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1 Introduction

Entanglement entropy is a unifying theme in many different areas of theoretical physics

today. In relativistic field theories, certain special kinds of entanglement entropy show

monotonicity properties under renormalization group flow [1, 2]. For conformal field the-

ories in (1 + 1)-dimensions, numerical computation of the entanglement entropy provides

a rapid way to calculate the central charge c. In the context of condensed matter physics,

entanglement entropy can detect exotic phase transitions for systems lacking a local order

parameter. The Ryu-Takayanagi proposal [3, 4] for computing the entanglement entropy

holographically connects this circle of ideas to general relativity and string theory via the

AdS/CFT correspondence [5–7]. See refs. [8–12] for reviews.

Recall the entanglement entropy is defined from a reduced density matrix ρA. We

start by partitioning the Hilbert space into pieces A and complement Ā = B. Typically A

corresponds to a spatial region. We form the reduced density matrix ρA = trBρ by tracing

over the degrees of freedom in B. Finally, the entanglement entropy is defined to be

S ≡ −tr ρA log ρA . (1.1)
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Related quantities are the Rényi entropies

Sn =
1

1− n
log tr (ρA)n . (1.2)

Note that the entanglement entropy can be determined from the limit S = limn→1 Sn.

Given entanglement entropy’s prominent role, it is surprisingly difficult to compute,

even for free field theories in (1+1)-dimensions. In this paper, we present some new results

for the free, massive, Dirac fermion in (1 + 1)-dimensions. We are particularly interested

in thermal and finite size corrections to the entanglement entropy, and so we place our

massive fermion on a torus.1 We allow for a nonzero chemical potential as well.

Before proceeding further, let us briefly review the known results for the free fermion.

Consider a massless Dirac fermion on the real line where the region A consists of p intervals

whose endpoints are described by the pairs of numbers (xa, ya), a = 1, . . . , p. In this case,

the entanglement entropy takes the form [14]2

S =
1

3
log

∣∣∣∣
∏
a,b(xa − yb)

εp
∏
a<b(xa − xb)(ya − yb)

∣∣∣∣+ c0 , (1.3)

where ε is a UV cutoff and c0 is a cutoff dependent constant. Given that the fermion

is massless, we can use conformal symmetry to map the plane to a cylinder with either

time or space compactified [15]. In the first case, we make the replacement (x − y) →
sinhπT (x − y) where T is the temperature (see also ref. [16]). In the second case, we

instead send (x− y)→ sinπ(x− y)/L where L is the circumference of the spatial circle.

If we turn on a mass m > 0, we lose conformal symmetry, and the computations get

correspondingly more difficult. For the fermion on the real line at zero temperature and

a single interval, the entanglement entropy can be expressed in terms of a solution to the

Painlevé V equation [14]. While in general only a numerical solution to the differential

equation is available, one can find small and large mass expansions. For small mass, the

leading log result is

S =
1

3
log

`

ε
− 1

6
(m` logm`)2 +O((m`)2 logm`) . (1.4)

At large mass, there is instead exponential suppression:3

S ∼ 1

8

√
π

m`
e−2m` . (1.5)

For multiple intervals, ref. [19] provides a small mass expansion. The leading log correction

is instead −1
6(m`t logmε)2 where `t is the total length of all of the intervals in A.

This paper contains two principal results. The first is a computation of the Rényi

entropies for a region A consisting of multiple intervals where both 1/T and L are kept

1A prequel [13] to this paper considered the free massive scalar on a torus; the two papers can be read

independently.
2See also ref. [15].
3See also refs. [17, 18].
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finite, the chemical potential µ can be different from zero, but m = 0. Previously, only

the single interval Rényi entropy was available [20, 21]. We compute the entanglement

entropy from the Rényi entropies by analytic continuation. While the Rényi entropies are

expressed compactly in terms of elliptic theta functions, our entanglement entropy is given

as an infinite sum. In the limit where L→∞ or T → 0, only the first few terms in the sum

contribute, and we recover the cylinder version of eq. (1.3). However, there is a subtlety in

the T → 0 limit that we will return to shortly.

The second principal result in this paper is a computation of the leading small mass

correction to the entanglement entropy when both 1/T and L are finite. The correc-

tion is obtained using the equivalence of the massive Dirac fermion to the sine-Gordon

model [22, 23]. The result is expressed as a double integral over a product of elliptic theta

functions. We are able to perform the double integral numerically and match the result

to a numerical lattice computation of the entanglement entropy. We can also perform the

integral in the limit 1/T, L→∞ where we recover the multi-interval version of the leading

log correction (1.4).

We have found several interesting features of the entanglement entropy in the small

mass and low temperature regime. The first is that the limits m → 0 and T → 0 of

the entanglement entropy do not commute when there is ground state degeneracy. In

particular, when the massless Dirac fermions have periodic boundary conditions around

the circle, the ground state of the system is four-fold degenerate. If we first set m = 0 and

then take T → 0, the system is not in a pure state. However, if we instead send T → 0

and then take m→ 0, the system will be pure. For pure states, the entanglement entropy

of a region and its complement must be the same, S(A) = S(Ā). For example, consider

the single interval case, ` = x − y, of eq. (1.3) where we have conformally mapped to the

cylinder (x− y)→ sinπ(x− y)/L. Then the entanglement entropy takes the form

S =
1

3
log

(
L

πε
sin

π`

L

)
+ c0 , (1.6)

which clearly satisfies S(`) = S(L− `). If instead we take m→ 0 first, we find a correction

to eq. (1.6) that reflects the ground state degeneracy. There is a similar correction in the

multi-interval case.

For Dirac fermions with antiperiodic boundary conditions, there is a unique ground

state. The mass gap to the first excited state is mgap = π/L. In this case, we can examine

the corrections to the entanglement entropy in the low temperature limit T � π/L. The

prequel [13] to this paper, based on an investigation of the massive (1+1)-dimensional

scalar, conjectured that such corrections should be exponentially suppressed. Indeed, we

are able to confirm this conjecture for the antiperiodic fermions:

S(T )− S(0) ∼ e−mgap/T . (1.7)

Moreover, our result for the Rényi entropies allows us to determine the coefficient in front

of the exponential factor. For the periodic fermions with m > 0, we find similar behavior,

but in this case, our results come from a numerical lattice computation.
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The Lagrangian density for a Dirac fermion in what would be mostly minus signature

for the metric if we had more than one spatial direction is

LDF = Ψ̄(iγµ∂µ −m)Ψ . (1.8)

Our conventions for the gamma matrices are that {γµ, γν} = 2ηµν = 2(+−). We define

Ψ̄ ≡ Ψ†γ0. We choose gamma matrices γ0 = σ1 and γ1 = −iσ2.

