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largest effects usually come directly from the effective operators generated at the New

Physics energy scale, they are strongly model-dependent. Yet the interference of the CP-

odd forces manifested in D decays with the conventional CP-even ∆C=1 weak interaction

at the charm scale also generates dn at a certain level. It has been argued that the dn
in the SM is largely generated via such an interference, with mild KM-specific additional

suppression. The reported CP asymmetry is expected to generate dn through such effects

of 30 to 100 times larger than in the SM, or even higher in certain, yet not fully natural,

scenarios. In the SM the charm-induced loop-less |dn| is expected around 10−31 e·cm. On
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1 Introduction

Recent hints at possible direct CP violation in singly Cabibbo-suppressed D meson decays

have caused some excitement, since they may be the first direct indication for physics

beyond the Standard Model (SM). The LHCb collaboration observes a difference of time-

integrated CP asymmetries [1]

∆aCP = aCP(D
0 → K+K−)− aCP(D

0 → π+π−) = −(0.82± 0.21± 0.11)%, (1.1)

a result preliminarily confirmed by CDF [2]:

∆aCP = −(0.62± 0.21± 0.10)%. (1.2)

The CP asymmetry is defined according to

aCP(D
0 → f) =

Γ(D0 → f)− Γ(D
0 → f)

Γ(D0 → f) + Γ(D
0 → f)

(1.3)

Since the both final states are positive CP eigenstates in strong interactions, ∆aCP evidently

roots in a direct CP asymmetry.

As argued below, an effect of this magnitude solely in the framework of the SM may

not be rigorously excluded, yet it would require a strong enhancement of certain decay

matrix elements. Such a loophole definitely deserves further scrutiny. In this paper we
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analyze immediate consequences of the assumption that the reported effect is due to a new

source of CP violation, beyond the CKM mechanism.

In the present paper we focus on the impact of new CP-odd forces on the electric

dipole moments, in particular on one of the neutron, dn. The observation at LHCb and

CDF assumes CP violation in |∆C|=1 amplitudes. A more general model should embed

this into a full flavor framework, hopefully highlighting a certain underlying symmetry. It

would allow one to obtain predictions for other sensitive processes as well, in particular for

B and K decays, where some tensions have also been noted in certain cases.

We do not aim at working out any realistic model, or discuss general features in such

a framework here. We only note that a flavor-diagonal CP violation of the size reported

in the decays D0 → K+K− and D0 → π+π− is incompatible with the current limits on

the electric dipole moment of the neutron. At the same time, we find that if the new

CP-odd forces show up at low energies only in |∆C|= 1 interactions, the neutron EDM

is still well below the current limit, although it should be significantly enhanced, by more

than an order of magnitude, compared to the SM. A concrete dynamic realization of New

Physics would generically imply the contributions to dn of both types. Considering them

separately is legitimate, since the contributions coming from totally different energy scales

are physically distinct and may exhibit cancellations only accidentally.

In the following section we briefly review the CP violation in D0→K+K− and D0→
π+π− within the SM and introduce new |∆C|=1 interactions as a source of the enhanced

CP violation. In section 3 we examine dn in the SM and describe the loop-free mechanism

to generate it at the charm scale. The elaborated estimates of the associated nucleon

matrix elements indicate that it yields dn around 10−31 e · cm and may well constitute

the principal contribution in the SM. The same analysis is then adapted to new BSM-

mediated CP-odd amplitudes to estimate the corresponding effect on the neutron EDM.

Section 4 summarizes the study. Appendix derives the induced CP-odd scalar pion-nucleon

coupling by generalizing the Goldberger-Treiman relation and applying in QCD the current

algebra technique.

2 CP violation in D
0
→ K

+
K

− and D
0
→ π

+
π

−

2.1 Charm CP violation in the standard model

For the charm decays considered hereafter we have the effective weak interaction

L = −GF√
2

[

VcsV
∗
us−VcdV ∗

ud

2

(

[c̄Γµu][s̄Γµs]− [c̄Γµu][d̄Γµd]
)

−1

2
VcbV

∗
ub

(

[c̄Γµu][s̄Γµs] + [c̄Γµu][d̄Γµd]− 2[c̄Γµu][b̄Γµb]
)

,

]

+H.c. (2.1)

= −GF√
2
sin θC cos θC

[

o1 −
1

2
rSMe

−iγo2

]

+H.c.,

[c̄Γµu][q̄Γµq] ≡ (c̄γµ(1−γ5)q) (q̄γµ(1−γ5)u), Γα = γα(1−γ5),
where we have used the CKM unitarity, and color indices are assumed to be contracted

within parentheses. The phase γ is practically equal to the corresponding angle of the
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Unitarity Triangle, while

rSM =

∣

∣

∣

∣

V ∗
cbVub
V ∗
csVus

∣

∣

∣

∣

≃ 7.5× 10−4. (2.2)

CP violation in the SM is quantified by the imaginary part of the invariant product of four

CKM mixing elements describing the relative phase between the coefficients for o1 and o2,

∆ = ImV ∗
csVusVcdV

∗
ud = Im (V ∗

cbVcd)
∗(V ∗

ubVud), (2.3)

numerically ∆≃3.3 · 10−5.

