σ) +Bϑ(σ)φ′

}
, (4.18)

which is an integral of a total derivative only in the special case that B = 0.

We define the total action ITot via

ITot = I + Ict , (4.19)

where the boundary counter term action is

Ict =

∫
dτd2x

√
g∞
(
−2K + 8 + σ2

)
. (4.20)

We next define the thermodynamic potential W ≡ T [Itot]OS ≡ wvol2 where the tempera-

ture of the black hole is given by

T =
eβa/2

4π
[g′e−β/2]r=r+ . (4.21)

Corresponding to the expression (4.17), and using the expansion (4.7) as well as (4.9), we

obtain

w = ε− µq − Ts . (4.22)

On the other hand, corresponding to (4.18) we find the alternative expression

w = −
(ε

2
+ 2σ1σ2

)
+ eβa/2

∫
dr
{
B2r−2e−β/2τ(σ) +Bϑ(σ)φ′

}
. (4.23)

The equality of these two expressions gives a Smarr type formula, which we shall return to

below.

We next consider an on-shell variation of the total action, as in [24], and deduce that

w = w(T, µ, σ1, B) with

δw = −sδT − qδµ− 4σ2δσ1 −mδB , (4.24)

where the entropy density, s, is given by

s = 4πr2
+ , (4.25)

and the magnetisation per unit volume, m ≡ −∂w/∂B at constant T, µ, σ1, is given by

m = −eβa/2
∫
dr
{
Br−2e−β/2τ(σ) + ϑ(σ)φ′

}
. (4.26)

Observe that the axionic-like coupling ϑ in (2.1) can give rise to magnetisation even when

B = 0.

The holographic stress tensor of [40], given by

Ti
j = (2r3)[−2Ki

j + 2δi
j(2K − 8− σ2)] , (4.27)
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can be calculated and we find

Tt
t = −ε ,

Tx
x = Ty

y =
ε

2
+ 2σ1σ2 . (4.28)

Thus ε is the energy of the system. We also see that when σ1 = 0, corresponding to no

deformation by Oσ, but with B,µ 6= 0, the stress tensor is traceless. Using the general

result that w = −p, where p is the pressure, a comparison of (4.23), (4.26) (4.28) reveals

that the content of the Smarr relationship can be written

p =
ε

2
+ 2σ1σ2 +mB ,

= Tx
x +mB , (4.29)

similar to what was noted in [3]. The magnetic susceptibility, χm, is defined by χm =

∂m/∂B = −∂2w/∂B2 with the derivatives taken at constant T, µ, σ1.

5 Dyonic domain wall solutions

In this section we construct domain wall solutions that approach AdS4 in the UV as in (4.7),

and we set σ1 = 0 corresponding to no deformation of the CFT by the operator Oσ. We

also use the scaling (4.3) to set βa = 0. In the IR they approach one of the dyonic AdS2×R2

solutions discussed in section 3 via the expansion (4.12). As discussed above, we expect a

one-parameter family of solutions which we label by the value of the dimensionless quantity

B/µ2. For definiteness we will choose µ > 0 and focus on B ≥ 0. For σ1 = 0, the solutions

with B ≤ 0 can be obtained using the symmetry (4.4).

We first consider domain wall solutions that in the IR approach AdS2 × R2 solutions

lying in the electric family. The simplest case is the purely electric AdS2 ×R2 solution for

which the unique domain wall solution is simply the T = 0 limit of the electrically charged

AdS-RN black brane (4.5). As we switch on B we find a one-parameter family of solutions

as given in figure 3. The first interesting feature is that the domain wall solutions only exist

up to a maximum value of B/µ2 given by (B/µ2)max ≈ 0.12. The second interesting feature

is that for fixed values of B/µ2 6= 0 there can be two distinct domain wall solutions. These

domain walls have the same UV deformation data µ,B but are distinguished in having

different values of ε, q, σ2 in the UV expansion (4.7), corresponding to different values of

the energy, charge and 〈Oσ〉. After calculating the free energy w for these solutions we find

that the upper branch in the left panel in figure 3 is always thermodynamically preferred.

