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Abstract: We present the first unquenched, continuum limit, lattice QCD results for the

matrix elements of the operators describing neutral kaon oscillations in extensions of the

Standard Model. Owing to the accuracy of our calculation on ∆S = 2 weak Hamiltonian

matrix elements, we are able to provide a refined Unitarity Triangle analysis improving

the bounds coming from model independent constraints on New Physics. In our non-

perturbative computation we use a combination of Nf = 2 maximally twisted sea quarks

and Osterwalder-Seiler valence quarks in order to achieve both O(a)-improvement and

continuum-like renormalization properties for the relevant four-fermion operators. The

calculation of the renormalization constants has been performed non-perturbatively in the

RI-MOM scheme. Based on simulations at four values of the lattice spacing and a number

of quark masses we have extrapolated/interpolated our results to the continuum limit and

physical light/strange quark masses.
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1 Introduction

The fundamental target of present-day research activity in Particle Physics is the search

for New Physics (NP) effects beyond the Standard Model (SM) predictions. Two main

routes are followed, one based on the study of processes in which the direct production of

NP particles at high energy colliders like the LHC takes place, and a second one based on

the indirect investigation of NP effects coming from the exchange of virtual NP particles.

In the so-called indirect approach a crucial role is played by Flavor Physics processes

that are sensitive to NP through loop effects. These processes vanish at tree level in the SM,

and some of them are theoretically very clean, despite the fact that they are loop mediated,

and in some cases also CKM or helicity suppressed. Among them, ∆F = 2 transitions have

always provided some of the most stringent constraints on NP. For instance, the constraints

fromK0−K̄0 oscillations are particularly stringent for NP models that generate transitions

between quarks of different chiralities [1]–[4]. Therefore, an accurate determination of the

∆S = 2 bag parameters (B-parameters) is crucial to the improvement of NP constraints.

In the present work, we provide the first accurate lattice determination of the ∆S = 2

B-parameters relevant for physics beyond the SM, calculated in the continuum limit and us-

ing data from unquenched, Nf = 2, dynamical quark simulations.1 Our results represent a

significant improvement with respect to the (quenched) input values of refs. [6] and [7] used

so far in phenomenological analyses. The calculation of the BK parameter that is relevant

for the K0−K̄0 mixing in the SM has been presented in [8] using three values of the lattice

spacing. In the present work we update that value by adding a fourth (finer) lattice spacing.

We note that the difference between the two results is about half standard deviation.

The outline of the paper is as follows. Section 2 contains a brief description of the

∆S = 2 matrix elements of the effective weak Hamiltonian describing the most general pat-

tern of K0− K̄0 oscillations. In section 3, based on the results of this work for the ∆S = 2

B-parameters, we discuss the implications for NP of our updated Unitarity Triangle (UT)

analysis [9]. In section 4 we illustrate the main theoretical features of the lattice setup em-

ployed in our simulations (twisted mass lattice QCD [10, 11]) and we describe the strategy

for obtaining accurate numerical estimates of the B-parameters as well as ratios of kaon

four-fermion matrix elements. In section 5 we collect our numerical results. In section 6

we give our estimates of the various B-parameters and matrix elements ratios and com-

pare the present results with the previous determinations existing in the literature. In five

appendices we discuss a number of technicalities: i) the renormalization properties of the

four-fermion operators in our “mixed action” setup [12]; ii-iii) the RI-MOM computation

of renormalization constants (RCs) and corresponding results respectively; iv) tables of

lattice data on pseudoscalar meson masses, decay constants and bare four-fermion matrix

elements; v) complete results on renormalized four-fermion matrix elements obtained by

using various formulae for the chiral extrapolation and two alternative procedures for the

RI-MOM determination of RCs.

1While finalizing our paper we became aware of the work of ref. [5] where B-parameters and ratios of

four-fermion matrix elements have been computed at one lattice spacing with Nf = 2+1 dynamical quarks.

– 2 –
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2 ∆S = 2 effective weak Hamiltonian

The general form of the ∆S = 2 effective weak Hamiltonian is

H∆S=2
eff =

5
∑

i=1

CiOi +
3
∑

i=1

C̃iÕi , (2.1)

where in the so-called SUSY basis ([1, 13]) the four-fermion operators Oi and Õi have

the form

O1 = [s̄αγµ(1− γ5)d
α][s̄βγµ(1− γ5)d

β ]

O2 = [s̄α(1− γ5)d
α][s̄β(1− γ5)d

β ]

O3 = [s̄α(1− γ5)d
β ][s̄β(1− γ5)d

α] (2.2)

O4 = [s̄α(1− γ5)d
α][s̄β(1 + γ5)d

β ]

O5 = [s̄α(1− γ5)d
β ][s̄β(1 + γ5)d

α]

Õ1 = [s̄αγµ(1 + γ5)d
α][s̄βγµ(1 + γ5)d

β ]

Õ2 = [s̄α(1 + γ5)d
α][s̄β(1 + γ5)d

β ] (2.3)

Õ3 = [s̄α(1 + γ5)d
β ][s̄β(1 + γ5)d

α]

with α and β denoting color indices. Spin indices are implicitly contracted within square

brackets. The Wilson coefficients Ci and C̃i have an implicit renormalization scale depen-

dence which is compensated by the scale dependence of the renormalization constants of

the corresponding operators.

Notice that the parity-even parts of the operators Oi and Õi are equal. From now on

and for notational simplicity we will denote by Oi (i = 1, . . . , 5) the parity-even components

of the operators (2.2). Due to parity conservation in strong interactions, in the study of

K̄0 −K0 oscillations it is then sufficient to consider only the matrix elements 〈K̄0|Oi|K
0〉.

We recall that in the SM only the kaon matrix element of the operator O1 comes into play.

The bag parameters, Bi (i = 1, . . . , 5), provide the value of four-fermion matrix ele-

ments in units of the magnitude of their vacuum saturation approximation. More explicitly

they are defined by the equations [14]

〈K̄0|O1(µ)|K
0〉 = ξ1B1(µ) m

2
Kf

2
K (2.4)

〈K̄0|Oi(µ)|K
0〉 = ξiBi(µ)

[

m2
KfK

ms(µ) +md(µ)

]2

for i = 2, . . . , 5, (2.5)

with ξi = (8/3, −5/3, 1/3, 2, 2/3). In the above relations one recognizes B1 as the familiar

BK . We recall that, as suggested by the parametrization adopted in the r.h.s. of eqs. (2.4)

and (2.5), the 〈K̄0|O1(µ)|K
0〉 matrix element is expected to vanish in the chiral limit unlike

the other four ones.

An alternative way which has the merit of allowing a more accurate evaluation of

matrix elements, is to consider the matrix elements ratios Ri = 〈K̄0|Oi|K
0〉/〈K̄0|O1|K

0〉,

i = 2, . . . , 5, as first proposed in ref. [6]. For details on our lattice implementation see

section 4 and in particular eq. (4.19).

– 3 –
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MS (2GeV)

B1 B2 B3 B4 B5

0.53(2) 0.52(2) 0.89(5) 0.79(3) 0.61(4)

R1 R2 R3 R4 R5

1 -14.0(5) 4.8(3) 24.3(8) 6.6(4)

Table 1. Continuum limit results for Bi and Ri, renormalized in the MS scheme of ref. [15] at

2GeV.

RI-MOM (2GeV)

B1 B2 B3 B4 B5

0.52(2) 0.70(2) 1.22(7) 1.00(4) 0.73(5)

R1 R2 R3 R4 R5

1 -12.9(4) 4.5(2) 21.1(7) 5.3(3)

Table 2. Continuum limit results for Bi and Ri, renormalized in the RI-MOM scheme at 2GeV.

For the reader’s convenience we here anticipate our final continuum results for Bi and

Ri in the MS scheme of Buras et al., defined in ref. [15], and the RI-MOM scheme2 at 2GeV,

see tables 1 and 2 respectively. Details on the calculation and uncertainty estimates are

given in section 5. In appendix E we also give the final continuum results for Bi and Ri in

the MS and the RI-MOM scheme at 3GeV.

3 Model-independent constraints on ∆S = 2 operators and New Physics

scale from the Unitarity Triangle analysis

∆F = 2 processes provide some of the most stringent constraints on NP generalizations of

the SM. Several phenomenological analyses of ∆F = 2 processes have been performed in

the last years, both for specific NP models and in model-independent frameworks. A gen-

eralization of the UT analysis, which allows for NP effects by including the most significant

flavour constraints on NP available at the time was performed in ref. [9]. The result was

a simultaneous determination of the CKM parameters and the size of NP contributions to

∆F = 2 processes in the neutral kaon and Bd,s meson sectors.

The NP generalization of the UT analysis consists in including in the theoretical param-

etrization of the various observables the matrix elements of operators which, though absent

in the SM, may appear in some of its extensions. The analysis shows that the constraints

coming from K0 − K̄0 matrix elements are the most stringent ones, in particular for mod-

els that generate transitions between quarks of different chiralities (see refs. [1]–[4]). Thus

an accurate determination of the ∆S = 2 B-parameters is crucial to the improvement of

the NP constraints.

2Actually, instead of the standard version of the RI-MOM scheme defined in [16] we employ the RI’-

MOM scheme [17]. The prime on RI is to remind about the specific definition we adopted for the quark

field RC, Zq = Σ1, where Σ1 is the quark propagator form factor defined in eq. (3.5) of ref. [18].

– 4 –
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The results for the ∆S = 2 B-parameters obtained in the present work come from

unquenched Nf = 2 lattice QCD data carefully extrapolated to the continuum limit. They

hence represent a significant progress with respect to the input values used in the UT anal-

ysis performed in ref. [9], where quenched lattice numbers (without a systematic continuum

limit extrapolation analysis) computed more than five years ago in refs. [6] and [7] were

employed. For this reason, we present here an update of the analysis of ref. [9] based on

our new values of the ∆S = 2 B-parameters. The new ingredients entering the analysis

are collected in tables 1 and 2. For all the other input data we use the numbers quoted in

ref. [19] in the Summer 2012 analysis.

In the present NP-oriented analysis, the relations among experimental observables and

the CKM matrix elements are extended by taking into consideration the most general form

of the ∆S = 2 effective weak Hamilonian (see eq. (2.1)). The effective weak Hamilonian is

parameterized by Wilson coefficients of the form

Ci(Λ) =
FiLi

Λ2
, i = 2, . . . , 5 , (3.1)

where Fi is the (generally complex) relevant NP flavor coupling, Li is a (loop) factor which

depends on the interactions that generate Ci(Λ), and Λ is the scale of NP, i.e. the typical

mass of new particles mediating ∆S = 2 transitions. For a generic strongly interacting

theory with an unconstrained flavor structure, one expects Fi ∼ Li ∼ 1, so that the

phenomenologically allowed range for each of the Wilson coefficients can be immediately

translated into a lower bound on Λ. Specific assumptions on the flavor structure of NP

correspond to special choices of the Fi functions. For example Minimal Flavor Violation

(MFV) models [20]–[25] correspond to F1 = FSM and Fi 6=1 = 0.

Following ref. [9], in deriving the lower bounds on the NP scale Λ, we assume Li = 1,

that corresponds to strongly-interacting and/or tree-level coupled NP. Two other inter-

esting possibilities are given by loop-mediated NP contributions proportional to either α2
s

or α2
W . The first case corresponds for example to gluino exchange in the minimal super-

symmetric SM. The second case applies to all models with SM-like loop-mediated weak

interactions. To obtain the lower bound on Λ entailed by loop-mediated contributions, one

simply has to multiply the bounds we quote in the following by αs(Λ) ∼ 0.1 or αW ∼ 0.03.

In agreement with ref. [9], we find that in the K0 sector, due to the non-vanishing

chiral limit (chiral enhancement) of their matrix elements, all bounds coming from the

contributions of non-standard operators (i.e. from the operators Oi with i 6= 1) are more

than one order of magnitude stronger than the bound from the SM O1 operator.

The results for the upper bounds on the ImCK
i coefficients and the corresponding lower

bounds on the NP scale Λ are collected in table 3 where they are compared to the previous

results of ref. [9]. The superscript K is to recall that we are reporting the bounds coming

from the kaon sector we are here analyzing. Although several input parameters have been

updated with respect to ref. [9] (see ref. [19]), the more stringent constraints on the Wilson

coefficients of the non-standard operators and, consequently, on the NP scale, mainly come

from the improved accuracy achieved in the values of the ∆S = 2 B-parameters obtained in

the present work. This can be realized by comparing the small improvement of the bound

– 5 –
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95% allowed range Lower limit on Λ

(GeV−2) (TeV)

ImCK
1 [−2.1, 3.4] · 10−15 1.7 · 104

ImCK
2 [−2.1, 1.4] · 10−17 22 · 104

ImCK
3 [−5.1, 7.8] · 10−17 11 · 104

ImCK
4 [−3.0, 4.7] · 10−18 46 · 104

ImCK
5 [−0.9, 1.4] · 10−17 27 · 104

ImCK
1 [−4.4, 2.8] · 10−15 1.5 · 104

ImCK
2 [−5.1, 9.3] · 10−17 10 · 104

ImCK
3 [−3.1, 1.7] · 10−16 5.7 · 104

ImCK
4 [−1.8, 0.9] · 10−17 24 · 104

ImCK
5 [−5.2, 2.8] · 10−17 14 · 104

Table 3. 95% probability range for the ImCi
K coefficients and the corresponding lower bounds on

the NP scale, Λ, for a generic strongly interacting NP with generic flavor structure (Li = Fi = 1).

In the lower panel the results of [9] are displayed for comparison.

coming from ImCK
1 , obtained using a value of the B1-parameter very close to the one taken

in ref. [9], with those coming from the other coefficients using the new B-parameters. We

observe that the analysis is performed (as in [9]) by switching on one coefficient at the time

in each sector, thus excluding the possibility of having accidental cancellations among the

contributions of different operators. Therefore, the reader should keep in mind that the

bounds may be weakened if, instead, some accidental cancellation occurs.