2 Bosonization and conformal field theory

Following [14], we consider the entanglement entropy of a free Dirac fermion on a torus

with multiple intervals (ua, va) (a = 1, . . . , p). Instead of having a single field on the n-

covering space, we introduce n decoupled fields Ψ̃k (k = −n−1
2 , · · · , n−1

2 ) living on a single

torus. They are multivalued around the branch points ua, va around which they get phases

ei
2πk
n and e−i

2πk
n , respectively. Here we define the single-valued field Ψk by introducing an

external gauge field Ψ̃k(x) = e
i
∫ x
x0
dx′µAkµ(x′)

Ψk(x). It follows that the Lagrangian is given by

Lk = iΨ̄kγµ(∂µ + iAkµ)Ψk −mΨ̄kΨk . (2.1)

The gauge field is almost pure gauge except at the branch points where delta function

singularities are necessary to recover the correct phases of the multivalued fields

εµν∂νAkµ(x) =
2πk

n

p∑
a=1

[
δ(2)(x− ua)− δ(2)(x− va)

]
. (2.2)

The partition function is then obtained in a factorized form

Z[n] =

n−1
2∏

k=−n−1
2

Zk , (2.3)

where Zk is the partition function of the k-th fermion coupled to the external gauge field Akµ

Zk =
〈
ei

∫
Akµj

µ
k d

2x
〉
, (2.4)

with the current jµk = Ψ̄kγµΨk.

In (1 + 1)-dimensions, one can describe fermions in terms of non-local operators of

scalars. The current is mapped to the derivative of a scalar field

jµk →
1

2π
εµν∂νφk , (2.5)

and the Lagrangian of the k-th fermion becomes that of k-th real free massless scalar field φ:

Lk = 1
8π∂µφk∂

µφk. It follows from (2.4) and (2.5) that Zk can be written as the correlation

function of the vertex operators

Zk =

〈 p∏
a=1

Vk(ua)V−k(va)

〉
, (2.6)

where the vertex operator Vk is defined as Vk(x) = e−i
k
n
φk(x).
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ν sector (ν1, ν2)

1 (R,R) (0, 0)

2 (R,NS)
(
0, 1

2

)
3 (NS,NS)

(
1
2 ,

1
2

)
4 (NS,R)

(
1
2 , 0
)

Table 1. Conventions for fermion boundary conditions.

The scalar field is a compactified boson with radius R = 2 so as to reproduce the

partition function of a Dirac fermion on a torus.4 We have used the bosonization technique

without specifying the spin structure of the fermion on a torus. We shall be more careful to

distinguish the spin structures in the following. The torus is specified by two periods which

we take as 1 and τ = iβ where β = 1/(TL) is the dimensionless inverse temperature.5

Let z be a holomorphic coordinate on the torus; then it has the periodicity z ∼ z + 1

and z ∼ z + τ . The holomorphic part of the fermion on the torus satisfies four possible

boundary conditions

ψ(z + 1) = e2iπν1ψ(z) , ψ(z + τ) = e2iπν2ψ(z) , (2.7)

where ν1 and ν2 take 0 or 1
2 . The anti-holomorphic part satisfies the same boundary con-

ditions as the holomorphic part. We denote the ν = (ν1, ν2) sector where ν = 1, 2, 3, 4 cor-

respond to (0, 0), (0, 1/2), (1/2, 1/2), (1/2, 0), respectively (see table 1). The corresponding

partition function Zν is given by

Zν =
1

2

∣∣∣∣ϑν(0|τ)

η(τ)

∣∣∣∣2 . (2.8)

Corresponding to the sector ν, we can find a boson whose partition function agrees with

Zν in the fermionic theory. The correlation function of the vertex operators on the torus

in the ν sector is given in ref. [24]

〈Oe1(z1, z̄1) · · · OeN (zN , z̄N )〉ν =
∏
i<j

∣∣∣∣ ∂zϑ1(0|τ)

ϑ(zj − zi|τ)

∣∣∣∣−
eiej
2

∣∣∣∣∣ϑν(
∑
i eizi
2 |τ)

ϑν(0|τ)

∣∣∣∣∣
2

, (2.9)

where R = 2 and Oe is a vertex operator defined by Oe(z, z̄) = ei
e
2
φ(z,z̄). It follows from

this formula that

Zk,ν =

∣∣∣∣∣
∏
a<b ϑ1(ua−ub|τ)ϑ1(va−vb|τ)∏

a,b ϑ1(ua − vb|τ)
· (ε ∂zϑ1(0|τ))p

∣∣∣∣∣
2k2

n2

·

∣∣∣∣∣ϑν
(
k
n

∑
a(ua−va)|τ

)
ϑν(0|τ)

∣∣∣∣∣
2

, (2.10)

where we denote the partition function of the k-th fermion in the ν sector by Zk,ν . We

normalize the partition function such that Zk,ν = 1 when there are no branch points. Since

4In our conventions, R =
√

2 is the self-dual radius.
5We rescale the spacetime coordinates by L.
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the theta function behaves as ϑ1(z|τ) ∼ z in the small z limit, we put the UV cutoff ε

to split the coincident points.6 Finally the total partition function (2.3) in the ν sector is

obtained as

logZν [n] =
n2 − 1

6n
log

∣∣∣∣∣
∏
a<b ϑ1(ua − ub|τ)ϑ1(va − vb|τ)∏

a,b ϑ1(ua − vb|τ)
· (ε ∂zϑ1(0|τ))p

∣∣∣∣∣
+

n−1
2∑

k=−n−1
2

2 log

∣∣∣∣∣ϑν
(
k
n

∑
a(ua − va)|τ

)
ϑν(0|τ)

∣∣∣∣∣ . (2.11)

The Rényi entropy has the following form

S(ν)
n =

1

1− n
(logZν [n]− n logZν [1])

= Sn,0 + S
(ν)
n,1 . (2.12)

Here the first term is universal,

Sn,0 = −n+ 1

6n
log

∣∣∣∣∣
∏
a<b ϑ1(ua − ub|τ)ϑ1(va − vb|τ)∏

a,b ϑ1(ua − vb|τ)
· (ε ∂zϑ1(0|τ))p

∣∣∣∣∣ , (2.13)

and the second depends on the spin structure,

S
(ν)
n,1 =

2

1− n

n−1
2∑

k=−n−1
2

log

∣∣∣∣∣ϑν
(
k
n

∑
a(ua − va)|τ

)
ϑν(0|τ)

∣∣∣∣∣ . (2.14)

Note that the Rényi entropies in the ν = 1 sector are divergent because of the θ1(0|τ)

inside the logarithm in S
(1)
n,1. We will have little to say about the massless ν = 1 sector in

what follows.