The numerical results suggest that this picture persists for all values of B/µ2 < (B/µ2)max.

Figure 3 also displays the magnetisation m for these domain wall solutions. It is interesting

to observe that it is always positive, corresponding to a paramagnetic system, in contrast to

the dyonic AdS-RN solutions of pure Einstein-Maxwell theory which are diamagnetic [3, 38]

(see appendix A).

We next consider domain wall solutions that approach AdS2×R2 solutions lying in the

magnetic family. We display a one-parameter family in figure 4 again with B > 0, µ > 0.
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Figure 3. Left panel: the one parameter family of domain wall solutions interpolating between

AdS4 in the UV, with deformation data (µ,B), and dyonic AdS2×R2 solutions in the electric family

in the IR, labelled by σ0. For convenience of presentation the vertical axis is given by tanh(σ0/
√

3).

There can be two domain wall solutions for given (µ,B) and the upper branch has smaller free

energy and is thermodynamically preferred. It is expected that the lower branch continues down to

B/µ2 → 0. The red dots indicate superfluid instabilities, discussed in section 7.2, with the solutions

being unstable to the left of the dots. Right panel: a plot of the magnetisation m/µ as a function

of B/µ2. Observe that the magnetisation is always positive corresponding to paramagnetism.

Note that the purely magnetic solution, the T = 0 limit of the purely magnetically charged

AdS-RN solution (4.6), is obtained when µ = 0 and hence B/µ2 → ∞ in the figure. Also

note that we have only been able to stabilise the numerics for values of B/µ2 & 1 and in

particular we have not obtained these solutions for values of B/µ2 that overlap with the

solutions in figure 3. It is most likely that they do exist for all values of B/µ2 down to zero,

but that they have higher free energy and hence are not thermodynamically relevant.9 We

will continue with this assumption. Figure 4 also displays the magnetisation m for these

domain wall solutions. It is interesting to observe that it is always negative, corresponding

to diamagnetism, in contrast to the domain wall solutions lying in the electric family of

figure 3.

6 Dyonic black hole solutions

In this section we construct finite temperature black hole solutions that approach AdS4 in

the UV as in (4.7), again with σ1 = βa = 0. Also, as in the previous section, we choose

µ > 0 and B ≥ 0 with solutions with B ≤ 0 obtained using the symmetry (4.4).

Our initial strategy is to heat up the T = 0 domain wall solutions that we constructed in

the previous section. One focus of interest is what we will call “region I”, with 0 ≤ B/µ2 ≤
(B/µ2)I . In this region, by definition, the unbroken phase is described by dyonic black

holes whose zero temperature limit is given by dyonic domain wall solutions approaching

9This is based on two calculations. Firstly, using the values for the free energy of the domain walls that

we have constructed in figure 4 and then extrapolating to smaller values of B/µ2. And secondly, we have

also calculated some domain walls after adding in a deformation in the UV by the ∆ = 2 operator dual to

σ (see section 8) where we were able to make a direct comparison of the free energies for the same UV data

in some cases.
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Figure 4. Left panel: the one parameter family of domain wall solutions interpolating between

AdS4 in the UV, with deformation data (µ,B), and dyonic AdS2 × R2 solutions in the magnetic

family in the IR, labelled by σ0. For convenience of presentation the vertical axis is given by

tanh(σ0/
√

3). It is expected that these domain walls exist for B/µ2 → 0 but that they have higher

free energy than the domain walls in figure 3 for the same values of B,µ. The red dots indicate

superfluid instabilities, discussed in section 7.2, with the solutions being unstable to the left of

the dots. Right panel: a plot of the magnetisation m/µ as a function of B/µ2. Observe that the

magnetisation is always negative corresponding to diamagnetism.
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w
/µ
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-0.0525

-0.0520

-0.0515

-0.0510

Figure 5. A representative plot of the free energy of two families of dyonic black hole solutions

that exist in region I i.e. for values of B/µ2 with 0 < B/µ2 < (B/µ2)I . At T = 0 each family

approaches a smooth domain wall solution interpolating between AdS4 in the UV and two different

dyonic AdS2 × R2 solutions in the IR. Notice that only the bottom branch can be heated up to

arbitrarily high temperatures; it is thermodynamically preferred and describes the unbroken phase.

in the IR AdS2×R2 solutions lying on the electric family. One might suspect that (B/µ2)I
coincides with (B/µ2)max, the value of B/µ2 in which such domain walls cease to exist

(see figure 3). However, this is not quite true and in fact we have (B/µ2)I < (B/µ2)max,

because of the existence of a first order metamagnetic transition, as we shall explain.

