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fermions seems to be unnatural from a theoretical point of view. Various strategies have

been devised in order to generate naturally small values of neutrino masses. One of these

techniques is neutrino mass generation at the loop level which requires a mechanism, e.g., a

symmetry, to forbid the lower order contributions. Here, we study in detail the conditions

on this type of symmetries. We put special emphasis on the discrete Zn symmetries as

a simple example but our results can be also extended to more general groups. We find

that regardless of the details of the symmetry, in certain cases the existence of a lower

order contribution to neutrino masses can be determined by the topology of the diagrams

with a given number of loops. We discuss the lepton flavor violating rare decays as well as

(g − 2)µ in this class of models, which generically appear at the one loop level. Typically

the imposed symmetry has important implications for dark matter, with the possibility of

stabilizing one or even multiple dark matter candidates.
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1 Introduction

Explaining nonzero but tiny neutrino masses is one of the most compelling open questions

in modern physics. Various beyond Standard Model (SM) theories have been developed

to address this question. The most famous mechanism for explaining neutrino masses is

the standard (type I) seesaw mechanism [1–5]. In the standard and simplest realization

of this mechanism, the smallness of neutrino masses is connected to the very large mass

scale of new SM singlets (right-handed (RH) neutrinos). These new particles, being too

heavy, cannot be produced at the LHC or any other man-made or natural environment,

(maybe) except for the early universe, making a direct test of these models impossible.

With the start of the LHC data release, it is more exciting to move towards models whose

new particles are within the reach at the LHC. The smallness of the neutrino masses is not

related anymore uniquely to the very heavy mass scale of the RH neutrinos, but requires

additional suppressions, e.g., small Yukawa couplings, quasi-conserved lepton symmetries.

A very interesting possibility is to forbid neutrino masses at tree level and have them gen-

erated at loop-level. The first proposals of this type of radiative neutrino mass models are

the Zee model at one loop [6] and the Zee-Babu model at two loop [7–9].

All seesaw models lead to the effective dimension 5 operator, (HL)(HL). However

in general, neutrino masses are not necessarily explained by this dimension 5 operator.

Various other ∆L = 2 operators can also give rise to neutrino mass. These operators have
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been classified in [10–12]. A particular class of these operators are (H†H)m(HL)(HL)

with more than one pair of Higgs fields attached to the corresponding diagram [13–16].

Recently, there has been a complete classification of one loop diagrams leading to the ef-

fective dimension 5 operator in [17] following earlier work [18, 19]. Obviously, the loop

generated neutrino masses receive further corrections from renormalization group running,

which have been studied for Ma’s scotogenic model in [20].

Let us suppose that, thanks to a specific structure of the model, up to the nth loop-level,

there is no contribution to the neutrino mass matrix. Of course, increasing the loop order

will further suppress the neutrino mass. At the three-loop order, with MNEW ∼ 100 GeV

and couplings of order of 0.1, by dimensional analysis the neutrino mass will be in the

range O
(
(g2/16π2)3MNEW

)
−O

(
(g2 log(Λ/MNEW )2/16π2)3MNEW

)
∼ (0.01−1) eV with

a cutoff scale Λ ∼ (1− 10) TeV. Such a high value of coupling and low mass scale is very

interesting from a phenomenological point of view as it can lead to observable effects in

colliders and indirect searches of new physics. Furthermore, the couplings leading to the

neutrino mass can also in principle induce Lepton Flavor Violating (LFV) rare decays and

a contribution to the anomalous magnetic moment of the muon. The construction of these

radiative seesaw models often requires the introduction of an additional symmetry, Gν ,

forbidding the tree-level contribution as well as contributions from lower loop orders. An

interesting consequence of these symmetries is that they stabilize some of the new degrees

of freedom and these models can provide a suitable dark matter (DM) candidate [21–51].

Besides a Z2 parity, there are several studies involving larger symmetry groups [52–55].

In this paper, we will restrict ourselves to models which lead to the effective dimension

5 operator. Hence, the left-handed lepton doublets L are the only fermions coupling to the

new particles, i.e. leptons act as a portal to the hidden sector. Employing a Gν symmetry,

we restrict the couplings to the form LY = LSiFj , where Si (Fj) are new scalars (fermions)

and forbid couplings of the form LHFj as well as LLSi. In this context, we will be general

and will not restrict ourselves to the content of a specific model. Our aim is to outline

general restrictions and no-go-theorems as a guide to build radiative neutrino mass models.

We will consider radiative neutrino mass models up to three loop order. Beyond three loop

order, the induced neutrino mass is becoming too small to explain the atmospheric neutrino

mass scale. We demand that all the SM particles are invariant under the new symmetry,

Gν , but some or all of the new particles transform under Gν . In particular, we assume all

new particles that couple directly to L as well as all the new neutral fermions carry a Gν
charge. Moreover, we assume that none of the new scalars receives a vacuum expectation

value: that is, Gν remains unbroken. As a result, the Gν symmetry forbids a Dirac mass

term for the SM neutrinos both at the tree level and at all orders of perturbation theory.

The neutrino mass term should be therefore of Majorana type which in turn requires lepton

number violation.

For concreteness, we first consider Abelian Zn symmetries (i.e., we take Gν = Zn). We

classify the emerging topologies up to three loop order and discuss the conditions on the

Zn symmetry which forbid all lower loop orders. We then show that some of the results

we find also hold valid for a U(1) symmetry and more general symmetries Gν in section 4.

The paper is organized as follows. In section 2, we outline the general setting of the

models discussed in the present paper and some general implications for neutrino masses. In
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section 3, we discuss the loop contributions to the neutrino mass matrix and show how the

Zn symmetry can forbid lower order contribution to the neutrino mass. In section 4, we dis-

cuss how the Zn symmetry can be generalized to other groups. In section 5, we discuss the

restrictions from LFV rare decays and anomalous magnetic moment of the muon. In sec-

tion 6, we briefly discuss the implications of the Gν symmetry for dark matter. In section 7,

we summarize our conclusions and briefly comment on implications for LHC signatures.

2 General setting of the models

We extend the Standard Model by introducing NS scalars, Si, i = 1, . . . , NS , and NF left-

handed Weyl fermions, Fj , j = 1, . . . , NF . We assume that the leptons constitute a portal

to the hidden sector via a Yukawa coupling of form

LY =

NS∑
i

NF∑
j

gijαSiFjLα, where Lα =

(
να

l−α

)
. (2.1)

Throughout the paper, we will adopt a two component notation and write all fields as

left-handed Weyl spinors, i.e. in the (12 , 0) representation. The product of two Weyl

spinors ξ, η is therefore defined by ξη ≡ ξT cη, where c denotes the charge conjugation

matrix (i.e., c11 = c22 = 0; c12 = −c21 = 1). We will use an index-free notation, unless a

special discussion of the Lorentz structure is required. Notice that only the combinations

of form FjLα in eq. (2.1) are allowed. A combination of form F †j Lα is forbidden by the

Lorentz symmetry. We focus on the neutrino mass generation via coupling eq. (2.1) and do

not consider other radiative neutrino mass generation mechanisms, e.g., via a coupling of

the new particles to RH charged leptons (See e.g. [21]) or via two W boson exchange [56].