The operators o1 and o2 are a U-spin triplet and a U-spin singlet, respectively. Their

interference induces the CP violation in the SM in the ∆C = 1 sector. In what follows

we discard possible CP violation in D̄−D mixing since it drops out from the asymmetry

difference ∆aCP.

The decay amplitudes in D0 → f with f= f̄ are given by (f=K+K− or f=π+π−)

A(D0 → f) = −iGF√
2
sin θC cos θC

[

m
(f)
1 − 1

2
rSMe

−iγm
(f)
2

]

(2.4)

where m
(f)
i = 〈f |oi|D0〉 are the reduced amplitudes, in general complex due to the strong

interaction in the final state. The corresponding phases are generically referred to as δ
(f)
i ;

they are equal for the decays of D and D̄. Since the o1 amplitudes strongly dominate,

rSM≪1, the CP asymmetry takes a simple form

aCP(D
0→f) = −rSM sin γ

∣

∣

∣

∣

∣

m
(f)
2

m
(f)
1

∣

∣

∣

∣

∣

sin δ
(f)
21 , rSM sin γ ≃ ∆

sin2 θC cos2 θC
≃0.70 · 10−3,

(2.5)

where δ
(f)
21 =δ

(f)
2 −δ(f)1 is the phase difference between the two hadronic matrix elements.

The two final states K+K− and π+π− are components of the same U-spin triplet.

Therefore in the SU(3) limit δπ
+π−

21 =δK
+K−

21 +π would hold and

|∆aCP| ≃ 2|aCP (D0→K+K−)| ≃ 2|aCP (D0→π+π−)|. (2.6)

However, U-spin symmetry is significantly violated; one concludes from the decay rates

Γ(D0→PP̄ ) =
G2
F

32πMD
sin2 θC cos2 θC

√

1− 4M2
P

M2
D

|m(PP̄ )
1 |2 (2.7)

that

|mK+K−

1 | ≃ 0.456GeV3, |mπ+π−

1 | ≃ 0.252GeV3. (2.8)

We expect even larger potential SU(3) breaking in the phases of the amplitudes. This is

consistent with the analysis of the K±π∓ modes [3].

The values in eq. (2.8) reasonably agree with the simplest factorization estimate

mK+K−

1 ≃ ifD→K+ (M2
K)fK(M2

D−M2
K), mπ+π−

1 ≃−ifD→π+ (M2
π)fπ(M

2
D−M2

π) (2.9)
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(the straightforward color renormalization factors have been omitted from the full expres-

sion). It even yields the right scale for the SU(3)-breaking [4], although the literal ratio of

the amplitudes tends to fall short of 1.81 in eq. (2.8).

The matrix elements of o2 determining the amplitudes mK+K−

2 and mπ+π−

2 are not

directly known. If estimated using factorization, one evidently obtains the values close to

m1 in eqs. (2.9), (2.8), with the additional minus sign formπ+π−

2 . However, the conventional

factorization accounts only for the valence contributions. In a valence approximation, on

the other hand, the same term in both o1 and o2 — with s-quarks for D0 →K+K− and

with d-quarks for D0→π+π−, respectively — contribute. Consequently, no CP-asymmetry

is generated in a valence approximation: the two strong amplitudes come from the same

underlying operators and their strong phases coincide.

Strictly speaking, any valence approximation should only be applied to the operators

normalized at a low scale. The evolution of the operators o1 and o2 abovemb is identical, yet

generates additional terms for o2 below it due to Penguin diagrams [5, 6]. These in general

have different strong phases. However, the new operators come with small loop-induced

coefficients, while we do not expect their matrix elements to be enhanced. Therefore, we

neglect these effects.

As the starting point we assume that the magnitudes of mK+K−

2 and mπ+π−

2 may be

approximated using factorization, yet allow for arbitrary FSI phases relative to m1. This

amounts to having the ratio of the amplitudes in eq. (2.5) about unity. We then end

up with

|aCP(D
0→K+K−)| ≈ 0.7 · 10−3| sin δK+K−

21 |,

|aCP(D
0→π+π−)| ≈ 0.7 · 10−3| sin δπ+π−

21 |, (2.10)

and the sign of the two asymmetries may naturally be opposite. Therefore, the expected

scale for |∆aCP| in the SM is a few times 10−4 up to 1.5 · 10−3 — provided the both

FSI phase shifts are optimal. This is still about five times smaller than what is reported

by LHCb.

Accommodating the central value in eq. (1.1) within the SM thus implies at least a

five-fold enhancement of the U-spin singlet amplitude mediated by o2, or even a ten-fold if

the asymmetry is dominated by one of the two modes and/or the strong phase shifts are

not optimal. Moreover, this must happen for a non-valence part of the amplitude.