In figure 5 we show a representative plot of the black hole solutions that we have

constructed with 0 < B/µ2 < (B/µ2)I , with B/µ2 close to (B/µ2)I . We can heat up the

domain wall solution approaching the AdS2×R2 solution that lies on the upper branch of

figure 3 to arbitrary high temperatures. On the other hand for the domain wall solution ap-
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Figure 6. A series of dyonic black holes for different values of B/µ2, with increasing values

of B/µ2 for the black, blue, red and green curves, respectively. The black curve has B/µ2 <

(B/µ2)I . The blue curve has B/µ2 = (B/µ2)max > (B/µ2)I and the red and green curves have

B/µ2 > (B/µ2)max. In the left and right plots we show the free energy and the magnetisation as

a function of T . Observe that for the blue and red curves there is a first order phase transition

at finite temperature, marked with circles on the right plot, where there is a discontinuous jump

in the magnetisation. The solid black and blue dots refer to domain wall solutions with dyonic

AdS2×R2 solutions in the IR. The dashed curves indicate black hole solutions that are approaching

hyperscaling violating behaviour in the IR as T → 0.

proaching the AdS2×R2 solution that lies on the lower branch of figure 3 we find that it can

only be heated up to a maximum temperature before it goes back down to lower temper-

atures. Following this solution down to very low temperatures we find that the solution is

becoming singular in the IR, approaching a hyperscaling violating behaviour as we discuss

below. We can see from figure 5 that the free energy for the branch of black holes that can be

heated up to high temperatures is always thermodynamically preferred and hence describes

the high temperature unbroken phase of the system. In the right plot of figure 6 the black

curves plot the magnetisation as a function of T for the two black hole branches for the

value of B/µ2 given in figure 5 (the same value of B/µ2 for the black curve in the left plot of

figure 6). We observe that for the thermodynamically preferred black holes the behaviour

switches from paramagnetism at low temperatures to diamagnetism at high temperatures.

Having discussed the black holes for a representative value of B/µ2 < (B/µ2)I in

region I, let us see what happens as we increase the value of B/µ2. A series of black hole

solutions is presented in figure 6. We see that at B = Bmax, corresponding to the blue

curve, the two branches of black holes are coalescing at T = 0 corresponding to the fact

that at B/µ2 = (B/µ2)max there is just a single domain wall solution mapping in the IR

onto an AdS2×R2 solution in the electric family. By examining the free energy, we see that

the blue curve implies there is a first order phase transition at finite temperature. We also

see from the right panel in figure 6, that there is an abrupt change in the magnetisation

and hence we have a first-order metamagnetic phase transition. At low temperatures the

preferred black holes, denoted by the dashed blue line in figure 6, all exhibit hyperscaling

violation in the IR, as we elaborate on further below.

For higher values of B/µ2, B/µ2 > (B/µ2)max, illustrated by the red and the green

curves in figure 6, there is just a single branch of black holes all of which approach a singular
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Figure 7. The phase diagram for the unbroken phase black holes. For Region I, with 0 ≤ B/µ2 <

(B/µ2)I the black holes at T = 0 are domain walls that approach an AdS2 × R2 solution in the

electric family in the far IR. More precisely, they are domain walls that are on the upper part of the

curve in the left hand plot in figure 3. For (B/µ2)I ≤ B/µ2 ≤ (B/µ2)max similar black holes exist,

but they are not thermodynamically preferred. Instead the dashed line represents a line of first

order phase transitions to a metamagnetic phase, ending in a second order critical point denoted by

a round circle. For B/µ2 > (B/µ2)I , as T → 0 the thermodynamically preferred solutions exhibit

hyperscaling violation in the IR with dynamical exponent z = 3/2 and θ = −2.

solution at T = 0. For the red curve we again see that there is a first order phase transition

at finite temperature with the transition temperature depending on B/µ2. Increasing B/µ2

further we get to the green curve and the first order transition comes to an end at a critical

point which is second (or higher) order. In the right plot of figure 6 we see that the jump

in the magnetisation, present for the first order transitions, is decreasing as one increases

B/µ2, disappearing for the green curve. In figure 7 we have summarised the T,B phase

diagram for these unbroken phase black holes.

