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1 Introduction

The properties of strongly interacting matter under extreme conditions are the subject of

intensive experimental and theoretical investigation. A comprehensive picture of a state of

matter requires not only the knowledge of equilibrium properties such as the equation of

state and static susceptibilities, but also an understanding of its transport properties.

In the high-temperature phase of QCD, the transport coefficients (the shear and bulk

viscosities as well as the electrical conductivity) have been calculated perturbatively to full

leading order in the strong coupling αs [1–3]. However, in the range of temperatures that

can be reached in heavy ion collisions, the perturbative uncertainty remains large. Phe-

nomenologically, the observation of large elliptic flow in heavy ion collisions at RHIC and

at the LHC hints at a small shear viscosity ([4, 5] and references therein). Furthermore, the

measured spectrum of dileptons is related to the spectral functions of the electromagnetic

current, integrated over the history of the expanding system [6].

Any reliable calculation of a transport coefficient of QCD at a temperature of a few

hundred MeV would be extremely valuable. It therefore makes sense to undertake a cal-

culation in the comparatively easiest possible channel. For a lattice QCD approach, the
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spectral function of the isovector vector current is perhaps the most accessible channel.

First, the correlation function is evaluated via a single, connected Wick contraction, al-

lowing for a good signal-to-noise ratio in the Monte-Carlo simulation. Second, the light

quarks do not introduce a new dynamical scale into the problem in the way that heavy

quarks do, which typically requires the use of an effective field theory. Third, the cor-

responding vacuum spectral function, being extremely well known experimentally due to

decades of measurements of the R ratio and of τ decays (see for instance [7]), provides a

useful reference.

Here we present the first lattice calculation of the Euclidean isovector vector corre-

lator in the high-temperature phase of QCD with dynamical quark flavors and analyze

it in terms of the spectral function. We adopt an approach used previously in the bulk

channel [8], which consists in analyzing directly the difference of the thermal and vacuum

correlators. Moreover, we exploit a recently derived sum rule which constrains the integral

over the difference of spectral functions (divided by frequency) to vanish. We compare our

results at finite lattice spacing with a recent analysis performed in the continuum limit of

quenched QCD [9].

In spite of the technically favorable properties of the channel, determining the vector

spectral function with frequency resolution ∆ω � T remains a numerically ill-posed prob-

lem (see for instance the discussion in [10]). Our main goal in this paper is therefore of

qualitative nature and consists in determining the gross features of the thermal spectral

function, in particular in which frequency bins (of width ∆ω & 2T ) it under- or overshoots

the vacuum spectral function.

2 Theoretical expectations for the spectral function

In this section we set up our notation and define the relevant correlation functions. We

summarize the theoretical expectations for these correlators and the associated transport

properties.

2.1 Definitions

Our primary observables are the Euclidean vector current correlators,

Gµν(τ, T ) =

∫
d3x 〈Jµ(τ,x) Jν(0)†〉 , (2.1)

with Jµ(x) ≡ 1√
2

(
ū(x)γµu(x)− d̄(x)γµd(x)

)
the isospin current. The expectation values

are taken with respect to the equilibrium density matrix e−βH/Z(β), where β ≡ 1/T is the

inverse temperature. The quark number susceptibility is defined as

χs ≡ −
∫
d4x 〈J0(x)J0(0)〉 = −β

∫
d3x 〈J0(τ,x)J0(0)〉. (2.2)

Due to charge conservation, the two correlators of interest are exactly related via

Gii(τ, T ) = χsT +Gµµ(τ, T ) . (2.3)
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The Euclidean correlators have the spectral representation

Gµν(τ, T ) =

∫ ∞
0

dω

2π
ρµν(ω, T )

cosh[ω(β/2− τ)]

sinh(ωβ/2)
. (2.4)

For a given function ρ(ω, T ), the reconstructed correlator is defined as

Grec(τ, T ;T ′)≡
∫ ∞

0

dω

2π
ρ(ω, T ′)

cosh[ω(β2 − τ)]

sinh(ωβ/2)
. (2.5)

It can be interpreted as the Euclidean correlator that would be realized at temperature T

if the spectral function was unchanged between temperature T and T ′. For T ′ = 0 it can

be directly obtained from the zero-temperature Euclidean correlator via [8]

Grec(τ, T ) ≡ Grec(τ, T ; 0) =
∑
m∈Z

G(|τ +mβ|, T = 0). (2.6)

2.2 Theoretical predictions

The isospin diffusion constant D is given by a Kubo formula in terms of the low-frequency

behavior of the spectral function,

Dχs =
1

6
lim
ω→0

ρii(ω, T )

ω
. (2.7)

In the thermodynamic limit, the subtracted vector spectral function obeys a sum rule

(see [11] section 3.2),∫ ∞
−∞

dω

ω
∆ρ(ω, T ) = 0, ∆ρ(ω, T ) ≡ ρii(ω, T )− ρii(ω, 0). (2.8)

This sum rule is based on two ingredients. Firstly, the two-point function of a spatial

component of the vector current at vanishing four-momentum can be interpreted as the

susceptibility of the isospin charge at zero temperature in a system with one short spatial

periodic dimension of length β. As long as the correlation lengths are finite, this suscep-

tibility vanishes. Secondly, subtracting the same quantity in the infinite-volume vacuum

enables one to write a convergent sum rule in ω for the susceptibility. It is well known

from the operator-product expansion that the difference of spectral functions in eq. (2.8)

falls off as 1/ω2 at large frequencies, see [12, 13] for explicit calculations.

For non-interacting massive quarks in the fundamental representation of the SU(Nc)

color group, the vector spectral function is diagonal in flavor space and takes the form

ρii(ω, T ) = 2πχs〈v2〉ωδ(ω) (2.9)

+
Nc

2π
θ(ω − 2m)

[
1−

(2m

ω

)2
] 1

2
[
1 + 1

2

(2m

ω

)2
]
ω2 tanh

ω

4T
.