Of course, LY should be a SU(2)×U(1) invariant combination. As a result, the sum of

hypercharges of Si and Fj is opposite to the hypercharge of Lα, i.e., YSi +YFj = −YLα = 1.

In case that the hypercharge of the chiral fermions that we are adding is non-zero, anomaly

cancellation might require addition of extra chiral fermions. There are various ways to make

the combination invariant under SU(2). For example, if Fj is a triplet and Si is a doublet,

the combination εabS
a
i (Fj)

bcLcα is a SU(2) invariant (a, b and c are SU(2) indices). Our

discussion of the implications of the Zn symmetry for loop contributions to the neutrino

mass matrix is independent of the behavior of the fields under SU(2) so we shall not specify

the behavior of the fields under the electroweak symmetry.

Taking Gν = Zn, the fields in eq. (2.1) transform as follows

Si → ei
2π
n
αSiSi ,

Fj → e
i 2π
n
αFjFj ,

Lα → Lα , (2.2)

such that

αSi + αFj ≡ 0 mod n ⇔
αSi + αFj

n
∈ Z ⇔ αSi + αFj ∈ nZ. (2.3)

If we promote Zn to U(1), the condition in eq. (2.3) should be replaced by αSi + αFj = 0.
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Obviously, a Majorana mass term for the fermion F is forbidden, unless the Zn charge

of F fulfils 2αF ≡ 0 mod n. A Weyl fermion F with 2αF 6= 0 mod n therefore needs

another Weyl fermion, F ′ with αF = −αF ′ to form a Dirac mass term. In case that F

and the conjugate of F ′ are in the same representation of SU(2) × U(1), the mass term

will be simply of form FF ′. Anomaly cancellation in this framework will be automatic. If

F and F ′ are in different representations of SU(2)×U(1), anomaly cancellation might re-

quire additional chiral fields and a mass term can emerge only after electroweak symmetry

breaking. For example, if F is a doublet and F ′ is a singlet, the mass term can originate

from a term of form FF ′H.

3 Loop contributions to neutrino masses

As discussed earlier, we focus on models within which a Dirac neutrino mass is forbidden by

a Zn symmetry and Majorana neutrino masses are produced only at loop level. In subsec-

tion 3.1, we make general remarks on the loop contributions to the neutrino mass. In subsec-

tion 3.2, we focus specifically on the one-loop contribution. In subsection 3.3, we discuss the

conditions for constructing a lower loop contribution to the neutrino mass using the propa-

gators and vertices in a general multi-loop diagram, with a specific discussion about the two-

loop and three-loop cases in the subsequent subsections. We will analyze the different pos-

sible topologies without specifying the SM model charges or even the number of new fields.

3.1 General remarks on the loop level neutrino mass

We consider diagrams contributing to neutrino masses and we will indicate the scalar prop-

agators by dashed lines and the fermion propagators by solid ones. In general, the scalar

propagator can involve more than one scalar: 〈S1S†2〉. Notice that a propagators of form

〈S1S2〉 can be rewritten in form of 〈S1S†3〉 by redefining S3 ≡ S†2. Without loss of generality,

we will work in a basis with diagonal kinetic terms; as a result, a propagator of form 〈F1F
†
2 〉

for F1 6= F2 does not exist. The propagators of form 〈FF †〉 preserve any Zn symmetry. In

general, the fermionic propagator can be either chirality flipping (i.e., of form 〈F1F
T
2 c〉 or

〈cF ∗1F
†
2 〉) or chirality conserving (i.e., of form 〈FF †〉). Propagators of type 〈F1F

T
2 c〉 and

〈cF ∗1F
†
2 〉 can result from Dirac or Majorana mass terms.

In order to generate a Majorana mass term νν for neutrinos, lepton number has to be

broken by two units. This can be achieved in various ways. An extensively studied option

is to have a Majorana mass term for the new fermions and a lepton number violating mass

term of form m2S2/2 for the new scalars. However, the options in general are wider. For

example in case of the two-loop diagram in figure 5e, if we assign lepton number equal to

−1 to S1 and S2 (or to F1 and F2), lepton number will be broken by two units by the

S1S2S3 vertex or the F1F2S
†
3 vertex.

A Majorana neutrino mass term νν can arise only after electroweak symmetry break-

ing. As we already briefly mentioned, the Weinberg operator is the lowest dimension

operator that can induce Majorana mass for neutrinos. Higher dimension operators can

also result in neutrino mass. See [10, 11] for a classification of all ∆L = 2 operators leading

to neutrino masses. However, additional SM fields, which are not charged under Gν do
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F1 F2

H H

F ′3 F3

Figure 1. Fermion propagator breaking the hyper-charge by two units.

not affect our discussion of the Gν symmetry besides generating the neutrino mass at a

higher loop order. A particular class of these operators are (H†H)m(HL)(HL) with more

than one pair of Higgs fields attached to the diagram, which have been studied in [14–16].

In the following, we will concentrate on the simplest origin and only discuss the Weinberg

operator (HL)(HL), i.e., a pair of Higgs H being attached to the loop diagram giving mass

to neutrinos. Let us discuss each option separately.

• The Higgs can be attached to a vertex of type S1S2S3 via a renormalizable coupling

HS1S2S3, provided that this combination forms a singlet. However, it cannot be at-

tached to a fermionic vertex because the corresponding term in the Lagrangian will

be non-renormalizable.

• Let us now discuss the case in which the Higgs field is attached to the propagators.

Propagators of form 〈FF †〉 and 〈SS†〉 cannot break SU(2) × U(1) but propagators

of type 〈SS〉 or 〈FF T c〉 in principle can do so. Let us take a general propagator

of form 〈φψ†〉 where φ and ψ are either both scalars or both left-handed fermions.

If 〈φψ†〉 breaks hypercharge by one (two) units, electric charge conservation implies

T3(φ) − T3(ψ) = 1 (2). This means that φ and ψ cannot be both singlets. A prop-

agator involving only one Dirac field in an SU(2) doublet representation can break

hypercharge by at most one unit. However, if we allow more than one field to be in-

volved in the propagators, more possibilities open up. The line shown in figure 1 is an

example. To have such a line, the required terms are HF3F2, HF
′
3F1 and mF3F3F

′
3.

From now on, for brevity we shall not emphasize on the requirement of mass insertion

for a line such as the one denoted by F3 and F ′3 in figure 1.

Consider a loop that contains nI internal lines plus nSV vertices that involve three scalars.

For such a diagram, there are

nI [(nI + 1)/2 + nSV ] + nSV (nSV − 1)/2

ways to attach the pair of external Higgs fields to the diagram. For example, in case of

figure 6b nI = 8 and nSV = 3 which means there are 63 ways of attaching the external

pair of Higgs fields. To avoid cluttering the figures with this plethora of possibilities, we

do not show the Higgses attached to the diagrams.