In figure 1 we show the comparison between the lower bounds on the NP scale ob-

tained for the case of a generic strongly interacting NP with generic flavor structure by

the constraints on the ImCK
i coefficients coming from the present generalized UT analysis,

and the previous results of ref. [9].

As a specific example of NP models we consider the warped five-dimensional extensions

of the SM discussed in ref. [26], where the origin of hierarchies in quark masses and mixings

is explained via the localization properties of quark wave functions in the fifth dimension.

In particular, in the Randall-Sundrum (RS) scenario one has

L4 = (g∗s)
2, F4 =

2mdms

Y 2
∗ v

2
, Λ =MG , (3.2)

where MG and g∗s ∼ 6 are the mass and coupling of Kaluza-Klein excitations of the gluon,

Y∗ ∼ 3 is the five-dimensional Yukawa coupling (whose flavour structure is assumed to be

anarchic), md ∼ 3MeV and ms ∼ 50MeV are MS quark masses at the high scale and

v = 246GeV is the Higgs vev. Running from a reference scale of 5TeV, we obtain at 95%

probability ImCK
4 ∈ [−4.7, 10.6] · 10−18, from which we get

MG > 43TeV. (3.3)

– 6 –
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Figure 1. The lower bounds on the NP scale, provided by the constraints on ImCK
i (i = 1, . . . , 5)

for generic NP flavor structure, are shown as brown bars. For comparison, we plot the bounds of

ref. [9] as yellow bars.

Considering instead gauge-Higgs unification (GHU) models, from ref. [26] we have

L4 = (g∗s)
2 , F4 ∼

8mdms

g2∗v
2

, Λ =MG , (3.4)

where in this case g∗ ∼ 4 is the five-dimensional gauge coupling in units of the radius of

the compact dimension. We obtain the bound

MG > 65TeV. (3.5)

4 Non-perturbative lattice computation of the ∆S = 2 matrix elements

Lattice QCD provides an ideal first principle framework in which non-perturbative compu-

tation of hadronic matrix elements can be performed with controlled systematic uncertain-

ties. In the last few years a number of lattice determinations of BK of increasing precision

have appeared in the literature based on a variety of lattice regularizations with Nf = 2

or Nf = 3 dynamical fermions [8], [27]–[31]. For recent reviews see refs. [32]–[34].

Very little has been done in the literature concerning the calculation of the physical

matrix elements of the full operator basis of eq. (2.2). Calculations of the whole set of

∆S = 2 renormalized operators have been carried out, in the quenched approximation,

using improved Wilson fermions (see refs. [6] and [14]) or the chirality conserving overlap

and domain-wall fermions (see refs. [7] and [36], respectively). Very recently a Nf = 2 + 1

– 7 –
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dynamical quark calculation appeared [5] that uses domain-wall fermions at one value of

the lattice spacing.3

The first calculation of the kaon matrix elements of the whole operator basis was per-

formed employing Clover improved Wilson fermions. Since the Clover term coefficient was

set to its tree-level value, matrix elements were affected by O(g20a) discretization errors.

Simulations were carried out at two values of the gauge coupling corresponding to lat-

tice spacings ∼ 0.07 and ∼ 0.09 fm ([6, 14]). The major source of systematic errors was,

however, the uncertainty related to the construction of the multiplicatively renormalizable

lattice operators Oi. In fact, owing to the breaking of the chiral symmetry intrinsic in the

Wilson fermion action, the bare counterparts of each of them mix with all the other opera-

tors of equal dimension including those with “wrong” chiral transformation properties [37].

All the mixing coefficients and the overall RC were computed in the non-perturbative

RI-MOM scheme [16].

Similar quenched computations were carried out using overlap and domain-wall

fermions (see refs. [7] and [36], respectively). Though performed at pretty coarse lattice

spacings (namely a ∼ 0.09 and ∼ 0.13 fm in the case of overlap fermions and a ∼ 0.1 fm in

the case of domain-wall fermions), these simulations have the advantage that the renormal-

ization properties of the operators entering the four-fermion basis are as in the continuum,

and lattice artifacts are O(a2). Also in this case the non-perturbative RI-MOM scheme

was used in the computation of the various RCs.

In the following sections we present a new unquenched computation of the kaon ma-

trix elements of the full ∆S = 2 four-fermion operator basis employing lattice data from

simulations with Nf = 2 dynamical fermions, performed at four rather fine values of the

lattice spacing in the interval [0.05, 0.1] fm. We are thus able to safely extrapolate the

lattice estimators of all the relevant matrix elements to the continuum limit (CL).

We use a mixed fermion action setup where we adopt different regularizations for sea

and valence quarks. In particular we introduce maximally twisted (Mtm) sea quarks [11]

that we take in combination with Osterwalder-Seiler (OS) [38] valence quarks. This strategy

has been suggested in ref. [12] as a way of setting up a computational framework allowing

for a calculation of ∆S = 2 four-fermion matrix elements that is both automatically O(a)

improved and free of wrong chirality mixing effects. A proof of the latter point is given in

appendix A and its validity is numerically verified in appendix B, while O(a) improvement

of physical quantities is a genuine property of the setup of ref. [12]. As a consequence

unitarity violations due to different sea and valence quark regularization yield only O(a2)

artifacts, provided renormalized sea and valence quark masses are matched. In our case, the

matching of the renormalized quark masses is obtained by simply taking identical values

for the corresponding sea and valence bare mass parameters.

The interesting lattice setup briefly described above has already been successfully

tested in BK computations both in the quenched approximation [39] and on ensembles

with Nf = 2 [8] and Nf = 2+1+1 dynamical quarks [40], as well as in unquenched (Nf =

2+ 1+ 1) studies of meson masses and decay constants [41] and nucleon sigma terms [42].

3A preliminary computation of the bare matrix elements using unquenched Nf = 2 + 1 domain-wall

dynamical fermions was presented in ref. [35].

– 8 –
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4.1 Sea and valence quark regularization

The Mtm-LQCD action of the light quark flavor doublet can be written in the so-called

“physical basis” in the form [11]

SMtm
sea = a4

∑

x

ψ̄(x)

{

1

2

∑

µ

γµ(∇µ+∇∗
µ)−iγ5τ

3rsea

[

Mcr−
a

2

∑

µ

∇∗
µ∇µ

]

+µsea

}

ψ(x) . (4.1)

The subscript sea is to remind us that this action will be used to generate unquenched

gauge configurations. The field ψ describes a mass degenerate up and down doublet with

bare (twisted) mass µsea. The parameter Mcr is the critical mass that one has to fix

non-perturbatively at its optimal value (as proposed in refs. [43]–[45] and implemented

in refs. [46] and [47]) to guarantee the O(a)-improvement of physical observables and get

rid of all the unwanted leading chirally enhanced cutoff effects. In the gauge sector the

tree-level improved action proposed in ref. [48] has been used.

For valence quarks we use the OS regularization [38]. The full valence action is given

by the sum of the contributions of each individual valence flavour qf and reads [12]

SOS
val = a4

∑

x,f

q̄f (x)

{

1

2

∑

µ

γµ(∇µ +∇∗
µ)− iγ5rf

[

Mcr −
a

2

∑

µ

∇∗
µ∇µ

]

+ µf

}

qf (x) , (4.2)

where the index f labels the valence flavors and Mcr is the same critical mass parameter

which appears in eq. (4.1). We denote by rf and µf the values of the Wilson parameter

and the twisted quark mass of each valence flavor.

4.2 Lattice operators and correlation functions

In the strategy proposed in ref. [12], which we follow here, four species of OS valence quark

flavors (qf , f = 1, . . . , 4) are introduced, two of which (q1 and q3) will represent the valence

strange quark with masses µ1 = µ3 ≡ µ“s”, while the other two (q2 and q4) will be identified

with the light up/down quarks having masses µ2 = µ4 ≡ µℓ. The corresponding rf Wilson

parameters must obey the relation

r1 = r2 = r3 = −r4 . (4.3)

In the numerical computations reported in the present work we have averaged over the two

cases r1 = ±1, holding r2, r3 and r4 related to r1 as in eq. (4.3).

As in the case of the computation ofBK(≡ B1), in the calculation of the bag parameters

Bi (i = 2, . . . , 5), we need to consider the axial currents

A12
µ = q̄1γµγ5q2 A34

µ = q̄3γµγ5q4. (4.4)

and the pseudoscalar quark densities

P 12 = q̄1γ5q2 P 34 = q̄3γ5q4 . (4.5)
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In addition, we need to consider the following set of four-fermion operators

OMA
1[±] = 2

{(

[q̄α1 γµq
α
2 ][q̄

β
3 γµq

β
4 ] + [q̄α1 γµγ5q

α
2 ][q̄

β
3 γµγ5q

β
4 ]
)

±
(

2 ↔ 4
)}

OMA
2[±] = 2

{(

[q̄α1 q
α
2 ][q̄

β
3 q

β
4 ] + [q̄α1 γ5q

α
2 ][q̄

β
3 γ5q

β
4 ]
)

±
(

2 ↔ 4
)}

OMA
3[±] = 2

{(

[q̄α1 q
β
2 ][q̄

β
3 q

α
4 ] + [q̄α1 γ5q

β
2 ][q̄

β
3 γ5q

α
4 ]
)

±
(

2 ↔ 4
)}

OMA
4[±] = 2

{(

[q̄α1 q
α
2 ][q̄

β
3 q

β
4 ]− [q̄α1 γ5q

α
2 ][q̄

β
3 γ5q

β
4 ]
)

±
(

2 ↔ 4
)}

OMA
5[±] = 2

{(

[q̄α1 q
β
2 ][q̄

β
3 q

α
4 ]− [q̄α1 γ5q

β
2 ][q̄

β
3 γ5q

α
4 ]
)

±
(

2 ↔ 4
)}

, (4.6)

where square parentheses denote spin invariants and α and β are color indices.

In the mixed action (MA) approach defined above the following properties can be

proved (see appendix A and ref. [12]).

(i) The operators OMA
i[+] defined in eq. (4.6) enjoy continuum-like renormalization prop-

erties,
















OMA
1[+]

OMA
2[+]

OMA
3[+]

OMA
4[+]

OMA
5[+]

















ren

=















Z11 0 0 0 0

0 Z22 Z23 0 0

0 Z32 Z33 0 0

0 0 0 Z44 Z45

0 0 0 Z54 Z55































OMA
1[+]

OMA
2[+]

OMA
3[+]

OMA
4[+]

OMA
5[+]

















(4.7)

where the matrix Zij is defined in eqs. (A.7), (A.9) and (A.10).

(ii) The axial currents and pseudoscalar quark densities, defined in eqs. (4.4) and (4.5),

are renormalized according to the formulae ([12, 18])

[A12
µ ]ren = ZAA

12
µ [A34

µ ]ren = ZV A
34
µ , (4.8)

[P 12]ren = ZS P
12 [P 34]ren = ZP P

34 . (4.9)

(iii) The matrix elements 〈P 43|OMA
i[+] |P

12〉ren, obtained from correlation functions of the

renormalized operators in eqs. (4.7)–(4.9), with the identification µ1 = µ3 = µs (=

bare strange quark mass) and µ2 = µ4 = µℓ (= bare up-down quark mass), will tend

in the limit a→ 0 to the continuum matrix elements 〈K̄0|Oi|K
0〉 of the (parity-even

parts of the) operators of eq. (2.2) with mere O(a2) discretization errors.

The key statement (iii) follows by noting that the set of fermionic Wick contractions

contributing to the three-point correlation functions (see eq. (4.11) below) from which

the matrix elements 〈P 43|OMA
i[+] |P

12〉ren are extracted coincides with the set of Wick con-

tractions in the the three-point continuum QCD correlator relevant for the computation

of the matrix elements 〈K̄0|Oi|K
0〉 and by exploiting the general renormalizability and

O(a) improvement properties of our MA lattice setup (spelled out in ref. [12]), as well as

the renormalization properties (4.7) of the operators OMA
i[+] . Concerning the issue of O(a)

improvement we recall here that
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• the bare matrix elements of OMA
i[+] ’s are free from O(a) cutoff effects;

• the relevant renormalization constants in the RI-MOM scheme can also be evaluated

with no O(a) artefacts.

The first of these properties was derived in ref. [12] for generic hadron masses and

matrix elements.4 The second property above follows from the remark that the one-

particle-irreducible vertices entering the RI-MOM renormalization conditions are O(a)

improved in our MA setup, just because such vertices turn out to be invariant under

parity transformations of their external momenta. The argument here is closely analogous

to the one presented for the renormalization constants of quark bilinear operators in the

appendix of ref. [18].

In the construction of correlation functions we follow the general procedure outlined in

ref. [8]. We use periodic boundary conditions in every direction for all fields, except for the

quark fields on which we impose anti-periodic boundary conditions in the time direction.

At time slices y0 and y0 + T/2 “wall” operators with K0-meson quantum numbers are

inserted. The first operator is constructed in terms of q̄2 and q1 quark fields and the

second in terms of q̄4 and q3 quark fields. Explicitly they have the expressions

P21
y0 =

( a

L

)3 ∑

~y

q̄2(~y, y0)γ5q1(~y, y0)

P43
y0+

T
2

=
( a

L

)3 ∑

~y

q̄4(~y, y0 + T/2)γ5q3(~y, y0 + T/2) (4.10)

The correlators we then need to compute are5

Ci(x0) =
( a

L

)3∑

~x

〈P43
y0+

T
2

OMA
i[+] (~x, x0)P

21
y0 〉 , i = 1, . . . , 5 , (4.11)

CPP (x0) =
( a

L

)3∑

~x

〈P 12(~x, x0)P
21
y0 〉 , (4.12)

C ′
PP (x0) =

( a

L

)3∑

~x

〈P43
y0+

T
2

P 34(~x, x0)〉 . (4.13)

To improve the signal-to-noise ratio a sum has been performed over the spatial position of

the four-fermion operator, and for each gauge configuration the time slice y0 is randomly

chosen. An important contribution to the reduction of statistical fluctuations comes also

from summing over the spatial position of both kaon interpolating fields in eq. (4.11). After

summing over the the spatial position of the four-fermion operator, which is known from

experience to be crucial for the signal, to project on zero 3-momentum states, just one

4A simpler derivation might also be given along the lines of appendix A of ref. [43] exploiting the

symmetries of the MA lattice setup of ref. [12].
5For the special case of i = 1, the evaluation of B1 = BK (see ref. [8]) requires the use of the two-point cor-

relation functions that involve the axial current and have the form CA0P (x0) =
(

a/L
)3

∑

~x〈A
12
0 (~x, x0)P

21
y0 〉

and C′

PA0
(x0) =

(

a/L
)3

∑

~x〈P
43

y0+
T

2

A34
0 (~x, x0)〉.
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further spatial sum is needed. The second spatial sum, which we are able to do, gives

a further signal improvement. These spatial sums were implemented and carried out at

a reasonably low computational price by means of the stochastic technique discussed in

section 2.2 of ref. [8].