Although at the moment the possibility of a sufficiently strong enhancement of the U -

scalar amplitude in the D decay within conventional QCD dynamics cannot be rigorously

ruled out, we view this possibility as contrived. The confirmation of the asymmetry ∆aCP

at the currently observed level, in particular studying its share among the two channels,

would be a strong evidence for the new CP-violating dynamics in the charm sector. At the

same time, the strength of this conclusion crucially depends on the actual amount of the

excess over our expectations. An eventual value around or somewhat below −0.3%, while

still not smoothly accommodated in the SM, per se would make the case for new sources

of CP-violation in D decays significantly weaker. A similar conclusion was inferred from a

more detailed analysis by the authors of ref. [3].
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2.2 Charm CP violation through new physics

In what follows we adopt the assumption that the reported CP asymmetry roots in new CP-

odd interactions. Within this hypothesis we will not attempt to stretch the uncertainties

due to the QCD interaction to as strong extent and rather apply an educated judgment

elaborated in weak decays so far; we then examine the consequences for the electric dipole

moments. Neither we focus on the extreme values of parameters maximizing the CP

asymmetry. Consequently, we will gauge our expectations on an assumption that, speaking

generally, the new source of CP violation produces an order of magnitude stronger CP-odd

amplitude in D → K+K− or in D → π+π− decays than in the SM.

Turning to NP, we make a relatively safe assumption that the New Physics-induced

amplitude is small compared to the SM one m1; this is obvious for the CP-odd NP part,

and is applied also to its CP-even component. Then the asymmetry is given by the sum

of the pure NP-induced asymmetry and the SM one, for either channels. Keeping in mind

the conclusions of section 2.1 we neglect the SM contribution altogether, and have

aCP(D
0→f) = −2

∣

∣

∣

∣

∣

Im gNP m
(f)
NP

m
(f)
1

∣

∣

∣

∣

∣

sin δ
(f)
NP , (2.11)

where gNPm
(f)
NP denotes the New Physics amplitude (in units of GF sin θC cos θC/

√
2) and

δ
(f)
NP is its strong phase relative to m

(f)
1 of the SM.1

The value of the new couplings gNP depends on the convention chosen to parameterize

the BSM amplitudes (we tacitly anticipate using effective local operators to describe them).

If we assume a ‘natural’ normalization of the operators where |m(f)
NP |≈|m(f)

1 | holds for the
reduced amplitudes, we arrive at a ballpark estimate for the CP-odd coupling:

|Im gNP| ∼ (2 ÷ 5) · 10−3, (2.12)

allowing for the generic unsuppressed strong phase differences as the educated guess about

QCD dynamics in charm. The new CP-odd forces must therefore be of a ‘milliweak’

strength, according to the venerable terminology in CP violation. Their strength is in

general about 10 times larger than what one estimates in the SM, cf. rSM sin γ in eq. (2.5).

Specifically, to accommodate the ‘direct’ CP-asymmetry eq. (1.1) one needs

0.55
Im gNP m

K+K−

NP

10−3GeV3 sin δK
+K−

NP +
Im gNP m

π+π−

NP

10−3GeV3 sin δπ
+π−

NP =
−∆aCP

8.2 · 10−3
. (2.13)

Proceeding to the induced CP-odd effects in other observables requires specifying the

nature of new interactions. Below the charm scale we have the realm of light hadrons

including flavor-diagonal processes with stable hadrons and the decays of strange particles.

CP-odd effects there are highly constrained; therefore we discard these, and relegate new

sources to heavy particles. Their effect at low energies is described by local operators

classified over the canonic dimension, with the lowest-dimension potentially dominating.

1We assume Im gNP > 0 and include the possible sign into δ
(f)
NP . Let us also clarify that the phase

convention required for CP conjugation is defined in such a way that the a1 amplitude in the SM is CP-

even.
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A flavor-diagonal CP violation (for instance, the induced QCD θ-term unless it is

offset by a Peccei-Quinn-type mechanism) with a coupling of the size commensurate with

eq. (2.12) is by far excluded by electric dipole moments, in particular of the neutron. This

likewise applies to the four-quark operators — they would generate dn in the ball park of

10−22 e·cm. Consequently, the flavor structure of the new CP-odd interaction must have

vanishing flavor-diagonal components in the light sector. This property must replicate

itself at the loop level, which strongly suggests it to apply to the heavy flavors alike. We

do not analyze here the consequences of this requirement for various classes of the BSM

models, but rather note that this may be a hint at a structure of the underlying flavor

interactions antisymmetric in respect to the generation indices. Yet even when postulating

such a property, nontrivial constraints may follow at the loop level in view of the large gap

between the scale of the potential effect on the EDMs and of their experimental limits. The

loop-induced effects and the related renormalization of the effective low-energy operators

may strongly depend on a particular class of models, see, e.g. refs. [7, 8]; this lies outside

the scope of our analysis.