3.2 One loop

At one loop, there are two possible diagrams, which are not accompanied by a tree-level

contribution. They are shown in figure 2. Had we included neutral fermions invariant
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να νβ

S1 S2

F1 F2

(a) One loop diagram with

mass term SS on scalar line.

να νβ

S

F1 F2

(b) One loop diagram without

mass term SS on scalar line.

Figure 2. Effective neutrino mass generation at one loop.

under Gν or allowed new scalars to develop a VEV, we could have more types of one-loop

diagrams [17].

The propagators in the one-loop diagram figure 2a are of form 〈S1S2〉 and 〈F1F
T
2 c〉

where S2 and F2 may or may not be the same as S1 and F1, respectively. Let us denote the

Zn charge of an arbitrary field φ by αφ. In order for the propagators to be Zn invariant, the

charges of S1 and S2 as well as the ones of F1 and F2 have to add up to 0 mod n. The exis-

tence of the vertices leads to similar conditions. The following relations need to be satisfied

αS1 + αS2 , αF1 + αF2 , αS1 + αF1 , αS2 + αF2 ∈ nZ , (3.1)

which lead to

αS1 ≡ −αS2 ≡ αF2 ≡ −αF1 mod n . (3.2)

In the specific case that the pair of (S1, F1) is identified with (S2, F2), we find 2αS1 ≡
2αF1 ≡ αS1 +αF1 ≡ 0 mod n and if there is no other field φ with non-trivial Zn parity, any

choice for n will be equivalent to n = 2. However, in general when S1 6= S2 and F1 6= F2,

n might be different from 2.

Let us discuss the special case S ≡ S1 = S†2, which corresponds to the diagram shown

in figure 2b. Apparently, in this case the scalar line, 〈SS†〉 cannot break SU(2)×U(1) which

means both Higgs fields have to be attached to the fermion line. As discussed earlier, if

the fermion line is needed to break hypercharge by two units, it has to involve at least one

fermion in addition to F1 and F2 (see figure 1). Notice that in this case no lepton number

violating mass insertion of type m2S2/2 is required. Instead, the simultaneous presence of

the SF1L and S†F2L vertices and the F1F2 mass term breaks lepton number. The Lorentz

structure of the Majorana mass term, νν, cannot be created by a fermion propagator of

type 〈FF †〉 so a mass insertion of the fermionic propagator is required.

The simplest example of this type of models is Ma’s scotogenic model [48], which in-

troduces one additional inert Higgs doublet η as well as three RH neutrinos Ni. Neutrino

masses are generated with the internal propagators 〈NNT c〉 and 〈η0η0〉 with η0 being the

neutral component of the inert Higgs doublet η.

The one loop suppression does not suffice to explain the smallness of neutrino masses

by itself. A further suppression is needed, which might be due to the smallness of the lep-

ton number violating mass insertions that are indicated by crosses compared to the overall

masses of the particles propagating in the loops. Another explanation of the additional
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να νβ

S1 S2

F2
F1

(a)

να νβ

S1 S2

F

(b)

Figure 3. General examples of loops contributing to the neutrino mass which can be disconnected

by cutting a pair of propagators.

suppression might be a sequence of symmetry breaking which naturally suppresses certain

couplings (See e.g. [51]).

3.3 Reduction of multi-loop contribution to one-loop

Let us consider a general loop contributing to the neutrino mass which can be discon-

nected by cutting a pair of propagators as shown in figure 3a. If, as shown in figure 3a, the

fermionic propagator is of chirality flipping nature 〈F1F
T
2 c〉, the vertices of the following

types will be allowed by the Gν = Zn or U(1) symmetry:

S1LαF1 and S2LβF2 . (3.3)

If both the Higgs fields are attached to this pair of lines, these two vertices can be made

SU(2)× U(1) invariant, too. As a result, a one-loop diagram contributing to the neutrino

mass with the couplings in eq. (3.3) can be formed.

On the other hand, if the propagator is of the chirality-flipping form 〈cF ∗1F
†
2 〉, the

vertices S†1LαF1 and S†2LβF2 are allowed by the Gν = Zn or U(1) symmetry but they

may violate U(1) hypercharge. Thus, unlike the previous case, the presence of a one-loop

contribution to the neutrino mass is not guaranteed. On the other hand, if the fermionic

line is of the chirality-conserving form, i.e., 〈FF †〉, see figure 3b, vertices in eq. (3.3) might

violate the Gν = Zn or U(1) symmetry and again, a one-loop contribution to the neutrino

mass does not necessarily exist.

In summary, if there exists a multi-loop contribution to the Weinberg operator,

(HLα)(HLβ) compatible with Gν = Zn or U(1) which can be disconnected by cutting a

pair of fermionic and scalar lines, there will be also a one-loop contribution to the neutrino

mass provided that (i) both Higgs fields are attached to these two lines; (ii) the fermionic

propagator in question is chirality-flipping and of form 〈F1F
T
2 c〉.

Let us now consider a general multi-loop diagram of form shown in figure 4a in which

the internal loop only gives a correction to the wave function of the scalar. Topologically

such a diagram is distinguished from the rest by the fact that by cutting the scalar lines

directly connected to να and νβ, this line will be disconnected. Figs 5a, 5b, and 5c are

examples of such diagrams but figures 5e and 5f are not. If a contribution of this type

exists, the Gν = Zn or U(1) symmetry allows a term such as S1S2, too. Depending on

the electroweak behavior of S1 and S2, this mass term can result from terms such as

– 7 –
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να νβ

S1 S2

F1 F2

(a) Scalar line.

να νβ

S1 S2

F1 F2

(b) Fermion line.

Figure 4. Wavefunction renormalization of internal propagators.

εabS
a
1H

bS2 (for singlet S2 and doublet S1 with YS1 + YS2 = −1), εabS
a
1S

b
2 (for doublets S1

and S2 with YS1 +YS2 = 0), εabεcdS
a
1H

bSc2H
d (for doublets S1 and S2 with YS1 +YS2 = −2)

or S1S2 (for singlets S1 and S2 with YS1 +YS2 = 0). As a result, these diagrams are always

accompanied by a one-loop diagram.

Let us now discuss diagrams of type in figure 4b in which the internal loop gives

correction to the wave function of the propagating fermion. Similarly to the correction

to the wave function of the scalar propagator, the wave function correction to the fermion

propagator can also be written as a F1F2 mass term which respects the Gν = Zn or

U(1) symmetry. However, if F1 and F2 are both electroweak doublets, F1F2 will form an

electroweak triplet. Thus, two factors of 〈H〉 are needed to contract it to a SU(2) × U(1)

singlet. In other words, the corresponding term will be non-renormalizable. Hence, this

diagram is not necessarily accompanied by a lower loop contribution depending on the

electroweak structure of the fermions.

