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Abstract: Dynamical evolution of thin shells composed by different kinds of degrees of

freedom collapsing within asymptotically AdS spaces is explored with the aim of investigat-

ing models of holographic thermalization of strongly coupled systems. From the quantum

field theory point of view this corresponds to considering different thermal quenches. We

carry out a general study of the thermalization time scale using different parameters and

space-time dimensions, by calculating renormalized space-like geodesic lengths and rect-

angular minimal area surfaces as extended probes of thermalization, which are dual to

two-point functions and rectangular Wilson loops. Different kinds of degrees of freedom

in the shell are described by their corresponding equations of state. We consider a scalar

field, as well as relativistic matter, a pressureless massive fluid and conformal matter, which

can be compared with the collapse of an AdS-Vaidya thin shell. Remarkably, in the case

of AdS5, for conformal matter, the thermalization time scale becomes much larger than

the others. Furthermore, in each case we also investigate models where the cosmological

constants of the inner and outer regions separated by the shell are different. We found that

in this case only a scalar field shell collapses, and that the thermalization time scale is also

much larger than the AdS-Vaidya case.
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1 Introduction and motivation

The idea of the present work is to investigate different kinds of consistent holographic ther-

mal quenches modeling thermalization processes in strongly coupled systems. As we shall

explain in detail, by construction, they satisfy the general relativity equations of motion

and the positive energy conditions. Our particular interest is focused on the strongly cou-

pled quark-gluon plasma (QGP) produced by the collision of heavy ions at the Relativistic

Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC). As it is well-known the

formation and evolution of a quark-gluon plasma can be viewed as a sequence four distinct

steps. First, two heavy ions, typically gold nuclei, move towards each other at relativistic

velocities, having kinetic energies of order 100GeV/nucleon. Next, an almond-shape region

where the two nuclei collide is developed, and a part of their kinetic energy transforms into

intense heat, leading to the beginning of formation of the plasma of quarks and gluons.

This is what has been called thermalization of the plasma. When the thermalization is

completed the resulting system is a strongly coupled QGP. After a very short while the

system expands, cools down and, finally, a multitude of hadrons emerges from the plasma.

Given the fact that the QGP in thermal equilibrium behaves as an strongly coupled sys-

tem, a reasonable working hypothesis is that the thermalization described above may also

occur within a strongly coupled regime of QCD. In a number of interesting articles ther-

malization has been addressed using the gauge/gravity duality [1–3]. In these papers the

dual process is modeled as the collapse of a thin shell moving at the speed of light, using

an AdS-Vaidya type metric, which represents a thermal quench [4–19]. Interestingly, there

have also been studies on holographic thermalization described as a dual process of black
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hole formation [20–27]. In addition, to our knowledge, reference [28] has been the first one

to consider a gravity dual picture of the entire process of strongly coupled supersymmetric

Yang-Mills (SYM) plasma formation and cooling using a model where the scattering pro-

cess initially creates a holographic shower in the AdS bulk. It has been argued [28] that the

subsequent gravitational fall leads to a moving black hole, which is the gravity dual model

corresponding to an expanding and cooling heavy-ion fireball. Moreover, very recently, it

has been investigated the high and low temperature behavior of non-local observables in

strongly coupled gauge theories that are dual to AdS space-time [29].

In the present case we shall consider a holographic dual description of the thermaliza-

tion process. From the point of view of the boundary quantum field theory (QFT), the

initial state that one considers is a system at zero temperature. Then, there is a sudden

injection of energy which induces an abrupt change in the state of the system. The system

evolves leading to a final thermal state which will be a strongly coupled SYM plasma. A

very important question is how to model the thermal evolution of the system from the

zero temperature state towards the thermally equilibrated SYM plasma, keeping in mind

that the initial condition is a thermal quench instead of an adiabatic change. Indeed, this

is a very hard problem if one tries to study its dynamics in terms of QFT methods. On

the other hand, the holographic evolution of a thermal quench can be easily followed by

numerical calculations in its gravity dual model. So far, the studies [4]–[19] have considered

the evolution of an AdS-Vaidya thin shell, even though at the moment it is not known how

to get the initial Vaidya shell condition from a QFT evolution. On the gravity side, we

know that it is also possible to solve the equations of motion (EOM) of shells composed

by different degrees of freedom, i.e. whose dynamics is described by different equations of

state (EOS). Depending on the particular EOS the shells will move and collapse at dif-

ferent velocities in the bulk. This is very interesting since it allows us to investigate the

thermalization time scale of different kind of shells. On the boundary theory side, after the

collision occurs, the system evolves in a certain way until it reaches thermal equilibrium.

On the other hand, on the holographic gravitational dual model, this should be reflected

on the evolution of a collapsing shell, which depends on the EOS governing the degrees

of freedom which compose it. Thus, we shall be focused at investigating the variation

of the thermalization time scale of two-point functions of gauge invariant local operators

and rectangular Wilson loops, by calculating their dual renormalized space-like geodesic

lengths and rectangular minimal area surfaces. These are extended probes within the dual

geometry for thermal equilibrium in the dual QFT. The interesting new feature of this

work is that we change the nature of the shell composition. We study different kinds of

degrees of freedom in the shell which are described by distinct EOS. These include a scalar

field, conformal matter, relativistic matter and a pressureless massive fluid, which can be

compared with the collapse of an AdS-Vaidya thin shell. Furthermore, we also investigate

models where the cosmological constants of the inner and outer regions are different. On

the field theory side this corresponds to changes in the coupling of a SYM theory at zero

temperature compared with the SYM plasma coupling at thermal equilibrium.