2.1 Adding chemical potential

In Lorentzian signature, a chemical potential is equivalent to introducing a constant time-

like component of the vector potential At = µ. In Euclidean signature, the chemical

potential becomes pure imaginary, AtE = iµ. These considerations suggest that we can

understand the dependence of entanglement entropy on chemical potential by thinking

about flat gauge connections on the torus.

Let the vector potential be Ak = at dtE + ax dx + . . . where at and ax are constant

and the ellipsis denotes terms responsible for the twisted boundary conditions around ua
and vb. Note that at and ax are defined only up to gauge transformations which shift

Ak → Ak + 2πn( 1
βdtE + dx) where n is an integer. Such a flat connection contributes to

the partition function through eq. (2.4).

In the bosonized picture, the periodic scalar has boundary conditions along the thermal

and spatial circles that are characterized by two winding numbers (w,w′):

φ(z + 1) = φ(z) + 2πRw , φ(z + τ) = φ(z) + 2πRw′ . (2.15)

6Here ε is dimensionless. The dimensionful UV cutoff is εL.
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The expectation value of the vertex operators is then computed by summing those over

the topological sectors:〈∏
j

Oej (zj , z̄j)
〉

=
∑

w,w′∈Z

〈∏
j

Oej (zj , z̄j)
〉∣∣∣∣

(w,w′)

e2i(βatw−axw′) . (2.16)

When τ = iβ, the (w,w′) sector is related to the (0, 0) sector (see [24]):〈∏
j

Oej (zj , z̄j)
〉∣∣∣∣

(w,w′)

=

〈∏
j

Oej (zj , z̄j)
〉∣∣∣∣

(0,0)

exp

[
2πi

∑
j

ej

(
Im(zj)

β
w′ + Re(zj)w

)]
.

(2.17)

From this result, we see that the effect of the flat gauge connection can be incorporated in

the correlation function by making the shift

∑
j

ej
2
zj →

∑
j

ej
2
zj +

β

2π
(at − iax) (2.18)

in the ν dependent portion of the correlation function.

Alternately, through the relation Ψ̃k(x) = e
i
∫ x
x0
dx′µAkµ(x′)

Ψk(x), we can trade the flat

gauge connection for a shift in boundary conditions. From this expression, one may make

the identifications ax = ±2πν1 and at = ±2πν2/β. Indeed, in eq. (2.9), we can rewrite the

ν dependent term with the use of the formulae (A.9) in appendix A as∣∣∣∣∣∣
ϑν

(∑
i eizi
2 |τ

)
ϑν(0|τ)

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣
ϑ1

(∑
i eizi
2 − ν1τ − ν2|τ

)
ϑ1(−ν1τ − ν2|τ)

∣∣∣∣∣∣
2

,

=

∣∣∣∣∣∣ϑ1(
∑
i eizi
2 + β

2π (at − iax)|τ)

ϑ1

(
β
2π (at − iax)|τ

)
∣∣∣∣∣∣
2

. (2.19)

To match the shift (2.18), we made the sign choices ax = 2πν1 and at = −2πν2/β.

Introducing a chemical potential, by analytic continuation, is equivalent to introducing

an imaginary at = iµ. From the structure of eq. (2.18), it is clear that adding a chemical

potential is also equivalent to introducing a real ax. This second equivalence makes it clear

that the effect of chemical potential must be periodic with period 2π. Restoring dimensions,

we see that the periodicity 2π/L is precisely the energy level spacing on the torus.

From eq. (2.19), one then obtains the partition function of the k-th fermion in the ν

sector with chemical potential

Zk,ν =

∣∣∣∣∣
∏
a<b ϑ1(ua − ub|iβ)ϑ1(va − vb|iβ)∏

a,b ϑ1(ua − vb|iβ)
· (ε ∂zϑ1(0|iβ))p

∣∣∣∣∣
2k2

n2

·

∣∣∣∣∣ϑν
(
k
n
`t
L + iβµ

2π |iβ
)

ϑν

(
iβµ
2π |iβ

) ∣∣∣∣∣
2

,

(2.20)
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where `t = L
∑

a(va − ua) is the total width of the intervals. The universal part of the

Rényi entropy remains the same (2.13) and the part depending on the spin structure (2.14)

is altered to

S
(ν)
n,1 =

2

1− n

n−1
2∑

k=−n−1
2

log

∣∣∣∣∣ϑν
(
k
n
`t
L + iβµ

2π |iβ
)

ϑν

(
iβµ
2π |iβ

) ∣∣∣∣∣ . (2.21)

Our result reduces to that of ref. [21] for one interval.

2.2 Low temperature limit

In this section, we consider a series expansion of S
(ν)
n in the low temperature limit, τ =

iβ → i∞. We take advantage of the product representation of the theta functions (see

appendix B). The universal term Sn,0 on the right hand side of (2.12) becomes

Sn,0 = −n+ 1

6n
log

∣∣∣∣∣
∏
a<b sinπ(ua − ub) sinπ(va − vb)∏

a,b sinπ(ua − vb)
(πε)p

∣∣∣∣∣+O(e−2πβ) , (2.22)

in this limit. Note the entanglement entropy contribution can be straightforwardly recov-

ered by setting n = 1, which in turn agrees with the spatial cylinder version of eq. (1.3)

reviewed in the introduction.

However, to claim complete agreement with eq. (1.3), we need to check that S
(ν)
n,1

does not contribute at zero temperature. Consider low temperature expansions of S
(ν)
n,1

for the spin structures ν = 2 and 3 corresponding to thermal boundary conditions. (The

non-thermal spin structures ν = 1 and 4 are given in appendix B.) For ν = 2, defining

r ≡
∑

a(va − ua), we find that

S
(2)
n,1 = δs(n, r) + s2(n, r) , (2.23)

where

δs(n, r) =
2

1− n

n−1
2∑

k=−n−1
2

log

∣∣∣∣cos
πkr

n

∣∣∣∣ , (2.24)

and

s2(n, r) =
4

1− n

∞∑
j=1

(−1)j+1

j

1

e2πβj − 1

 sin(πjr)

sin
(
πjr
n

) − n
 . (2.25)

For ν = 3, we find instead that

S
(3)
n,1 =

2

1− n

∞∑
j=1

(−1)j+1

j sinhπβj

 sin(πjr)

sin
(
πjr
n

) − n
 . (2.26)

Thus for spatially antiperiodic fermions, eq. (2.22) is the whole story at zero temperature,

while spatially periodic fermions get an extra correction δs(n, r).