6.1 Hyperscaling violation

We now return to the properties of the solutions denoted by dashed curves in figure 6 in

the limit that T → 0. We first observe from the free-energy curves in figure 6 that as

T → 0 they all have ∂Tw → 0 and hence the entropy density s → 0. In figure 8 we have

plotted the behaviour of log s versus log T which clearly reveals, especially for large values

of B/µ2, that s ∝ T 8/3 as T → 0. This strongly suggests that the solutions all exhibit an

emergent scaling behaviour in the IR as T → 0.

The scaling behaviour can be identified by returning to the equations of motion coming

from (4.2). In particular, we have found the following one-parameter family of solutions,

at leading order in r as r → 0, given by

ds2 = −r5/2dt2 +
dr2

2Lr
+ r2(dx2

1 + dx2
2) ,

F = Bdx1 ∧ dx2 ,

σ = σ0 +
√

3 log r , (6.1)
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Figure 8. A plot of log s/µ2 versus log T/µ for the dyonic black hole solutions with different

values of B/µ2. The black, blue, red and green curves are the same black holes as in figure 6 and

the brown curve is a black hole with a much larger value of B/µ2. As T → ∞ the dotted line

corresponds to s ∝ T 2, associated with the AdS4 asymptotics in the UV. As T → 0 the dashed

line corresponds to s ∝ T 8/3, associated with the hyperscaling violating asymptotics in the IR with

z = 3/2 and θ = −2.

where σ0 is a constant and

B = ± 2√
3
e
− 2σ0√

3 , L =
32

33
e
− σ0√

3 . (6.2)

This purely magnetic configuration solves the equations of motion to leading order as

r → 0, and moreover, we find that the F ∧ F coupling in (2.1) is not playing a role. A

simple co-ordinate transformation r → (L/2)ρ−2, combined with a rescaling of the time

and spatial co-ordinates, reveals this to be a hyperscaling violating metric [21–23] given by

ds2 = ρ−(2−θ)(−ρ−2(z−1)dt2 + dρ2 + dx̄idxi) , (6.3)

with dynamical exponent z = 3/2 and hyperscaling violation exponent θ = −2. In partic-

ular, under the scaling

t→ λzt, xi → λxi, ρ→ λρ , (6.4)

the metric scales as ds → λθ/2ds. If one heats up this class of hyperscaling violating

solutions one finds that the entropy density behaves as s ∝ T (2−θ)/z = T 8/3, which is

exactly the same behaviour we see for our solutions as T → 0.

A more detailed look at our numerical solutions provides additional evidence that as

T → 0 the solutions are domain walls interpolating between the hyperscaling violating

behaviour (6.1) in the IR and AdS4 in the UV. We leave the detailed construction of such

domain wall solutions to future work, but we note one final point. As T → 0 the black
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hole solutions have σ+ → −∞ at the event horizon and also the UV charge q is given by

q → B. A consideration of (4.11) shows that the origin of the electric charge in the far IR

for these s = 0 ground states is arising purely from the F ∧ F coupling in (2.1).

6.2 Other dyonic black hole solutions

The alert reader will have noticed that in addition to the two branches of black holes

presented in figure 5, mapping onto a T = 0 domain wall solution approaching an AdS2×R2

solution in the electric family, there could be an additional branch of black holes which maps

onto a T = 0 domain wall solution approaching anAdS2×R2 solution in the magnetic family

as in figure 4. Indeed we have constructed such solutions for values of B/µ2 as in figure 4,

which we recall are much higher than those in figure 5. By extrapolating the free energy

of these solutions down to smaller values of B/µ2, combined with the observations that

we made in footnote 6, we expect these black holes are never thermodynamically preferred

over those presented in figure 5 and hence they will not change the picture summarised in

figure 7. We also note that the solutions of this type that we have constructed exist up

to a maximum temperature and then return to low temperatures, approaching a singular

solution as T → 0, analogous to the upper branch in figure 5. In fact these solutions also

appear to approach the hyperscaling violating solutions given in (6.1).