Let us suppose a coupling of form gαSFLα compatible with Gν = Zn or U(1) exists.

There must be another F ′ with αF ′ = −αF to obtain a Dirac mass term for F (either

directly or after electroweak symmetry breaking). The Gν = Zn or U(1) symmetry does not

forbid a term of form g′αS
†F ′Lα. The neutrinos then obtain a Majorana mass proportional

to gαg
′
β at one loop. In the discussion of higher loops, we implicitly assume that such a

possibility is forbidden by other symmetries such as the electroweak symmetry.

3.4 Two loop

At two-loop level, there are more possible diagrams. In the following, we again take Gν =

Zn or U(1) and discuss in which cases the symmetries forbid the lower loop contribution to

the neutrino mass. In figure 5, for the sake of simplicity, some of the scalar lines are marked

by a single letter such as S1 and S2. If the external Higgs is attached to any of these lines,

this line will in fact involve more than a single field. When the fermionic propagator involves

an even number of fields, the chirality will be flipped because it requires a mass term such

as F1F2. In the diagrams, the arrow indicates the direction of the flow of the Gν charge,

both for fermion propagator and scalar propagator. Notice that for the fermion lines, the

chirality might flip but the direction of the arrow will remain the same. If a chirality flip is

required (e.g., figure 5f), the fermionic line will involve the fermion, F and its partner F ′

with opposite Gν charge that together form a Dirac mass. This simplified way of marking

does not generally affect our discussion below. We will be more specific when it does.
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να νβ

F1 F2

S3

S4S1
S2

(a)

να νβ

S1 S2

F1 F2

S3

(b)

να νβ

F1 F2

F3

F4S1
S2

(c)

να νβ

S1 S2

S3

F3

F2 F1

(d)

να νβ

S1 S2

F1 F2

S3

(e)

να νβ

F1 S2

S1 F2

F3

(f)

Figure 5. Two loop diagrams.

να νβ

S1 S2

S3

(a)

να νβ

S3

S1 S2

(b)

να νβ

S3

S1 S2

(c)

να νβ

S1

S2

S3

S5
S4

F1 F2

(d)

Figure 6. Planar three loop diagrams.

As discussed in the previous section, the diagrams 5a, 5b, and 5c are always ac-

companied by a one-loop diagram but this is not necessarily the case for the diagram in

figure 5d, as it has been discussed in the previous section. The diagrams 5e and 5f cannot

be reduced to a one loop diagram, as long as S3 and F3 transform non-trivially under

Gν = Zn or U(1), so they can give the dominant contribution to neutrino mass.

3.5 Three loop

Before starting the discussion of the three-loop diagrams, we emphasize that the comment

in the first paragraph of the previous section on marking the propagators applies here,

too. The three-loop diagrams contributing to the neutrino mass can be divided into three

categories: (i) diagrams in which the inner loops correct the wave function of the internal
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να νβ

F1

F2 S1

(a)

να νβ

F1

F2 S1

(b)

να νβ

S1

F1 F2

(c)

να νβ

S1

F1 F2

(d)

Figure 7. Planar three loop diagrams.

να νβ

F

S

(a)

να νβ

F

S

(b)

να νβ

F

S

(c)

Figure 8. Planar three loop diagrams.

να νβ

S1 S2

S3 S4

F1 F2F3

Figure 9. Planar three loop diagrams.

lines. Such diagrams are already discussed in section 3.3. (ii) Planar diagrams shown

in figures 6, 7, 8 and 9. We shall discuss all these diagrams in detail below in context

of Gν = Zn and Gν = U(1). (iii) Non-planar diagrams shown in figure 10 which will

be discussed in detail in this section in context of Gν = Zn and briefly for Gν = U(1).

Although at first sight it seems there are four non-planar three-loop diagrams contributing

to the neutrino mass, only two are independent. As demonstrated in figure 10 twisting the

vertices denoted by P1 and P3, the diagrams on the left- and right-hand sides of figure 10

convert into each other. There are therefore only two distinct non-planar diagrams.

The Gν = Zn or Gν = U(1) symmetries do not forbid lower order loop contributions for

any of the planar diagrams besides the one in figure 9, but the pattern of electroweak sym-

metry breaking as well as the requirement of chirality flipping might prevent some. Let us
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να νβ =

P3 P4

P1 P2

S2 S1

S3

F2 F1

F3

S4S5 να νβ

P1 P4

P3 P2

F2 S1

S4

S2 F1

S5

S3F3

(a)

να νβ

P3 P4

P1 P2

S1 F2

F3

F1 S2

F4

S3F5 = να νβ

P1 P4

P3 P2

F1 F2

S3

S1 S2

F5

F3F4

(b)

Figure 10. Non-planar three loop diagrams.

discuss this possibility in detail. In figure 6 and figure 7, the internal loop in the red dashed

dotted circle can be replaced by an effective Gν conserving vertex. Let us first consider the

diagrams in figure 6. For a Lagrangian symmetric under Gν = Zn (or under Gν = U(1)),

the presence of these diagrams is possible only if αSi associated with S1, S2 and S3 add

up to an integer times n (or add up to zero). Thus, the Gν invariant Lagrangian contains

vertices of type S1S2S3 + h.c. unless it is forbidden by some other symmetry. In particular

let’s consider the SU(2)×U(1) symmetry: each line might involve more than one field with

different SU(2)×U(1) quantum numbers and we should specify the fields that directly leave

the red dashed dotted circle. In case that YS1 + YS2 + YS3 = 0 or −1, the corresponding

vertex can be just S1S2S3 + h.c. or S1S2S3〈H〉 + h.c., respectively. However, there is no

renormalizable vertex of form S1S2S3 if YS1+YS2+YS3 < −1 and no corresponding two-loop

diagram. Similarly, in case of the diagrams in figure 7, the loop in the dashed dotted red

circle can be also replaced by a renormalizable Zn invariant vertex of form S†1F
†
1F
†
2 unless

YS1 +YF1 +YF2 6= 0. Notice that we implicitly assume that both left-handed fields F1 and F2

leave the red dashed dotted circle; i.e., the corresponding effective vertex is of form S†1F
†
1F
†
2

rather than S†1F
†
2F1 or S†1F

†
1F2 which are forbidden by Lorentz structure. Let us consider

the loop on the right-hand side in the diagrams of figure 8. If, as indicated in the figures,

the fermion marked with F enters this loop, the loop can be replaced by a renormalizable

Zn invariant Yukawa coupling of form S∗FLβ, which conserves hypercharge if YS = YF −1.

The implication of Zn for figure 9 as well as the non-planar diagrams in figure 10 is

more complicated. In particular, Zn does not always allow them to be accompanied by a
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dominating two loop contribution to the neutrino mass. Let us first consider diagram 9.