– 8 –
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To investigate the entanglement entropy, we take the n→ 1 limit. Much of this limit

is straightforward:

lim
n→1

s2(n, r) = 2

∞∑
j=1

(−1)j+1

j

1− πjr cot(πjr)

sinhπβj
e−πβj , (2.27)

lim
n→1

S
(3)
n,1 = 2

∞∑
j=1

(−1)j+1

j

1− πjr cot(πjr)

sinhπβj
. (2.28)

These contributions vanish exponentially in the β → ∞ limit. Our analysis of δs(n, r) is

incomplete. We find that

δs(n, 1) = 2 ln 2 , (2.29)

for all n, consistent with the fact that spatially periodic Dirac fermions have a ground

state degeneracy equal to four. For small r, we were able to obtain an asymptotic Euler-

Maclaurin type expansion:

lim
n→1

δs(n, r) = 2

∞∑
j=1

(22j − 1)

j
B2j ζ(2j) r2j , (2.30)

where Bj is a Bernoulli number and ζ(x) is the Riemann zeta function. Unfortunately, this

expression is not Borel summable.

2.3 High temperature expansion

To investigate high temperature behavior, we use the modular transformation rules for the

theta functions:

ϑ1(z|τ) = −(−iτ)−1/2e−πiz
2/τϑ1(z/τ |−1/τ) . (2.31)

The modular transformations of the other theta functions are given in appendix A. The

asymptotic form of the theta function depends on the value of z in the small β limit:

ϑ1(z/τ |−1/τ) = −2i e
− π

4β sinh
πz

β
+O

(
e

3π
β

(z−3/4)
)
,

(
0 ≤ z ≤ 1

2

)
, (2.32)

where τ = iβ was used. For 1/2 ≤ z ≤ 1, one may use the periodicity of the theta function:

ϑ1(z/τ |−1/τ) = e
πi
τ

(2z−1)ϑ1((1− z)/τ |−1/τ) . (2.33)

When vp − u1 ≤ 1/2, the leading term of the universal part Sn,0 of the Rényi entropy can

be written

Sn,0 = −(1 + n)

6n

(
πr2

β
+ ln

∣∣∣∣∣
∏
a<b sinh π(ua−ub)

β sinh π(va−vb)
β∏

a,b sinh π(ua−vb)
β

(
πε

β

)p ∣∣∣∣∣
)

(2.34)

+O
(
e

2π
β

(vp−u1−1)
)
.
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For ν = 2 and 3, we find that

S
(ν)
n,1 =

(1 + n)

6n

πr2

β
− 2

1− n

∞∑
j=1

(−1)νj

j

1

sinh πj
β

(
sinh πjr

β

sinh πjr
nβ

− n

)
. (2.35)

The entanglement entropy limit is given by

lim
n→1

S
(ν)
n,1 =

πr2

3β
− 2

∞∑
j=1

(−1)νj

j

1− πjr
β coth

(
πjr
β

)
sinh πj

β

. (2.36)

Similar results for ν = 1 and 4 are given in appendix B.

Note that the leading πr2/β dependence cancels between Sn,0 and S
(ν)
n,1. To recover

the temporal cylinder version of eq. (1.3), we need to take β → 0 while keeping ua/β and

vb/β fixed.

2.4 Mutual information

The mutual Rényi information is an important measure of the entanglement between two

intervals. Given two intervals A and B of length `1 and `2 separated by `3 on a circle of

circumference L, the mutual Rényi information is

In(A,B) = Sn(A) + Sn(B)− Sn(A ∪B) . (2.37)

The definition makes clear that the mutual information is free of UV divergences, unlike

the entanglement entropy. Using eq. (2.12), the mutual Rényi information of two intervals

for a massless Dirac fermion on a circle at finite temperature becomes

In(A,B) =
n+ 1

6n
log

∣∣∣∣∣∣
ϑ1

(
`1+`3
L |τ

)
ϑ1

(
`2+`3
L |τ

)
ϑ1

(
`1+`2+`3

L |τ
)
ϑ1

(
`3
L |τ
)
∣∣∣∣∣∣

− 2

1− n

n−1
2∑

k=−n−1
2

log

∣∣∣∣∣∣
ϑν

(
k
n
`1+`2
L |τ

)
ϑν(0|τ)

ϑν

(
k
n
`1
L |τ
)
ϑν

(
k
n
`2
L |τ
)
∣∣∣∣∣∣ . (2.38)

The logarithmic plots of the mutual Rényi informations for n = 2 in the ν = 2, 3, 4

sectors are shown in figure 1. The mutual information is completely finite and positive. We

let the width of two intervals A and B be `1 = `2 = L/10 and plot the mutual information

with respect to the distance `3 between them. Since the two intervals are on a circle of

radius L, I2 is symmetric under `3 → L− `1− `2− `3 as is clear from the expression (2.38).

The plots for n ≥ 3 are qualitatively similar.

We can use the high and low temperature expansions of S
(ν)
n described above to get

a better understanding of the behavior of In. At large T , the theta functions can be

replaced by hyperbolic sine functions, as in the expansion (2.34). In the ν = 2 and 3 cases,

expanding the hyperbolic sines, for `3 < L/2 we find I2 ∼ e−2π`3T , while for `3 > L/2,

by symmetry, I2 ∼ e−2π(L−`1−`2−`3)T . The ν = 4 spin structure, however, develops an

order one contribution to the entanglement entropy at high T , as can be seen from the

– 10 –
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Figure 1. The mutual Rényi informations of two intervals A and B of width `1 = `2 = L/10 with

n = 2 in the ν = 2 [Left], ν = 3 [Middle] and ν = 4 [Right] sectors. `3 is the distance between the

two intervals. The blue dashed and orange solid curves are for β = 10, 1/5, respectively.

expansion (B.7). At low T , the theta functions are replaced by sine functions, as in the

expansion (2.22). However, for ν = 2, there is an extra contribution from δs(n, r) because

of the ground state degeneracy.

Before closing this section, we compare our findings to the holographic computa-

tion [25, 26] where the mutual information undergoes a phase transition as the distance

between the two intervals increases, i.e., I(A,B) 6= 0 for small `3 while I(A,B) = 0 for

large `3. In our case, the finite volume and finite number of degrees of freedom prevent a

phase transition from happening. However, for large temperatures the mutual information

exponentially falls off as `3 is increased for the “physical” (R,NS) and (NS,NS) fermions.