For large time separation y0 ≪ x0 ≪ y0 + T/2 the (plateau of the) following ratio

estimate

E[B
(b)
i ](x0) =

Ci(x0)

CPP (x0) C ′
PP (x0)

, i = 2, . . . , 5 (4.14)

provides an estimate of the B
(b)
i (i = 2, . . . , 5) bag parameter6 since

E[B
(b)
i ](x0)

y0≪x0≪y0+T/2

−−−−−→
〈K̄0|OMA

i[+] |K
0〉

〈K̄0|P 12|0〉 〈0|P 34|K0〉

∣

∣

∣

∣

∣

(b)

= ξiB
(b)
i , i = 2, . . . , 5 , (4.15)

with (ξ2, ξ3, ξ4, ξ5) = (−5/3, 1/3, 2, 2/3).

We also compute the ratios

E[R
(b)
i ](x0) =

Ci(x0)

C1(x0)
, i = 2, . . . , 5 , (4.16)

which for large time separations yield the ratios of the corresponding kaon four-fermion

matrix elements, according to the formula

E[R
(b)
i ](x0)

y0≪x0≪y0+T/2

−−−−−→
〈K̄0|OMA

i[+] |K
0〉

〈K̄0|OMA
1[+]|K

0〉

∣

∣

∣

∣

∣

(b)

= R
(b)
i , i = 2, . . . , 5 . (4.17)

4.3 Estimates of renormalized quantities

Recalling eqs. (4.7) and (4.9), the renormalized values of the bag parameters will be given

by the formula

Bi =
Zij

ZS ZP
B

(b)
j , i, j = 2, . . . , 5 . (4.18)

where a sum over the repeated index j is understood. As for the renormalized expression of

the four-fermion operator ratios of eq. (4.17), we choose to evaluate the rescaled quantity

R̃i =
( fK
mK

)2

expt.

[

M12M34

F 12F 34

Zij

Z11
R

(b)
j

]

Lat.

, i, j = 2, . . . , 5 , (4.19)

where M lk and F lk are the mass and decay constant of the pseudoscalar meson made of

the (q̄l qk) quark pair. In order to compensate the chiral vanishing of the 〈K̄0|O1|K
0〉

matrix element we have multiplied the ratios R
(b)
i by the factor M12M34/F 12F 34; its form

has been chosen in such a way to partially compensate the lattice artifacts affecting the

different lattice discretizations of kaon mesons (resulting from different choices of the OS rf -

parameters) we use. Furthermore, we have remultiplied the quantity in the square bracket

by the ratio of the experimental values of the kaon decay constant (f expK = 156.1MeV)

and its mass (mexp
K = 494.4MeV). The definition we get in this way is in line with the

6In the following the superscript (b) denotes bare quantities.
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one proposed in ref. [7]. Based on the discussion of section 4.2 (in particular item iii), we

note that in the continuum limit and at the physical values of the u/d and s quark masses

the quantity R̃i of eq. (4.19) provides the right estimate for the ratio of the renormalized

matrix elements of interest, i.e.

Ri =
〈K̄0|Oi|K

0〉

〈K̄0|O1|K0〉
(4.20)

We end this section by recalling that in the twisted mass mixed action setup of ref. [12]

we are using, lattice estimators of physical quantities are only affected by O(a2) lattice

artifacts. This is true in particular for the kaon mass and decay constant as well as for the

kaon four-fermion matrix elements.

5 Simulations, data analysis and results

The ETM Collaboration has generated Nf = 2 configuration ensembles at four values of

the inverse bare gauge coupling, β and at a number of light quark masses, µsea. The

values of the simulated lattice spacings lie in the interval [0.05, 0.1] fm. Bare quark mass

parameters are chosen so as to have light pseudoscalar mesons (“pions”) in the range

280 ≤ mPS ≤ 500MeV and heavy-light pseudoscalar mesons (“kaons”) in the range 450 ≤

mPS ≤ 650MeV. Simulation details are given in table 4.

The value of the light u/d quark mass parameter, aµℓ, is common to sea and valence

quarks, while the heavier quark (the would-be strange quark that we denote by “s”, see

table 4) is quenched. As discussed in section 5.2, we will get to the physical kaon mass by

suitably interpolating (extrapolating) data in µ“s” (µℓ) to the “physical” value µs (µu/d),

while simultaneously taking the continuum limit. The “physical” values µu/d and µs of

the quark masses are known and can be found in ref. [49]. The quark bilinear RCs, ZP

and ZS , have been computed in the non-perturbative RI-MOM scheme in ref. [18]. A RC

computation for the full basis of the four-fermion operators using RI-MOM techniques is

presented in appendix B. In appendix C we collect the values of the four-fermion RCs that

are used in this work, as well as ZP and ZS .

5.1 Extracting bare estimates from lattice data

Bare results for the ratio of the four-fermion matrix elements R
(b)
i (cf. eq. (4.17)) with

i = 2, . . . , 5 at the four β values and combinations of quark masses are listed in tables 13–16

of appendix D. In tables 17–20 of the same appendix we collect the results for the bare

quantities ξiB
(b)
i (i = 2, . . . , 5) at each value of β.

For illustration in figure 2 we display some examples of the B
(b)
i plateau quality at

β =3.8, 3.9, 4.05 and 4.20. Vertical dotted lines indicate the plateau region where the K0-

and the K̄0-state dominate the three-point correlators. Similar examples of the plateau

quality for the case of the four-fermion operator ratios are illustrated in figure 3. Both

figures 2 and 3 display very good signals.
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β = 3.80, a ∼ 0.10 fm

aµℓ = aµsea a−4(L3 × T ) aµ“s” Nstat

0.0080 243 × 48 0.0165, 0.0200, 0.0250 170

0.0110 “ “ 180

β = 3.90, a ∼ 0.09 fm

0.0040 243 × 48 0.0150, 0.0220, 0.0270 400

0.0064 “ “ 200

0.0085 “ “ 200

0.0100 “ “ 160

0.0030 323 × 64 “ 300

0.0040 “ “ 160

β = 4.05, a ∼ 0.07 fm

0.0030 323 × 64 0.0120, 0.0150, 0.0180 190

0.0060 “ “ 150

0.0080 “ “ 220

β = 4.20, a ∼ 0.05 fm

0.0020 483 × 96 0.016, 0.0129, 0.0142 96

0.0065 323 × 64 “ 144

Table 4. Details of simulation runs at β =3.80, 3.90, 4.05 and 4.20.

5.2 Computation at the physical point

Extracting physical quantities from lattice data requires performing extrapolations and/or

interpolations of renormalized lattice estimators to the physical point (continuum limit and

“physical” value of quark masses).

5.2.1 RCs computation and combined continuum-chiral extrapolation

We have computed the full matrix of the four-fermion operator RCs in a mass independent

scheme. We carry out the non-perturbative calculation adopting the RI-MOM approach.

The implementation of the RI-MOM setup has been presented in refs. [8] and [18]. We

should mention that in our RC estimators cutoff effects, though parametrically of O(a2),

are numerically reduced owing to the subtraction of perturbatively evaluated O(a2g2) con-

tributions. After that, two different, but by now standard [18], procedures are employed

to deal with O(a2p2) discretization effects. The first, called M1, consists in linearly ex-

trapolating to zero the residual (after the perturbative subtraction) O(a2p2) terms. The

second one (so-called p2-window method, or M2 for short) leads to RC estimates obtained

by averaging data over a fixed (in physical units) and very narrow momentum interval.

We carry out continuum and chiral extrapolations in a combined way. For all bag

parameters, Bi, and ratios, R̃i (see eq. (4.19)), we have tried out a fit ansatz of the following
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Figure 2. Data and time-plateaux for E[B
(b)
i ](τ) (i = 2, . . . , 5) (see eq. (4.14)) plotted vs. 2τ/T ≡

2(x0 − y0)/T . In panel (a) we show data for β = 3.80 and (aµℓ, aµ“s”) = (0.0080, 0.0165) on a

243 × 48 lattice; in panel (b) for β = 3.90, (aµℓ, aµ“s”) = (0.0040, 0.0150) on a 243 × 48 lattice; in

panel (c) for β = 4.05 and (aµℓ, aµ“s”) = (0.0030, 0.0120) on a 323 × 64 lattice; in panel (d) for

β = 4.20 and (aµℓ, aµ“s”) = (0.0020, 0.0129) on a 483 × 96 lattice. Vertical dotted lines delimit the

plateau region. For clarity data for E[B
(b)
5 ](τ) have been slightly shifted.

general form

Y =
2
∑

n=0

A
(n)
Y (r0µ̂s) [r0 µ̂ℓ]

n +DY (r0µ̂s)

[

a

r0

]2

, (5.1)

where we have made explicit the dependence of the fit parameters A
(n)
Y and DY on the

renormalized strange quark mass7 in units of r0 (r0µ̂s). We studied separately the cases

of linear and polynomial ansatz. We have also considered NLO ChPT fit functions for Bi

based on the formulae given in [50] in the case of SU(3). Those formulae transformed to

NLO SU(2) ChPT read:

Bi = Bχ
i (r0µ̂s)

[

1 + bi(r0µ̂s)∓
2B̂0µ̂ℓ

2(4πf0)2
log

2B̂0µ̂ℓ
(4πf0)2

]

+D
′

Bi(r0µ̂s)

[

a

r0

]2

(5.2)

with B̂0 = 2.84(11)GeV (renormalized in MS at 2GeV) and f0 = 121.0(1)MeV, as we

used in [8]. The sign before the logarithmic term is minus (-) for i = 1, 2, 3 and plus (+)

7We use the symbol (ˆ) to denote renormalized quark masses in the MS scheme at 2GeV.

– 15 –



J
H
E
P
0
3
(
2
0
1
3
)
0
8
9

E[R
(b)
5 ]

E[R
(b)
4 ]

E[R
(b)
3 ]

−E[R
(b)
2 ]

2τ/T

1.00.90.80.70.60.50.40.30.20.10.0

60.0

50.0

40.0

30.0

20.0

10.0

0.0

(a)

E[R
(b)
5 ]

E[R
(b)
4 ]

E[R
(b)
3 ]

−E[R
(b)
2 ]

2τ/T

1.00.90.80.70.60.50.40.30.20.10.0

60.0

50.0

40.0

30.0

20.0

10.0

0.0

(b)

E[R
(b)
5 ]

E[R
(b)
4 ]

E[R
(b)
3 ]

−E[R
(b)
2 ]

2τ/T

1.00.90.80.70.60.50.40.30.20.10.0

70.0

60.0

50.0

40.0

30.0

20.0

10.0

0.0

(c)

E[R
(b)
5 ]

E[R
(b)
4 ]

E[R
(b)
3 ]

−E[R
(b)
2 ]

2τ/T

1.00.90.80.70.60.50.40.30.20.10.0

70.0

60.0

50.0

40.0

30.0

20.0

10.0

0.0

(d)

Figure 3. Data and time-plateaux for E[R
(b)
i ](τ) (i = 2, . . . , 5) (see eq. (4.16)) plotted vs. 2τ/T ≡

2(x0 − y0)/T . In panel (a) we show data for β = 3.80 and (aµℓ, aµ“s”) = (0.0080, 0.0165) on a

243 × 48 lattice; in panel (b) for β = 3.90, (aµℓ, aµ“s”) = (0.0040, 0.0150) on a 243 × 48 lattice; in

panel (c) for β = 4.05 and (aµℓ, aµ“s”) = (0.0030, 0.0120) on a 323 × 64 lattice; in panel (d) for

β = 4.20 and (aµℓ, aµ“s”) = (0.0020, 0.0129) on a 483 × 96 lattice. Vertical dotted lines delimit the

plateau region.

for i = 4, 5. As for R̃i and i = 2, 3 the ChPT fit formula at NLO coincides with the linear

fit ansatz, while for the cases i = 4, 5 we use

R̃i = R̃χ
i (r0µ̂s)

[

1 + ci(r0µ̂s) +
2B̂0µ̂ℓ
(4πf0)2

log
2B̂0µ̂ℓ
(4πf0)2

]

+D
′

Ri(r0µ̂s)

[

a

r0

]2

(5.3)

The (r0/a) values are

r0
a

∣

∣

∣

β
= {4.54(7), 5.35(4), 6.71(4), 8.36(6)} (5.4)

at β = {3.80, 3.90, 4.05, 4.20} respectively.

The u/d and s quark masses have been computed in ref. [49]. Their values in the MS

scheme at 2GeV are

µMS
u/d(2GeV) = 3.6(2) MeV, µMS

s (2GeV) = 95(6) MeV (5.5)

In the four panels of figure 4 we show the combined chiral and continuum fit (see

eq. (5.1) and eq. (5.3)) for the ratios R̃i against the renormalized light quark mass for
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Figure 4. Solid lines in panels (a) and (b) show the behaviour vs. the renormalized light quark

mass of the combined chiral and continuum fits (according to the polynomial formula (5.1) with

n = 2) of the R̃i ratios, with i = 2 and i = 3 respectively, renormalized in the MS scheme of ref. [15]

at 2GeV with the M1-type RCs. The full black line is the continuum limit curve. In panels (c)

and (d), solid lines, instead, show the combined chiral and continuum fit described by NLO-ChPT,

eq. (5.3) for i = 4 and i = 5, respectively. The full black line is the continuum limit curve. The

dashed black line represents the continuum limit curve in the case of the linear fit ansatz. Black

open circles and triangles stand for the results at the physical point corresponding to the polynomial

(panels (a) and (b)) and ChPT fit (panels (c) and (d)), and linear fit ansatz, respectively.

i = 2, . . . , 5, respectively. The RCs used in these plots are the ones computed with the M1-

method and are expressed in the MS scheme of ref. [15] at 2GeV. Lattice data correspond

to points taken at the pair of quark masses (r0µ̂ℓ, r0µ̂s).