We therefore concentrate on the most direct consequences of the presence of new

∆C = 1 CP-odd amplitudes and describe them by the effective operators of dimension 5

and 6. Most of them are four-quark operators. This appears representative enough. The

reason, as argued below, is that a significant — and probably the dominant — piece of dn
in the Standard Model likewise originates from the same underlying effect: the interference

of the CP -odd and CP -even weak |∆C|=1 amplitudes in the nucleon. The SM bears only

mild additional model-specific suppressions; these may, or may not be vitiated by the new

CP-odd |∆C|=1 interaction, depending on particular details. Consequently, we typically

obtain a 30- to 100-fold enhancement of dn compared to the SM.

The number of appropriate D=6 operators (they can be both scalar or pseudoscalar)

is quite large since they may differ in the chiral, color and light-flavor content. We first

note that the scalar operators do not affect either of the D decays in question, yet they do

generate dn. Therefore, dn could have been further enhanced if the scalar NP operators

dominate. This possibility can be effectively eliminated experimentally by studying the

similar CP-asymmetries including the parity-even final states in decays of D mesons, and

we will not dwell on it any further.

To substantiate the consideration we pick out ad hoc a few operators of interest:

O1 = emcc̄ iσαβF
αβγ5u , O2 = gsmcc̄ iσαβG

αβγ5u ,

O3 = [c̄Γµu]([s̄Γ
µs] + [d̄Γµd]), O4 = (c̄γµ(1+γ5)u) (d̄γ

µ(1−γ5)d) (2.14)

and put

Lnp = −GF√
2
sin θC cos θC

∑

k

ckOk, (2.15)

with ck dimensionless. The first two operators are the unique quark bilinears. Operator

O3 has been picked since it evidently represents the CP-odd operator o2 of the SM — yet

with an arbitrarily inflated coefficient. Consequently, we would roughly expect

|Im c3| ≈ 10 · 1
2
rSM (2.16)

if O3 is the only New-Physics source of CP violation.

– 6 –



J
H
E
P
0
3
(
2
0
1
3
)
0
6
4

The operator O4 is an example with a different chiral content for both charm and light

quarks and differs also in color and flavor. Operator O2, like O3 is a U -spin singlet. For

the sake of definiteness we assume in what follows that the direct CP asymmetry is largely

seen in the π+π− mode having a numerically smaller SM CP even amplitude, eq. (2.8).

The O4 matrix element can be estimated with simple factorization yielding

〈π+π−|O4|D〉 ≈ −i fπfD→π+ (0)M2
D

1

Nc

2m2
π

(mu+md)mc
. (2.17)

It would have shown a relative enhancement if charm mass scale were lower, while would

have been suppressed for larger mc. For actual quark masses the corresponding factor is

not too far from unity. This amplitude is color suppressed, therefore the factorization is

not expected to be a good approximation — yet it makes explicit the expected qualitative

features required for the scale estimates.

The amplitudes for operators O1 and O2 cannot be estimated by simple vacuum in-

sertion. Keeping in mind that both are color-allowed we use instead a “rule of thumb” for

our estimates

〈π+π−|O′|D〉
〈π+π−|O|D〉 ≈

√

Γpart
O′

Γpart
O

(2.18)

and set, as the reference, the operator O to be the ‘valence’ part of o1, (c̄Γµd) (d̄Γµu) (in

fact, its P -odd part only). In other words, the fraction of the decay events into the exclusive

ππ final state is assumed the same in the decays mediated by O and O′. Since charm mass

lies in the intermediate domain, there must be no large kinematic factors floating around.

For O2, the total decay width mediated by mcūgsiσµνG
µνγ5c is

ΓσG = αsm
5
c

N2
c −1

Nc
, (2.19)

and the resulting estimate reads

〈π+π−|mcūgsiσµνG
µνγ5c|D〉 ≈ i 4πgs

√
3 fπf

D→π
+ (0)M2

D. (2.20)

(The amplitude proportional to only the first power of gs reflects the fact that we are not

yet in the asymptotic heavy quark regime.)

In the case of photonic O1 the partonic rate itself describes the probability of a dif-

ferent process, D→γ+hadrons. Instead we need the similar partonic rate for the photon

conversion into a d-quark pair:

Γconv=

∫

dλ2

λ2
ΓσF (λ

2) · α
3π
Nc q

2
d , ΓσF (λ

2)=
e2m5

c

2π

(

1− λ2

m2
c

)2(

1+
λ2

2m2
c

)

θ(m2
c−λ2).