It is worth noting that for a SYM plasma in thermal equilibrium the system is probed

at momentum scales below the equilibrium temperature T . This is the so-called hydro-
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dynamical regime, at which the gauge/string duality has been proved to be particularly

useful. An important number of investigations have been done in this framework. A very

important work in this context is the one of reference [30], where it has been calculated the

shear viscosity of the finite-temperature N = 4 SU(N) SYM theory plasma, in the large

N limit, at the strong-coupling regime. The first leading order string theory corrections to

the shear viscosity over entropy density ratio of strongly coupled SYM plasmas has been

obtained in [31]. Besides, electrical charge transport coefficients of strongly coupled SYM

plasmas have also been investigated within the gauge/string duality. These include the

electrical conductivity, which in the large coupling limit was firstly calculated in [32], while

finite ’t Hooft coupling corrections were obtained from type IIB string theory corrections at

order α′3 in [33, 34]. Additionally, the photoemission rates of this plasma have been com-

puted in [35] using the gauge/string duality, while the corresponding leading order string

theory corrections have been reported more recently in [36, 37]. Besides, holographic pho-

ton and dilepton production in a thermalizing plasma have been investigated within the

quasi-static approximation [38–40].

We would like to emphasize some interesting conclusions which follow from our numer-

ical results. We observe that from the curves of thermalization discussed in this paper, by

fixing to one both the inner and outer radii, the shells composed by a pressureless massive

fluid and by a scalar field are very close to each other, and almost overlap completely the

curve corresponding to the AdS-Vaidya shell moving at the speed of light. On the other

hand, relativistic matter thermalizes later, depending on its EOS the difference becomes

more important, and finally the shell composed by conformal matter thermalizes much

later than the time the AdS-Vaidya shell takes to collapse. We would like to emphasize

that this large thermalization time delay is a very remarkable effect, since we think that

it opens the possibility of developing new type of models showing slower thermalization in

comparison with the AdS-Vaidya models. This is for both space-like renormalized geodesic

lengths for space-time dimensions d = 2, 3 and 4, and for renormalized rectangular minimal

area surfaces for d = 3 and 4. We also have numerically investigated what happens when

both radii are equal to each other but we change both simultaneously. Then, we study the

effect on the thermalization curves when the inner and outer radii are different. We have

obtained an interesting analytical result, namely: the positive energy condition implies

that the inner radius must be equal or smaller than the outer one, i.e. the absolute value of

the vacuum energy density of the inner region must be equal or larger than the one of the

outer region. In addition, only in the case of a shell composed by a scalar field the positive

energy condition allows for the collapse of the shell separating regions with different inner

and outer vacuum energy density to be produced.

This paper is organized as follows. In section 2 we introduce the formalism, including

the description of the thermal quenches corresponding to different kinds of degrees of free-

dom living in the collapsing shells. We derive the expressions for the velocity of the shell

and its mass function. Then, we describe the strongly coupled SYM plasma thermalization

process in terms of the evolution of a massive shell. We introduce the extensive gravita-

tional probes we use to measure the thermalization time scale, which includes renormalized

space-like geodesic lengths and rectangular minimal area surfaces. The latter correspond
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to Wilson loops in a 4-dimensional QFT on the boundary, and are proportional to entan-

glement entropy for a 3-dimensional boundary QFT. These are introduced in section 3.

In section 4 we present our results on holographic thermalization for different dimensions

of space-time and by exploring different sets of parameters. In the last section we discuss

the results.

2 Thermal quenches and equations of state

The dynamics of a massive thin shell is determined by the Israel junction conditions [41].

The shell separates two different geometries, each one being a solution of the Einstein

equations, and the Israel’s conditions tell us how to match them.

Since the shell is massive, the inner solution will typically be a vacuum one, while the

outer geometry will be described by an AdS-Schwarzschild-type solution. The shell can be

made of ordinary particles, like null dust as described by the AdS-Vaidya solution, which

gives for instance the geometry generated by a spherically symmetric beam of photons in

the Eikonal approximation [42, 43]; by conformal matter as described in [44]; moreover,

it can also be interpreted as the domain wall of a solitonic solution connecting the inner

and outer geometries with different cosmological constants associated with the vacuum

expectation value of certain scalar field.

In the next section we will obtain the expression for the velocity of the shell collapsing

in a AdSd+1 space-time. The inner geometry will be a pure AdS space, while the outer

space will be an asymptotically AdS-Schwarzschild black hole. Notice though that we allow

for the radii of both anti-de Sitter spaces to be in principle arbitrary. Moreover, in general

terms its evolution can be followed for any EOS governing the degrees of freedom of the

shell. Thus, by setting a particular EOS one can determine the velocity of the shell.