In panels (a) and (b) (corresponding to cases with i = 2, 3 respectively) we display

the curves that correspond to the polynomial fit function (5.1) at the four β values we are

considering in this paper. The black solid line represents the continuum limit curve. The

dashed black line represents the continuum limit curve that is obtained if a linear fit ansatz

in µ̂ℓ is used. Black open circles and triangles stand for the results at the physical quark

mass point from the polynomial and the linear fit ansatz, respectively. Recall that for R̃i

with i = 2, 3 ChPT fit formula at NLO coincides with a linear fit ansatz. In panels (c) and

(d) (corresponding to cases with i = 4, 5 respectively) we display the curves corresponding

to the ChPT fit formula and the linear fit function. In this case black open circles and
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Figure 5. Solid lines in panels (a) to (d) show the behaviour vs. the renormalized light quark mass

of the combined chiral and continuum fits (according to the ChPT fit formula (5.2)) for the Bi

parameters with i = 2, . . . , 5 respectively, renormalized in the MS scheme of ref. [15] at 2GeV with

the M1-type RCs. The full black line is the continuum limit curve (5.1). The dashed black line

represents the continuum limit curve in the case of the linear fit ansatz. Black open circles and

triangles stand for the results at the physical point corresponding to the ChPT fit and linear fit

ansatz, respectively.

triangles stand for the results at the physical quark mass point from the ChPT fit and the

linear fit ansatz, respectively.

Similarly, in figure 5 we present the combined chiral and continuum fit for the Bi-

parameters, again renormalized in the MS scheme of ref. [15] at 2GeV. In all four panels

we display the curves corresponding to the ChPT fit formula at the four β values. The

black solid line represents the continuum limit curve. The dashed black line represents the

continuum limit curve that is obtained if a linear fit ansatz in µ̂ℓ is used.

Note the nice agreement (within one standard deviation) of the two fit ansätze for both

the R̃i ratios and the Bi parameters.

In tables 1 and 2 of section 2 we have gathered our final continuum results for Ri and Bi

in the MS of ref. [15] and RI-MOM scheme at 2GeV respectively. The final value of Bi for

i = 2, . . . , 5 has been computed by averaging the estimates obtained from the three kinds of

fit ansatz discussed above, and using bootstrap error analysis. The half difference between
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the two more distant results has been taken as an estimate of the systematic error associated

to the extrapolation procedure. The total uncertainty is obtained by adding in quadrature

the statistical and the systematic error. For i = 1 we update the result for BK published in

ref. [8]; note that the difference between the two results is about half standard deviation.

In appendix E we provide more detailed results obtained from the various fitting proce-

dure we have investigated. We also show that the continuum extrapolated quantities that

are eventually obtained by employing M1-type and M2-type RCs turn out to be perfectly

consistent between each other within statistical errors, except for one case where cut-off

effects on M2-RCs are too big for a significant comparison. Also in appendix E, see ta-

bles 23 and 24, we quote our continuum results for Bi and Ri in the MS and the RI-MOM

scheme respectively at 3GeV.

As already stated, an alternative (indirect) way to compute the ratio of the kaon

matrix elements of the renormalized operators Oi, i = 2, . . . , 5 to that of O1 is based on

the formula (see eqs. (2.4) and (2.5))

〈K̄0|Oi(µ)|K
0〉

〈K̄0|O1(µ)|K0〉
=
ξiBi(µ)

ξ1B1(µ)

m2
K

(µ̂s(µ) + µ̂d(µ))2
. (5.6)

This of course requires knowledge of the Bi parameters and the renormalized quark masses.

We find that the two evaluations (indirect and direct, based on eq. (5.6) and eq. (4.19),

respectively) lead to compatible results within errors. However, the indirect estimates suffer

from much larger final uncertainties. This is due to several reasons. One is related to the

quadratic dependence on the quark mass, which makes the relative error on the mass to

give a significant contribution to the final error. Furthermore in the indirect method one

has to consider extra uncertainties due to the error of the bilinear operators’ RCs that

are used to compute the B-parameters. A comparison of the direct and indirect results

obtained for the ratios Ri is provided in appendix E.

6 Conclusions

Accurate measurements of the K0 − K̄0 mixing amplitudes can yield useful hints on New

Physics if theory can provide comparatively accurate calculations of quantities parametriz-

ing beyond the SM effects. This requires a precise, first principle, evaluation of the kaon

matrix elements of the full basis of four-fermion operators entering the most general effec-

tive ∆S = 2 weak Hamiltonian.

In this paper we have presented the first unquenched lattice QCD determination in

the continuum limit of the matrix elements of the full ∆S = 2 four-fermion operator basis.

We have used Nf = 2 unquenched tm-LQCD gauge configurations produced by the ETM

Collaboration in combination with maximally twisted valence quarks of the OS type.

The mixed action setup proposed in ref. [12] offers the possibility of obtaining auto-

matically O(a) improved results and an operator renormalization pattern identical to that

of a chirally invariant regularization at the rather cheap price of mere O(a2) unitarity vi-

olations. Using data at four lattice spacings (with a in the interval [0.05, 0.1] fm) and a

number of pseudoscalar masses (“pions”) in the range [280, 500] MeV, we are able to safely
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Bi (RI-MOM at 2GeV)

This work Ref. [7] Ref. [6]

CL a = 0.09 fm a = 0.13 fm a = 0.07 fm a = 0.09 fm

1 0.52(2) 0.56(5) 0.53(4) 0.68(21) 0.70(15)

2 0.70(2) 0.87(7) 0.90(10) 0.67(7) 0.72(9)

3 1.22(7) 1.41(12) 1.53(40) 0.95(15) 1.21(10)

4 1.00(4) 0.94(5) 0.90(13) 1.00(9) 1.15(5)

5 0.73(5) 0.62(5) 0.56(14) 0.66(11) 0.88(6)

Table 5. Comparison between the unquenched results for Bi obtained in the present work and

the quenched values of refs. [7] and [6]. Numbers are for renormalized quantities in the RI-MOM

scheme at 2GeV.

Ri (RI-MOM at 2GeV)

This work Ref. [7] Ref. [6]

CL a = 0.09 fm a = 0.13 fm a = 0.07 fm a = 0.09 fm

1 1 1 1 1 1

2 -12.9(4) -16.1(3.0) -15.8(2.9) -6.7(1.8) -6.6(1.1)

3 4.5(2) 5.2(9) 5.4(8) 1.9(5) 2.3(4)

4 21.1(7) 20.7(3.0) 18.8(2.8) 12.1(3.3) 12.6(2.1)

5 5.3(3) 4.6(6) 3.9(1.3) 2.6(7) 3.3(5)

Table 6. Same as in table 5 for the Ri ratios.

carry out the continuum and the light quark mass limit of the observables of interest. All

results are non-perturbatively renormalized in the RI/MOM scheme.

We get in this way the most accurate estimates to date of ∆S = 2 effective weak

Hamiltonian matrix elements. The total error on the Ri ratios is between 4% and 6% and

on the bag parameters, Bi, between 3% and 7%.

Tables 5 and 6 show a comparison between our results for Ri and Bi (in RI/MOM at

2GeV) and the data at fixed lattice spacings coming from the two old quenched calculations

of refs. [6] and [7].8

For the B-parameters, one finds large differences between the central values of our

results and those of refs. [6] and [7], which vary between 5% and 25% (though the errors

are typically comparably large). With respect to ref. [6], the differences are even larger

when the results are compared in terms of the ratios Ri, presumably due to a combined

effect, in this case, of having overestimated the values for both B1 and the strange quark

mass in the computation of [6]. We emphasize that, with respect to the old quenched

calculations, having performed in the present study simulations at four values of the lattice

spacing and quite smaller values of the pion masses provides us with a much better control

over the main sources of systematic uncertainties, besides the quenched approximation.

8In this comparison we do not include the (preliminary) quenched results at one value of the lattice

spacing given in ref. [36].
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Current experience suggests that the possible systematic errors related to the quenching of

the strange and charm quarks, which still affect our calculation, are negligible within the

present uncertainties. Forthcoming results from simulations in the continuum limit with

Nf = 2+1 and Nf = 2+1+1 dynamical flavours will provide a check of this expectation.

We should add that our continuum limit results for Ri and Bi (i = 2, . . . , 5) are in the

same ballpark with the numbers given at one lattice spacing in ref. [5] where Nf = 2 + 1

dynamical quarks are employed.

As an interesting phenomenological application of the results obtained in this paper

we have carried out a new UT analysis along the lines of the work of ref. [9]. Thanks

to the improved accuracy of the present determination of the ∆S = 2 B-parameters, we

could substantially strengthen the existing upper bounds on the Wilson coefficients of the

operators of the non-standard sector of the effective weak Hamiltonian, and consequently

increase the lower bound on the New Physics scale.
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A Renormalization properties of ∆S = 2 four-fermion operators

In this appendix we want to spell out the renormalization properties of the four-fermion

operators of interest for the description of K̄0 −K0 oscillations in the mixed action (MA)

lattice setup of section 4. We will do this by exploiting the results of ref. [51]. In particular,

we show that the operators in eq. (4.6), that we report here for the reader convenience,

OMA
1[±] = 2

{(

[q̄α1 γµq
α
2 ][q̄

β
3 γµq

β
4 ] + [q̄α1 γµγ5q

α
2 ][q̄

β
3 γµγ5q

β
4 ]
)

±
(

2 ↔ 4
)}

OMA
2[±] = 2

{(

[q̄α1 q
α
2 ][q̄

β
3 q

β
4 ] + [q̄α1 γ5q

α
2 ][q̄

β
3 γ5q

β
4 ]
)

±
(

2 ↔ 4
)}

OMA
3[±] = 2

{(

[q̄α1 q
β
2 ][q̄

β
3 q

α
4 ] + [q̄α1 γ5q

β
2 ][q̄

β
3 γ5q

α
4 ]
)

±
(

2 ↔ 4
)}

OMA
4[±] = 2

{(

[q̄α1 q
α
2 ][q̄

β
3 q

β
4 ]− [q̄α1 γ5q

α
2 ][q̄

β
3 γ5q

β
4 ]
)

±
(

2 ↔ 4
)}

OMA
5[±] = 2

{(

[q̄α1 q
β
2 ][q̄

β
3 q

α
4 ]− [q̄α1 γ5q

β
2 ][q̄

β
3 γ5q

α
4 ]
)

±
(

2 ↔ 4
)}

, (A.1)
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exhibit the same renormalization pattern as the corresponding continuum operators. We

recall that the Wilson r-parameters of valence quarks in eq. (A.1) are taken as specified

in eq. (4.3). The normalization we have chosen in the definitions (A.1) is such that,

when the operators OMA
i[+] are taken between the pseudoscalar operators P 12 = q̄1γ5q2 and

P 43 = q̄4γ5q3, one gets the same Wick contraction multiplicities one would obtain in QCD

upon evaluating the kaon matrix elements of the operators (2.2). Naturally, apart from the

issue of renormalization, the physical matrix elements will be obtained (in the continuum

limit) by finally setting in our MA setup µ1 = µ3 = µs and µ2 = µ4 = µℓ, with µs (resp.

µℓ) corresponding to the bare strange (resp. degenerate up-down) quark mass.

A key result of ref. [51] (stated there in the quark basis that is most natural for

untwisted Wilson fermions) is that the combinations that enjoy simple renormalization

properties are not the operators listed in eqs. (A.1), but those that are obtained after

performing a Fierz transformation on the operators OMA
3[±] and O

MA
5[±]. This transformation

has the effect of rewriting OMA
3[±] and O

MA
5[±] in terms of operators where both spin and color

indices are contracted within the same pair of quarks. With the definitions

QMA
1[±] = 2

{(

[q̄1γµq2][q̄3γµq4] + [q̄1γµγ5q2][q̄3γµγ5q4]
)

±
(

2 ↔ 4
)}

QMA
2[±] = 2

{(

[q̄1γµq2][q̄3γµq4]− [q̄1γµγ5q2][q̄3γµγ5q4]
)

±
(

2 ↔ 4
)}

QMA
3[±] = 2

{(

[q̄1q2][q̄3q4]− [q̄1γ5q2][q̄3γ5q4]
)

±
(

2 ↔ 4
)}

QMA
4[±] = 2

{(

[q̄1q2][q̄3q4] + [q̄1γ5q2][q̄3γ5q4]
)

±
(

2 ↔ 4
)}

QMA
5[±] = 2

{(

[q̄1σµνq2][q̄3σµνq4]
)

±
(

2 ↔ 4
)}

(forµ > ν), (A.2)

where σµν = [γµ, γν ]/2, one gets

OMA
i[±] = Λ

[±]
ij Q

MA
j[±] , Λ[±] =















1 0 0 0 0

0 0 0 1 0

0 0 0 ∓1/2 ±1/2

0 0 1 0 0

0 ∓1/2 0 0 0















(A.3)

In eq. (A.2) we have omitted color indices as they are always contracted within each

square parenthesis.

In order to make direct contact with the formulae of ref. [51] we must pass from the

qf -basis, in which the valence quark action (4.2) was written and where the Wilson term

is (maximally) twisted, to the χf -basis, where the Wilson term takes its standard form.