The Zn symmetry implies

αF1 = −αS1 + nk1 αF3 = αS3 − αS1 + nk3 (3.4)

αF2 = −αS2 + nk2 αS4 = αS1 + αS2 − αS3 + nk4

where ki are arbitrary integers. We are interested to find out whether there is a Zn
symmetry with certain αφ assignment which is compatible with the diagram in figure 9,

i.e., satisfies eqs. (3.4) but forbids lower loop contributions. To answer this question,

we have solved equations (3.4) under the condition that none of the one- and two-loop

diagrams respectively in figure 2 and figure 5, is allowed by the Zn symmetry. The

values of αSi and αFj can be set such that the Zn symmetry forbids the lower orders of

contributions to the neutrino mass for n ≥ 16. One example is the charge assignment

αS1 = 1 αS2 = 3 αS3 = 9 αS4 = 11 αF1 = 15 αF2 = 13 αF3 = 8 (3.5)

for Z16. However, for smaller values of n such an assignment is not possible.

Similarly in case of the non-planar diagrams, for certain assignments of αSi and αFj ,

the Zn symmetry forbids all diagrams with a lower loop order. Let us consider diagram

figure 10a. The Zn symmetry leads to the following relations for the different fields

propagating inside the loops:

αF1 = −αS1 + nk1 αS3 = αS5 − αS2 + nk4 (3.6)

αF2 = −αS2 + nk2 αS4 = αS1 + αS2 − αS5 + nk5

αF3 = αS1 − αS5 + nk3 .

We have found that the smallest value of n for which the Zn symmetry forbids lower order

loop contribution to the neutrino mass is n = 16. One particular example is

αS1 = 2 αS2 = 6 αS3 = 13 αS4 = 5 αS5 = 3 αF1 = 14 αF2 = 10 αF3 = 15 (3.7)

for Z16. That is for n < 16 any possible assignment of αSi and αFi will also lead to a dom-

inant lower loop diagram. In this analysis, only the Zn symmetry is considered. Of course,

depending on the field content of the specific model, the pattern of the hypercharge break-

ing as well as the form of chirality flipping might also forbid the lower loop contribution.

A similar analysis is performed for the diagram in figure 10b. To be compatible with

the Zn symmetry, the following set of equations has to be satisfied

αF1 = −αS1 + nk1 αF4 = −αS1 + αS3 + nk4 (3.8)

αF2 = −αS2 + nk2 αF5 = αS1 − αS2 − αS3 + nk5

αF3 = −αS2 − αS3 + nk3

for any integers ki. Here, n = 16 is again the smallest value of n for which Zn forbids a

lower loop contribution to the neutrino mass. One example of charge assignment for Z16

forbidding lower loop contributions is

αS1 = 2 αS2 = 6 αS3 = 3 αF1 = 14 αF2 = 10 αF3 = 7 αF4 = 1 αF5 = 9 . (3.9)
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Figure 10a S1 S2 S3 S4 S5 F1 F2 F3

Figure 10b F2 F1 F5 F4 F3 S2 S1 S3

Table 1. Translation table between figure 10a and figure 10b.

Notice that all three of the three loop diagrams require n > 16 to forbid lower order

loop diagrams. We will first show that the conditions for figure 10a and figure 10b

are equivalent. If we identify the charges in eq. (3.6), as indicated in table 1, it is

straightforward to show, that we obtain a set of equations, which is equivalent to eq. (3.8)

and vice versa. Note that we are identifying the charges of the fermions in one diagram

with the ones of the scalars in the other diagram and vice versa. Remember that to form

a Dirac mass term for the new fermions, we have to introduce a partner for each fermion

so the charges of scalars and fermions may be treated on an equal footing. As a result, the

equivalence of the conditions for the absence of lower loop contributions directly follows.

The equivalence of charge assignments also implies that for a given n > 16, there must be

exactly the same number of possible charge configurations for each diagram that forbids

the lower order loops. In fact, solving the equations for n = 16, we find that there are

exactly 32 possible charge configurations for each of the diagrams figure 10a and figure 10b

that forbid lower order contributions.

It is straightforward to verify that after replacing

αS3 ↔ αS5 αF3 ↔ −αF3 , (3.10)

Eqs. (3.4) will be equivalent to the first four equations in eq. (3.6). As a result, if for a given

n there is an assignment of charges for the field content of figure 10a that forbids lower

loop contributions to the neutrino mass, the corresponding assignment for figure 9 will also

forbid lower order contributions. However, the opposite statement is not valid. In fact, the

presence of an extra scalar field in case of figure 10a gives more freedom to construct more

possible lower loop diagrams. Setting n = 16, we find 112 solutions for figure 9 that forbid

lower loop contributions but only 32 such solutions for diagrams in figure 10a.

In this discussion, we have assumed that each fermionic (scalar) propagator has

an independent αFi (αSj ) value. The relation between αFi and αSj comes from the

requirement that this diagram respects Zn. However, within specific models, there

might be more restrictions. For example, let us assume that S1 and S2 in diagram

figure 10a are the same fields. We then conclude that for any value of n and any choice

of αFi and αSj (provided that αS1 = αS2), the Zn symmetry allows the diagram in

figure 10a to be accompanied with two diagrams of form in figure 5e with the following

replacements of the fields in figure 5e: (S1, S2, S3, F1, F2) → (S1, S3, S
∗
5 , F1, F3) or

(S1, S2, S3, F1, F2) → (S1, S
∗
3 , S

∗
4 , F1, F

′
3) where F ′3 is the Weyl fermion with charge

opposite to that of F3 that together form a Dirac mass term F3F
′
3. Depending on the

field content of the model, it is possible that one or both of these two-loop diagrams are

forbidden by SU(2)×U(1) or by pattern of chirality flipping. For example, if in figure 10a,
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one of the Higgs fields is attached to S4 and the other to S5, neither of these two-loop

diagrams can exist because each violates hypercharge only by one unit.

Let us now briefly discuss the possibility of replacing Zn with a continuous U(1).

In this case setting n = 0, relations in eqs. (3.6) and (3.8) remain valid. For a U(1)

with general αSi and αFj , the three-loop non-planar diagrams and the planar diagram

in figure 9 cannot be accompanied with a lower loop contribution unless in very specific

cases. For example, in the specific case that αS4 = −αS5 , there might be also a one-loop

contribution to the neutrino mass accompanying the diagram in figure 10a.

4 General symmetry

In previous sections, we focused on the implications of Gν = Zn or U(1) symmetry on

the neutrino mass generation at loop levels. As we shall discuss below, some of these

discussions can be applied for a general symmetry group Gν . We will make a further

generalization in this section. Motivated by the DM models, in the previous sections, we

have assumed that the SM particles are all invariant under the Gν symmetry. In this

section, we discuss the consequences of relaxing this assumption. We will still assume that

none of the scalar fields which non-trivially transform under Gν (i.e., are not invariant

under Gν) receives a VEV. Thus, the SM Higgs is invariant under Gν .

Let us reconsider coupling (2.1) and review the results that we found in the previous

sections.