(2.21)

The kinematic integral equals to lnm2
c/m

2− 4
3 + . . .; the lower cutoff can be taken at

m around 400MeV, to match the overall hadronic polarization contribution to charge

renormalization. Then the integral turns out numerically close to unity. Using this as a

counterpart to eq. (2.19) we get

〈π+π−|mcūe iσµνF
µνγ5c|D〉 ≈ i8

√
2πα qd fπf

D→π
+ (0)M2

D , (2.22)

where the small deviation of the explicit log factor from unity has been neglected.
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To cross-check the meaningfulness of the estimates we explored alternative ways. For

the gluon bilinear O2 this was relating the gluon field operator to the chromomagnetic (or

kinetic) expectation value in heavy mesons, i.e. treating it as fully nonperturbative. This

resulted in a different estimate

〈π+π−|mcūgsiσµνG
µνγ5c|D〉 ≈ i

2µ2G
fπ

fD→π+ (0)M2
D. (2.23)

Assuming numerically that Ncαs ≃ 1 we would get a number only 10% smaller than

eq. (2.20). The two totally different estimates led to close values because charm lies in

between the light- and the heavy-quark regimes where both perturbative partonic and

nonperturbative description can qualitatively be applied.

In the case of O1 photon cannot per se be nonperturbative; instead one can consider

the photon loop with the gluon emitted internally. This effect is proportional to qu and is

therefore physically different. It describes the order-α operator mixing of the electromag-

netic O1 into chromomagnetic O2. Replacing lnΛUV by unity we would obtain

〈π+π−|mcūe iσµνF
µνγ5c|D〉 ≈ i2

√
3 qu αgs fπf

D→π
+ (0)M2

D. (2.24)

Comparing this to eq. (2.22) we find the overall factor different:

4
√
3παs qu vs. 8

√
2πqd, (2.25)

with the former ‘direct’ contribution expectedly dominating since it does not suffer an

additional perturbative loop factor for gluons. This is partially offset by the larger u-quark

charge. Altogether the direct photon conversion estimate appears a few times larger, and

we adopt eq. (2.22) for the O1 estimates.

Collecting all the expressions we arrive at

|Im c1| ≈
5.2·10−2

| sin δFSI|
, |Im c2| ≈

0.10·10−3

| sin δFSI|
,

|Im c3| ≈
2·10−3

| sin δFSI|
, |Im c4| ≈

4.6·10−3

| sin δFSI|
, (2.26)

assuming that a particular operator is the sole source of the New-Physics CP violation.

3 The neutron EDM

EDMs in general and specifically the neutron EDM dn are very sensitive probes for physics

beyond the SM, in particular for CP violation. As already mentioned, a flavor-diagonal

CP violation with a size of coupling found for the new physics operators in the last section

would grossly violate the bound, which currently lies at [9]

|dn| ≤ 2.9·10−26 e·cm. (3.1)

In the following we assume that only the ∆C = ±1 operators induce the non-SM CP

violation, and estimate their effect. First we recapitulate the salient points of the estimates

within the Standard Model, where recently a new perspective has been proposed [10]. We

will discard the possibility of strong CP violation assuming that the long-standing strong

CP problem will find a solution where the QCD θ-parameter is sufficiently close to zero.

– 8 –
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n

γ

n Σ−π
+

Figure 1. The chirally singular diagram exemplifying the conventional Penguin-based contribu-

tion. One of the vertices is the usual CP-conserving weak amplitude while another contains the

CP-odd Penguin-mediated operators.

3.1 The neutron EDM in the Standard Model

The estimates of the neutron EDM in the SM have a thirty year long history; the modern

perspective can be found in review [11]. EDMs may emerge from the second order on in

the weak interaction and are generally proportional to G2
F .

Motivated by the qualitative success of the constituent quark models in understanding

of the properties of hadrons, the early estimates of nucleon EDM focused primarily on the

EDMs of quarks dq. It turned out that for quarks the KM prediction is further suppressed:

the sum of all the two-loop diagrams vanishes and dq emerge first at the three-loop level

where an additional loop with at least a gluon must be included [12–14]. On top of this, the

quark EDM has to be proportional to the quark mass; this yields an additional suppression

for the light quarks. The same applies to the color dipole moments of quarks considered

as the simplest induced CP-odd strong force generated through weak interactions at small

distances. The unfortunate feature of the quark EDMs is that there is a strong numeric

cancellation between the leading logarithmic and the subleading terms in the dominating

EDM of the d-quark dd [15], which makes it difficult to to make a definite prediction beyond

an estimate

|du,d| <∼ 0.5 · 10−34 e·cm.

It has been noted a while ago [16, 17] that the strong suppression intrinsic to u and d

quarks can be vitiated in composite hadronic systems like nucleons. The transition dipole

moments changing d-quark into s-quark, electromagnetic or color, are suppressed by the

strange quark mass ms, and such flavor-changing transition without a quark charge change

are already in the loop-induced short-distance renormalization of the bare weak interaction

due to the so-called Penguin diagrams [5, 6].

It is notoriously difficult to account for the long-range part of the strong interactions

generating the neutron EDM [11]. Usually it is considered that the principal effect comes

from the diagram in figure 1 having a chiral singularity, or that at least it fairly represents

the magnitude of dn. One of the vertices in the diagram is a conventional CP-conserving

∆S=1 weak interaction while the second is the CP-odd Penguin-induced amplitude origi-

nating from short distances which naturally incorporates heavy quarks, in particular top.