This is achieved by the chiral transformation

qf −→ χf = e−iπrfγ5/4qf , q̄f −→ χ̄f = q̄fe
−iπrfγ5/4, (A.4)

under which

SOS
val → S̃OS

val = (A.5)

= a4
∑

x,f

χ̄f (x)

{

1

2

∑

µ

γµ(∇µ +∇∗
µ) +

[

Mcr −
a

2

∑

µ

∇∗
µ∇µ

]

+ iγ5rfµf

}

χf (x) ,
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and assuming r4 = ±1 (as used in the present work),

r4Q
MA
1[±] → Q̃MA

1[±] = 2i
{(

[χ̄1γµχ2][χ̄3γµγ5χ4] + [χ̄1γµγ5χ2][χ̄3γµχ4]
)

±
(

2 ↔ 4
)}

r4Q
MA
2[±] → Q̃MA

2[∓] = 2i
{(

[χ̄1γµχ2][χ̄3γµγ5χ4]− [χ̄1γµγ5χ2][χ̄3γµχ4]
)

∓
(

2 ↔ 4
)}

−r4Q
MA
3[±] → Q̃MA

3[∓] = 2i
{(

[χ̄1γ5χ2][χ̄3χ4]− [χ̄1χ2][χ̄3γ5χ4]
)

∓
(

2 ↔ 4
)}

−r4Q
MA
4[±] → Q̃MA

4[±] = 2i
{(

[χ̄1γ5χ2][χ̄3χ4] + [χ̄1χ2][χ̄3γ5χ4]
)

±
(

2 ↔ 4
)}

−r4Q
MA
5[±] → Q̃MA

5[±] = 2i
{(

[χ̄1σµνχ2][χ̄3σµνγ5χ4]
)

±
(

2 ↔ 4
)}

. (A.6)

According to ref. [51], for the renormalized operators Q̃MA
i one gets

















Q̃MA
1[±]

Q̃MA
2[±]

Q̃MA
3[±]

Q̃MA
4[±]

Q̃MA
5[±]

















ren

=















Z11 0 0 0 0

0 Z22 Z23 0 0

0 Z32 Z33 0 0

0 0 0 Z44 Z45

0 0 0 Z54 Z55















[±]
















Q̃MA
1[±]

Q̃MA
2[±]

Q̃MA
3[±]

Q̃MA
4[±]

Q̃MA
5[±]

















(b)

(A.7)

Since at µf = 0 the fermion action S̃OS
val is indistinguishable from a standard massless Wilson

fermion action, in any mass independent renormalization scheme, the operators QMA
i in

the l.h.s. of eqs. (A.6) enjoy the same renormalization properties of the corresponding

operators Q̃MA
i into which they are trasformed under (A.4). The Q̃MA

i operators have, up

to lattice artefacts, the same RCs of the corresponding operators in the standard Wilson’s

formulation of lattice QCD. This result could also have been proved using the somewhat

more elaborated approach of ref. [12].

From eqs. (A.6)–(A.7) and recalling eq. (A.3), one finally arrives for the operators

OMA
i[+] of interest to us in this paper at the renormalization formulae

OMA
i[+]

∣

∣

∣

ren
= ZijO

MA
j[+]

∣

∣

∣

(b)
, (A.8)

Z = Λ[+]ZQ(Λ
[+])−1 , (A.9)

ZQ =

















Z
[+]
11 0 0 0 0

0 Z
[−]
22 −Z

[−]
23 0 0

0 −Z
[−]
32 Z

[−]
33 0 0

0 0 0 Z
[+]
44 Z

[+]
45

0 0 0 Z
[+]
54 Z

[+]
55

















(A.10)

From the renormalizability of (correlation functions evaluated in) the MA lattice setup

of section 4 and the exact conservation of the individual valence flavours it immediately

follows that the operator renormalization pattern of eqs. (A.8)–(A.10) is independent (up

to cutoff effects, as usual) from the values of sea and valence quark masses. It is hence

possible to determine the relevant renormalization constants in any mass-indipendent renor-

malization scheme by extrapolating to the chiral limit suitable renormalization constant

estimators evaluated at non-vanishing quark masses. Following this strategy we computed
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non-perturbatively in the RI-MOM scheme the renormalization matrix ZQ, see eq. (A.10),

as detailed in appendix B and summarized in appendix C.

At this point the matrix elements 〈P 43|OMA
i[+] |

ren|P 12〉|ren, built using eqs. (A.1), (A.8)

and (A.10) and evaluated in our MA setup with µ1 = µ3 = µs (strange quark mass) and

µ2 = µ4 = µℓ (up-down quark mass), tend in the limit a → 0 to the matrix elements

〈K̄0|Oi|K
0〉 of the operators (2.2) in QCD with mere O(a2) discretization errors [12].

B RI/MOM computation of renormalization constants of four-fermion

operators

In order to convert our lattice results for the bag parameters Bi to their physical continuum

counterparts, in the same renormalization scheme and at the same scale as the correspond-

ing perturbative Wilson coefficients used in the phenomenological analysis, we need the

renormalization constants (RCs) of the operators OMA
i[+] , i = 1, 2, . . . , 5, see eq. (4.6), or

equivalently eq. (A.1). As discussed in section 4, in our mixed action (MA) setup for lat-

tice correlation functions these operators represent the analogs of the parity-even parts of

the ∆S = 2 four-fermion operators (2.2) that are relevant in the formal continuum theory.

In this appendix, we give details on the non-perturbative computation of the RCs

performed using the RI’-MOM scheme ([17, 18]).

As explained in detail in ref. [51], instead of using the operator basis OMA
i[+] of eq. (A.1),

it is more convenient to employ the Fierz transformed operators QMA
i[+] , i = 1, 2, . . . , 5,

defined in eq. (A.2). To lighten our notation, in the following we will drop the superscript

and the sign subscript, denote these operators simply by Qi and assemble them in the array

Q. The generic renormalization pattern of the bare operators Q(b) is of the form

Qren = Z [ I + ∆∆∆ ] Q(b) (B.1)

where the scale-dependent renormalization matrix Z is block-diagonal, with a continuum-

like block structure (the same as for e.g. the matrix in eq. (A.7)), while ∆∆∆ is a sparse

off-diagonal and scale-independent matrix of the form

∆∆∆ =















0 ∆12 ∆13 ∆14 ∆15

∆21 0 0 ∆24 ∆25

∆31 0 0 ∆34 ∆35

∆41 ∆42 ∆43 0 0

∆51 ∆52 ∆53 0 0















. (B.2)

However, as shown in appendix A, using the MA lattice setup of section 4, the “wrong chi-

rality mixing” terms ∆ij , are reduced to mere O(a2) effects, the renormalization matrix Z

coincides with the matrix ZQ of eq. (A.10) and we recover a continuum-like renormalization

pattern. This is a very important advantage of our approach, which we will implement

in practice using the following strategy: compute the quark propagators in the qf -basis

(also called physical basis of tmQCD at maximal twist, in which the critical Wilson term

is twisted, see eq. (4.2)), impose RI-MOM renormalization conditions on the operators Qi

and extract the renormalization matrix (Z) and, for check purposes, the mixing matrix (∆∆∆).
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B.1 Procedure for extracting the RCs

To determine the matrices Z and ∆∆∆ in eq. (B.1) we proceed as follows. We start by

computing the lattice quark propagator

Sqf (p) = a4
∑

x

e−ipx 〈 qf (x) q̄f (0) 〉 (B.3)

and the four-point Green functions with an insertion of the operator Qi, namely

Gi(p, p, p, p)
a b c d
αβ γ δ = (B.4)

a16
∑

x1,x2,x3,x4

e−ip(x1−x2+x3−x4)〈 [q1(x1)]
a
α [q̄2(x2)]

b
β Qi(0) [q3(x3)]

c
γ [q̄4(x4)]

d
δ 〉 .

The lower(upper) case Greek (Latin) symbols denote uncontracted spin (color) indices.

The corresponding amputated Green functions are given by

Λi(p, p, p, p)
abcd
αβγδ = (B.5)

[

Sq1(p)
−1
]aa′

αα′

[

Sq3(p)
−1
]cc′

γγ′
Gi(p, p, p, p)

a′b′c′d′

α′β′γ′δ′
[

Sq2(p)
−1
]b′b

β′β

[

Sq4(p)
−1
]d′d

δ′δ
.

For the sake of clarity, we will use matrix notation, denoting the matrices by boldface

symbols and omitting color and spin indices. The amputated Green functions will be

collected in the 1× 5 row vector

ΛΛΛ(p) = (Λ1, Λ2, Λ3, Λ4, Λ5 ) (p, p, p, p) . (B.6)

Setting

Λ̂̂Λ̂Λ(ap, aµ) = Z−2
q (ap)ΛΛΛ(ap)

[

I + ∆∆∆T
]

Z(aµ)T , (B.7)

the renormalization matrix Z(aµ) is determined by solving the renormalization condi-

tions [51], namely

P Λ̂̂Λ̂Λ(p) |p2 =µ2 = I . (B.8)

In eq. (B.8), Zq is the quark field RC and ∆∆∆ is, as we said before, the mixing matrix. We

have also introduced the 5× 1 column vector of spin projectors (see eq. (37) of ref. [51] for

the explicit form of these projectors)

PT = (P1, P2, P3, P4, P5 ) (B.9)

which act on the amputed Green functions by (i, j = 1 · · · , 5),

Pi Λj ≡ Tr Pi Λj(ap)

where the trace is taken over spin and colour, and obey the orthogonality relations

Tr Pi Λ
(0)
j (ap) = δij , (B.10)

with Λ
(0)
j the tree level amputated Green function of the operator Qj . It is convenient to

express ΛΛΛ in terms of a “dynamics” matrix D, defined by

ΛΛΛ(ap) = ΛΛΛ(0)(ap) D(ap) . (B.11)
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This matrix equation can be solved for D using the spin projectors P, getting

D(p) = P ΛΛΛ(p) . (B.12)

Combining eqs. (B.7), (B.8) and (B.12), we see that, once the dynamics matrix is known,

we can determine both the renormalization and the mixing matrices from the relation

Z−2
q D

[

I + ∆∆∆T
]

ZT = I → Z [ I + ∆∆∆ ] = Z2
q

(

DT
)−1

. (B.13)

This matrix equation can be solved for Z and∆∆∆ by exploiting the block diagonal structure of

the Z matrix. In fact, it is easy to see that the three diagonal blocks of the renormalization

matrix (i, j = 1; i, j = 2, 3 and i, j = 4, 5) are given by

Zij = Z2
q

(

DT
)−1

ij
(i, j = 1) (i, j = 2, 3) (i, j = 4, 5) (B.14)

whereas the mixing coefficients are easily obtained from the equations,

Z11∆1i = Z2
q

(

DT
)−1

1i
i = 2, · · · , 5 (B.15)

(

Zii Zi i+1

Zi+1 i Zi+1 i+1

)(

∆ij

∆i+1 j

)

= Z2
q





(

DT
)−1

ij
(

DT
)−1

i+1 i





{

i = 2 j = 1, 4, 5

i = 4 j = 1, 2, 3

}

.

We can now summarize our procedure to determine the renormalization matrix of the

parity-even part of the four-fermion operators of the SUSY basis of eq. (2.2).

Step 1 The Green functions (B.4) and (B.5), and from them the dynamics matrix D,

are evaluated in the Landau gauge for a sequence of sea, µsea, and valence, µval,

quark mass values at each of the four lattice spacings we consider here. The bare

parameters and the statistics of this computation are detailed in table 2 of ref. [18].

One can also find there (see eqs. (3.6) and (3.7)) the set of discrete lattice momenta,

pν (p1,2,3 = (2π/L)n1,2,3, p4 = (2π/T ) (n4 + 1/2)), that we include in the present

calculation. To minimize the contributions of Lorentz non-invariant discretization

artifacts, we take into consideration only momenta satisfying the constraint

∑

ρ

p̃4ρ < 0.28

(

∑

ν

p̃2ν

)2

, a p̃ν ≡ sin(apν) . (B.16)

In the following, we shall often use the short-hand p̃2 =
∑

ν p̃
2
ν .

Step 2 For each β and each choice of the scale p̃2, the renormalization relation (B.14)

is enforced at all values of µsea and µval given in table 2 of ref. [18]. By doing so,

we obtain at nonzero quark masses the estimators ZRI′
ij (p̃2; a2p̃2;µval;µsea), which are

then extrapolated to µval = 0 (see section B.2) and µsea = 0 (see section B.3).

Step 3 Improved estimates of ZRI′
ij (p̃2; a2p̃2; 0; 0), are obtained by subtracting the pertur-

batively leading cutoff effects (see section B.4).
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Step 4 Using the NLO continuum QCD evolution of the renormalization matrix Z calcu-

lated in refs. [15, 52], the first argument of ZRI′
ij (p̃2; a2p̃2; 0; 0) is brought to a reference

scale µ20. In this step, we assume that the scales p̃2 and µ20 are large enough to make

NLO perturbation theory accurate. This is the same level of accuracy achieved in

the determination of the Wilson coefficients.

Step 5 The residual a2p̃2 dependence in ZRI′
ij (µ20; a

2p̃2; 0; 0) is attributed to lattice arti-

facts, which we treat according to either the M1 or M2 methods, introduced in ref. [18]

(see section B.6).

Step 6 In order to reduce the statistical error, the lattice RC estimators are averaged over

two equivalent patterns of Wilson parameters (r1, r2, r3, r4), namely (1, 1, 1,−1) and

(−1,−1,−1, 1), as well as over different lattice momenta corresponding to the same

p̃2. We have checked that performing these averages before or after taking the chiral

limit leads to consistent results.