2.1 Shell velocity

We find useful to describe the AdS spaces by using Eddington-Finkelstein-like coordinates.1

In terms of these the metrics inside and outside the shell are given respectively by

ds2in = g
(in)
MN dXM

0 dXN
0 =

1

z2
(

−dv2 − 2R0 dvdz + d~x2
)

,

ds2out = g
(out)
MN dXM

f dXN
f =

1

z2
(

−fout(z) dv
2 − 2Rf dvdz + d~x2

)

, (2.1)

where indices M and N = 1, · · · , d + 1, while ~x = {xi} with i = 1, · · · , d − 1 and R0 and

Rf are the AdS radii corresponding to the inner and outer regions, respectively, and

fout(z) = 1− 2M(Rfz)
d . (2.2)

Given the above metrics inside and outside the shell, it is natural to use the following shell

embedding metric

ds2shell = h(shell)µν dxµdxν =
1

z2
(

−dτ2 + d~x2
)

, (2.3)

1The time coordinate is defined as usual through dt = dv +Rff
−1

out
(z)dz.
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where we have defined x0 ≡ τ , so that hµν is conformally flat. The proper area of the shell

allows us to identify the z variable inside, over and outside the shell.

The energy-momentum tensor necessarily has the form,

TMN = δ(η)SMN − ρ0 g
(in)
MN Θ(−η)− ρf g

(out)
MN Θ(η) , (2.4)

where η is the coordinate orthogonal to the shell in the Gaussian normal coordinate system.

SMN represents the energy-momentum tensor of the shell. ρ0 and ρf denote the vacuum

energy density of the anti-de Sitter spaces, ρ0,f = −d(d−1)
2κ R2

0,f

, with κ = 8πG, G being the

(d+ 1)-dimensional Newton constant.

By computing the divergence of the energy-momentum tensor, TMN
;N , and demanding

the coefficients of δ(η) and δ′(η) to vanish separately, it can be shown that the surface

energy-momentum tensor must vanish in the normal directions, SMη = 0, and the non-

trivial components are conserved in the lower-dimensional sense, i.e.

Sµν
|ν = 0 , (2.5)

where “ | ” denotes the covariant derivative constructed with h
(shell)
µν . Another consequence

of TMN
;N = 0 is the junction condition

{Kµν}S
µν = ρ0 − ρf , (2.6)

where {Kµν} = 1
2 [Kµν(in) +Kµν(out)], while Kµν = nµ;ν denotes the extrinsic curvature,

n being the normal vector to the shell.

We will consider a shell composed by a perfect fluid, so that

Sµν = z(τ)2(ǫ+ p) uµuν + p hµν , (2.7)

where the velocities uµ are defined as dxµ

dτ , with τ being the conformal time, not to be

confused with the proper time. Then, equation (2.5) implies

ǫ̇ = (d− 1)
ż

z
(ǫ+ p) , (2.8)

where dot stands for derivative with respect to τ . In the above expression ǫ is the energy

density and p is the pressure within the shell.

Einstein equations of the (d + 1)−dimensional space-time lead to the so-called Israel

junction conditions, namely:

[Kµν − h(shell)µν trK] = κSµν , (2.9)

the square bracket [ · ] denotes the difference of the quantity inside and outside the shell.

The velocity of the fluid is set to be in the radial direction, so that uµ → (v̇, ż,~0), and

the normal vector nµ defined as the unit vector orthogonal to uµ is easily found and leads

to the following extrinsic curvature

Kxixj (out) =

√

fout +R2
f ż2

Rf z2
δij , i, j = 1, 2, · · · , d− 1 ,

Kττ (out) =
d

dz

√

fout +R2
f ż2

Rf z
, (2.10)
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in the outer region. In the inner region there are similar expressions by just replacing

fout ⇒ 1 and Rf ⇒ R0. Then, the Israel junction conditions become

√

R−2
0 + ż2 −

√

fout R
−2
f + ż2 =

κ

d− 1
ǫ . (2.11)

After some algebra equation (2.11) leads to

√

R−2
0 + ż2 +

√

fout R
−2
f + ż2 =

d− 1

κ ǫ

(

R−2
0 − fout R

−2
f

)

, (2.12)

which represents the junction condition (2.6). In fact, it implies

ǫ
d (z{Kx1x1})

dz
+ (d− 1) p {Kx1x1} = −

d(d− 1)

2κ

(

1

R2
0

−
1

R2
f

)

. (2.13)

Then, using equation (2.8) this differential equation can be integrated to obtain equa-

tion (2.12).

Equations (2.11) and (2.12) can be used to derive the following expression

ż2 =
h2 − 2

(

R−2
0 + fout R

−2
f

)

h+
(

R−2
0 − fout R

−2
f

)2

4h
, (2.14)

where in order to make the notation simpler we have introduced h = ( κ ǫ
d−1)

2.

Since we are assuming that the shell is composed by a perfect fluid the entropy must

be a constant, which can be negligibly small such that its EOS can be reduced to p = p(ǫ).