It has recently been argued [10] that there is a complementary mechanism generating

dn to the second order in GF which does not involve short-distance loop effects and is

likewise free from chiral and SU(3) suppression. It scales like 1/m2
c and would fade out
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quickly for sufficiently heavy charm, yet it may actually dominate dn in the SM since charm

is marginally heavy in the hadronic mass scale. It originates at the energy scale around

mc due to interference of the conventional ∆C=1, ∆S=0 weak amplitudes, much in the

same way as the CP-odd D-decay asymmetry discussed in section 2.1. Consequently, this

mechanism would be present, with a modified strength, in the BSM scenarios affecting

∆aCP. The analysis of the BSM contributions to dn presented in section 3.2 parallels the

SM case, therefore we remind below the main steps of ref. [10].

The observable CP-odd effects appear in the second order in Lw and thus are propor-

tional to G2
F , being embodied in

L2 =
G2
F

2

∫

d4x
1

2
iT {Lw(x)Lw(0)}. (3.2)

The generalized GIM-CKM mechanism ensures that the CP-odd piece of L2 is finite in

the local four-fermion approximation. The conventional form of Lw applies to the high

normalization point around MW . We will neglect, for the most of the consideration, the

perturbative gluon corrections, since the effect exists even without loops. This makes the

analysis simpler and more transparent.

Descending to a low normalization point we first integrate out top quark and at the

second stage, below mb also the bottom quark. At tree level integrating them out simply

means discarding all the terms containing t- or b-quark fields. As a result, we arrive at L2

generated by a superficially two-family weak Lagrangian

Lw = J†
µJ

µ with Jµ = Vcs c̄Γµs+ Vcd c̄Γµd+ Vus ūΓµs+ Vud ūΓµd . (3.3)

In fact, this is not a true two-family case, since the four Vkl do not form a unitary matrix; in

particular, it is not CP-invariant. The phases in the four remaining CKM couplings cannot

all be removed simultaneously by a redefinition of the four quark fields, as quantified by ∆

in eq. (2.3).

Interested in dn we need to consider only the terms in L2 that are diagonal in all

four quark flavors. Moreover, we can omit explicitly CP-invariant terms of the form of a

product of an operator with its conjugated. Only two operators remain after this selection,

those proportional to the CKM product V ∗
csVusVcdV

∗
ud, and also their Hermitian conjugated.

These non-local 8-quark operators include both q and q̄ fields for each of the four quark

flavors: the CP-odd invariant ∆ (as well as CP-violation altogether) vanishes wherever any

single CKM matrix element becomes zero. The two terms in L2 differ by the type, up- or

down-, of the quark-antiquark pairs coming off the same weak vertex, see figure 2. The

CP-odd amplitudes conventionally considered for dn are of type a) where one of the weak

vertices has c̄c and another ūu, and both have ∆S=−∆D=1. The type b) amplitude has

the d̄d and s̄s pairs in the two weak vertices, respectively, while each has |∆C|=1. These

were routinely omitted.

Considering the nucleon amplitudes we need to eventually integrate out the charm

quark field as well. At this point the distinction between the two types of terms becomes

important. Where the two charm fields belong to the same four-fermion vertex in the

product eq. (3.2), figure 2a, they can be contracted into the short-distance loop yielding,
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s d

uu
c

d s

c
c c

u u

d
d s

s

(a) (b)

Figure 2. Two types of CP-odd terms. Weak vertices must be off-diagonal in flavor, either

for down-type (a) or up-type (b) quark. Solid dots denote the four-quark vertices. Light lines

correspond to u, d or s quarks, thicker lines stand for charm.

for instance, the usual perturbative Penguins. These are the conventional source of the long-

distance CP-odd effects [16, 17]. The loop cannot be formed for the alternative possibility

where c and c̄ belong to different Lw, figure 2b since the charm quark must propagate

between the two vertices. This is the reason why such contributions were usually discarded.

Nevertheless, the latter term has an advantage: it does not involve short-distance

loops, and has a single charm propagator, although highly virtual in the hadronic scale.

Each weak vertex contains a flavorless quark-antiquark pair, but these are light down-type

quarks d and s and are not contracted via a perturbative loop; they will go instead into

the nucleon wavefunction. The corresponding operator is

G2
F

2
VcsV

∗
cdVudV

∗
us

∫

d4x iT{(d̄Γµc)(ūΓµd)0 · (c̄Γνs)(s̄Γνu)x + H.c. (3.4)

The Hermitian conjugate, apart from complex conjugation of the CKM product, is simply

the exchange between s and d, s↔ d (this particular property does not hold beyond the

SM). For the sake of transparency, we have passed here to the sum and the difference of

the two operators in Lw, in terms of eq. (2.1).