B.2 Valence chiral limit

In view of the relation (B.14) and since the extraction of Zq (see ref. [18]) poses no particular

problems, our discussion will be mainly focused here on the quark mass dependence of the

dynamics matrix D. At fixed values of β, a2p̃2 and aµsea, we fit the dynamics matrix

elements Dij to the ansatz

Dij(p;µval;µsea) = A(p̃2;µsea) + B(p̃2;µsea)µval + C(p̃2;µsea)/µval . (B.17)

Here we have introduced a term with a pole in µval ∼ m2
PS to cope with the expected

Goldstone boson (GB) pole contribution to the elements of the D matrix. The exis-

tence of such a GB-pole term can be understood as follows. At asymptotically large p2,

non-perturbative effects giving contributions potentially divergent in the chiral limit to the

Green functions (B.4) do vanish and the latter turn out to be polynomial in the quark mass

parameters [16]. At finite values of p2, however, the contributions to (the spectral decom-

position of) these Green functions from one-GB intermediate state with momentum q and

mass mPS , give rise to terms proportional to (q2+m2
PS)

−1 and suppressed by some power

of 1/p2. If several one-GB intermediate states contribute to the spectral representation of

the Green functions (B.4) several terms, each behaving as (q2+m2
PS)

−1 and suppressed by

some power of 1/p2, will show up. These results follow straightforwardly from the “polol-

ogy’ study of the Green functions (see e.g. the discussion in the book [53]) or from the well

known Lehmann-Symanzik-Zimmermann (LSZ) reduction formalism. Now, since in the

Green functions (B.4) the four-fermion operator is inserted at zero four-momentum trans-

fer (q = 0), one expects, from the time orderings where two quark fields can create from the

vacuum a pseudoscalar (i.e. GB) one-particle state, a contribution proportional to 1/m2
PS ,

suppressed by some power of 1/p2. Similarly, from those time orderings where two quark

fields create a GB-state and two further quark fields destroy another GB-state, contribu-

tions do arise that behave as (1/m2
PS)

2 and are twice more strongly suppressed at large p2.
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In conclusion, by exploiting (along the lines of appendix A of ref. [16]) the large-p2

behaviour of the matrix element9 〈0|q̄f (p)qf ′(−p)|P f ′f 〉 and taking also into consideration

the four factors of Sq(p)
−1 that stem from the relations (B.5), one finds that the dynamics

matrix Dij contains GB-pole contributions of the following kinds:

DSingle 12
ij ∼ PiS

−1
q1 (p)S−1

q2 (−p)〈0|q̄2q1|P
12〉

1

p4
(

M12
)2 〈P 12|Qj(0)|q3(p)q̄4(−p)〉

DSingle 34
ij ∼ Pi〈q1(p)q̄2(−p)|Qj(0)|P

34〉
1

(

M34
)2
p4

〈P 34|q̄4q3|0〉S
−1
q3 (p)S−1

q4 (−p)

DDouble 12 34
ij ∼ PiS

−1
q1 (p)S−1

q2 (−p)〈0|q̄2q1|P
12〉

〈P 12|Qj(0)|P
34〉

p4
(

M12
)2 (

M34
)2
p4

×

×〈P 34|q̄4q3|0〉S
−1
q3 (p)S−1

q4 (−p) . (B.18)

We recall that the kinematics of our Green functions corresponds to an exceptional

momentum configuration where p1 = p3 = −p2 = −p4 = p, and thus q = 0. As in the chiral

limit S−1
q (p) ∼ γµpµ, the result (B.18) implies that single and double GB-pole terms are

suppressed by 1/p2 and 1/(p2)2 factors, respectively. A second observation is that thanks

to the choice r4 = −r3 in our MA setup the lattice axial current q̄4γµγ5q3 is conserved (only

broken by soft mass terms) and hence the matrix elements of the operator Q1 in DSingle 34
i1

and DDouble 12 34
i1 vanish as

(

M34
)2

∼ (µ3 + µ4) in the limit µ3,4 → 0. This implies that no

double pole occurs in Di1. At non-vanishing lattice spacing there exists, however, an O(a2)

single pole contribution in DSingle 12
i1 because, owing to r2 = r1, the lattice axial current

q̄2γµγ5q1 is broken by discretization effects (see ref. [11] and appendix A of ref. [8]).

For the case j 6= 1, when no similar GB-pole simplifications can occur, double GB-pole

terms strongly suppressed (like 1/(p2)2) at large p2 are to be expected in Dij(p). However,

precisely owing to this strong suppression in practice, within our statistical errors and in

the ranges of quark masses and p2 we explore (see table 2 of ref. [18] and section B.6), we

hardly see in our lattice data any effects that can reliably be ascribed to double GB-pole

contributions. On the contrary, we do find clear numerical evidence for single GB-pole

contributions, which indeed at high p2 are only suppressed as 1/p2. We thus decided to

ignore double GB-pole terms in our valence mass chiral extrapolations.

This choice is also justified a posteriori by the results of the valence chiral fits based on

the ansatz (B.17). A subset of these results is illustrated in figure 6. There we display typ-

ical examples of the effect of GB-pole subtractions in the matrix elements of the dynamics

matrix at two values of β. As can be seen, after the subtraction, a smooth dependence

upon µval (or equivalently on M2
12) is observed. Combining the valence chiral limit lattice

estimator of Dij and Zq, we are able to get reliable estimates of the intermediate quantities

Z lat
ij (p̃2; a2p̃2; 0, aµsea).

9Here q′f (p) (q̄f (p)) denotes the four-dimensional Fourier transform of the quark field q′f (x) (q̄f (x)), while

|P f ′f 〉 is the pseudoscalar meson state with valence quarks of flavour f and f ′.
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Figure 6. GB-pole subtraction and valence chiral limit of D23, D33, D44 and D55 plotted versus

aµval, for β = 3.9, aµsea = 0.0040 and (ap̃)2 ≈ 1.565 (left column) and β = 4.05, aµsea = 0.0030

and (ap̃)2 ≈ 1.568 (right column).
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Figure 7. The quantities ZRI′

33 (p̃2; a2p̃2; 0, aµsea) and Z
RI′

44 (p̃2; a2p̃2; 0, aµsea), taken at the valence

chiral limit, as functions of a2µ2
sea, for a typical lattice momentum choice (see inset) giving a2p̃2 ∼

1.56, for four β values (β =3.80, 3.90, 4.05 and 4.20).

B.3 Sea chiral limit

At fixed β and a2p̃2, we fit Z lat
ij (p̃2; a2p̃2; 0, aµsea) data to a first order polynomial in a2µ2sea.

This choice is dictated by the expectation that effects of spontaneous chiral symmetry,

which may induce a dependence on |µsea|, are strongly suppressed, and in practice imma-

terial within errors, in quantities like our RC-estimators that are evaluated at momentum

scales p̃2 ≫ Λ2
QCD. In fact we find that the dependence on the sea quark mass is hardly

visible within our statistical error bars, as shown in figure 7. Moreover, we have checked

that repeating the whole analysis using a constant fit leads to similar RC results, though

affected by smaller errors and often, but not always, yielding acceptable χ2’s. Hence, we

conservatively decided to perform the sea chiral extrapolation using a linear fit in a2µ2sea.

We construct in this way the RC estimators ZRI′
ij (p̃2; a2p̃2; 0, 0).

B.4 Removal of O(a2g2) cutoff effects

We will obtain improved chiral limit RC estimators, ZRI′−impr
ij (p̃2; a2p̃2), by removing from

our ZRI′
ij (p̃2; a2p̃2; 0, 0) lattice data perturbative discretization errors. This can be done up

to O(a2g2) exploiting the one-loop perturbative results obtained [54, 55] in the massless

lattice theory for the quark propagator form factor Σ1, related to the quark-field RC by

Zq(p) = Σ1(p), and the dynamics matrix elements, v.i.z.

[Zq(p) ]
LPT = 1 +

g2

16π2
a2

[

p̃2
(

c(1)q + c(2)q log(a2p̃2)
)

+ c(3)q

∑

ρ p̃
4
ρ

p̃2

]

+O(a4g2, g4)

[Dij(p) ]
LPT = 1 +

g2

16π2

[

b
(1)
ij + b

(2)
ij log(a2p̃2)

]

(B.19)

+
g2

16π2
a2

[

p̃2
(

c
(1)
ij + c

(2)
ij log(a2p̃2)

)

+ c
(3)
ij

∑

ρ p̃
4
ρ

p̃2

]

+O(a4g2, g4)
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Figure 8. The effect of subtracting from ZRI′

22 (µ2
0 = a(β)−2; a2p̃2; 0, 0) and ZRI′

44 (µ2
0 =

a(β)−2; a2p̃2; 0, 0) at β = 3.8 (blue dots) the O(a2g2) correction, setting either g2 = g20 (red squares)

or g2 = g̃2 (green diamonds).

The values of the coefficients c
(k)
q , k = 1, 2, 3 can be found in eq. (34) of ref. [18], while the

values of the coefficients b
(k)
ij and c

(k)
ij are available in refs. [54, 55].

In the numerical evaluation of the perturbative corrections, we take the coupling con-

stant g2 as the simple boosted coupling g̃2 ≡ g20/〈P 〉. For the average plaquette 〈P 〉

we employ the non-perturbative values [0.5689, 0.5825, 0.6014, 0.6200] corresponding to

β = [3.8, 3.9, 4.05, 4.20], respectively. The important impact of the perturbative correc-

tions in removing the unwanted a2p̃2 dependence is illustrated, for the case of β = 3.8, in

figure 8. In this figure, the uncorrected values of ZRI′
ij (µ20 = a(β)−2; a2p̃2; 0, 0) are compared

with the values of ZRI′−impr
ij (µ20 = a(β)−2; a2p̃2) obtained setting either g2 = g20 = 6/β or

(as we did in the end) g2 = g̃2.

B.5 Absence of wrong chirality mixings

In figure 9, one can clearly see that for all the operators of interest the mixing coefficients

∆ij are very small (in fact vanishing within errors in the range of p̃2 that we eventually

use for extracting RCs). We also find that this is systematically more and more so as β

increases, well in line with our expectation that in our lattice setup wrong chirality mixing

effects are reduced to mere O(a2) artifacts. For these reasons the effects of ∆∆∆ have been

neglected in our final RC analysis, where we have assumed a fully continuum-like relation

between renormalized and bare operators. In addition we checked that repeating the whole

analysis with the tiny effects of ∆∆∆ on the relation (B.1) properly taken into account leads

to no significant changes in the values of RCs.

B.6 Final RC estimates from M1 and M2 method

Having extrapolated the (improved) RCs estimators to the valence and sea chiral limit

at each value of the momenta, we evolve ZRI′−impr
ij (p̃2; a2p̃2) from the scale p̃2 to a com-

mon scale µ20 by using the known matrix formula for the NLO running of the operators

Qi [15, 52], obtaining Z
RI′−impr
ij (µ20; a

2p̃2). This step is necessary in order to disentangle
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Figure 9. The behaviour of the mixing coefficients ∆ij , as a function of a2p̃2 for β = 4.05.

the O(a2p̃2) cutoff effects from the genuine continuum p2 dependence. Notice also that the

actual value of µ0 has no impact on the RGI results of the RC’s. As is customary, we take

µ0 = a−1(β) for each β, with a−1(3.8, 3.9, 4.05, 4.20) = [ 2.0, 2.3, 3.0, 3.7 ]GeV.

Of course we still allow for a residual dependence on a2p̃2. In order to deal with

these cutoff effects, following ref. [18], we use two methods. Method M1 consists in fitting

ZRI′−impr
ij (µ20; a

2p̃2) to the linear ansatz

ZRI′−impr
ij (µ20; a

2p̃2) = ZRI′−impr
ij (µ20) + λij (ap̃)

2 (B.20)

in the large momentum region, 1.0 ≤ a2p̃2 ≤ 2.2. As expected, the slopes λij depend

smoothly on β.

According to the ansatz (B.20), with λij = λ
(0)
ij + λ

(1)
ij g̃

2 (g̃2 is the boosted gauge

coupling as in section B.4) a linear extrapolation to a2p̃2 = 0 was performed simultaneously

at all β’s. The extrapolated values, ZRI′−impr
ij (µ20), are finally used to evaluate via the NLO

running matrix formula of ref. [15], the quantities ZMS
ij (M1) and ZRGI

ij (M1). Therefore,

the MS scheme we use here is the one defined by Buras et al. in ref. [15]. This definition

of the MS scheme, which has become standard, differs from the one of ref. [52] proposed

by Ciuchini et al. in the treatment of the four-fermion evanescent operators appearing in

the calculation of the two-loop anomalous dimensions.

In figure 10 the simultaneous best linear fits in a2p̃2 at our four β’s of Zij are shown.

We recall that both in the analysis and in the figures of this appendix, only data points

corresponding to the momenta p̃ satisfying the constraint (B.16) are used and shown.
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Figure 10. ZRI′−impr
ij (µ2

0 = a(β)−2; a2 p̃2) for {ij} = {22, 23, 32, 33, 44, 45, 54, 55} as functions of

a2 p̃2 for the four β values considered in our study. The straight lines represent the simultaneous

linear fit to the lattice data in the interval 1.0 ≤ a2p̃2 ≤ 2.2 at the four β’s.
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RC(M1) β = 3.80 β = 3.90 β = 4.05 β = 4.20

MS at 2GeV

ZP 0.413(12) 0.437(7) 0.477(6) 0.498(5)

ZS 0.728(16) 0.712(10) 0.702(5) 0.694(8)

RI-MOM at 2GeV

ZP 0.339(9) 0.359(6) 0.391(4) 0.409(4)

ZS 0.598(13) 0.585(9) 0.576(4) 0.570(7)

Table 7. ZP and ZS results, using the M1 method at β = 3.80, 3.90, 4.05 and 4.20 in MS and

RI-MOM at 2GeV.

RC(M2) β = 3.80 β = 3.90 β = 4.05 β = 4.20

MS at 2GeV

ZP 0.532(5) 0.518(6) 0.520(4) 0.503(5)

ZS 0.813(7) 0.776(6) 0.735(4) 0.708(10)

RI-MOM at 2GeV

ZP 0.437(4) 0.426(5) 0.427(4) 0.413(4)

ZS 0.668(6) 0.637(5) 0.603(4) 0.582(8)

Table 8. ZP and ZS results, using the M2 method, at β =3.80, 3.90, 4.05 and 4.20 in MS and

RI-MOM at 2GeV.

The idea of the M2 method is instead to separately average at each β the values

of ZRI′−impr
ij (µ20; a

2p̃2) over a narrow interval of momenta (ideally just one point), which

has to be kept fixed in physical units for all β’s. We have chosen this interval to be

p̃2 ∈ [ 8.0, 9.5 ]GeV2. In this way, at the price of giving up the reduction of cutoff effects

implied by the M1 method, no assumptions are introduced in the RC analysis about the

detailed form of lattice artifacts and/or the adequacy of NLO anomalous dimensions to

describe the RC-evolution at scales below p̃2 ∼ 9GeV2.