The next-to-leading order has been computed very recently [14]. At large frequencies the

radiative corrections (1 +αs/π+ . . . ) to the coefficient of the ω2 term are temperature in-

dependent and known to order α4
s [15] (for quark mass effects in the vacuum, see [16]). The
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m = 0 m� T

χs
Nc
3 T

2 4Nc
T

[
mT
2π

]3/2
e−m/T

〈v2〉 1 3T/m .

Table 1. The static susceptibility and mean square velocity in the massless and in the heavy-quark

limits.

susceptibility and the mean squared transport velocity 〈v2〉 have the following expressions,

χs = 4Ncβ

∫
d3p

(2π)3
fp(1− fp) (2.10)

χs〈v2〉 = 4Ncβ

∫
d3p

(2π)3
fp(1− fp)

p2

E2
p

(2.11)

with fp = 1/[eβEp + 1] the Fermi-Dirac distribution and Ep =
√
p2 +m2. It is now

straightforward to check that the sum rule (2.8) is verified in the free theory. The positive

contribution of the transport peak (the ωδ(ω) contribution in the free theory) is compen-

sated by a deficit of the thermal spectral function at intermediate frequencies, ω = O(T )

in the massless case. The susceptibility and mean square velocity have simple expressions

in the massless and in the heavy-quark limits, see table 1.

Beyond the non-interacting theory, at weak coupling kinetic theory predicts the pres-

ence of a narrow transport peak in the spectral function at ω = 0, whose width and height

are related to the properties of the quasi-particles. Introducing a separation scale Λ be-

tween the transport time scale and the thermal time-scale, the area under the transport

peak is, to leading order, preserved by the interactions [17],

A(Λ) =

∫ Λ

−Λ

dω

2π

ρii(ω, T )

ω
= χs〈v2〉. (2.12)

The width of the transport peak however becomes finite. In the heavy-quark limit for

instance, the Langevin effective theory predicts a Lorentzian form [17]

ρii(ω, T ) = χs〈v2〉 2η ω

ω2 + η2
, m� T, (2.13)

where η is the ‘drag coefficient’, 1/η = Dm
T . The case of massless quarks can be treated

with the Boltzmann equation [1, 18, 19], with a form of the spectral function qualitatively

similar to eq. (2.13) and a drag coefficient given by

η =
g2

8π
CFm

2
D log(T/mD), (2.14)

with mD the Debye mass and CF = N2
c−1

2Nc
.

Finally, in contrast with the weak-coupling analysis outlined above, it is worth men-

tioning that at least one theory is known where the vector spectral function does not
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exhibit a transport peak. In the strongly coupled N = 4 super-Yang-Mills theory, the

spectral function of the R-charge correlator reads [20],

ρRii(ω, T ) =
3χs
2π

(ω
T

)2 sinh ω
2T

cosh ω
2T − cos ω

2T

. (2.15)

The static susceptibility is given by χs = N2
c T

2

8 , and the diffusion constant by D = 1
2πT .

2.3 Connection with electromagnetic observables

The electrical conductivity σ is extracted from the correlator of the current Jem
µ =∑

f Qf q̄fγµqf . If the quark species are degenerate, this correlator is given by the sum

of a contribution proportional to
∑

f Q
2
f and a contribution proportional to (

∑
f Qf )2. At

high frequencies, the latter contribution to the spectral function is predicted to be small

in perturbative QCD. Assuming that this contribution is also small at low frequencies, we

have for the electrical conductivity in Nf = 2 QCD

σ = CemDχs. (2.16)

with Cem =
∑

f=u,dQ
2
f = 5/9. If one further assumes that σ is fairly insensitive to the

quark mass, and that the transport properties are not significantly affected by the presence

of virtual strange quark pairs, the electrical conductivity in Nf = 2 + 1 QCD is given by

eq. (2.16) with Cem =
∑

f=u,d,sQ
2
f = 2/3.

The phenomenological significance of the electromagnetic spectral function is that the

dilepton rate and the real-photon production rate are given by [18, 21]

dNl+l−

dωd3p
= Cem

α2
em

6π3

ρµµ(ω,p, T )

(ω2 − p2)(eω/T − 1)
, (2.17)

lim
ω→0

ω
dRγ
d3p

=
3

2π2
σ(T )Tαem (2.18)

where αem is the electromagnetic fine structure constant.

2.4 Phenomenology of the ρ resonance

In the vacuum, the QCD spectral function of the electromagnetic current is well measured

via the R(s = ω2) ratio. The ρ meson completely dominates the spectral function up to

about ω = 1GeV. We work in the exact isospin symmetric theory and therefore ignore

issues related to isospin breaking and ρ− ω mixing, see [22] for a recent reference.

Since we are working with the isospin current, we should restrict ourselves to final

hadronic states with I = 1. The R1(s) ratio is defined analogously to R(s) with this

restriction. A rough parametrization of the experimentally measured R1(s) ratio was given

in ref. [11], eq. (93). The spectral function in our normalization is related to the R1 ratio via

ρii(ω, 0) =
1

π
R1(ω2)ω2. (2.19)

We can now make a simple argument about the thermal spectral function based on the

exact sum rule (2.8), the kinetic theory sum rule (2.12) and the experimentally known
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Figure 1. The phenomenological isovector vector spectral function ρii in the vacuum compared to

the leading-order weak-coupling prediction for the spectral function in the high-temperature phase.