3 Bosonization and the sine-Gordon model

We used the bosonization technique to compute the entanglement entropy of a free massless

Dirac fermion. Even after turning on the mass, one can still employ the bosonization from

massive Dirac fermions to the sine-Gordon model:

LSG =
1

8π
∂µφ∂

µφ+ λ cosφ , (3.1)

where λ is proportional to the mass of the Dirac fermion: λ = m
πεL [27, 28]. Then, the

leading correction of the partition function Zk,ν starts from the O(λ2) term due to the

charge conservation of vertex operators:

Zk,ν(m) = Zk,ν +
λ2

2

∫
d2xd2y

〈
cosφ(x) cosφ(y)

p∏
a=1

Vk(ua)V−k(va)

〉
ν

+O(λ4) . (3.2)

The integrand can be evaluated by using eq. (2.9) as follows:〈
cosφ(x) cosφ(y)

p∏
a=1

Vk(ua)V−k(va)

〉
ν

=
1

4

〈 p∏
a=1

Vk(ua)V−k(va)

〉
ν

[Ak,ν(x, y) +Ak,ν(y, x)] ,

(3.3)

where

Ak,ν(x, y) ≡

∣∣∣∣∣∣
ϑν

(
k
∑
a(va−ua)
n + x− y|τ

)
ϑν

(
k
∑
a(va−ua)
n |τ

) ε ∂zϑ1(0|τ)

ϑ1(y − x|τ)

∣∣∣∣∣∣
2

p∏
a=1

∣∣∣∣ϑ1(va − x|τ)ϑ1(ua − y|τ)

ϑ1(ua − x|τ)ϑ1(va − y|τ)

∣∣∣∣ 2kn .
(3.4)
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At leading order, the Rényi entropy is given by

S(ν)
n (m) = S(ν)

n (0) + Cnm
2 +O(m4) , (3.5)

where the coefficient Cn of m2 is defined by

Cn =
1

1− n
1

4π2(εL)2

∫
d2x d2y

n−1
2∑

k=−n−1
2

Ak,ν(x, y) . (3.6)

The four dimensional integral is too complicated to evaluate analytically and we shall

rely on a numerical computation after isolating and showing the trivial nature of the UV

divergence. Since 2k/n < 1, there are no poles at x, y = ua, va in the integrand Ak,ν(x, y).

A possible divergence comes from the point x = y where ϑ1(y−x|τ) ∼ y−x. Expanding the

remainder of eq. (3.4) and summing it over k, one obtains the following series around x = y:

n−1
2∑

k=−n−1
2

∣∣∣∣∣∣
ϑν

(
k
∑
a(va−ua)
n + x− y|τ

)
ϑν

(
k
∑
a(va−ua)
n

∣∣τ)
∣∣∣∣∣∣
2

p∏
a=1

∣∣∣∣ϑ1(va − x|τ)ϑ1(ua − y|τ)

ϑ1(ua − x|τ)ϑ1(va − y|τ)

∣∣∣∣ 2kn = (3.7)

1 +O((x− y)2, (x̄− ȳ)2, |x− y|2) .

Therefore, the singular part of the integrand is

n−1
2∑

k=−n−1
2

Ak,ν(x, y) =
ε2

|x− y|2
[
1 +O((x− y)2, (x̄− ȳ)2, |x− y|2)

]
. (3.8)

The integration measure gives a factor of |x− y| near x ∼ y, and we end up with a single

pole there. This single pole gives rise to the UV divergence after integration, but the

divergence is independent of the size of the intervals. Since we are interested in the physics

depending on the size, we will throw the divergence away and get a finite result in the end.

Figure 2 shows the result of a numerical integration of eq. (3.6) for one interval of width

v1 − u1 = `/L. We find good agreement with a lattice computation described in section 4.

The IR divergence is absent on a torus, but it appears in the flat spacetime limit. It

is worth looking into what happens in this case. The function Ak,ν(x, y) reduces to the

correlation function of the vertex operators on a flat space:7

Ak,ν(x, y) =
ε2

|y − x|2
p∏
a=1

∣∣∣∣(va − x)(ua − y)

(ua − x)(va − y)

∣∣∣∣ 2kn . (3.9)

The most divergent term will come from the region x, y ∼ Λ where Λ is the IR cut-off scale.

The expansion of Ak,ν(x, y) around large x and y is enough to compute the IR divergence:

n−1
2∑

k=−n−1
2

Ak,ν(x, y) =
ε2

|y − x|2

[
n+

n2 − 1

12n

[
|x|2(y + ȳ)− |y|2(x+ x̄)

]2
2|x|4|y|4

`2t + · · ·

]
, (3.10)

7The variables x, y, ua, vb and ε are dimensionless on a torus, but they have dimensions of length in the

flat spacetime limit. We will use the same symbols for simplicity.
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Figure 2. The ` dependence of the O(m2) correction to the n = 2 Rényi entropy for ν = 2. The

curves are produced by numerical integration of (3.6). The points are from a lattice computation.

From top to bottom, β = 1/2, 1, and 2.

where `t =
∑

a(va − ua) is the total length of the intervals. The leading term is an `t
independent IR divergence, and we drop it below. Performing the integral over x and y,

we obtain

Sn(m) = Sn(0)− 1 + n

12n
(m`t)

2 log2 Λ + · · · . (3.11)

This small mass expansion is strikingly similar to the result (1.4) of refs. [14, 19] reviewed

in the introduction.

We are working in a limit m � 1/L, T , and our IR cutoff is naively given by the size

of the torus L and β. If we can commute the order of limits, we may identify the IR cutoff

instead with the inverse mass of the Dirac fermion, Λ = 1/m, and then our result (3.11)

agrees with (1.4). We will see below that the limits commute for the ν = 3 spin structure

but not for ν = 2. In the ν = 2 case, there is an extra contribution from δs(n, r) in

eq. (2.23) that needs to be removed when the limits are exchanged.