7 Superfluid and striped instabilities

In section 7.1 we analyse striped instabilities of the dyonic AdS2 × R2 solutions in both

the electric and magnetic families given in section 3. This allows us to deduce the exis-

tence of instabilities of the corresponding domain walls constructed in section 5 and the

thermodynamically preferred unbroken phase black hole solutions in region I, i.e. with

0 ≤ B/µ2 < (B/µ2)I , that map onto domain walls at zero temperature, constructed in

section 6 (see figure 7). Note that the critical temperatures for the existence of the striped

instabilities for the black holes is very low and we have not been able to stabilise the numer-

ics to find their precise values. In section 7.2 we construct the superfluid instabilities both

for the dyonic AdS2×R2 solutions and for the thermodynamically preferred unbroken phase

black holes in region I and we find that they only exist for 0 ≤ B/µ2 ≤ (B/µ2)c < (B/µ2)I .

In section 7.3 we discuss the implications for the full phase diagram of the system, which

we summarised in figure 1.

7.1 Striped instabilities

We consider spatially modulated, or “striped”, perturbations about the dyonic AdS2 ×R2

solutions given in section 3. We write these solutions as

ds2 = L2
(
−ρ2dt2 + ρ−2dρ2

)
+ dx2

1 + dx2
2 ,

A = −EL2ρdt− 1

2
Bx2dx1 +

1

2
Bx1dx2, σ = σ0 (7.1)
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with σ0, E,L and B constants satisfying (3.2), (3.3). We consider the linearised perturba-

tion

δgtt(ρ, x1) = L2ρ2htt(ρ) cos(kx1) ,

δgtx2(ρ, x1) = L2ρhtx2(ρ) sin(kx1) ,

δgx1x1(ρ, x1) = hx1x1(ρ) cos(kx1) ,

δgx2x2(ρ, x1) = hx2x2(ρ) cos(kx1) ,

δAt(ρ, x1) = ρδat(ρ) cos(kx1) ,

δAx2(ρ, x1) = δax2(ρ) sin(kx1) ,

δσ(ρ, x1) = s(ρ) cos(kx1) , (7.2)

where the wave-number k is a constant. Substituting into the equations of motion we are

lead to a system of coupled linear differential equations that are second order in htt(ρ),

htx2(ρ), at(ρ), ax2(ρ), s(ρ) and, when k 6= 0, first order in hx1x1(ρ), hx2x2(ρ). When k = 0

they are first order in hx2x2(ρ) but second order in hx1x1(ρ).

We are interested in analysing the spectrum of scaling dimensions of the operators in

the CFT dual to the AdS2 solution and in particular whether there are any modes that

violate the BF bound. We therefore look for solutions where the seven functions of ρ are

of the form vρ−δ where v is a constant vector and δ is a constant related to the scaling

dimension via ∆ = δ or ∆ = 1 − δ. The BF bound is given by ∆ = 1/2. The system

of equations then takes the form Mv = 0 where M is a 7 × 7 matrix. Demanding that

non-trivial v exists implies that detM = 0 and this specifies the possible values of δ as a

function k.

We first focus on the electric family of AdS2×R2 solutions. We further restrict to the

purely electric solution with σ0 = B = 0. We find that the spectrum of δ is symmetric

with respect to k → −k and we have displayed the values of ∆ in figure 9 for k ≥ 0. In

particular, we find that, for k ≥ 0, the BF bound is violated in the approximate range

k ∈ (5.94, 6.48), as already observed in [8]. We next analyse what happens as we move

along the electric family of dyonic solutions by allowing σ0 6= 0. We find the surprising

result that after rescaling k →
√

cosh(σ0/
√

3)k the spectrum is independent of σ0. It

would be interesting to better understand the underlying origin of this result. Moving to

the magnetic family of AdS2 × R2 solutions, we find that the spectrum is identical to the

electric family, which is presumably a consequence of the duality symmetry (2.4).