The Born term is as given in eq. (2.9) for m = 0 and we have represented the transport peak

around ω = 0 by a Lorentzian with a width matched to [18] for αs = 0.3 and an area determined

by 〈v2〉 = 1 together with χs/χSB
s = 0.88 and 0.9 respectively for the left and right panel (table 2

and [23]). The thin red line represents the vacuum spectral function for non-interacting massless

quarks. The weak-coupling thermal spectral functions must receive additional contributions of the

size given by the ‘missing area’ rectangle in order to satisfy the sum rule (2.8).

vacuum spectral function. Using the parametrization of [11], the area under the vacuum

spectral function up to ω = 1GeV is about

Aρ ≡
∫ 1.0GeV

0

dω

π

ρii(ω, 0)

ω
≈ 0.114GeV2. (2.20)

By contrast, the corresponding area for free massless quarks at zero temperature is

Afree = 0.076GeV2. (2.21)

Taking into account the physical light quark masses changes this value by a neglige-

able amount.

In the free theory, the sum rule (2.8) is satisfied. Now switching on interactions between

quarks, let us assume for the sake of the argument that in the high temperature phase they

can be described perturbatively. In the small frequency region, interactions turn the delta

function in eq. (2.9) into an approximate Lorentzian curve [18], preserving its area to leading

order. This is the content of a kinetic theory sum rule [17]. In the vacuum, interactions

have a dramatic effect on the spectral function, due to chiral symmetry breaking and

confinement, and convert its area up to 1GeV from Afree to Aρ. Since the sum rule (2.8)

must still be satisfied, the weak-coupling spectral function in the high-temperature phase

must acquire an additional area of

Amissing = Aρ −Afree ≈ 0.038GeV2. (2.22)

Note that at very high temperatures, the area (2.22) is negligible compared to the area

A(Λ) = χs〈v2〉 under the transport peak, which grows as T 2. However, consider the

situation at T = 253MeV (the temperature at which we have computed the correlator on
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the lattice, see the next section). Assuming the existence of a transport peak, its area

A(Λ) is about 0.056GeV2, if we correct for the fact that the static isospin susceptibility is

about 12% below its Stefan-Boltzmann limit χSB
s (see table 2 and [23]). The area missing

from the weak-coupling spectral function is thus comparable in size to the transport peak

area at this temperature. The argument is illustrated in figure (1).

At ω � T , the difference of spectral functions ∆ρ(ω, T ) can be analyzed with the

operator product expansion (see [13, 24] and References therein). The lowest-dimensional

gauge-invariant operators are of dimension four, and therefore the asymptotic behavior is

∆ρ(ω, T ) ∝ 1/ω2 (possibly up to logarithms). According to eq. (4.1) of ref. [24], the leading

term of order 1/ω2 is positive. However, at T = 253MeV its contribution to the area under

∆ρ(ω, T )/ω is too small to explain the missing area (2.22).

In conclusion, at temperatures that are accessible in heavy-ion collisions, the sum

rule (2.8) and the R(s) ratio measurements place an important constraint on the thermal

spectral function.

3 Lattice QCD data

All our numerical results were computed on dynamical gauge configurations with two light,

mass-degenerate O(a)-improved Wilson quark flavors. The configurations were generated

using the MP-HMC algorithm [25, 26] in the implementation of Marinkovic and Schae-

fer [27] based on Lüscher’s DD-HMC package [28]. The zero-temperature ensemble was

made available to us through the CLS effort [29]. The gauge action is the standard Wil-

son plaquette action [30], while the fermions were implemented via the Wilson-Clover

discretization with non-perturbatively determined clover coefficient csw [31].

We calculated correlation functions using the same discretization and masses as in the

sea sector in two different ensembles. The first corresponds to virtually zero-temperature

on a 643× 128 lattice (labeled O7 in [32]) with a lattice spacing of a = 0.0486(4)(5)fm [32]

and a pion mass of mπ = 270MeV, so that mπL = 4.2. Secondly we generated an ensemble

on a lattice of size 643 × 16 with all bare parameters identical to the zero-temperature

ensemble. In this way it is straightforward to compare the correlation functions respectively

in the confined and deconfined phases of QCD. Choosing Nτ = 16 yields a temperature of

T ' 250MeV. Based on preliminary results on the pseudo-critical temperature Tc of the

crossover from the hadronic to the high-temperature phase [33], the temperature can also

be expressed as T/Tc ≈ 1.2.

The renormalization of the vector correlator, calculated with the local vector current,

assumes the form

Gµν(τ, β, g0) = Z2
V (g0)[1 + bV (g0)amq]

2
(
Glatµν (τ, β, g0) + . . .

)
. (3.1)

The dots refer to O(a) contributions from the improvement term proportional to the deriva-

tive of the antisymmetric tensor operator [34, 35] that we did not compute. We note how-

ever that perturbatively, the O(a) contribution is suppressed by two powers of αs. We use

the non-perturbative value of ZV provided by [36]. From the perturbative results of [35] we

estimated the magnitude of the term ∼ bV (g0)amq to be of the order of 0.3%. Considering
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Figure 2. The vacuum vector correlator Gii(τ, T = 0) computed on a lattice sized 643 × 128 and

mπ = 270MeV, labeled O7 in [32]. The blue line denotes the fit result using eq. (3.2). The insertion

shows the corresponding effective mass for 0 ≤ τ/a ≤ 32.

that the error of Z2
V is at the 1% level, we drop this contribution altogether in the following.

Note that since we use the same bare parameters at zero and finite temperature, the mul-

tiplicative renormalization of the vector current only affects the corresponding correlation

functions — and their difference — by an overall factor.