The a2-scaling of renormalized quantities (in this work operator matrix elements) con-

structed using RCs determined with the M2 method will of course be in general different

from the one of their M1 method counterparts, but the continuum limit results for these

quantities, if attainable from both methods with controlled errors, should be consistent

with each other (see e.g. appendix E).

C Renormalization constant results

In tables 7 and 8 we collect values of ZP and ZS calculated in the RI-MOM scheme.

Results are obtained with methods M1 and M2 [18] at each value of the gauge coupling in

MS and RI-MOM at 2GeV. We have used the three-loop conversion formula from RI-MOM

to MS [56].
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The RC matrices of the four-fermion operators ZQ, (cf. eq. (A.10)), are listed below.

We present results obtained from both M1 and M2 methods, in MS and RI-MOM at 2GeV.

(MS, 2GeV):

ZQ(β = 3.80;M1) =















0.425(15) 0 0 0 0

0 0.493(12) 0.207(7) 0 0

0 0.022(02) 0.226(10) 0 0

0 0 0 0.257(9) −0.006(2)

0 0 0 −0.246(8) 0.600(14)















ZQ(β = 3.90;M1) =















0.441(8) 0 0 0 0

0 0.505(9) 0.206(7) 0 0

0 0.023(1) 0.250(6) 0 0

0 0 0 0.282(6) −0.006(2)

0 0 0 −0.244(5) 0.617(11)















ZQ(β = 4.05;M1) =















0.491(5) 0 0 0 0

0 0.550(6) 0.223(5) 0 0

0 0.024(1) 0.282(5) 0 0

0 0 0 0.319(4) −0.004(1)

0 0 0 −0.258(5) 0.692(8)















ZQ(β = 4.20;M1) =















0.523(10) 0 0 0 0

0 0.575(9) 0.227(6) 0 0

0 0.023(1) 0.294(9) 0 0

0 0 0 0.336(7) −0.002(2)

0 0 0 −0.265(6) 0.727(10)















(MS, 2GeV):

ZQ(β = 3.80;M2) =















0.440(9) 0 0 0 0

0 0.512(7) 0.272(5) 0 0

0 0.043(2) 0.382(5) 0 0

0 0 0 0.367(5) −0.005(2)

0 0 0 −0.148(4) 0.547(9)















ZQ(β = 3.90;M2) =















0.447(5) 0 0 0 0

0 0.514(5) 0.260(4) 0 0

0 0.038(1) 0.362(4) 0 0

0 0 0 0.361(4) −0.005(1)

0 0 0 −0.169(3) 0.576(5)














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ZQ(β = 4.05;M2) =















0.495(5) 0 0 0 0

0 0.555(5) 0.264(4) 0 0

0 0.033(1) 0.343(4) 0 0

0 0 0 0.360(3) −0.003(1)

0 0 0 −0.214(4) 0.663(8)















ZQ(β = 4.20;M2) =















0.531(6) 0 0 0 0

0 0.588(6) 0.278(3) 0 0

0 0.026(1) 0.304(5) 0 0

0 0 0 0.337(5) −0.000(1)

0 0 0 −0.259(4) 0.733(8)















(RI-MOM, 2GeV):

ZQ(β = 3.80;M1) =















0.419(15) 0 0 0 0

0 0.506(13) 0.233(7) 0 0

0 0.017(2) 0.194(9) 0 0

0 0 0 0.238(8) −0.013(2)

0 0 0 −0.240(8) 0.574(14)















ZQ(β = 3.90;M1) =















0.434(8) 0 0 0 0

0 0.517(9) 0.236(7) 0 0

0 0.018(1) 0.215(5) 0 0

0 0 0 0.261(6) −0.013(1)

0 0 0 −0.239(5) 0.589(11)















ZQ(β = 4.05;M1) =















0.483(5) 0 0 0 0

0 0.563(6) 0.256(5) 0 0

0 0.019(1) 0.242(4) 0 0

0 0 0 0.295(3) −0.012(1)

0 0 0 −0.253(5) 0.659(8)















ZQ(β = 4.20;M1) =















0.515(10) 0 0 0 0

0 0.589(9) 0.261(7) 0 0

0 0.018(1) 0.253(7) 0 0

0 0 0 0.311(7) −0.011(1)

0 0 0 −0.260(6) 0.694(10)














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(RI-MOM, 2GeV):

ZQ(β = 3.80;M2) =















0.433(8) 0 0 0 0

0 0.527(7) 0.318(5) 0 0

0 0.034(1) 0.324(4) 0 0

0 0 0 0.338(4) −0.011(2)

0 0 0 −0.149(4) 0.522(9)















ZQ(β = 3.90;M2) =















0.441(4) 0 0 0 0

0 0.528(5) 0.304(4) 0 0

0 0.031(1) 0.307(4) 0 0

0 0 0 0.332(3) −0.012(1)

0 0 0 −0.169(3) 0.550(5)















ZQ(β = 4.05;M2) =















0.487(5) 0 0 0 0

0 0.570(5) 0.306(5) 0 0

0 0.026(1) 0.291(3) 0 0

0 0 0 0.331(3) −0.011(1)

0 0 0 −0.212(4) 0.632(8)















ZQ(β = 4.20;M2) =















0.523(6) 0 0 0 0

0 0.602(6) 0.314(4) 0 0

0 0.020(1) 0.261(4) 0 0

0 0 0 0.308(4) −0.009(1)

0 0 0 −0.254(4) 0.700(7)















D Lattice data on masses and matrix elements

In the following tables we gather our bare results at all values of β and combinations of

quark masses for (i) pseudoscalar meson masses and pseudoscalar meson decay constants

in lattice units (tables 9, 10, 11 and 12); (ii) the ratio of the (bare) four-fermion operators

R
(b)
i = 〈K̄0|Oi|K

0〉/〈K̄0|O1|K
0〉 (i = 2, . . . , 5) (see tables 13, 14, 15 and 16); (iii) the

quantities ξiB
(0)
i (i = 2, . . . , 5) (see tables 17, 18, 19 and 20).
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β = 3.80 (243 × 48)a4

aµℓ = aµsea aµ“s” aM34 aM12 aF 34 aF 12

0.0165 0.2558(8) 0.3393(25) 0.0894(4) 0.0883(15)

0.0080 0.0200 0.2731(7) 0.3532(23) 0.0913(4) 0.0895(15)

0.0250 0.2961(7) 0.3718(21) 0.0936(4) 0.0909(15)

0.0165 0.2712(4) 0.3508(16) 0.0924(3) 0.0900(16)

0.0110 0.0200 0.2877(4) 0.3644(14) 0.0942(3) 0.0910(16)

0.0250 0.3098(4) 0.3828(12) 0.0966(3) 0.0924(16)

Table 9. Pseudoscalar masses and decay constants at β = 3.80.

β = 3.90 (243 × 48)a4

aµℓ = aµsea aµ“s” aM34 aM12 aF 34 aF 12

0.0150 0.2060(5) 0.2639(11) 0.0724(3) 0.0705(9)

0.0040 0.0220 0.2401(5) 0.2915(11) 0.0757(3) 0.0725(9)

0.0270 0.2619(5) 0.3096(11) 0.0777(3) 0.0759(9)

0.0150 0.2179(8) 0.2762(16) 0.0755(5) 0.0736(10)

0.0064 0.0220 0.2506(7) 0.3028(15) 0.0785(5) 0.0759(9)

0.0270 0.2717(7) 0.3204(14) 0.0805(4) 0.0774(9)

0.0150 0.2283(7) 0.2849(17) 0.0773(3) 0.0755(9)

0.0085 0.0220 0.2598(7) 0.3109(15) 0.0804(3) 0.0779(8)

0.0270 0.2803(7) 0.3281(15) 0.0823(3) 0.0794(9)

0.0150 0.2351(7) 0.2892(14) 0.0784(4) 0.0761(9)

0.0100 0.0220 0.2659(7) 0.3154(12) 0.0815(4) 0.0787(8)

0.0270 0.2860(6) 0.3328(12) 0.0834(4) 0.0802(9)

β = 3.90 (323 × 64)a4

0.0150 0.1982(4) 0.2558(13) 0.0720(3) 0.0701(7)

0.0030 0.0220 0.2329(4) 0.2838(11) 0.0750(3) 0.0720(8)

0.0270 0.2550(4) 0.3021(11) 0.0770(3) 0.0745(8)

0.0150 0.2041(4) 0.2644(15) 0.0727(3) 0.0702(11)

0.0040 0.0220 0.2381(4) 0.2917(17) 0.0758(3) 0.0722(10)

0.0270 0.2599(4) 0.3096(15) 0.0777(3) 0.0753(9)

Table 10. Pseudoscalar masses and decay constants at β = 3.90.
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β = 4.05 (323 × 64)a4

aµℓ = aµsea aµ“s” aM34 aM12 aF 34 aF 12

0.0120 0.1602(8) 0.1931(18) 0.0564(3) 0.0558(7)

0.0030 0.0150 0.1751(8) 0.2053(17) 0.0578(3) 0.0566(7)

0.0180 0.1889(8) 0.2169(16) 0.0591(3) 0.0573(7)

0.0120 0.1739(6) 0.2034(11) 0.0600(4) 0.0585(8)

0.0060 0.0150 0.1877(6) 0.2153(11) 0.0613(3) 0.0596(8)

0.0180 0.2007(6) 0.2266(11) 0.0625(3) 0.0605(8)

0.0120 0.1840(5) 0.2127(9) 0.0615(4) 0.0604(12)

0.0080 0.0150 0.1972(5) 0.2242(9) 0.0627(4) 0.0616(12)

0.0180 0.2097(5) 0.2351(9) 0.0638(4) 0.0626(12)

Table 11. Pseudoscalar masses and decay constants at β = 4.05.

β = 4.20 (483 × 96)a4

aµℓ = aµsea aµ“s” aM34 aM12 aF 34 aF 12

0.0116 0.1277(8) 0.1433(20) 0.0446(3) 0.0438(9)

0.0020 0.0129 0.1397(8) 0.1536(19) 0.0456(3) 0.0445(9)

0.0142 0.1509(9) 0.1633(19) 0.0465(4) 0.0452(9)

β = 4.20 (323 × 64)a4

0.0116 0.1522(11) 0.1682(20) 0.0483(5) 0.0476(8)

0.0065 0.0129 0.1628(10) 0.1777(18) 0.0494(5) 0.0486(7)

0.0142 0.1729(10) 0.1868(17) 0.0503(5) 0.0495(7)

Table 12. Pseudoscalar masses and decay constants at β = 4.20.

β = 3.80 (243 × 48)a4

aµℓ = aµsea aµ“s” −R
(b)
2 R

(b)
3 R

(b)
4 R

(b)
5

0.0165 13.14(7) 3.19(2) 24.29(12) 8.18(4)

0.0080 0.0200 11.92(6) 2.89(1) 21.93(10) 7.43(3)

0.0250 10.58(4) 2.56(1) 19.34(8) 6.61(3)

0.0165 12.16(6) 2.95(1) 21.89(10) 7.41(3)

0.0110 0.0200 11.15(5) 2.70(1) 19.99(8) 6.81(3)

0.0250 9.99(4) 2.41(1) 17.84(7) 6.13(2)

Table 13. R
(b)
i for i = 2, . . . , 5, as obtained from eq. (4.17), at each combination of the quark mass

pair (aµℓ, aµ“s”) and at β = 3.80.
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β = 3.90 (243 × 48)a4

aµℓ = aµsea aµ“s” −R
(b)
2 R

(b)
3 R

(b)
4 R

(b)
5

0.0150 16.42(6) 4.15(1) 32.51(12) 10.79(4)

0.0040 0.0220 13.11(4) 3.20(1) 24.99(7) 8.41(2)

0.0270 11.38(3) 2.77(1) 21.57(6) 7.32(2)

0.0150 15.37(8) 3.77(2) 29.02(14) 9.68(4)

0.0064 0.0220 12.21(5) 2.98(1) 22.89(9) 7.75(3)

0.0270 10.70(4) 2.60(1) 19.97(7) 6.82(2)

0.0150 14.10(5) 3.44(1) 26.56(9) 8.92(3)

0.0085 0.0220 11.41(3) 2.77(1) 21.32(6) 7.25(2)

0.0270 10.09(3) 2.45(1) 18.75(5) 6.44(1)

0.0150 13.52(5) 3.31(1) 25.30(9) 8.53(3)

0.0100 0.0220 11.07(4) 2.70(1) 20.55(6) 7.02(2)

0.0270 9.85(3) 2.39(1) 18.28(5) 6.26(2)

β = 3.90 (323 × 64)a4

0.0150 17.18(8) 4.22(2) 33.45(14) 11.09(5)

0.0030 0.0220 13.27(5) 3.24(1) 25.66(12) 8.63(3)

0.0270 11.47(5) 2.80(1) 22.09(9) 7.50(3)

0.0150 16.32(9) 4.10(2) 32.22(18) 10.68(6)

0.0040 0.0220 13.01(6) 3.17(1) 24.88(12) 8.34(4)

0.0270 11.31(5) 2.74(1) 21.42(9) 7.27(3)

Table 14. R
(b)
i for i = 2, . . . , 5, as obtained from eq. (4.17), at each combination of the quark mass

pair (aµℓ, aµ“s”) and at β = 3.90.