In many physical situations the EOS can exactly or at least approximately be recast in

the form p = a ǫ, with a being a constant. For instance, when a = 1
d−1 it represents a

fluid composed by conformal matter (i.e. its degrees of freedom have a traceless energy-

momentum tensor). On the other hand, the case with a = 0 corresponds to dust, while

a = −1 (see [45]) can be modeled by a scalar field.2 In cosmological applications these are

commonly employed in order to describe the radiation, matter and dark energy dominated

eras. We will consider all these situations along this paper and, in addition, we will include

the case of relativistic matter. With the purpose of illustrating this situation we will take

a particular example where a = 9
10

1
d−1 for relativistic matter.

Using this equation of state, equation (2.8) leads to the energy density

ǫ = ǫ0 z(τ)
A , (2.15)

2To see this, notice that the energy-momentum tensor for a scalar field is

Tµν = ∂µφ∂νφ− gµν

[

1

2
∂
α
φ∂αφ+ V (φ)

]

.

Considering the fact that the embedding metric of a hypersurface with normal vector nµ is given by

hshell
µν = gµν−nµnν and that in the thin-shell approximation ∂µφ ∝ nµ at leading order, then Tµν decomposes

into the sum of two terms, one proportional to hµν and the other one proportional to nµnν . On the other

hand, if we require the shell to be composed by a perfect fluid, the energy-momentum tensor must be

written as the product of a factor proportional to hµν and another one proportional to UµUν , with Uµ⊥nµ

being the four-velocity of the fluid. Then, the energy-momentum tensor must be proportional to the metric,

and therefore p = −ǫ.
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where A = (d− 1)(a+ 1) and ǫ0 is set by the initial conditions. For instance, we will fix it

by demanding that the shell is at rest at a given position z = z0.
3 Therefore, one may write

h(z) =
(

R−1
0 −

√

fout(z0) R
−1
f

)2
(

z

z0

)2A

. (2.16)

Notice that since the cut-off z0 can be arbitrarily small, the weak energy condition requires

Rf ≥ R0 . (2.17)

Next, we derive the mass function of shells.

2.2 Mass function

Strictly speaking the analysis above corresponds to a shell of zero thickness. Nevertheless,

for computational purposes we will consider the limiting case of small but non-vanishing

width, and we will model the situation with the following metric

ds2 =
1

z2
(

−fdv2 − 2R dvdz + d~x2
)

, (2.18)

where

f = 1− 2m(v, z) (Rz)d ,

R = R0 − (R0 −Rf )
m(v, z)

M
, (2.19)

m =
M

2

[

1 + tanh
w(v, z)

w0

]

,

being w0 the parameter representing the thickness of the shell, while w(v, z) = 0 is the equa-

tion defining the position of the shell in the (v, z)-plane. It is useful to define the quantities

f̄ = f(z, w = 0) = 1−M(R̄z)d,

R̄ = R(z, w = 0) =
R0 +Rf

2
. (2.20)

By comparing the induced metric (2.3) with equation (2.18) one finds dτ2 = f̄dv2 +

2R̄ dv dz. Then, the position {v(τ), z(τ)} of the shell satisfies the equation

f̄dv =

(

√

f̄ + R̄2ż2

ż
− R̄

)

dz , (2.21)

from which we find the equation describing the dynamics of the shell to be w = 0, with

w = v − R̄

∫ z

z0

dz f̄−1

(
√

f̄ R̄−2 + ż2

ż2
− 1

)

, (2.22)

where we set the following initial conditions z(τ0) = z0 and v(τ0) = 0.

3Of course, the situation is different for a massless dust fluid. In this case the shell moves at the speed of

light, and obviously it cannot be set at rest at any position. Nevertheless, it can be considered as a limiting

case with ż → ∞.
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2.3 Dynamical evolution of shells of matter

Once the shell is at rest at z = z0, in principle it is not guaranteed that it will always

collapse. For instance, we may think of the shell as composed not by ordinary matter

like baryons or photons, but instead by the energy of a domain wall of a bubble which

encloses an AdS space in the interior with a given cosmological constant, and an another

AdS space in the outer region, with a different one. Thus, it may occur that depending

on the values of the cosmological constants of the inner and outer regions the bubble may

collapse or expand.

Therefore, the dynamics of the shell depends of the sign of dż2

dz at z0. It can be

computed from equation (2.14) and the result is

d ż2

dz

∣

∣

∣

∣

z0

= λ(z0) ξ(z0) , (2.23)

where

λ(z0) =
h(z0) +R−2

0 − fout(z0)R
−2
f

4h(z0)
> 0 . (2.24)

The positivity follows from the positive energy condition. On the other hand, ξ(z0) is

defined as

ξ(z0) = −(R−2
0 −R−2

f )
A

z0
+A

[

R−1
0 −

√

fout(z0)R
−1
f

]2
zA−1
0 + (d−A)Rfz

d−1
0 . (2.25)

Notice that in the cases of interest 0 ≤ A ≤ d. Hence, the first term in the equation above

is negative while the second and third ones are positive. The conclusion is that in the case

of equal radii ξ(z0) > 0 and, therefore, the shell always collapses.

On the other hand, when A = 0 (corresponding to a = −1) ξ(z0) is again positive and

so the shell collapses independently of the values R0 and Rf .