The vacuum correlator serves as a reference in this work. To fix the parameters of the

lightest vector state in the finite volume of the simulation, we fitted the vacuum correlation

function to an Ansatz of the form

Gii(τ, 0) = A1e
−m1τ + 3

4π2κ0 exp(−Ωτ)
(
Ω2/τ + 2Ω/τ2 + 2/τ3

)
, (3.2)

which is the Laplace transform of

ρii(ω, 0)

2π
= A1 δ(ω −m1) + 3

4π2 θ(ω − Ω) κ0 ω
2. (3.3)

The finite-volume spectral function consists of Dirac δ functions. However, since many

states contribute at short distances, the continuum in eq. (3.2) should be interpreted as

resulting from the contributions of many energy eigenstates. In figure 2 we show the vac-

uum vector correlator Gii(τ, T = 0) and the fit result. The insert shows the corresponding

effective mass. The fit (performed in the interval 5 ≤ τ/a ≤ 64), clearly provides a good de-

scription of the data. For τ/a & 32 the quality of the data deteriorates and the signal is lost.

We will only use the result for the parameters A1 and m1 in the following. The

question arises of the relation of these parameters to the infinite-volume spectral function.

An answer is given by refs. [37, 38]. Assuming phenomenologically reasonable values of

the ρ coupling to the ππ channel, the mass m1 in fact appears to be within 10% of the

(infinite-volume) ρ mass [37].

In addition we estimate the thermal isovector quark number susceptibility χs/T
2 from

the last expression of eq. (2.2) at τ = β/2 using again the local vector current. Note that
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643 × 128 643 × 16 Ref.

6/g2
0 5.50

κ 0.13671

csw 1.7515

ZV 0.768(5) [36]

a[fm] 0.0486(4)(5) [32]

mπ[MeV] 270 [32]

T [MeV] 253(4)

χs/T
2 0.871(1)

A1/T
3 4.42(31)

m1/T 3.33(5)

κ0 1.244(5)

Ω/T 5.98(11)

Table 2. The top part of the table shows the common quantities characterizing the zero-

temperature and finite-temperature ensembles. In the lower part, the fit parameters for the vacuum

correlator in units of T = 253MeV and the value of the (isospin) quark number susceptibility χs/T
2

are given. For more details on the generation of the Nτ = 128 ensemble, see [32]. The number of

configurations generated with Nτ = 16 is 317.
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Figure 3. Thermal Gii(τ)/T 3 and reconstructed Grecii (τ)/T 3 vector correlators over Euclidean time

separation τ compared to the free (continuum and lattice) cases. The reconstructed correlator was

computed by applying eq. (2.5) to the data obtained from a lattice sized Nσ = 64 and Nτ = 128.

The insertion shows the ratio Gii(τ)/Grecii (τ).

in the isovector channel, there are no disconnected diagrams. We checked the obtained

value by fitting the correlator to a constant in the region 2 ≤ τ/a ≤ 14 and found only a

negligible deviation. The parameters used in our lattice setup, the ‘ρ-meson’ parameters

and the value of the static susceptibility are summarized in table 2.
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region τ/a ≥ 3.

τ Gii(τ)/T 3 Grecii (τ)/T 3

4 12.534(94) 12.456(59)

5 6.775(65) 6.602(41)

6 4.510(51) 4.264(35)

7 3.569(45) 3.282(33)

8 3.300(44) 3.008(34)

Table 3. Results of the thermal and reconstructed correlation functions for τ/a ≥ 4. Note that all

results have been renormalized using the value of ZV in table 2 and normalized by T 3.

3.1 Thermal and vacuum correlators

In figure 3 we show the correlator Gii(τ, T ) computed at T ' 250MeV together with

the corresponding free ‘continuum’ and free ‘lattice discretized’ correlation functions. In

addition we show the reconstructed correlator Grecii (τ) as obtained from eq. (2.6). The

results for the thermal and reconstructed correlators for τ/a ≥ 4 can be found in table 3.

The reconstructed correlator lies somewhat lower than the thermal correlator. The

insert in figure 3 displays the ratio Gii(τ)/Grecii (τ) in order to make their relative τ de-

pendence visible. For small Euclidean times τ < β/4 this ratio is unity, above it increases

monotonically until it levels off around the midpoint at about 10% above unity. A thermal

modification of the spectral function has thus taken place (recall that the spectral function

underlying Grecii (τ) contains the bound states of the confined theory).

In figure 4 we show the difference

∆G(τ, T ) ≡ Gii(τ, T )−Grecii (τ, T ) =

∫ ∞
0

dω

2π
∆ρ(ω, T )

cosh[ω(β/2− τ)]

sinh(ωβ/2)
(3.4)

of the thermal and the reconstructed correlators. Given that ρii(ω, T ) and ρii(ω, T =

0) have the same ∼ ω2 behavior, this means we are subtracting non-perturbatively the
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Figure 5. Left: The vector correlator Gii(τ) at T ' 250MeV normalized by the free continuum

and free discretized correlation functions G
free,c/l
ii . Right: The vector correlator Gii(τ) normalized

by the free (continuum/discretized) correlation functions G
free,c/l
µµ .

ultraviolet tail of the spectral function. Using this difference we are therefore able to probe

the change in the vector spectral function from the confined to the deconfined phase for

frequencies ω . O(T ).

For small times, the difference (3.4) turns out to be negative, while it is positive for

τ ≥ β/4. Note the errors decrease with increasing Euclidean time throughout the available

range. We show a more detailed view of the region τ/a ≥ 3 in the insert of figure 4. Here

the difference still exhibits a mild increase and levels off near the midpoint. The value it

reaches at the midpoint is ∆G(τ = β/2, T )/T 3 = 0.291(55).

3.2 Comparison with the free-quark correlator

In the previous subsection we compared the thermal correlator to its zero-temperature ana-

logue. Now we analyze the thermal correlator in relation to the non-interacting case, which

by asymptotic freedom corresponds to the regime of asymptotically high temperature.

However, before discussing the departure of the simulation data from the non-interacting

case, we address briefly the issue of cutoff effects.