As the space separation x in eq. (3.4) is of order 1/mc, eliminating charm results in a

local OPE; the expansion parameter µhadr/mc is not too small and we need to keep a few

first terms. The tree-level OPE is particularly simple here and amounts to the series

c(0)c̄(x) =

(

1

mc−i 6D

)

0x

=
1

mc
δ4(x) +

1

m2
c

δ4(x) i /D +
1

m3
c

δ4(x) (i /D)2 + . . . (3.5)

valid under the T -product. For purely left-handed weak currents in the SM the odd powers

of 1/mc in eq. (3.5) are projected out, including the leading 1/mc piece. We then retain

only the 1/m2
c term and arrive at the local effective CP-odd Lagrangian2

L̃− = −i∆ G2
F

2m2
c

Õuds, (3.6)

Õuds = (ūΓµd) (d̄Γµi /DΓνs) (s̄Γ
νu)− {d↔ s}

= (ūΓµd)·
[

(d̄Γµi /DΓνs)·(s̄Γνu)+(d̄ΓµγαΓνs) i∂
α(s̄Γνu)

]

− {d↔ s};
2We have changed notations compared to ref. [10]: now Õuds, Ouds and Oα

uds all include subtraction of

the Hermitian conjugated operator.
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in the last expression the covariant derivative acts only on the s-quark field immediately

following it.

To address the electric dipole moments we need to incorporate the electromagnetic

interaction. One photon source lies in the covariant derivative in the operator Õuds, which

includes electromagnetic potential along with the gluon gauge field. It is proportional to

the up-type quark electric charge +2
3 . The corresponding photon vertex is local and is

given by the Lorentz-vector six-quark operator which we denote as Oαuds:

Oαuds=(ūγµ(1−γ5)s) (s̄γµγαγν(1−γ5)d) (d̄γν(1−γ5)u)− {d↔ s}. (3.7)

Another, non-local contribution is the T -product of the pure QCD part of Õuds

Ouds=(ūγµ(1−γ5)s) (s̄γµi /Dγν(1−γ5)d) (d̄γν(1−γ5)u)− {d↔ s} (3.8)

with the light-quark electromagnetic current.3 The total photon vertex is thus given by

the effective CP-odd Lagrangian

AαLα−=−e i∆G2
F

m2
c

Aα

[

2

3
Oαuds+

∫

d4x iT{Ouds(0) Jαem(x)}
]

, Jµem=
∑

q

eq
e
q̄γµq, (3.9)

where Aµ is the electromagnetic potential and e is the unit charge.

In principle, the local and non-local pieces above correspond to distinct physics: one

has photon emitted from distances of order 1/mc while the latter senses long-distance

charge distribution. The latter usually dominates, however the specifics of the left-handed

weak interactions in the SM make them of the same 1/m2
c order.

An important feature of the considered contribution is that it remains finite in the

chiral limit and it does not vanish if d and s quarks become nearly degenerate, at first

glance contradicting the origin of the KM mechanism where an additional SU(2) freedom

to mix s and d makes the theory CP-invariant at ms=md.
4 This in fact is fully consistent,

since the external state, the neutron, is explicitly s↔ d non-symmetric, and would not stay

invariant under the mixing transformation. The same applies, for instance, to the d-quark

EDM. In contrast, short-distance effects of light quarks in the loops involve severe GIM-

type suppression proportional to the powers of the light quark masses. The quark electric

dipole moments as the purely short-distance contributions are explicitly proportional to

the corresponding quark mass for chirality reasons.

Let us parenthetically note that there is no formal contradiction between the non-

vanishing expression for dn and the explicit T-invariance at literally ms = md either.

T -invariance prohibits dipole moments only for the eigenstates of the Hamiltonian; for

instance, non-diagonal dipole moment matrix elements are perfectly allowed. The above

considered neutron, a baryon state with strangeness S=0 is such a physical eigenstate only

3In general only the sum of the two terms yields the transverse electromagnetic vertex; however, when

projected on the dipole moment Lorentz structures they separately conserve current.
4The contribution would vanish if charm and top become degenerate; considering the cases of degenerate

bottom and strange quarks, or charm and up makes no sense in this context since it has been assumed as

the starting point that mb,mc ≫ µhadr while u, d and s are light quarks.
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as long as the mass splitting ms−md remains much larger than the weak corrections to the

hadron masses, since weak interactions violate flavor. Where ms−md becomes of the order

of GFmqm
2
c mixing between neutron and its strange partners must be accounted for. In

this regime the time-violating EDM for a physical state should be distinguished from the

conventional dn; the former would vanish at ms=md.

The CP-odd operators contain strange quark fields. This means that the induced

effects would vanish in a valence approximation to nucleon where only d and u quarks are

active. It is known, however, that even at low normalization point the strange sea in nucleon

is only moderately suppressed. The large-Nc perspective on the nucleons paralleling the

picture of the baryon as a quantized soliton of the pseudogoldstone meson field [18] makes

this explicit: the weight of the operators with strange quarks in the chiral limit is generally

determined simply by the operator-specific Clebsh-Gordan coefficients of the SU(3) group.

Such an ‘intrinsic strangeness’ suppression is specific for the considered mechanism to

generate dn in the SM; the conventional contribution trades it in for the ‘intrinsic charm’.