The situation changes dramatically when we consider A 6= 0 because in the z0 → 0

limit the leading term is the first one which is negative, implying that the shell generi-

cally expands.

For a given cut-off z0 it can always be possible to find certain radii Rf > R0 such that

ξ(z0) > 0. In order to observe collapse the first term must be smaller than the others,

therefore R0 and Rf must be as close as possible. So, let us define r = Rf − R0 ≪ 1 and

for simplicity consider R0 = 1. Therefore we find r ≪ z0 10−2(2d−1) for conformal matter,

r ≪ z0 10−(2d−1) for massive dust, and r ≪ z0 10−2d for relativistic matter. In order

to give an idea of the orders of magnitude involved, for instance in the case of conformal

matter in AdS5, by setting the initial position of the shell at z0 = 10−2, we need that

Rf − R0 ≪ 10−16 for the shell to collapse and, the limiting case z0 → 0 only allows the

fluid with a = −1, i.e. a scalar field case, to collapse.

The same conclusion holds even if we relax the initial condition ż|z0 = 0. Indeed let

us suppose that ż|z0 > 0, and then extrapolate the shell position backward in time. If

we assume ż 6= 0 for all z < z0, then as z → 0 the l.h.s. of (2.11) vanishes if and only if

R0 = Rf , but the r.h.s. vanishes for A > 0 (a > −1).
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Then for a collapsing fluid with a > −1 and R0 6= Rf the shell can not be extrapolated

to z → 0. Its velocity must vanish at a certain position z̃0 < z0 and so, in order for the

shell to collapse, r must be smaller than in the case with the shell at rest at z0.

3 Holographic thermalization

In this section we describe the idea of holographic thermalization. We will follow ref-

erences [9] and [17] and first consider two-point functions of local gauge invariant QFT

operators. For this purpose we look at Wightman functions [8, 9] of local gauge invariant

QFT operatorsO of conformal dimension ∆. We are interested in the equal time correlation

functions. The point is to study how these correlators change at different times.

On the other hand, using the gauge/string duality it is possible to compute these

correlators when the operators are heavy by using geodesics in AdS spaces. We will compute

the two-point functions from a path integral as in references [9, 46]

< O(t,x)O(t,x′) >=

∫

DPei∆L(P) ≈
∑

geodesics

e−∆L , (3.1)

where the path integral includes all possible paths connecting the points at the AdS bound-

ary, i.e. (t,x) and (t,x′). In the above expression L(P) is the proper length corresponding

to this path. For space-like trajectories L(P) is imaginary. The idea is to make a saddle-

point approximation for ∆ ≫ 1. Therefore, only geodesics, i.e. trajectories with extreme

lengths will contribute. Notice that in the last term L indicates actual length of the geodesic

between the points at the AdS boundary. In this way, there is a direct relation between

the logarithm of the equal-time two-point function and the geodesic length between these

two points. It is important to be careful while considering these approximations because

the geodesic length diverges due to the AdS boundary contributions. Then, one can define

a renormalized distance δL ≡ L− 2 ln(2/z0), in terms of the cut-off z0 near the boundary,

that suppresses the divergent part coming from pure AdS.

The other type of non-local operators that we will be using are spatial Wilson loops,

which are non-local gauge invariant operators in the field theory defined as the integral in

a closed path C of the gauge field A. Wilson loops provide information about the non-

perturbative behavior of gauge theories, however, in general it is difficult to compute them.

Using the AdS/CFT correspondence its computation can be done straightforwardly. The

expectation value of a Wilson loop is related to the string theory partition function with

a world-sheet Σ extended on the bulk interior, and ending on the closed contour C on

the boundary,

< W (C) >=<
1

N
Tr
(

Pe
∮
C
A
)

>=

∫

DΣe−Λ(Σ) ≃ e−
1

α′
A(Σ0) , (3.2)

where, in the path integral one has to integrate over all the non-equivalent surfaces whose

boundary is ∂Σ = C, at the AdS boundary. Λ(Σ) is the string action. The last ap-

proximation in equation (3.2) is obtained in the strong coupling regime by carrying out

a saddle-point approximation of the string theory partition function. In this way we can
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reduce the computation of the expectation value of a Wilson loop to determine the surface

of minimal area of the classical world-sheet whose boundary is C. This will be a solution

to the equations of motion of the bosonic part of the string action [47, 48].

These shell-collapsing models based on the AdS/CFT correspondence allow to under-

stand intuitively how the thermalization process takes place. The outer region is described

by a AdS-Schwarzschild black hole, while the inner region is still an AdS space. Now,

let us use the geodesic approximation to compute the equal-time two-point functions. If

the separation of the boundary points is small enough, then the geodesic cannot reach the

shell at w = 0 and, therefore, the geodesic is seen as a purely AdS-Schwarzschild black

hole geodesic, i.e. for short distances in the field theory the system seems to be in thermal

equilibrium. If we increase the separation between the insertion of the boundary opera-

tors, at some point, the geodesic will cross the shell, and there will be a geodesic refraction

which will deviate it in comparison with the thermal one. Thus, we can understand why

the thermalization proceeds from short to long distances, i.e. QFT ultraviolet degrees of

freedom thermalize first [9].