4 Massive fermion on the lattice

The Hamiltonian of a Dirac fermion on a circle of radius L can be derived from the corre-

sponding Lagrangian density (1.8):

H =

∫ L

0
dxΨ†(−iγ0γ1∂x +mγ0)Ψ . (4.1)

To put the fermion on the lattice, we discretize the circle into N points with a lattice

separation ε = L/N

H =
N∑
j=1

[
− i

2
(Ψ†jσ

3Ψj+1 −Ψ†j+1σ
3Ψj) +mεΨ†jσ

1Ψj

]
. (4.2)
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The canonical anti-commutation relations are {Ψj,α,Ψ
†
k,β} = δjk δαβ, and α, β are the

spinor indices. To diagonalize the Hamiltonian, we expand the Dirac field as follows:

Ψj =
1√
L

N−ν1∑
a=1−ν1

1√
2ω(θa)

[
b(θa)ua e

−iθaj + d†(θa) va e
iθaj
]
. (4.3)

To satisfy periodic (ν1 = 0) or antiperiodic (ν1 = 1/2) boundary conditions around the

circle, we set θa = 2πa
N . The energy ω(θa) is defined by

ω(θa)
2 = m2 +

sin2 θa
ε2

. (4.4)

This dispersion relation exhibits the classic doubling problem of fermions on the lattice.

Our concern with finite size effects, however, introduces an additional subtlety. If we take

N even, then we get two copies of either a ν1 = 0 or a ν1 = 1/2 fermion. If we take N odd,

then the second copy has the continuum spectrum with spatial periodicity opposite that

indicated by ν1. Numerically, we have observed that the entropy in this case corresponds

to a ν1 = 0 plus a ν1 = 1/2 fermion. To keep things simple, we will assume N is even from

now on and then divide our entropies by two when comparing with the analytic results

from earlier in the paper.

The ua and va are normalized such that8 {b(θa), b†(θb)} = δab and {d(θa), d
†(θb)} = δab.

The Hamiltonian is diagonalized as9

H =

N−ν1∑
a=1−ν1

ω(θa)
[
b†(θa)b(θa) + d†(θa)d(θa)

]
. (4.7)

In the lattice model, the fermion number operator is given by

F =

N−ν1∑
a=1−ν1

(
b†(θa)b(θa)− d†(θa)d(θa)

)
. (4.8)

8The vectors ua and va satisfy the discretized Dirac equations(
ω(θa)γ0 +

sin θa
ε

γ1 −m
)
ua = 0 ,(

ω(θa)γ0 +
sin θa
ε

γ1 +m

)
va = 0 . (4.5)

We demand that the ua and va satisfy the normalization and orthogonality conditions

u†aua = v†ava = 2ω(θa) ,

u†avN−a = v†auN−a = 0 . (4.6)

One can explicitly find the vectors satisfying (4.5) and (4.6)

ua =

(√
ω(θa)− sin θa

ε
,

√
ω(θa) +

sin θa
ε

)
,

va =

(
−
√
ω(θa)− sin θa

ε
,

√
ω(θa) +

sin θa
ε

)
.

9We remove the infinite constant coming from the commutation of d and d†. In other words, we fill out

the Dirac sea.
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Introducing a chemical potential µ conjugate to F , the density matrix can be written

in terms of H in the standard way:

ρ =
(−1)(1−2ν2)F e−(H+µF )/T

tr[(−1)(1−2ν2)F e−(H+µF )/T ]
. (4.9)

We have introduced a factor of (−1)F to allow for spin structures periodic in the time

direction. Expectation values are defined as 〈X〉 ≡ tr(ρX). A short calculation yields the

two-point correlation function of two Ψ fields:

〈ΨjΨ
†
k〉 =

1

2L

N−ν1∑
a=1−ν1

eiθa(j−k)

[(
1 +

sinh(βµ)

cosh(βµ) + (−1)2ν2+1 cosh(βω(θa))

)

+

(
sin θa
ω(θa)ε

σ3 +
m

ω(θa)
σ1

)
sinh(βω(θa))

(−1)2ν2+1 cosh(βµ) + cosh(βω(θa))

]
. (4.10)

Note that the argument in section 2.1 implies the ν2 = 0 sector is obtained from the

ν2 = 1/2 sector by shifting µ→ µ− iπ/β. The form of the two-point function is consistent

with this observation.

It is possible to calculate Rényi entropies from the matrix C(ν) = ε〈ΨΨ†〉. Consider

a region A, which may consist of many disjoint subintervals of the circle, and the corre-

sponding reduced density matrix ρA. We restrict C
(ν)
jk such that j and k run only over sites

in A. Call the restricted two-point function C
(ν)
A . Remarkably, for a free spinor field, the

reduced density matrix ρA ∼ e−HA can be written in terms of a free particle Hamiltonian

HA =
∑

k εkb
†
kbk (see for example [9, 10]). Moreover, there is a one-to-one correspondence

between eigenvalues λj of CA and the energies εj :

λj =
1

1− (−1)2ν2eεj
. (4.11)

Given this relation, it is a short exercise to demonstrate that the Rényi entropies are

S(ν)
n =

1

1− n
tr log

[
(1− C(ν)

A )n + (C
(ν)
A )n

]
, (4.12)

where C
(ν)
A is the restricted two-point function.

Before proceeding, we make two quick observations about the eigenvalue distribution of

C
(ν)
A . From the trace of C

(ν)
A , we see that when the chemical potential vanishes,

∑
j λj = n

where n is the total length of A. Next, from the relation (4.11), it is clear that in the

thermal case (ν2 = 1/2), λj is bounded between zero and one. Provided 0 ≤ λj ≤ 1, we

can take a sensible n→ 1 limit of (4.12) and derive the entanglement entropy

S(ν) = −tr
[
(1− C(ν)

A ) log(1− C(ν)
A ) + C

(ν)
A logC

(ν)
A

]
. (4.13)

4.1 Comparison to the analytic results

In section 2, using bosonization, we obtained analytic formulae for the Rényi entropies

of a massless Dirac fermion. To gain confidence in our methods, we compare the lattice
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Figure 3. The Rényi entropy for n = 2 of two intervals of width `1 = `2 = L/10 whose distance

is `3. The ν = 2 [Left], ν = 3 [Middle] and ν = 4 [Right] sectors are depicted. The curves are

analytic and the dots are numerical. The blue dotted and orange solid curves are for β = 1/5 and

10, respectively.
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Figure 4. The Rényi entropy for n = 2 of two intervals of width `1 = L/10 and `2. The distance

between the intervals is fixed to `3 = L/10 and `2 is varied. The ν = 2 [Left], ν = 3 [Middle] and

ν = 4 [Right] sectors are depicted. The curves are analytic and the dots are numerical. The orange

solid, blue dotted and black dashed curves are for β = 1/10, 1/5 and 1.

calculation for a massless fermion with these analytic formulae. Consider the Rényi entropy

for n = 2 of two intervals of width `1 and `2 separated by a distance of `3. In figure 3,

we plot the entropies in the ν = 2, 3, 4 sectors by changing the distance `3 with fixed

`1 = `2 = L/10. The blue (dotted) and orange (solid) curves are the analytic results for

β = 1/5 and 10, respectively. The dots are plotted using the lattice computation, which

nicely agree with the analytic curves up to a constant. Since the Rényi entropy is always

UV divergent, a constant shift is allowed to match the analytic and numerical results. The

other case is studied in figure 4 by varying `2 with fixed `1 = `3 = L/10. The analytic and

numerical results perfectly fit each other for various temperatures.