We conclude that all the dyonic AdS2 × R2 solutions of section 3 have spatially mod-

ulated instabilities.

7.2 Superfluid instabilities

To study superfluid instabilities we now consider the consistent Kaluza-Klein truncation

of [24] which also includes the charged scalar field, denoted by χ in [24]. Writing χ =
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Figure 9. The spectrum of scaling dimensions ∆ for spatially modulated striped modes of the

purely electric AdS2 × R2 solution as a function of wave-number k. For k ∈ (5.94, 6.48) the BF

bound is violated and there are striped instabilities. After rescaling the momentum we find exactly

the same spectrum for the entire family of dyonic AdS2 × R2 solutions.

√
4
3 tanh(η/2)e2iθ, where η, θ are real, the action of [24] can be written

S =
1

16πG

∫
d4x
√
−g

(
R− 1

2
(∂σ)2 − τ(σ)

4
F 2 − V (σ, η)

− 1

2
(∂η)2 − 2 sinh2 η(∂θ −A)2

)
+

1

32πG

∫
ϑ(σ)F ∧ F , (7.3)

where τ(σ) = 1
cosh

√
3σ

and ϑ(σ) = tanh
√

3σ as before, and now

V (σ, η) ≡ −24 cosh

(
σ√
3

)
cosh4

(η
2

)[
1− 4

3
tanh2

(η
2

)
cosh2

(
σ√
3

)]
. (7.4)

We want to consider linearised fluctuations of the charged scalar field about the dyonic

solutions with η = 0, that we have constructed earlier. Similar computations were first

carried out for other models in [3, 41]. We can consistently work in a gauge with θ = 0.

The linearised equation of motion for η then reads

[∇2 − 4A2 − f(σ)]η = 0 , (7.5)

where ∇ and A refer to the background solution and

f(σ) = 4 cosh(
√

3σ)− 12 cosh
σ√
3
. (7.6)

First consider perturbations about the dyonic AdS2 × R2 solutions as given in (7.1).

We focus on the lowest Landau level by writing

η(t, ρ, xi) = e−
|B|
2

(x21+x22)η̄(t, ρ) . (7.7)
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We then find that η̄ satisfies

[∇2
AdS2

− L2M2]η̄ = 0, M2 = 2|B|+ f(σ0)− 4E2L2 , (7.8)

where ∇2
AdS2

is the Laplacian for a unit radius AdS2. This mode violates the AdS2 BF

bound when L2M2 < −1/4. Focussing on σ0 ≥ 0, for the electric family we find that the

mode is unstable apart from the range of solutions where, approximately, |σ0| ∈ (1.01, 2.94).

We also find that for the magnetic family of solutions this mode violates the BF bound

for (approximately) |σ0| ≥ 3.08. In section 5 we constructed domain walls for UV data

µ,B which map onto domain walls that approach dyonic AdS2×R2 solutions on either the

electric or magnetic family in the IR. In figures 3 and 4 we have indicated which of these

domain wall solutions must be unstable.

We can also consider linearised perturbations about the dyonic black hole solutions

lying in the ansatz (4.1) that we constructed in section 6. In particular, we want to consider

static, normalisable modes which appear at a critical temperature at which the superfluid

instability appears. At this critical temperature new superfluid black hole solutions will

appear. The mode that will have the highest critical temperature has the form

η = e−
|B|
2

(x21+x22)R(r) , (7.9)

where R(r) satisfies the ODE

r−2eβ/2
(
r2e−β/2gR′

)′
−
(

2|B|
r2

+ f(σ)− 4φ2eβg−1

)
R = 0 . (7.10)

At the black hole event horizon we have that R(rh) is a constant and we can use the

linearity of the ODE to set this to unity. At the AdS4 boundary we demand that R(r) =

η1/r + η2/r
2 + . . . with η1 = 0, corresponding to a spontaneous breaking of the abelian

symmetry. We thus have fixed two integration constants for the second order ODE and

hence we expect that solutions will appear at specific temperatures.