In the next two subsections we discuss in more detail the construction of the renor-

malized geodesic lengths and the renormalized rectangular minimal area surfaces, which

we will used to probe thermalization of strongly coupled systems. These two subsections

are a generalization of our previous paper [17] from where we follow the notation.

3.1 Renormalized geodesics lengths

In this subsection we focus on the evaluation of space-like geodesic lengths as function of

both time and boundary separation length. Thus, we will consider space-like geodesics

between points (t, x1) = (t0,−ℓ/2) and (t′, x′1) = (t0, ℓ/2), where ℓ is the separation of

the AdS boundary points. The orthogonal coordinates are fixed. For instance, for d = 4

we have (x2, x3) = (x′2, x
′
3). Therefore, we use as the geodesic parameter the first coordi-

nate x1, that we simply call x. The solutions to the geodesic equations are given by the

functions v(x) and z(x). Inserting a cut-off z0 close to the AdS boundary, the boundary

conditions become

z(−ℓ/2) = z0 , z(ℓ/2) = z0 , v(−ℓ/2) = t0 , v(ℓ/2) = t0 . (3.3)

Also, v(x) and z(x) are symmetric under reflection x → −x. The geodesic length is

defined as

L =

∫

√

−ds2 =

∫ ℓ/2

−ℓ/2
dx

√

1− 2R(v, z)z′(x)v′(x)− f(v, z)v′(x)2

z(x)
, (3.4)

where the prime indicates derivative with respect to x. Functions v(x) and z(x) minimize

the geodesic length of equation (3.4). Since there is an x-independent Lagrangian, it

implies the existence of one conserved quantity, which is equivalent to the Hamiltonian of

the system. In terms of f(v, z), the conservation equation becomes

1− 2R(v, z)z′v′ − f(z, v)v′2 =

(

z∗
z

)2

, (3.5)
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where the following initial conditions at the tip of the geodesic have been used

z(0) = z∗ , v(0) = v∗ , v′(0) = z′(0) = 0 . (3.6)

We can then solve the EOM for v(x) and z(x), obtaining

0 = 1− v′(x)2f(v, z)− 2R(v, z)v′(x)z′(x)−R(v, z)z(x)v′′(x)

+
1

2
z(x)v′(x)2∂zf(v, z)−

1

2
∂vR(v, z)z(x)v′(x)2 , (3.7)

0 = v′′(x)f(v, z) +R(v, z)z′′(x) + z′(x)v′(x)∂zf(v, z)

+
1

2
v′(x)2∂vf(v, z) + ∂zRz′(x)2 , (3.8)

so we can just use these equations (and the conservation relation) and replace f(v, z) by

the ones of interest to this work. Note that for the different radii case, not only mass

derivatives will appear but also radius derivatives.

In order to evaluate the geodesic length as a function of t0 and the boundary separation

ℓ we use the boundary conditions

z(ℓ/2) = z0 , v(ℓ/2) = t0 . (3.9)

Now, the conservation equation and reflection symmetry lead to the on-shell geodesic length

given by the following expression

L(ℓ, t0) = 2

∫ ℓ/2

0
dx

z∗
z(x)2

, (3.10)

Then, we must cancel the divergent part: δL(ℓ, t0) = L(ℓ, t0)− 2 ln(2/z0).

Thus, we can calculate how the thermalization process occurs by considering a col-

lapsing thin shell composed by different kind of degrees of freedom. At this point we can

start studying numerically the thermalization process, by solving the EOM for different

starting (v∗, z∗) values. We set the event horizon of the thermalized geometry to be located

at a position such that we have always the same temperature at the final state. The re-

sults are discussed in the next section, but before we introduce the formulas of rectangular

Wilson loops.

3.2 Renormalized rectangular minimal area surfaces

Now we carry out the computation of the minimal area surfaces. Using the AdS metric

with a shell, the Nambu-Goto action becomes,

ANG(t0, ℓ, RWL) =
RWL

2π

∫ ℓ/2

−ℓ/2
dx

√

1− f(v, z)v′2 − 2R(v, z)z′v′

z2
, (3.11)

for boundary rectangles parametrized by the coordinates (x1, x2). The rest of the coordi-

nates at the AdS boundary are kept fixed. One assumes the translational invariance along
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x2. Then, we will use x1 to parametrize the functions v(x1) and z(x1) in the AdSd+1, and

we call it x. Along the x2 direction the rectangular path on the boundary has length RWL.