4.2 Small mass vs. small temperature

An interesting feature of the (R,NS) fermion is that the T → 0 and m → 0 limits do

not commute. In the zero mass and zero chemical potential limit, the two point function

becomes

lim
m→0

C
(ν)
jk =

1

2N

N−ν1∑
a=1−ν1

eiθa(j−k)

[
1 + σ3 sgn(sin θa)

(
tanh

ω(θa)

2T

)4ν2−1
]
. (4.14)
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If we further take the zero T limit of (4.14) for the (R,NS) and (NS,NS) fermions, we

obtain respectively

lim
T→0

lim
m→0

C
(2)
jk =

1

2
δjk + (1− δjk)

iσ3

N

∣∣∣∣sin π(j − k)

2

∣∣∣∣ cot
π(j − k)

N
, (4.15)

lim
T→0

lim
m→0

C
(3)
jk =

1

2
δjk + (1− δjk)

iσ3

N

∣∣∣∣sin π(j − k)

2

∣∣∣∣ csc
π(j − k)

N
. (4.16)

Because the (NS,NS) theory is gapped even for m = 0, we find

lim
T→0

lim
m→0

C
(3)
jk = lim

m→0
lim
T→0

C
(3)
jk .

However, in the (R,NS) case, we find instead that

lim
m→0

lim
T→0

C
(2)
jk = lim

T→0
lim
m→0

C
(2)
jk +

σ1

N

∣∣∣∣cos
π(j − k)

2

∣∣∣∣ . (4.17)

Let us restrict to the case where A is a single interval of length n. It turns out

that limm→0 limT→0C
(2)
jk ≡ CR and limT→0 limm→0C

(3)
jk ≡ CNS have the same eigenvalue

spectrum, provided n is even. There is a similarity transform which relates the two

CNS ·M = M · CR , (4.18)

where

Mjk = δjk cos
(j − 1)π

N
− δn+1−j,k σ2 sin

(j − 1)π

N
, (4.19)

1 ≤ j, k ≤ n. (For odd n, the eigenvalue spectra must then approach each other in the large

N limit by continuity.) This equivalence means we can compute [limT→0, limm→0]S(A) for

the (R,NS) fermion using our bosonization results:[
lim
T→0

, lim
m→0

]
S(2)
n (m,T ) = lim

T→0
(S(2)
n (0, T )− S(3)

n (0, T ))

= lim
T→0

(S
(2)
n,1 − S

(3)
n,1)

= δs(n, r) . (4.20)

For the entanglement entropy, we find that [limT→0, limm→0]S(2)(m,T ) = δs(1, r). The

non-commuting nature of these limits is shown in figure 5. Numerics suggest that the

result (4.20) holds for multiple intervals as well.

4.3 Small mass and temperature

For theories with a mass gap mgap, ref. [13] conjectured that the temperature depen-

dent portion of the entanglement entropy should have an exponential scaling dependence

e−mgap/T in the range mgap � T . More precisely, given an interval A and its complement

B, the conjecture posits that

SA(T )− SB(T ) ∼ SA(T )− SA(0) ∼ e−mgap/T .

In this section, we provide further evidence for this conjecture.
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Figure 5. The single interval Rényi entropy for ν = 2: n = 2 [Left] and n = 3 [Right]. In both

cases, the limT→0 limm→0 curve (orange) lies above and the limm→0 limT→0 curve (blue) lies below.

The points were computed using the lattice.
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Figure 6. The entanglement entropy difference δS = S(T ) − S(0) for (R,NS) fermions: [Left]

mL = 1/10; [Right] mL = 10. The points are computed from a lattice, and the lines are fits with

slope -1. From bottom to top, `/L = 1/10, 3/10, 1/2, 7/10.

For the ν1 = 1/2 fermions, the ground state is gapped with mgap = π/L. Reassuringly,

our low temperature expansions (2.28) and (B.4) for limn→1 S
(3)
n,1 and limn→1 S

(4)
n,1 yield

precisely such scaling behavior, and we get the prefactor:

SA(T )− SA(0) = ±4(1− πr cot(πr))e−π/LT +O(e−2π/LT ) , (4.21)

SA(T )− SB(T ) = ∓4π cot(πr)e−π/LT +O(e−2π/LT ) , (4.22)

where the top choice of sign corresponds to ν = 3 and the bottom to ν = 4. The region A

is taken to have size rL. Similar scaling behavior holds for the Rényi entropies and can be

computed from eqs. (2.26) and (B.2).

We also investigate the scaling behavior for spatially periodic ν1 = 0 fermions where

we introduce an m 6= 0 by hand. In this case, we have no analytic results to offer, but

we can use the lattice to calculate the entanglement entropy numerically. We compute

δS = S(T )−S(0) for the (R,NS) fermion and a single interval. Figure 6 clearly shows e−m/T

scaling in the region m� T , both for small mass mL = 1/10 and large mass mL = 10.
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5 Discussion

Our bosonization method of computing the Rényi entropy for a massive Dirac fermion is

perturbative in the mass, and we would like to do better. As reviewed in the introduction,

in flat spacetime, ref. [14] obtained a non-perturbative relation between the single interval

Rényi entropy and a solution to the Painlevé V equation. This non-perturbative relation

uses a result of ref. [29] for the sine-Gordon model. Similar arguments may be useful for

investigating the behavior of the massive fermion on a torus.

Another possible non-perturbative approach is to use the lattice. The two fermion

correlation function matrix C
(ν)
A that we derived above is Toeplitz. The Rényi entropy

can be expressed in terms of a contour integral over the characteristic polynomial of C
(ν)
A .

Mathematical techniques such as the Szegö limit theorem and further generalizations such

as the Fisher-Hartwig formula are available for taking such determinants. Indeed, such

techniques have already been used to study the XY model [30, 31] (see ref. [32] for the

Rényi entropies). Through a Jordan-Wigner transformation, the continuum limit of the

XY model can be related to nonrelativistic free fermions.