Since we only have data at one lattice spacing, the value of the lattice correlator,

viewed as an estimator of the continuum correlator, is necessarily ambiguous at some level

due to cutoff effects. To estimate the size of this ambiguity, we show the ratio Gii/G
free,c/l
ii

in figure 5(left), where c and l denote the analytically known free continuum and free

lattice cases, respectively [39]. Concentrating on the ratio to the free continuum correlator

we observe a decreasing trend throughout the entire available Euclidean time range, a

behavior very similar to that seen in quenched studies [9]. Taking the ratio to the free lattice

correlation function on the other hand the results are much flatter and almost constant at

small times τ/a ≤ 3, while for τ/a ≥ 5 the two ratios track each other and are separated

by a small shift of roughly 2%. The difference between the two curves comes from the fact

that the free lattice correlation function takes into account the tree-level lattice artifacts.

To put this systematic uncertainty into perspective, we examine the ratio Gii/G
free,c/l
µµ

in the right panel of figure 5. The only difference between G
free,c/l
ii and G

free,c/l
µµ is that the
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δ-function in the spectral function at ω = 0 is absent in the latter. The difference between

the left and right panel curves thus corresponds to the contribution of the transport peak.

It is clear from the figure that this contribution is much larger than the cutoff effects present

at tree-level for τ/a ≥ 5.

Returning now to the question of how much the thermal correlator differs from its

non-interacting counterpart, we see that the simulation data lies 8 to 10% above the free

lattice correlator. The sign of the effect corroborates our finding in section 2.4 that spectral

weight is missing from the weak coupling spectral function.

3.3 Thermal moments of the correlator

Finally we compute also the ratio of thermal moments of the correlator [9]:

R(2,0) =
G(2)

G(0)
=

1

2

∫
dω (ω/T )2ρ(ω)K(ω, T )∫

dωρ(ω)K(ω, T )
where K(ω, T ) =

1

2π sinh(ω/2T )
. (3.5)

This quantity can be extracted from the correlator data by combining the results of

(Gii/G
free,c/l
ii )(τ = β/2) = G

(0)
ii /G

(0),free
ii and:

∆ii(τ) ≡
Gii(τ)−G(0)

ii

Gfreeii (τ)−G(0),free
ii

=
G

(2)
ii

G
(2),free
ii

[
1 + O((β/2− τ)2)

]
. (3.6)

In the free case a straightforward computation [40] yields R
(2,0)
free = 18.423. Using this result

together with our lattice data we obtain:

G
(0)
ii /G

(0),free
ii = 1.100(15) , G

(2)
ii /G

(2),free
ii = 1.198(8) ⇒ R(2,0)

R
(2,0)
free

= 1.089(30) , (3.7)

where we neglected higher-order terms in the square bracket of eq. (3.6).1 We see that the

ratio R(2,0) of thermal moments is roughly 6–12% larger than the free result. As the ratio of

second thermal moments is sensitive to changes in the low frequency region of the spectral

function (see e.g. [9]), this observation could be due to a broadening of the δ-function form

of the free theory.

4 Analysis of lattice correlators in terms of spectral functions

We begin with a simple but instructive analysis of the spectral function difference ∆ρ.

Section 4.2 contains the main analysis based on fits to the thermal part of the Euclidean

correlator, and section 4.3 describes a fit directly to the thermal correlator. The results of

the two fits are compared against each other and against previous quenched calculations

in section 4.4.

4.1 A simple spectral analysis of the thermal part of the vector correlator

Based on the analysis of section 2.4, it is interesting to ask whether the Euclidean correlator

can be described and the sum rule (2.8) satisfied solely by the transport peak and the ρ-

meson contribution. For this purpose, we consider the following caricature of ∆ρ(ω, T ),

1Including the leading correction into a fit we find it to be poorly determined by the data, while the

constant contribution remained unchanged within errors.
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Figure 6. The effective area A(Λ, τ)eff , defined in eq. (4.3), normalized by the static susceptibility.

The corresponding quantity in the strongly coupled SYM theory calculated from eq. (2.15) is also

displayed for comparison.

where the sum rule has already been enforced,

∆ρ(ω, T )

2π
= C ω

(
δ(ω)− 1

2δ(ω −m1)
)
, (4.1)

corresponding to the Euclidean correlator

∆G(τ, T ) = C

(
1

β
− m1

2

coshm1(β/2− τ)

sinhm1β/2

)
. (4.2)

The mass m1 is set equal to the value obtained by fitting the Ansatz (3.2) to the vacuum

correlator and given in table 2. The kinetic theory sum rule (2.12) implies that C is an

estimator for A(Λ), and from eq. (4.2) an effective value A(Λ, τ)eff can thus be defined for

every value of τ ,

A(Λ, τ)eff =
∆G(τ, T )(

1
β −

m1
2

coshm1(β/2−τ)
sinhm1β/2

) . (4.3)

The result is shown in figure 6. The quantity A(Λ, τ)eff is well compatible with a constant

value, implying that the Ansatz (4.1) already provides a good description of the lattice

correlator. Moreover, the weak-coupling expectation that A(Λ, τ)eff should be given by

χs (up to quark mass effects reducing their average thermal velocity 〈v2〉) is also well

reproduced. The insensitivity of the Euclidean correlator to the width of the transport

peak was first emphasized in [41, 42].

It should be noted that in this simple picture the prefactor of δ(ω−m1) in eq. (4.1) is

about −χsm1/2 = −1.45(2)T 3, to be compared with the area A1 = +4.42(31)T 3 obtained

from the vacuum correlator (table 2). This observation means that the area under the

thermal spectral function in the region T . ω . 4T cannot be negligible compared to A1,

confirming the conclusions drawn from phenomenology in section (2.4).