• As long as all new neutral fermions non-trivially transform under Gν , the Dirac mass

term for neutrinos will be forbidden by this symmetry to all orders in perturbation

theory.

• Consider a general n-loop diagram contributing to neutrino mass. Suppose that

there is a sub-diagram within this diagram that absorbs scalar lines S1, S2 and S3.

The existence of such a sub-diagram implies that a combination of form S1S2S3 is

invariant under Gν . If no Higgs VEV is attached to this sub-diagram, it means this

combination is also invariant under electroweak symmetry and this term is allowed

in the Lagrangian. Thus, there should be a lower order contribution to the neutrino

mass where this sub-diagram is replaced by the S1S2S3 vertex. Similarly, if there

is only one Higgs VEV attached to this sub-diagram, a renormalizable coupling of

form S1S2S3H exists in the Lagrangian which can lead to a lower order contribution

to the neutrino mass. However, if both Higgs VEVs of the Weinberg operator

are attached to the sub-diagram, the corresponding electroweak vertex will not be

renormalizable. Similarly, there might be a sub-diagram in which two fermions (F1

and F2) and one scalar (S1) leave the sub-diagram. Examples are shown in figure 7,

where the sub-diagram is inside the red circle. Regardless of the details of Gν and

whether the SM particles are invariant under it or not, a vertex of form F1F2S1
is invariant under Gν . If it is also invariant under electroweak symmetry (i.e., if

no Higgs VEV is attached to the sub-diagram) this renormalizable term will be
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l−α l−β

γ

S

F

Figure 11. LFV diagram. The photon is emitted either from the initial or final state or from the

charged particle in the loop.

present in the Lagrangian. This means this diagram is accompanied by a lower order

diagram in which the sub-diagram is replaced by vertex of form F1F2S1.

• Let us now consider a general diagram that contains a sub-diagram which is a

correction to the self-energy of a scalar line, that is the external lines that are

attached to this sub-diagram are two scalars S1 and S2 (See figure 4a). The S1S2
term will be Gν invariant and in case that less than three Higgs VEVs are attached

to this sub-diagram, it can be made electroweak invariant by adding appropriate

number of Higgs fields (i.e., S1S2, S1S2H or S1S2HH). The diagram is accompanied

by another one in which the sub-diagram is replaced by the corresponding renor-

malizable vertex. Similar consideration holds for a sub-diagram giving correction

to the fermion self energy but in this case more than one Higgs fields cannot be

added otherwise the corresponding term will be non-renormalizable. Notice that

this consideration holds valid regardless of the details of the Gν symmetry and the

behavior of the SM fermions under this symmetry.

• The theorem of section 3.3, regarding diagrams of form shown in figure 3 holds valid

for a general Gν independent of the behavior of the SM fermion under the symmetry

transformation.

• As shown for the special case of Gν = Zn, the Gν symmetry can forbid lower order

contribution for the two-loop diagram of topology shown in figure 5e and figure 5f,

as well as the three-loop diagrams of topology in figures 9 and 10.

5 Lepton flavor violation

After discussing the general structure of the different diagrams leading to neutrino masses,

we will discuss lepton flavor violating rare decays which have proven to lead to strong

constraints on radiative neutrino mass models. The general Yukawa coupling in eq. (2.1)

includes LFV couplings of left-handed charged leptons, l−α , gijαsifjl
−
α where si and fj

are components of the multiplets Si and Fj such that the following relation holds valid

between their electric charges:

Qsi +Qfj = −Ql−α = 1 .
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This LFV coupling will lead to LFV rare decay l−α → l−β + γ as shown in figure 11. Note

that in contrast to the case of contributions to the neutrino masses, the LFV rare decays

are generically allowed at one loop order unless there is a flavor symmetry forbidding the

one loop contribution; see e.g. [57]. Neglecting the corrections of order of (mlβ/mlα)2, the

decay rate is [58]

Γ(l−α → l−β + γ) =
αQEDm

5
l−α

(384π2)2

∣∣∣∣∣∣
∑
ij

gijαg
∗
ijβ

m2
si

(
QfjJ

[
m2
fj

m2
si

]
+ I

[
m2
fj

m2
si

])∣∣∣∣∣∣
2

, (5.1)

where

I[t] =
2t2 + 5t− 1

(t− 1)3
− 6t2 ln t

(t− 1)4
(5.2)

and

J [t] =
3t+ 3

(t− 1)2
− 6t ln t

(t− 1)3
. (5.3)

I(t) and J(t) are monotonously decreasing functions with the following values:

I(0) = 1 I(1) = 1/2 I(t)
t→∞−→ 2

t
(5.4a)

J(0) = 3 J(1) = 1 J(t)
t→∞−→ 3

t
. (5.4b)

Notice that this relation holds regardless of the representation of the electroweak symmetry

to which the new particles belong. Larger representations can lead to several different

possible loop diagrams.

In the case that the neutrino mass originates from the three-loop contribution, the

coupling should be of order one for mNEW ∼ 100 GeV to account for mν ∼
√

∆m2
atm.

This will lead to Br(µ → eγ) exceeding the present bound. However, there are ways

to avoid these bounds making use of a particular flavor structure. In the following, we

explain a simple and natural solution. To reproduce two nonzero neutrino mass eigenvalues,

more than one pair of (S, F ) coupled to L is required, which we will call (S1, F1) and

(S2, F2). Let us suppose that F1 only couples to Le while F2 couples to Lµ and Lτ . That

is g11µ = g11τ = g22e = 0. In this case, the couplings conserve Le so µ → eγ will be

absent. As it is well know [59–61], the conservation of Le leads to a vanishing first row

and column of the neutrino mass matrix, i.e., meα = 0 for α = e, µ, τ , and can therefore

only serve as a leading order approximation of neutrino masses. If Le is softly broken

by trilinear scalar couplings, the vanishing elements can be reproduced and the observed

neutrino mass pattern can be reconstructed. Obviously, the breaking introduces µ → eγ,

but it is controlled by the smallness of the symmetry breaking and will not be dangerous.

The new coupling can lead to a new contribution to anomalous magnetic moment of

muon as follows

(g − 2)µ
2

=
m2
µ

192π2

∑
ij

|gijµ|2

m2
si

(
QfjJ

[
m2
fj

m2
si

]
+ I

[
m2
fj

m2
si

])
.

Notice that for mS ,mF ∼ 100 GeV and g ∼ 0.5, this contribution can explain the observed

anomaly.
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6 Dark matter

The symmetry required to suppress neutrino masses can have important implications for

dark matter. Since we have taken the SM particles to be invariant under the Gν symmetry,

this symmetry protects the lightest new particle from decay and the latter constitutes a

potential DM candidate. Depending on the exact form of the symmetry, there might be

several stable particles and multiple DM components. We briefly discuss the main features

of these models. For a detailed discussion of specific realizations, we refer the reader to

ref. [53] in the case of an abelian Zn symmetry and ref. [54] for an explicit construction of a

D3 model. We will briefly summarize the main points. In the case of direct product groups,

i.e. groupsG which can be written asG1×G2 with two arbitrary groupsGi, there can be two

DM candidates, given by the two lightest particles transforming non-trivially under each

of the two group factors. This happens for example for a model based on the Abelian finite

group Z6
∼= Z3×Z2 containing two fields with Z6 charges equal to +2 and +3, respectively.