β = 4.05 (323 × 64)a4

aµℓ = aµsea aµ“s” −R
(b)
2 R

(b)
3 R

(b)
4 R

(b)
5

0.0120 20.47(12) 5.07(3) 40.49(22) 13.32(7)

0.0030 0.0150 17.35(9) 4.29(2) 34.29(17) 11.36(6)

0.0180 15.10(7) 3.72(2) 29.78(13) 9.93(4)

0.0120 16.61(9) 4.11(2) 32.49(15) 10.79(5)

0.0060 0.0150 14.55(7) 3.59(2) 28.35(11) 9.48(4)

0.0180 12.97(5) 3.20(2) 25.19(9) 8.48(3)

0.0120 15.13(5) 3.74(1) 29.36(9) 9.79(3)

0.0080 0.0150 13.42(4) 3.31(1) 25.99(7) 8.72(2)

0.0180 12.09(3) 2.97(1) 23.34(6) 7.88(2)

Table 15. R
(b)
i for i = 2, . . . , 5, as obtained from eq. (4.17), at each combination of the quark mass

pair (aµℓ, aµ“s”) and at β = 4.05.
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β = 4.20 (483 × 96)a4

aµℓ = aµsea aµ“s” −R
(b)
2 R

(b)
3 R

(b)
4 R

(b)
5

0.0116 21.56(12) 5.28(3) 44.37(25) 14.56(8)

0.0020 0.0129 18.28(9) 4.56(2) 37.52(20) 12.43(7)

0.0142 15.88(8) 3.95(2) 32.57(17) 10.86(6)

β = 4.20 (323 × 64)a4

0.0116 17.87(25) 4.46(6) 34.83(33) 11.57(11)

0.0065 0.0129 15.52(20) 3.87(5) 30.31(27) 10.13(9)

0.0142 13.75(16) 3.42(4) 26.85(23) 9.03(7)

Table 16. R
(b)
i for i = 2, . . . , 5, as obtained from eq. (4.17), at each combination of the quark mass

pair (aµℓ, aµ“s”) and at β = 4.20.

β = 3.80 (243 × 48)a4

aµℓ = aµsea aµ“s” −ξ2B
(b)
2 ξ3B

(b)
3 ξ4B

(b)
4 ξ5B

(b)
5

0.0165 1.015(12) 0.247(3) 1.877(21) 0.632(7)

0.0080 0.0200 1.029(11) 0.249(2) 1.892(21) 0.641(7)

0.0250 1.046(11) 0.253(2) 1.912(20) 0.654(7)

0.0165 1.038(7) 0.252(2) 1.868(12) 0.632(4)

0.0110 0.0200 1.050(7) 0.254(2) 1.883(11) 0.641(4)

0.0250 1.065(6) 0.257(2) 1.902(11) 0.654(4)

Table 17. Bare ξiB
(b)
i for i = 2, . . . , 5, as obtained from eq. (4.15), at each combination of the

quark mass pair (aµℓ, aµ“s”) and at β = 3.80.
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β = 3.90 (243 × 48)a4

aµℓ = aµsea aµ“s” −ξ2B
(b)
2 ξ3B

(b)
3 ξ4B

(b)
4 ξ5B

(b)
5

0.0150 0.961(7) 0.236(2) 1.848(14) 0.613(5)

0.0040 0.0220 0.991(7) 0.242(2) 1.888(13) 0.635(4)

0.0270 1.009(7) 0.245(2) 1.911(13) 0.649(4)

0.0150 0.979(9) 0.240(2) 1.848(20) 0.617(6)

0.0064 0.0220 1.006(9) 0.245(2) 1.887(16) 0.639(5)

0.0270 1.023(8) 0.249(2) 1.909(16) 0.652(5)

0.0150 0.987(8) 0.241(2) 1.860(16) 0.624(5)

0.0085 0.0220 1.014(8) 0.246(2) 1.894(15) 0.644(5)

0.0270 1.030(8) 0.250(2) 1.914(15) 0.657(5)

0.0150 0.993(12) 0.243(3) 1.861(24) 0.627(8)

0.0100 0.0220 1.019(12) 0.248(3) 1.894(23) 0.647(8)

0.0270 1.036(12) 0.252(3) 1.915(23) 0.660(8)

β = 3.90 (323 × 64)a4

0.0150 0.953(5) 0.234(1) 1.855(10) 0.615(3)

0.0030 0.0220 0.982(5) 0.240(1) 1.898(9) 0.638(3)

0.0270 1.000(5) 0.244(1) 1.924(9) 0.653(3)

0.0150 0.962(6) 0.236(2) 1.831(12) 0.608(4)

0.0040 0.0220 0.992(6) 0.242(2) 1.875(12) 0.632(4)

0.0270 1.011(6) 0.246(2) 1.901(11) 0.646(4)

Table 18. Bare ξiB
(b)
i for i = 2, . . . , 5, as obtained from eq. (4.15), at each combination of the

quark mass pair (aµℓ, aµ“s”) and at β = 3.90.

β = 4.05 (323 × 64)a4

aµℓ = aµsea aµ“s” −ξ2B
(b)
2 ξ3B

(b)
3 ξ4B

(b)
4 ξ5B

(b)
5

0.0120 0.915(10) 0.227(2) 1.810(17) 0.596(6)

0.0030 0.0150 0.929(9) 0.230(2) 1.837(17) 0.609(6)

0.0180 0.943(9) 0.232(2) 1.860(16) 0.620(5)

0.0120 0.931(9) 0.230(2) 1.820(18) 0.605(6)

0.0060 0.0150 0.946(9) 0.234(2) 1.843(17) 0.617(6)

0.0180 0.960(9) 0.237(2) 1.864(17) 0.628(6)

0.0120 0.948(9) 0.234(2) 1.842(17) 0.614(6)

0.0080 0.0150 0.962(8) 0.237(2) 1.861(16) 0.625(5)

0.0180 0.974(8) 0.240(2) 1.8883(16) 0.636(5)

Table 19. Bare ξiB
(b)
i for i = 2, . . . , 5, as obtained from eq. (4.15), at each combination of the

quark mass pair (aµℓ, aµ“s”) and at β = 4.05.
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β = 4.20 (483 × 96)a4

aµℓ = aµsea aµ“s” -ξ2B
(b)
2 ξ3B

(b)
3 ξ4B

(b)
4 ξ5B

(b)
5

0.0116 0.878(7) 0.219(2) 1.801(13) 0.592(4)

0.0020 0.0129 0.892(7) 0.222(2) 1.830(13) 0.606(4)

0.0142 0.905(7) 0.225(2) 1.855(14) 0.618(5)

β = 4.20 (323 × 64)a4

0.0116 0.939(20) 0.234(5) 1.831(38) 0.608(12)

0.0065 0.0129 0.950(19) 0.237(5) 1.856(36) 0.628(12)

0.0142 0.961(18) 0.239(5) 1.877(35) 0.632(12)

Table 20. Bare ξiB
(b)
i for i = 2, . . . , 5, as obtained from eq. (4.15), at each combination of the

quark mass pair (aµℓ, aµ“s”) and at β = 4.20.

E Results for Ri and Bi

In this appendix we present in detail our results in the MS scheme of ref. [15] at 2GeV

for the quantities Ri and Bi (cf. eqs. (4.19), (4.20) and eq. (4.18) respectively). We also

give the Ri results computed in the indirect way of eq. (5.6). In table 21 we gather results

obtained employing M1-type RCs and using ChPT (NLO) fit formula, polynomial and

linear fit functions (see eqs. (5.2)–(5.3), and n = 2 and n = 1 of eq. (5.1) respectively).

In table 22 we show the respective results when using M2-type RCs. Instead of using the

definition of eq. (4.19), we have employed a slightly different but equivalent one which reads

R̃′
i = R̃i

[G34
KG

12
K ]|M1

[G34
KG

12
K ]|M2

(E.1)

where indices M1 and M2 refer to the use of the respective type of renormalisation constants

and we define G
(12,34)
K |(M1,M2) = 〈0|P (12,34)|K〉|(M1,M2). We find that the quantity defined

in eq. (E.1) has smaller O(a2) effects.

In figures 11 and 12 we show the combined fit for the ratios, R̃
′

i and bag parameters

Bi (i = 2, . . . , 5) against the light quark mass when M2-type RCs are used.

We remark that a good agreement between the continuum limit results for the bag

parameters Bi and the matrix elements ratios Ri obtained using M2-type RCs and their

counterparts based on M1-type RCs, as we observe for i = 1, 2, 3, 4 (for i = 1 see also

ref. [8]), provides a valuable check of the smallness of residual systematic errors in the

evaluation of RI-MOM RCs with the M1-method. In particular possible systematic er-

rors stemming in the M1-method from the inadequacy at non-high momenta (p̃2) of the

perturbative operator anomalous dimensions used in the analysis or from the removal of

the leading cutoff effects via a linear fit in p̃2 are strongly reduced or absent when using

the M2-method for RCs. This is so because in this latter approach (see ref. [18] and ap-

pendix B) the RCs are extracted from Landau gauge correlators at a rather high p̃2-value
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Fit i Ri Ri(via eq. (5.6)) Bi

1 1 1 0.53(2)

2 -13.7(3) -15.4(2.2) 0.52(2)

ChPT 3 4.8(2) 5.3(08) 0.89(5)

4 24.8(6) 28.5(4.2) 0.80(3)

5 6.4(3) 7.3(1.1) 0.61(4)

1 1 1 0.53(2)

2 -14.3(5) -15.5(2.3) 0.52(2)

Pol 3 4.9(3) 5.3(09) 0.89(7)

4 24.9(8) 27.8(4.5) 0.78(4)

5 6.6(5) 7.3(1.3) 0.61(5)

1 1 1 0.53(2)

2 -13.7(3) -15.7(2.2) 0.52(2)

L 3 4.8(2) 5.4(8) 0.90(5)

4 23.6(6) 27.9(4.1) 0.78(3)

5 6.1(3) 7.1(1.1) 0.60(4)

Table 21. Ri (direct computation through eq. (4.19) and indirect computation through eq. (5.6))

and Bi results using M1-type RCs for three kinds of fit function, namely a ChPT (NLO) fit, a

polynomial and a linear fit with respect to the light quark mass. For i = 2, 3 the ChPT (NLO) fit

formula for Ri coincides with the linear one (we refer to results of the 3rd column).

(fixed to ∼ 9GeV2 for all β’s) but comes at the price of generically larger lattice arti-

facts on the RCs, which we partly suppress by removing the perturbatively known O(a2g2)

contributions. For the case of Oi with i = 1, 2, 3, 4 the resulting cutoff effects on Ri and

Bi (see figures 11 and 12) appear to be under control and the continuum extrapolation is

reliable. On the contrary, the case of B5 and R5 (see panel d) of the figures above) is a

typical one where too large cutoff effects affecting the M2-type RCs make unreliable the

results appearing in the i = 5-lines of table 22.

Finally we give our continuum results for Bi and Ri in the MS scheme of Buras et al.,

defined in ref. [15], and the RI-MOM scheme at 3GeV, see tables 23 and 24 respectively.
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Fit i Ri Ri(via eq. (5.6)) Bi

1 1 1 0.53(2)

2 -13.6(2) -14.9(2.1) 0.50(1)

ChPT 3 4.7(1) 5.1(07) 0.87(3)

4 24.7(4) 27.5(3.4) 0.77(2)

5 5.1(2) 6.1(9) 0.51(2)

1 1 1 0.53(2)

2 -14.0(4) -15.0(2.2) 0.50(2)

Pol 3 4.8(2) 5.2(08) 0.87(5)

4 24.4(7) 26.4(3.9) 0.74(3)

5 5.2(3) 6.0(9) 0.50(3)

1 1 1 0.54(2)

2 -13.6(2) -15.0(2.1) 0.51(1)

L 3 4.7(1) 5.2(8) 0.88(3)

4 23.7(4) 26.5(3.5) 0.75(2)

5 4.9(2) 5.8(9) 0.50(2)

Table 22. Ri (direct computation through eq. (E.1) and indirect computation through eq. (5.6))

and Bi results using M2-type RCs for three kinds of fit function, namely a ChPT (NLO) fit, a

polynomial and a linear fit with respect to the light quark mass. For i = 2, 3 the ChPT (NLO) fit

formula for Ri coincides with the linear one (we refer to results of the 3rd column). The results in

the lines corresponding to i = 5 here are not reliable, due to very large cutoff effects resulting in

this case from the use of M2-type RCs (see text).

MS (3GeV)

B1 B2 B3 B4 B5

0.51(2) 0.47(2) 0.78(4) 0.75(3) 0.60(3)

R1 R2 R3 R4 R5

1 -15.6(5) 5.3(3) 28.6(9) 7.8(4)

Table 23. Continuum limit results for Bi and Ri, renormalized in the MS scheme of ref. [15] at

3GeV.

RI-MOM (3GeV)

B1 B2 B3 B4 B5

0.51(2) 0.61(2) 1.02(5) 0.92(4) 0.73(5)

R1 R2 R3 R4 R5

1 -14.6(5) 5.0(3) 25.6(9) 6.9(4)

Table 24. Continuum limit results for Bi and Ri, renormalized in the RI-MOM scheme at 3GeV.
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Figure 11. Solid lines in panels (a) and (b) show the behaviour vs. the renormalized light quark

mass of the combined chiral and continuum fits (according to the polynomial formula (5.1) with

n = 2) of the R̃
′

i (see eq. (E.1)), with i = 2 and i = 3 respectively, renormalized in the MS scheme of

ref. [15] at 2GeV with the M2-type RCs. The full black line is the continuum limit curve. In panels

(c) and (d), solid lines, instead, show the combined chiral and continuum described by NLO-ChPT,

eq. (5.3) for i = 4 and i = 5, respectively. The full black line is the continuum limit curve. The

dashed black line represents the continuum limit curve in the case of the linear fit ansatz. Black

open circles and triangles stand for the results at the physical point corresponding to the polynomial

(panels (a) and (b)) and ChPT fit (panels (c) and (d)), and linear fit ansatz, respectively.
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Figure 12. Solid lines in panels (a) to (d) show the behaviour vs. the renormalized light quark

mass of the combined chiral and continuum fits (according to the ChPT fit formula (5.2)) for the

Bi parameters with i = 2, . . . , 5 respectively, renormalized in the MS scheme of ref. [15] at 2GeV

with the M2-type RCs. The full black line is the continuum limit curve (5.1). The dashed black

line represents the continuum limit curve in the case of the linear fit ansatz. Black open circles and

triangles stand for the results at the physical point corresponding to the ChPT fit and linear fit

ansatz, respectively.
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