As in the previous case, there is no explicit dependence on x and therefore, there is

a conserved quantity corresponding to the Hamiltonian. The tip of the surface is z∗, with

z′(0) = v′(0) = 0. Then, the conservation equation becomes

1− 2R(v, z)z′v′ − f(v, z)v′2 =

(

z∗
z

)4

. (3.12)

The boundary conditions continue to be the same as in the geodesics case,

z(−ℓ/2) = z0 , z(ℓ/2) = z0 , v(−ℓ/2) = t0 , v(ℓ/2) = t0 . (3.13)

Next, we have to minimize the Nambu-Goto action for this geometry. For our set up,

these equations become

0 = 2− 2fv′2 − 4Rz′v′ −Rzv′′ +
1

2
zv′2∂zf −

(

zv′2∂vR+
1

2
zz′v′∂zR

)

(3.14)

0 = 2f2v′2 − f

(

2− 4Rv′z′ +
1

2
zv′2∂zf

)

− z(R2z′′ +R∂zfv
′z′

+
1

2
Rv′2∂vf) + z(fv′2∂vR−Rz′2∂zR) (3.15)

We can again extract the physical information of time and boundary separation length

from the boundary conditions (3.13) and rewrite the on-shell Nambu-Goto action by making

use of the conservation equation, obtaining

A(t0, ℓ, RWL) =
RWL

π

∫ ℓ/2

0
dx

z2∗
z4

. (3.16)

Finally, we subtract the divergent part from pure AdS space by defining

δA(t0, ℓ) =
π

RWL

(

A(t0, ℓ, RWL)−
1

z0

RWL

π

)

. (3.17)

Now, we focus on the results obtained by solving the differential equations for both

renormalized space-like geodesic lengths and rectangular minimal area surfaces.

4 Results of dynamical holographic thermalization

In this section we introduce our results obtained from numerical calculations, by solving

the system of differential equations described in the previous section for the evolution of

thin shells, using renormalized geodesic lengths and rectangular minimal area surfaces as

extended probes of thermalization of QFT strongly coupled systems.

First, in figure 1 we show the results for thermalization of the renormalized space-

like geodesic lengths for the boundary separation ℓ = 2.6, by considering R0 = Rf = 1

and 2M = 1, for the boundary QFT theory dimensions d = 4, 3 and 2, indicated as

AdS5, AdS4 and AdS3, respectively. The cases with a shell composed of a scalar field

– 12 –



J
H
E
P
0
3
(
2
0
1
3
)
0
7
0

(green curve) and dust (orange curve), both almost coincide with the Vaidya shell (red

curve) as it is shown in figures 1(a), 1(c) and 1(e). It turns out that the Vaidya shell

thermalizes first. Slightly later it does the shell composed by a scalar field and then,

almost at the same time the shell of dust. In fact, these three cases depicted in figures

1(a), 1(c) and 1(e), almost completely overlap. In the same figure the dark-red curve

indicates relativistic matter, which thermalizes later. Notice that for relativistic matter,

whose EOS has a = c/(d− 1), we have the freedom to set 0 < c < 1, being the pressureless

and conformal matter the limiting cases. As c increases, so does the thermalization time for

relativistic matter, approaching the conformal matter time scale. Figures 1(b), 1(d) and

1(f) show thermalization when considering conformal matter (blue curve), which occurs

at t0 much larger than the other cases. The fact that AdS-Vaidya, scalar field and dust

shells coincide is a general result which does not depend on boundary separation. This

is so because the integrand on the r.h.s. of equation (2.22) is much smaller than one for

any value of z. Thus, the equation describing the position of the shell is v ≃ 0, as in the

AdS-Vaidya case. The larger thermalization time found for the conformal matter case is

closely related to the fact that the r.h.s. of equation (2.22) takes a non-zero asymptotic

value for large z. This value increases with space-time dimension, making conformal matter

in higher dimensions to thermalize later.

Another interesting possibility is to consider R0 = Rf with different values. In fact,

we have considered R0 = Rf = 0.5 in figures 2(a) and 2(b) and R0 = Rf = 2 in figures 2(c)

and 2(d). These cases are for systems going from AdS5 to an AdS5-Schwarzschild black

hole. In both cases we can see that AdS-Vaidya (red curve), a massive dust (orange curve)

and a scalar field (green curve) thermalize almost simultaneously, relativistic matter does it

a bit later (dark-red curve), and much later conformal matter (blue curve). This difference

can be better appreciated from the insets of both figures. In all these curves we keep

the dimensionless product of the boundary separation length by the plasma equilibrium

temperature ℓ T fixed, thus by changing Rf the horizon changes as zh = 1/Rf .

We can also make a comparison between figures 1 and 2. For the AdS-Vaidya, massive

dust, and a scalar field cases the thermalization time scale is not sensitive to the changes of

the radii, in the range considered, i.e. R0 = Rf = 0.5, 1 and 2. The more remarkable effect

is that for conformal matter where for R0 = Rf = 0.5, 1 and 2, the thermalization time

decreases notoriously, as can be seen from the figures. In the particular case of relativistic

matter considered we observe a small enhancement of the thermalization time as the radii

increase, but of course the thermalization of this kind of matter strongly depends on the

value a.

Another situation that we have investigated is the case when the inner and outer radii

are different. As it has been explained before, only a shell composed by a scalar field can

thermalize in this case. In order to illustrate the behavior we have considered: R0 = 0.5,

while Rf = 1 (red curve), Rf = 2 (blue curve). For these cases the thermalization time is

t0 ≈ 90 and 60, respectively, while δL − δLBH = −2, −5. This is shown in figure 3. By

incrementing the difference between R0 and Rf it is possible to recover short thermalization

times, for instance the case with R0 = 0.5, Rf = 10 gives t0 ≈ 10 (not displayed here).