We are most interested in superfluid instabilities that appear on the thermodynamically

preferred dyonic black hole solutions that we summarised in figure 7. The temperature at

which the normalisable mode appears as a function of B/µ2 are presented in figure 10 and

we see that they exist in the range 0 ≤ B/µ2 ≤ (B/µ2)c with (B/µ2)c < (B/µ2)I . We

expect that (B/µ2)c is the same limiting value at which the thermodynamically preferred

domain wall solutions on the electric branch have an instability in the AdS2×R2 region in

the IR; the latter is marked with a red dot in figure 10.

7.3 Conclusions about the full phase diagram

In region I, with 0 ≤ B/µ2 < (B/µ2)I , the thermodynamically preferred unbroken phase

black holes approach a domain wall solution at zero temperature that maps onto a dyonic

AdS2 ×R2 solution in the electric family at T = 0, as in figure 7. More precisely, they are

domain walls that are on the upper part of the curve in the left hand plot in figure 3. For

0 ≤ B/µ2 ≤ (B/µ2)c < (B/µ2)I there are both superfluid and striped instabilities with

the critical temperature for the superconducting instability monotonically decreasing to
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Figure 10. A plot of the critical temperature at which the superfluid phase transition sets in, for

the thermodynamically preferred normal phase black holes summarised in figure 7 with B/µ2 <

(B/µ2)I . The red dot corresponds to the red dot appearing on the upper branch in the left hand

plot of figure 3.

zero at B/µ2 = (B/µ2)c. For (B/µ2)c ≤ B/µ2 ≤ (B/µ2)I there are no longer superfluid

instabilities but the striped instabilities persist. The critical temperature for the striped

instabilities is very low for all values of B/µ2.

In order to deduce the phase diagram one needs to construct the fully back reacted

black hole solutions for both the superfluid and the striped black holes. While for B = 0

the back-reacted superfluid black holes were constructed by solving ODEs [4], for B 6= 0

we need to solve PDEs.10 Similarly, constructing the back reacted striped black holes will

also require solving PDEs, and this will be especially challenging because of the low critical

temperature at which they appear.

To proceed, we therefore make some reasonable simplifying assumptions. Firstly, that

all of the superfluid and striped black holes arise as second order transitions from the

branch of unbroken phase black holes and secondly that they then continue down to T = 0

without sprouting additional branches. Finally, we also assume that the free energy curves

only cross at most once as one lowers the temperature. To deduce the phase diagram of

figure 1 then just requires a little thought concerning the free energy of the black holes.

For small B/µ2 we stay on the superfluid branch all the way down to T = 0 as shown

in figure 11 (a) and also in figure 1. For (B/µ2)c < B/µ2 < (B/µ2)I there is no longer

a branch of superfluid black holes and hence we must have a striped phase down to zero

temperature, as depicted in figure 1. What happens near B/µ2 = (B/µ2)c? One possibility

is depicted in figure 11 (b): one first moves onto the superfluid phase via a second order

transition and then onto the striped phase via a first order transition. This possibility

is adopted in the phase diagram of figure 1 along with the tri-critical point that must

necessarily appear and the first order transition at T = 0 at B/µ2 = (B/µ2)(i). A slightly

10It is likely that they form some kind of a vortex lattice e.g. [42]. One can speculate that at least for

small B at T = 0 they become domain walls interpolating between two AdS4 spaces, in order to match

what happens at B = 0 [4].
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3
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Figure 11. Schematic behaviour of the free energy versus temperature plots for the unbroken

phase black holes (solid lines), the superfluid black holes (dashed lines) and the striped black holes

(dotted lines). Figure (a) corresponds to values of B/µ2 with 0 ≤ B/µ2 ≤ (B/µ2)(i) in figure 1.

Figure (b) corresponds to B/µ2 being slightly bigger than (B/µ2)(i) in figure 1. One could also

have the slightly alternative scenario where the roles of the superfluid and striped branches are

interchanged in the crossover.

different possibility is that in figure 1 (B/µ2)(i) is closer to (B/µ2)c so that one would move

from a striped phase via a first-order transition into a superfluid phase. At the interface

of stripes and metamagnetism a very similar kind of reasoning, which we won’t spell out

implies that the striped black holes will exist for small temperatures up to (B/µ2)(ii) with

(B/µ2)(ii) > (B/µ2)I and generically (B/µ2)(ii) < (B/µ2)max.