– 13 –



J
H
E
P
0
3
(
2
0
1
3
)
1
0
0

It is interesting to confront the lattice data with the spectral function in the strongly

coupled SYM theory, eq. (2.15). We therefore also plot the corresponding SYM function in

figure (6). It lies lower than the lattice data, in spite of the fact that ρR
ii(ω, T )/(χsω

2) has

the same large-frequency limit as ρfree
ii (ω, T )/(χfree

s ω2) in QCD and also satisfies the sum

rule (2.8). This comparison shows that the lattice data is not simultaneously compatible

with the combination of (a) the functional form of the SYM spectral function and (b) the

corresponding very low diffusion constant. The data is however perfectly compatible with

the substitution of the delta function in eq. (4.1) by a flat (or even ∝ (1 + 1
24ω

2/T 2) as in

the SYM case) behavior of ∆ρ(ω, T )/ω up to about ω ≈ 4T , provided its area is adjusted

appropriately.

In order to parametrize ∆ρ(ω, T ) systematically, including the expected contributions

at high frequencies, we resort to the more sophisticated fits described in the next subsection.

To anticipate the results, similar qualitative conclusions on the distribution of the spectral

weight in ∆ρ(ω, T ) will be obtained.

4.2 Fit to the thermal part of the vector correlator

We proceed to investigate the behavior of the thermal part of the spectral function ∆ρ

by fitting the difference of the thermal and the reconstructed correlator, see eq. (3.4). We

know from the operator-product expansion that the difference of spectral functions falls off

rapidly (as ω−2) for ω � T , and therefore focus on the region ω . O(T ) in order to choose

a fit Ansatz. As described in the previous subsection, the fact that the data (displayed

in figure 4) is positive at long distances and negative at short distances suggests that the

thermal spectral weight exceeds the vacuum spectral weight at low frequencies and falls

short of it at higher frequencies.2

We thus parametrize ∆ρ using the following Ansatz for ω ≥ 0:

∆ρ(ω, T ) = ρT (ω, T )− ρB(ω, T ) + ∆ρF (ω, T ), (4.4)

ρB(ω, T ) =
2cB gB tanh(ω/T )3

4(ω −mB)2 + g2
B

, (4.5)

ρT,1(ω, T ) =
4c ω

(ω/g)2 + 1
, ρT,2(ω, T ) =

4c T tanh(ω/T )

(ω/g)2 + 1
, (4.6)

∆ρF (ω, T ) = ρF (ω, T )− ρF (ω, 0), ρF (ω, T ) =
3

2π
κω2 tanh

( ω
4T

)
. (4.7)

The bound state (B) and the transport peak (T) are represented by Breit-Wigner forms.

Even such a simple Ansatz requires three parameters (cB, gB,mB) to determine the bound

state peak, two parameters (c, g) for the transport peak and one (κ) for the ‘perturbative’

contribution (F). We will therefore fix some of them using the vacuum correlator. In the

following we set mB equal to m1, given in table 2, which we obtained from the exponential

fit to the vacuum correlator. Note that the area under the bound state peak
∫
dw ρB/ω

does not depend on the width gB in the limit where it is small. The sensitivity of the

Euclidean correlator to the latter parameter is very small. We therefore perform fits for

2A continuum extrapolation is really needed to confirm the behavior at short distances.
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Figure 7. Left: Fits to ∆G(τ, T )/T 3 ≡ [Gii(τ) − Grecii (τ)]/T 3. The blue and red results differ

by the form of transport peak in the Ansatz. The error bands are computed from the covariance

matrix of the fit. Right: The resulting spectral functions for both Ansätze.

three fixed values of this parameter, and check the sensitivity of the result. We choose the

values gB/T = 0.1, 0.5 and 1.0, corresponding to gB ' 25, 125 and 250MeV.

The tail ∼ T/ω of the Ansatz ρT,1 violates the OPE prediction that ∆ρ ∼ (T/ω)2

at large frequencies. It has been argued in [43] that this might lead to an overestimate

of the transport contribution. To avoid this problem we introduce the Ansatz 2, where

ω → T tanh(ω/T ). This Ansatz possesses the correct asymptotic behavior, as well as the

expected linear behavior in ω at small frequencies.

Finally, to complete the parametrization of ∆ρ(ω), we include a weak-coupling term

inspired by eq. (2.9) describing the subtraction of the large frequency parts of the thermal

and vacuum spectral functions. This contribution ρF (ω, κ) → 0 vanishes exponentially as

the frequency increases.

In the next step we fit the combined Ansätze of ∆ρ(ω, cB, gB,mB, c, g, κ) to the data,

while at the same time satisfying the sum rule of eq. (2.8) to an accuracy of 10−8. We

limit ourselves to fitting the region 5 ≤ τ/a ≤ 8 only, in order to minimize the influence of

cut-off effects, as discussed in section 3.1. With mB determined by the vacuum correlator,

we set gB successively to the three different values mentioned above and fixed κ around

unity, and fitted the parameters c, g and cB. The errors and error bands shown in the

following have been computed using the covariance matrix of the corresponding fit for fixed

values of gB and κ.

The resulting correlators and spectral functions are displayed in figure 7 for gB/T =

0.50 and κ = 1.10 while the fitted parameters are given in table 4. In the left panel of

figure 7 the data ∆G(τ, T ) is compared to the fits using ρT,1(ω) and ρT,2(ω) as transport

contribution. We achieve a quasi-perfect description of the data for τ/a ≥ 4. The right

panel shows that both Ansätze exhibit a substantial spectral weight around the origin and

a negative contribution from the region of the ρ mass.