A field theory with a mass gap can be implemented geometrically by putting a gauge

theory on a compact space. Such field theories sometimes have holographic duals with AdS

geometries where the compact space is the conformal boundary [33]. Several authors have

studied holographic entanglement entropies in these backgrounds [34–36]. In the case of the

mutual information, for strip like regions, there is a “phase transition” where the entangle-

ment entropy is nonzero for two strips close together but vanishes once the strips become

sufficiently far apart. In our case, we do not expect to have a phase transition given that we

have a finite number of degrees of freedom and work in finite volume. Nevertheless, we do

see that the mutual information is exponentially suppressed for large separations and high

temperatures (at least for the “physical” ν = 2 and 3 spin sectors). In the case of tempera-

ture dependence of the entanglement entropy, holographic examples typically predict that

quantities such as SA(T )−SA(0) and SA(T )−SĀ(T ) vanish exactly when T � mgap. In our

case, we again see instead exponential suppression. Holographic theories are supposed to

describe strongly coupled large-N field theories and the large-N effect can drive the system

to a phase transition. Presumably, we would need 1/N corrections to see holographically

the exponential behavior observed in this paper. Perhaps these 1/N corrections could be

studied by introducing higher derivative corrections, additional saddle-points in the path

integral, or non-perturbative objects such as D-branes and orientifold planes.

Another interesting direction for future study is to introduce interactions between the

fermions. It is well known [22, 23] that the sine-Gordon model, for more general choice

of the interaction parameter λ, fermionizes to the Thirring model which has a quartic

interaction term. On the one hand, such a quartic interaction is not compatible with

the replica trick where we replaced a single fermion field on the n-covering space with n

decoupled fields living on a single torus. On the other, one could certainly use bosonization

to treat the quartic interaction perturbatively.
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A Theta function identities

ϑ1(z|τ) = 2eπiτ/4 sin(πz)

∞∏
m=1

(1− qm)(1− yqm)(1− y−1qm) , (A.1)

ϑ2(z|τ) = 2eπiτ/4 cos(πz)

∞∏
m=1

(1− qm)(1 + yqm)(1 + y−1qm) , (A.2)

ϑ3(z|τ) =
∞∏
m=1

(1− qm)(1 + yqm−1/2)(1 + y−1qm−1/2) , (A.3)

ϑ4(z|τ) =
∞∏
m=1

(1− qm)(1− yqm−1/2)(1− y−1qm−1/2) , (A.4)

where y = e2πiz and q = e2πiτ . We also have the S-duality relations

ϑ1(z|τ) = −(−iτ)−1/2e−πiz
2/τϑ1(z/τ | − 1/τ) , (A.5)

ϑ2(z|τ) = (−iτ)−1/2e−πiz
2/τϑ4(z/τ | − 1/τ) , (A.6)

ϑ3(z|τ) = (−iτ)−1/2e−πiz
2/τϑ3(z/τ | − 1/τ) , (A.7)

ϑ4(z|τ) = (−iτ)−1/2e−πiz
2/τϑ2(z/τ | − 1/τ) . (A.8)

The periodicities of the elliptic theta functions yield

ϑ2(z|τ) = −ϑ1(z − 1/2|τ) , (A.9)

ϑ3(z|τ) = −y−1/2q1/8ϑ1(z − 1/2− τ/2|τ) , (A.10)

ϑ4(z|τ) = iy−1/2q1/8ϑ1(z − τ/2|τ) . (A.11)

B Time periodic spin structures

In the ν = 1 sector, we regulate S
(1)
n,1 by introducing a small chemical potential µ � 1/β.

The large β expansions for ν = 1 and 4 are

S
(1)
n,1 =

2

1− n

n−1
2∑

k=−n−1
2

k 6=0

log

∣∣∣∣sin πkrn
∣∣∣∣+ 2 log

∣∣∣∣µβ2
∣∣∣∣

− 4

1− n

∞∑
j=1

1

j

1

e2πβj − 1

(
sin(πjr)

sin
(
πjr
n

) − n) , (B.1)
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S
(4)
n,1 = − 2

1− n

∞∑
j=1

1

j sinhπβj

 sin(πjr)

sin
(
πjr
n

) − n
 , (B.2)

lim
n→1

S
(1)
n,1 = lim

n→1

2

1− n

n−1
2∑

k=−n−1
2

k 6=0

log

∣∣∣∣sin πkrn
∣∣∣∣+ 2 log

∣∣∣∣µβ2
∣∣∣∣

− 4
∞∑
j=1

1

j

1

e2πβj − 1
(1− πjr cot(πjr)) , (B.3)

lim
n→1

S
(4)
n,1 = −2

∞∑
j=1

1

j

1− πjr cot(πjr)

sinhπβj
. (B.4)

The small β expansions for ν = 1 and 4 are

S
(1)
n,1 =

1 + n

6n

πr2

β
+

2

1− n

[ n−1
2∑

k=−n−1
2

k 6=0

log

∣∣∣∣sinh
πkr

nβ

∣∣∣∣+

− 2

∞∑
j=1

1

j

1

e2πj/β − 1

(
sinh

(
πjr
β

)
sinh

(
πjr
nβ

) − n)]+ 2 log
∣∣∣sin µ

2

∣∣∣ , (B.5)

lim
n→1

S
(1)
n,1 =

πr2

3β
− 4

∞∑
j=1

1

j

1

e2πj/β − 1

(
1− πjr

β
coth

(
πjr

β

))

+ lim
n→1

2

1− n

n−1
2∑

k=−n−1
2

k 6=0

log

∣∣∣∣sinh
πkr

nβ

∣∣∣∣+ 2 log
∣∣∣sin µ

2

∣∣∣ , (B.6)

S
(4)
n,1 =

1 + n

6n

πr2

β
+

2

1− n

[ n−1
2∑

k=−n−1
2

log

∣∣∣∣cosh
πkr

nβ

∣∣∣∣
+ 2

∞∑
j=1

(−1)j+1

j

1

e2πj/β − 1

(
sinh

(
πjr
β

)
sinh

(
πjr
nβ

) − n)] , (B.7)

lim
n→1

S
(4)
n,1 =

πr2

3β
+ 4

∞∑
j=1

(−1)j+1

j

1

e2πj/β − 1

(
1− πjr

β
coth

(
πjr

β

))

+ lim
n→1

2

1− n

n−1
2∑

k=−n−1
2

log

∣∣∣∣cosh
πkr

nβ

∣∣∣∣ . (B.8)
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