8 Final comments

We have shown that the phase structure of the d = 3 CFTs, as a function of T, µ,B,

exhibit a rich phenomenology, summarised in figure 1. It would be very interesting to

identify the T = 0 ground states that emerge in the superfluid and striped phases with

B 6= 0. However, this appears to be a very challenging problem at the technical level. On

the other hand we have successfully identified the T → 0 hyperscaling violating ground

states, with z = 3/2, θ = −2, for larger values of the magnetic field. It would be desirable to

directly construct the T = 0 domain wall solutions interpolating between the hyperscaling

violating solutions (6.1) in the IR and AdS4 in the UV.

All of the black hole solutions in this paper are not deformed in the UV by the op-

erator Oσ of dimension ∆ = 2, dual to the pseudo-scalar σ. Recall that the role of such

deformations on the superfluid instability when B = 0 were analysed in [24], where a char-

acteristic superfluid dome was seen. Outside of the dome was a class of charged black holes

that as T → 0 become singular in the IR. We have checked that this singularity actually

corresponds to a hyperscaling violating behaviour with z = 1 and θ = −1.

It will be very interesting to unify the analysis of this paper with that of [24] and

study the d = 3 CFTs as a function of T, µ,B and deformation by Oσ. It will be par-

ticularly interesting to see how the hyperscaling violating behaviours with z = 3/2 and
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z = 1 interpolate between each other. It will also be very interesting to see if the defor-

mation by Oσ can drive down the temperature of the critical metamagnetic point to zero

temperature to obtain a metamagnetic quantum critical point as observed, for example,

in Sr3Ru2O7 [43, 44] and studied in a different in a different holographic context in [45],

building on [46, 47].
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A Dyonic AdS-RN black holes of Einstein-Maxwell theory

As somewhat of an aside, in this appendix we calculate the magnetisation and magnetic

susceptibility of the canonical dyonic AdS-RN black holes of Einstein-Maxwell theory fol-

lowing [3, 38]. In particular, we want to contrast this with our results for the dyonic black

holes in the top-down model (2.1), (2.2). To obtain Einstein-Maxwell theory, in (2.1) we

set σ = 0 and

V ≡ −24 , τ ≡ 1 , ϑ ≡ 0 . (A.1)

The dyonic AdS-RN black hole solution is given by

g = 4r2 −
(

4r2
+ +

µ2

4
+
B2

4r2
+

)
r+

r
+

(
µ2

4
+
B2

4r2
+

)
r2

+

r2
, φ = µ

(
1− r+

r

)
. (A.2)

The temperature is given by

T =
48r4

+ − µ2r2
+ −B2

16πr3
+

, (A.3)

and this provides us with an expression r+ = r+(T, µ,B). Calculating the free-energy

w = w(T, µ,B) as in section 4.3 we obtain

w = −4r3
+ −

µ2r+

4
+

3B2

4r+
, (A.4)

and for the magnetisation m and magnetic susceptibility χm at constant T, µ we get

m = −
(
∂w

∂B

)
T,µ

= − B
r+

,

χm =

(
∂m

∂B

)
T,µ

= −
48r4

+ + µ2r2
+ +B2

r+(48r4
+ + µ2r2

+ + 3B2)
. (A.5)
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Notice that since m is always negative the system is strongly diamagnetic (as noted in [3]).

Also, χm is always negative asymptoting to zero for large B, T .

We can also use the ensemble f = f(T, q,B) ≡ w + µq. We find

f = −4r3
+ +

3(q2 +B2)

4r+
, (A.6)

and

m = −
(
∂f

∂B

)
T,q

= − B
r+

,

χ′m =

(
∂m

∂B

)
T,q

= −
48r4

+ + 3q2 +B2

r+(48r4
+ + 3(q2 +B2))

, (A.7)

and we note that χ′m has similar behaviour to χm, as one expects.
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