Focussing on Ansatz 2, the left panel of figure 8 shows the sensitivity of the fit result
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Figure 8. Left panel: the impact of changing the width of the peak representing the ρ resonance,

gB = 0.5T and gB = 1.0T . Right panel: the separate contributions ρT (ω), ρB(ω), ρF (ω) and the

full result of the fitted spectral functions for the transport Ansatz ρT,2.

to varying the parameter gB. Varying the width only has a small effect on the overall

result. We also found little sensitivity to ±15% variations in κ. In order to understand

what drives the parameters to their final fitted values, we also plot separately the three

contributions appearing in eq. (4.4)–(4.7), including their respective error bands, in the

right panel of figure 8. The contribution ρF (ω) mainly affects the intermediate frequency

region around ω/T ' 2. Its tail between 4 ≤ ω/T ≤ 10 is largely compensated by the tail

of the Lorentzian centered at the origin, and this might well be what drives the width of

the Lorentzian.

4.3 Weak-coupling inspired fit to the thermal vector

In contrast to the previous section, here we study directly the thermal vector correlator

and its ratio of thermal moments R(2,0). We perform a fit inspired by the weak coupling

form of the thermal spectral function,

ρ(ω, T ) = ρT (ω, T ) + ρF (ω, T ) , (4.8)

where the form of the two contributions is defined in eq. (4.6) and (4.7). At a given

temperature this Ansatz is characterized by three parameters (c, g, κ). We fit the full

Ansatz ρ(ω, c, g, κ) to the thermal correlator Gii(τ), while at the same time demanding

that R(2,0) be reproduced. In this analysis the three parameters c, g and κ are fitted, and

the fit range is 5 ≤ τ/a ≤ 8 as before.

The resulting correlators and spectral functions are shown in figure 9 with their fit

parameters listed in table 4. The ratio Gii(τ)/Gfree
µµ (τ) in the left panel of figure 9 is well

described by both versions ρT,1 and ρT,2 of the transport contribution for τ/a ≥ 5, while

also the ratio of thermal moments (given on the far right of the plot) is reproduced. For

τ/a < 5 our Ansatz fails to reproduce these points within the error band, which we suspect

is partly due to cutoff effects. The central value of the fit hardly changes if one extends the
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Figure 9. Left panel: fit results for Gii(τ)/Gfreeµµ (τ) using both Ansätze for the transport peak.

The resulting ratio of thermal moments R(2,0)/R(2,0)free are displayed on the right side of the plot.

Right panel: The corresponding spectral functions normalized by ωT .

∆ρ(ω, c, g, κ) c/T g/T cB/T
3 A(Λ = 1.5T )/T 2 〈v2〉eff

ρT,1(ω, c, g) 0.61(10) 1.22(26) 1.42(188) 0.702(201) 0.806(231)

ρT,2(ω, c, g) 0.59(16) 5.7(10) 2.92(228) 0.764(244) 0.877(280)

ρ(ω, c, g, κ) c/T g/T κ A(Λ = 1.5T )/T 2 〈v2〉eff

ρT,1(ω, c, g) 0.75(4) 0.71(9) 1.186(27) 0.818(50) 0.939(57)

ρT,2(ω, c, g) 0.74(5) 0.98(13) 1.192(26) 0.858(56) 0.985(64)

Table 4. Parameters obtained from both studies. Top: fitting ∆ρ(ω, c, g, κ) to ∆G(τ, T ) with

gB = 0.5T and κ = 1.10. Bottom: fitting Gii(τ) to ρ(ω, c, g, κ). In both cases fits were done for two

different Breit-Wigner peaks in the low frequency region, ρT,1(ω) ∼ ω and ρT,2(ω) ∼ T tanh(ω/T ).

Additionally the resulting area of the transport region A(Λ) and the mean squared velocity 〈v2〉 is

given. For details see the text.

fit range to τ/a ≥ 4.XXX In the future it would be interesting to repeat the calculation at

several smaller lattice spacings while keeping the temperature fixed, as in [9].

On the right hand side of figure 9 we show the resulting spectral functions divided by

ωT . Clearly both Ansätze give very similar results that lie within errors of each other.

The thermal correlator is even less sensitive to the asymptotic behavior of the transport

contribution in the Ansatz than in the difference of correlators studied in section 4.2.

4.4 Discussion

We now compare the results of the fits to ∆G(τ, T ) andGii(τ, T ). Since the vacuum spectral

function vanishes below 2mπ ≈ 540MeV (in infinite volume), ρii(ω, T ) and ∆ρ(ω, T ) should

be equal for ω < 2mπ ≈ 2.1T . We thus plot the spectral functions obtained from the two

fits in this frequency region, see figure 10. Here we restrict ourselves to showing these

results based on ρT,2(ω, T ), as their theoretical foundation is more sound than those with

ρT,1(ω, T ). All curves are multiplied by a factor 1/6, which means that the intercept at ω =

0 yields an estimate of σ/CemT with σ the electrical conductivity of the quark gluon plasma.
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Figure 10. Comparison of the spectral functions obtained from analyzing (a) ∆G(τ, T ) and (b)

Gii(τ, T ) using in both cases ρT,2(ω) ∼ tanh(ω/T ) in the low frequency region. All curves have

been multiplied by a factor 1/6 and divided by ωT , entailing that the intercept at ω = 0 yields an

estimate of σ/CemT .

The results obtained by fittingGii(τ, T ) agree very well with the central values obtained

by fitting ∆G(τ, T ), as summarized in table 4. The fit to ∆G(τ, T ) using the transport

Ansatz ρT,2(ω) yields a slightly lower intercept. If we assume the spectral function to be

as smooth around the origin as figure 10 suggests, we obtain the following estimate for the

electrical conductivity of the quark gluon plasma at T ' 250MeV,

σ

CemT
= 0.40(12), (4.9)

where Cem =
∑

f=u,dQ
2
f = 5/9 for Nf = 2 and Cem =

∑
f=u,d,sQ

2
f = 2/3 for Nf =

2 + 1, see section 2.3. It should be remembered that the Euclidean correlator can be

perfectly well described by an infinitely narrow transport peak (corresponding to an infinite

electrical conductivity), see section 4.1. Although obtained under a strong assumption, it

is interesting to compare (4.9) to other lattice results obtained under similar assumptions.