Notice that the thermalization scales are not monotonous with respect to the difference
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Figure 1. Thermalization of the renormalized space-like geodesic lengths for the boundary sepa-

ration ℓ = 2.6, considering R0 = Rf = 1, for boundary theory dimensions d = 4, 3 and 2, indicated

as AdS5, AdS4 and AdS3, respectively. In each figure curves for different matter are indicated with

different colors: for AdS-Vaidya (red curve), scalar field (green curve), massive dust (orange curve),

relativistic matter (dark red curve), conformal matter (blue curve). Following the literature we plot

the difference between the geodesic length and the thermal geodesic length divided by the boundary

separation ℓ. The same applies for the rest of the figures.

between both radii. This is so because by changing the radii one varies the velocity of the

shell as well as the position z∗ of the thermalized geodesic tip.

Figure 4, on the other hand, shows a similar behavior as figure 1 for renormalized

rectangular minimal area surfaces for d = 3 and 4. In this case we also set R0 = Rf = 1

and 2M = 1. We observe the same trend as in figure 1. The thermalization shown in
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Figure 2. Renormalized space-like geodesic length as a function of time for Vaidya-type (red

curve), scalar field (green curve), massive dust (orange curve), relativistic matter (dark red curve),

conformal matter (blue curve) shells, respectively. Insets zoom in the first curve in both figures.
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Figure 3. Renormalized geodesic length differences when R0 = 0.5; Rf = 1 (red curve) and Rf = 2

(blue curve).

figure 4 corresponding to rectangular Wilson loops in the dual QFT shows the appearance

of swallow tails when thermal equilibrium is reached. Something similar was observed

before in the case of an AdS-Vaidya shell [9], and even in the cases with an AdS-Vaidya

shell composed by charged dust [17].
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Figure 4. Thermalization of the renormalized minimal area surfaces, with ℓ = 2, considering

R0 = Rf = 1, for the boundary theory dimensions d = 4 and 3, labeled by AdS5 and AdS4,

respectively. Different kinds of matter in the shell are indicated by colored curves as follows:

Vaidya-type (red curve), scalar field (green curve), massive dust (orange curve), relativistic matter

(dark red curve), conformal matter (blue curve) shells.

5 Discussion and conclusions

In this paper we have studied dynamical evolution of thin shells composed by different

degrees of freedom in AdS spaces, obtaining different thermalization time scales. We have

used the thin-shell formalism, applying the Israel junction conditions, and also imposed

the positive energy conditions. Thus, we obtain a general framework where the distinction

in the composition of the shells is made explicit through the equation of state in each case.

We have also explored different space-time dimensions.

We have considered an AdS-Vaidya shell, which can be understood as composed by

massless dust, moving at the speed of light, and then we also investigated shells made of a

scalar field, a pressureless massive fluid, the so-called relativistic matter, and matter whose

energy-momentum tensor is traceless. The parameters to play with are the space-time

dimension d, and the radii of the inner and outer regions, R0 and Rf .

The first observation is that when the R0 = Rf , the thermalization time scales of the

AdS-Vaidya, the scalar field and a pressureless massive fluid shells, are the same. The

conformal case thermalizes much later, strongly depending on space-time dimensions and

radii. Relativistic matter case continuously interpolates between both cases, depending on

its EOS.
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In addition, we have studied the effect on the thermalization curves when the inner

and outer radii are different. Also, we have found that the positive energy condition implies

that the inner radius must be equal or smaller than the outer one, which means that the

absolute value of the vacuum energy density of the inner region must be equal or larger

than the one of the outer region. Finally, we have found that only in the case of a shell

composed by a scalar field the positive energy condition allows for the shell to collapse.

When the energy densities of the inner and outer spaces differ, the thermalization time

scales considerably increases. For instance, for the scalar field case, which for equal radii

coincides with the AdS-Vaidya shell, for different radii the thermalization time can be set

arbitrarily large. Some particular examples where displayed in figure 3.

The main conclusion from this work is that holographic models do not necessarily

yield a rapid thermalization. Moreover, the thermalization time scale strongly depends

on the equation of state governing the shell. This will determine the shell velocity and

consequently, thermalization times. We show that it is possible to have EOS that lead to

delayed thermalization times (such as the case of conformal matter).

There are other possible directions where the ideas and formalism presented here can

be extended. For instance, while changing the composition of the shell we will be imposing

different shell velocities. This allows one to model different possible scenarios for the

evolution of thermalization processes in strongly coupled systems. One is to consider lower-

dimensional systems in the context of AdS/CMT. Another aspect concerns the study of a

quantum quench across critical points [49, 50]. For example a quantum quench across a zero

temperature holographic superfluid transition has recently been reported in [51]. Another

very interesting extension could be along the lines of the recent work by Buchel, Lehner and

Myers, where it has been studied thermal quenches in a particular mass deformation of the

N = 4 SYM theory. There is a transition between an initial thermal state of N = 4 SYM,

to a final state with the mentioned mass deformation which yields the so-called N = 2∗

SYM theory. This transition has been described in terms of a thermal quench [52].
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