More generally, for every subgroup H of G, the lightest particle transforming non-trivially

under the subgroup might potentially be stable and a DM candidate. This may lead to

a plethora of DM candidates. In the case of finite abelian groups, there is a complete

classification in terms of direct products of Zpnii
factors with pi being prime numbers and

ni natural numbers. Each factor of order pn has non-trivial subgroups Zpm with 0 < m <

n. Hence, there are potentially
∑

i ni DM candidates, one for each non-trivial subgroup,

depending on the mass spectrum. As an example, let us consider a model with Z4 = Z22

symmetry containing two fields which under Z4 transform as follows: φ1 → eiπ/2φ1, φ2 →
eiπφ2. The Z4 symmetry contains a Z2 subgroup under which φ1 → −φ1 and φ2 → φ2. For

mφ1 < mφ2/2, φ1 is the only DM candidate, since φ2 can decay into φ1φ1 via the coupling

φ1φ1φ2. In case mφ2/2 < mφ1 , both fields φi will be stable and therefore DM candidates.

Generally, in presence of multiple DM candidates coannihilation will take place.

However, in the models considered, particles belonging to different factors of a direct

product group will not coannihilate. In the following, we will restrict ourselves to the

simplest case of an abelian group, which can be written in terms of a direct product

of groups without a proper subgroup, i.e. there is no coannihilation between the DM

candidates. In order to prevent having a charged DM candidate, the stable particles must

be either neutral or in case that they are charged, their annihilation cross section should

be much larger than 10−36 cm2. We focus on the SM gauge, Yukawa interactions as well

as annihilation via the Higgs portal, considering each possibility one by one. In principle,

there might be a new gauge interaction contributing to DM annihilation but we will not

discuss this additional extension of the models. We will mainly consider the cases in which

the DM belongs to a doublet, is a singlet or combination of the two.

Annihilation via Z boson exchange. First, let us consider the case in which the dark

matter is the neutral component of a scalar doublet of SU(2), S. The annihilation mode

of SS̄ through s-channel Z boson exchange is allowed with cross section given by

〈σ(SS̄ → ff̄)v〉 =
NcG

2
F

2π

32

3

(|aL|2 + |aR|2)(mSv)2

(1− 4m2
S/m

2
Z)2

, (6.1)
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where v is the velocity of DM, Nc = 3(1) for quarks (leptons) and aL (aR) is the coupling

of the left-handed (right-handed) fermions to the Z boson. However, the annihilation cross

section of dark matter via Z bosons is directly related to the direct detection cross section.

In fact, the annihilation of a complex scalar via s-channel Z boson exchange has been ex-

cluded by direct detection experiments. This connection can be avoided for other types of

scalar dark matter. If there is a mass splitting between the scalar and pseudo-scalar com-

ponent of S, the lighter one will be the DM candidate and its scattering off a nucleus via Z

boson exchange can be kinematically forbidden, provided that its kinetic energy is less than

the mass difference between scalar and pseudo-scalar component of S. As the average veloc-

ity of dark matter during freeze-out is much larger ((v/c)2 ∼ 1/20) compared to the average

local velocity of dark matter (v ∼ 220km/s), coannihilation via s-channel Z exchange still

occurs. Another possibility is to introduce another S′, a singlet under SU(2)×U(1) with

the same Gν quantum numbers as S. We can write a term of form S′H† ·S which leads to a

mixing between S and S′. The dark matter will be the lighter combination of S and S′ and

its annihilation cross section will then be given by the same formula as σ(SS̄ → ff̄) rescaled

by a factor of sin4 α where α is the mixing. Thus, by adjusting α, σ(SS̄ → ff̄) can be tuned

and lead to the correct relic abundance. For mb < mDM < mW , a mixing angle sinα = 0.5

and taking a typical velocity at freeze-out of (v/c)2 ∼ 1/20, we estimate for mS = 60 GeV,

〈σtotv〉 ' 3× 10−26
cm3

s

(mS/60 GeV)2(
1− 4(mS/60 GeV)2/m2

Z

)2 (sinα

0.5

)4

. (6.2)

For higher values of mS , 〈σtotv〉 can exceed 3 × 10−26 cm3/s especially when new

annihilation modes to tt̄, W+W− and ZZ open up. For mS � mEW , we can write

〈σtotv〉 ' 3× 10−26
cm3

s

(
1.1 TeV

mS

)2(sinα

0.5

)4

. (6.3)

If the dark matter is fermionic and belongs to an SU(2) doublets, the decay channel

through Z boson exchange is open with cross section

〈σ(FF̄ → ff̄)v〉 =
4NcG

2
F

π

(|aL|2 + |aR|2)M2
F

(1− 4m2
F /m

2
Z)2

. (6.4)

Unlike the previous case, there is no v2 suppression factor, since the initial state particles

are Dirac fermions rather than scalars and the annihilation can be s-wave. The cross-

section will then exceed 3× 10−26 cm3/s for 1 GeV < mF < 1 TeV. If the dark matter is

fermionic and belongs to an SU(2) doublet, the annihilation cross section of dark matter

via Z bosons is directly related to the direct detection cross section. Even an annihilation

cross section of 〈σv〉 ∼ 3×10−26cm3/s leads to a direct detection cross section of the order

of 10−39cm2 for fermionic DM, which has been excluded by direct detection experiments

(see e.g. [62]). Hence, the annihilation via s-channel Z boson exchange can only lead to

a subdominant contribution of the DM annihilation cross section. This bound can be

avoided by introducing a singlet F ′ that mixes with F , such that the annihilation cross

section is reduced by the mixing analogously to the scalar dark matter case.
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Annihilation via t-channel F (S) exchange. Let us consider the case in which S

is a singlet that plays the role of dark matter. The annihilation to ll̄, νν̄ via t-channel F

exchange is helicity suppressed and cannot account for the required total annihilation rate.

However, the related three-body decay with the additional emission of a gauge boson, like

electromagnetic [63] or electroweak [64, 65] bremsstrahlung can account for the thermal

DM annihilation cross section. The annihilation to νν via the helicity flipping t-channel F

exchange is suppressed by a lepton number violating coupling and suppressed by the mass

of the exchanged fermion F , which both also control the smallness of neutrino masses.

The cross section ends up to be too small for most regions of parameter space [51], see

however [48, 49].