The following comparison is made with quenched results, since to our knowledge there are

no previous dynamical QCD studies.

A quenched calculation using staggered fermions based on fitting the Fourier trans-

form of the correlator obtained σ/T = 7Cem [44] at 1.5 ≤ T/Tc ≤ 3.0, where the

pure SU(3) gauge theory critical temperature is around 290 MeV. A further study us-

ing staggered fermions and an analysis based on the maximum entropy method obtained

σ/T = 0.4(1)Cem [45]. Finally, a recent quenched study using Wilson-Clover fermions in

the continuum limit obtained 0.33Cem ≤ σ/T ≤ 1Cem at T ' 1.45Tc [9]. Our results using

dynamical Wilson-Clover fermions at Nτ = 16 are thus completely compatible with the

recent quenched results.
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Even though the transport contribution extracted from our fits is not narrow and an

interpretation in terms of kinetic theory (eq. (2.12)) is no longer rigorously motivated, we

also compute the effective mean squared velocity of the quarks 〈v2〉. Choosing the scale

parameter Λ/T = 1.5 and numerically integrating the fitted spectral functions we obtain

A(Λ = 1.5T ). Assuming eq. (2.12) and using the quark number susceptibility as given in

table 2, it is straightforward to estimate an effective mean squared velocity 〈v2〉eff . The

results for A(Λ = 1.5T ) and 〈v2〉eff are listed in table 4. For all fits we obtain reasonable

values for 〈v2〉eff in the range 0.80 . 〈v2〉eff . 0.99. Thus, although we are not able to

demonstrate or exclude the validity of the kinetic theory description, the values of the

effective quark velocity extracted in this way are in line with its expectations. By contrast,

the AdS/CFT spectral function (2.15) (which clearly cannot be described by kinetic theory)

yields an effective quark velocity of 〈v2〉eff = 0.47 for Λ = 1.5T .

Using the result for ρii(ω, T ) from the fit to Gii(τ, T ), it is straightforward to compute

the production rate of thermal lepton pairs in the quark gluon plasma with two light

dynamical quark flavors from eq. (2.17). The resulting rates are shown in figure 11. We

give the low frequency behavior of dNl+l−/dωd
3p obtained from ρii(ω, T ) using the Ansatz

2 in the transport region. Comparing our results with the free (Born) rate (dashed line)

and the hard thermal loop result (black line) with a thermal mass of mT /T = 1 [46], we

observe that for frequencies ω/T . 1.5 our result is below the result from HTL, above this

value however it follows it very closely.

The results shown in figure 11 correspond to a system at thermal equilibrium with

T ' 250MeV. To make contact with results obtained in heavy ion collisions one has to take

into account the real-time evolution of the volume of the system, using a hydrodynamic

model along the lines of [47] (for a recent study of out-of-equilibrium photon and dilepton

production using the AdS/CFT correspondence see [48, 49]).

5 Conclusion

In this paper we have obtained the isovector vector correlator in the high-temperature

phase of two-flavor QCD at T ' 250MeV as well as in the vacuum at the same set of bare

parameters. This allowed us to analyze both the difference of the thermal and the vacuum

correlator and the thermal correlator directly. In the former case the analysis is further

constrained by an exact sum rule. Given the uncertainties inherent in trying to extract

information on the spectral function from Euclidean correlators, the two methods give a

consistent picture of the thermal spectral function in the low to moderate frequency range

ω . 1.5T .

The vacuum spectral function is known to receive a very large contribution from the

ρ meson from experimental e+e− and τ decay data. The main qualitative lesson we have

learnt is that the reduction or complete absence of such a peak and the appearance of a sub-

stantial spectral weight in the low-frequency region provide a very good description of the

lattice data and are compatible with the sum rule. Moreover the area under the latter spec-

tral weight matches the expectation of kinetic theory. This picture is corroborated by a sim-

ple phenomenological study, presented in section 2.4, based on the experimental R(s) ratio
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Figure 11. The production rate of lepton pairs from two-flavor lattice QCD for frequencies ω

given in units [GeV] as calculated from spectral functions of the vector current using eq. (2.17).

The curve comes from fitting ρii(ω, T ) to Gii(τ, T ) using the transport peak Ansatz 2. The black

line shows the result from HTL perturbation theory with mT /T = 1, while the dashed line denotes

the (free) Born rate.

and the sum rule. We also note that the analytic result (2.15) in the strongly coupled limit

of N = 4 super-Yang-Mills theory exhibits a qualitatively similar (but quantitatively differ-

ent in amplitude) change of sign in the difference of thermal and vacuum spectral functions,

even though the theory is conformal and therefore exhibits no analogue of the ρ meson. A

similar pattern was also observed in the bulk channel of the pure SU(3) gauge theory [8].

The analysis presented in this paper is based on data at finite lattice spacing. Obviously

the next step would be to repeat the analysis in the continuum limit, as has been done

in the quenched theory [50]. In this respect the results obtained here should be regarded

as preliminary. We note however that our results are quantitatively quite close to those

obtained in [50].

It would be very interesting to repeat the analysis carried out here in a temperature

scan through the smooth phase transition. This would allow one to track the fate of the ρ

meson from the low-temperature to the high-temperature phase and perhaps to shed light

on the excess of dileptons observed by the PHENIX collaboration in relativistic gold-gold

collisions [51]. The methods employed here to constrain thermal spectral functions may be

useful in the context of cosmology as well, see for instance [52].
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