Let us finally discuss if the dark matter is fermionic and belongs to an SU(2) doublets,

the dominant annihilation modes can be FF̄ → νν̄, ll̄ via t-channel S exchange. In this

case, there is no p-wave suppression and the cross section can be of order of

〈σ(FF̄ → νν̄, ll̄)v〉 =
g4

8π

m2
F

(m2
F −m2

S)2
, (6.5)

neglecting the final state masses. Here g denotes a generic Yukawa coupling defined in

eq. (2.1). Taking mS ∼ mF ∼ 100 GeV, g should be of the order of 0.1. With such a large

coupling, µ → eγ exceeds the experimental bounds unless a specific flavor structure is

invoked to suppress this process.

Annihilation via s-channel Higgs exchange. Finally, we give the annihilation via

Higgs exchange. Away from the resonant production of the Higgs, the annihilation of S

via s-channel can be related to the Higgs decay width for a Higgs into a final state X

〈σ(SS → h∗ → X)Hv〉 = (2mhΓ(h→ X))|mh→2MS

1

4M2
S

4|λv|2

(4M2
S −m2

h)2
(6.6)

=
Γ(h→ X)|mh→2MS

MS

4|λv|2

(4M2
S −m2

h)2
,

with the Higgs mass mh and the effective coupling of S to the Higgs h defined by L ⊃
(λv)hSS. The DM phenomenology is similar to a scalar singlet DM model (see e.g. [66]).

In particular, there will be a close correlation between annihilation rate of SS̄ and the

DM-nucleon cross section and therefore the direct detection rate.

Similarly to eq. (6.6), we can calculate the S-wave contribution to the annihilation of

fermionic dark matter F via s-channel Higgs h exchange into a final state X

〈σ(FF̄ → h∗ → X)Hv〉 = (2mhΓ(h→ X))|mh→2MF

1

4M2
F

2M2
F

(
|yL|2 + |yR|2

)
(4M2

F −m2
h)2

, (6.7)

with the Yukawa coupling L ⊃ −F̄ (yLPL + yRPR)hF coupling to the CP even scalar h,

which leads to a similar phenomenology like the fermionic singlet DM model (see e.g. [67]).

As for the scalar case, a relation between the annihilation rate and the direct detection is

present.
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7 Conclusions and discussion

The smallness of neutrino masses is one of the longstanding problems in the phenomenol-

ogy of particle physics. Various models have been proposed in the literature within which

neutrino masses are produced at loop level so their smallness is natural. In this paper,

we have discussed the class of models within which neutrino masses are produced at loop

level via a Yukawa term that couples neutrinos to new scalars and fermions. We studied

and outlined some general results that can be drawn from the topology of neutrino mass

diagrams or the symmetry, Gν , imposed on the model. We have discussed conditions on

the Gν symmetry and topology of loop diagrams that forbid the presence of a lower order,

and consequently dominating, contribution to the neutrino mass. Under these conditions

these diagrams will therefore give the dominant contribution to the neutrino mass. More

general results are outlined item by item in section 4.

In this paper, we have assumed that the Gν symmetry remains unbroken. In case

that the SM particles are invariant under the Gν symmetry, the lightest new particle

with a non-trivial behavior under this symmetry will be stable. If this particle is neutral,

it can contribute to the dark matter in the universe. Independently of a given model,

there have been studies of the impact of different symmetries on the DM predictions (See

e.g. [52–55]). We briefly discuss the implications of the discrete symmetry for dark matter

stabilization and discuss the possibility of the existence of multiple dark matter candidates

for an abelian group that can be decomposed to the direct product of other groups. We

also discussed various possible modes of annihilation of a dark matter pair.

Within the class of models that we have discussed in this paper, the scale of new

physics can be as low as the electroweak scale. The new particles that are added have

no strong interactions; however, they can have electroweak interactions. The model can

include new charged particles coupled to the Higgs which, along with the SM contributions,

may explain the possible excess in the diphoton Higgs decay channel [68].

At a hadron collider such as the LHC, the only production mode of these particles is

through electroweak interactions but in a lepton collider such as the ILC, these particles

can be also produced via Yukawa interactions in eq. (2.1) in the t-channel. If all the SM

particles transform trivially under Gν and all new particles carry Gν charges, these particles

can be produced at colliders only in association with other new particles such that the final

products form a singlet of Gν . For example, if Gν = Z2, the new particles that are odd

under Z2 can be produced only in pairs. Moreover, the Gν symmetry implies that the decay

products of new particles include lighter new (beyond SM) particles. In fact these particles

will go through a chain of successive decays until they produce stable new particle(s). If

these final stable products are neutral, they will appear as missing energy but, if they are

charged, they can be detected. Since they are heavy and have no strong interactions, they

will generally lose energy with a rate smaller than the muon energy loss rate which means

they come to rest only after they exit the detector. In this case, the signature of the model

will be quite distinct from the SM background, raising the discovery chance of the model.

Decay of the new particles can take place through the Yukawa coupling in eq. (2.1)

which means each decay produces a lepton along with a new particle. The branching ratio to
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different flavors is determined by gijα. This is the same coupling that determines the flavor

structure of the neutrino mass matrix. In principle, by studying the flavor composition of

the decay products of the new particles, one can cross check these models. This possibility

has been studied in detail in [69] for the specific case of the SLIM model [49, 50] where

Gν = Z2 and the new fermions are neutral. Unfortunately, the high rate of background

and the uncertainty in luminosity will limit the capability of the LHC to extract the

flavor structure of the coupling. However, a lepton collider can have a better chance of

determining the coupling. If the model contains multiply charged particles, their production

will be enhanced by square of their charge. Moreover their successive decay to multiple

charged leptons plus missing energy or new stable charged particle will provide a distinct

signature enhancing the chances of discovery at lepton and hadron colliders.

One of the key ingredients used in our setup to suppress lower loop contributions

is the presence of discrete symmetries at quantum level. Although in our setup discrete

symmetries are global and not gauged, there are arguments that all symmetries, including

discrete global symmetries, should be gauged in a theory of quantum gravity [70, 71]. This

is due to the expectation, mainly advocated in string theory, that all symmetries have a

geometric origin and the space-time itself is a locally constructed, secondary concept, in

these settings. Thus, all the symmetries should be local symmetries. These symmetries

could be broken due to quantum gravity effects and/or anomalies [72, 73]. The effects

of symmetry breaking (if there is any) are expected to be suppressed by inverse powers

of mPl. Based on the dimensional analysis, we can estimate the contribution from the

Gν violating effects to the neutrino mass to be at most (〈H〉2/mPl)(MNEW /mPl)
n ∼

10−6 eV(MNEW /mPl)
n for some n = 0, 1, 2, . . . . Thus, we can safely neglect this effect.

In summary, small neutrino masses can be generated at the loop level in models in

which the leptons couple to the new sector. New symmetries guarantee the absence of a

Dirac mass term for neutrinos and can forbid lower loop diagrams. The presence of this

symmetry leads to neutral stable candidates which might explain the observed dark matter

abundance in the Universe. The additional suppression due to the higher loop order allows

to lower the scale of new physics down to the TeV scale keeping large couplings and provid-

ing specific testable signatures at colliders and observable lepton flavor violating processes.
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