Associating the virtual-pair suppression with the strangeness sea in the nucleon is probably

a relatively light price to pay. In contrast, the perturbative Penguin effects yield small

coefficients whenever considered in the truly short-distance regime.

3.1.1 Matrix elements

The CP-odd operators Oαuds and Ouds have high dimension; this is routinely associated

with being poorly defined for practical applications. However, these particular operators

possess intrinsic symmetry properties, including antisymmetry in respect to s ↔ d, which

prohibit mixing with lower-dimension operators, and make them a suitable object for the

full-fledged nonperturbative analysis.

The neutron EDM is obtained by evaluating the hadronic operators in eq. (3.9) over

the neutron state. Since Lµ− is T-odd, the matrix element vanishes for zero momentum

transfer and the linear in q term describes dn:

〈n(p+q)|Lµ−|n(p)〉 = dn qν ūn(p+q)iσ
µνγ5un(p). (3.10)

Neither of the two matrix elements involved are easy to evaluate, although one may hope

that such a contribution may eventually be determined without major ambiguity, including

the definitive prediction for the overall sign. Although only the P -violating part of O
(µ)
uds

contributes, the original form is more compact and makes symmetry explicit.

The contact operator Oµuds is a product of three left-handed flavor currents; Ouds
instead of the s̄d current has a flavor non-diagonal left-handed partner of the quark energy-

momentum tensor in the chiral limit. Therefore it seems plausible that the required matrix

elements can be directly calculated within the frameworks like the Skyrme model [18, 19],

or in its dynamic QCD counterpart [20] derived in the large-Nc limit from the instanton

liquid approximation.

Lacking presently more substantiated calculations we resort to the simple dimensional

estimates. For the local piece we put

〈n(p+q)|Oµuds|n(p)〉=2iKuds qν ū(p+q)iσ
µνγ5u(p). (3.11)
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The reduced matrix element Kuds has dimension of mass to the fifth power. We estimate

it as

|Kuds| ≈ κ µ5hadr, (3.12)

where µhadr is a typical hadronic momentum scale and κ stands for the ‘strangeness sup-

pression’ to account for the fact that neutron has no valence strange quarks; κ ≈ 1/3 is

taken as a typical guess.

Due to the high dimension of the operators the estimate for dn depends dramatically

on the value used for µhadr. Although the typical momentum of quarks in nucleon is around

600MeV or higher, using this as µhadr would strongly overestimate the effect. Six powers of

mass in eq. (3.12) come from the product of two local light quark currents each intrinsically

containing factors Nc/8π
2 when converted into the conventional momentum representation.

This is illustrated by the magnitude of the vacuum quark condensate where such a factor

effectively reduces µ3hadr down to ∼(250MeV)3.

To account for such differences we assign a factor of (0.25GeV)3≡µ3ψ to each additional

quark current in the product, while the remaining dimension will be made of the powers

of µhadr taken around 500MeV. Then this contribution to dn becomes

|dn| =
32

3
e∆

G2
F

m2
c

|Kuds| ≈ 3.3 · 10−31e·cm× κ

(

µψ
0.25GeV

)6(0.5GeV

µhadr

)

, (3.13)

where ∆≃ 3.4 ·10−5 has been used. An independent enhancement factor may come from

summation over the Lorentz indices in the currents, but we neglect it.

The most naive estimates for the dn induced by the non-local piece in eq. (3.9) would

yield a similar dimensional scaling except that no explicit factor ec = 2
3 appears: the

dimension of the non-local T -product is the same as of Oµuds itself. Following the more

careful way advocated above where we distinguish the mass scale associated with the local

product of the quark fields, the result is literally different:

|dn|n−loc ≈ e∆
G2
F

m2
c

32κµ9ψ µ
−4
hadr ≈ 1.2 · 10−31e·cm× κ

(

µψ
0.25GeV

)9(0.5GeV

µhadr

)4

; (3.14)

numerically the difference is not radical, however.

Alternatively, the non-local contributions can be analyzed focusing on the contribu-

tions of the individual intermediate states, usually the lowest in mass. Among them the

hidden-strangeness states, including K̄Λ(Σ) look promising suggesting a way to dynam-

ically estimate the ‘intrinsic strangeness’ factor κ. In the standard model, however, the

corresponding loops are not infrared-enhanced and rather saturate at large virtual mass

yielding a result strongly dependent on the assumed cutoff. For the same reason the kaon

and the lowest baryon as the intermediate state are not any more remarkable a priori than

ordinary resonances.

Ref. [10] considered the contribution of the lowest resonant state, the 1
2

−
nucleon

resonance N(1535) referred to below as Ñ , as an alternative estimate of the non-local piece

in dn. In terms of the two hadronic vertices,

〈n(p′)|Jµem(0)|Ñ(p)〉=−ρÑ ūniσµνγ5qνuÑ , 〈Ñ(p′)|Ouds(0)|n(p)〉=16iNudsūÑun (3.15)
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~N ~N
γ γ

Figure 3. Nonlocal contribution to dn with the intermediate Ñ . Solid block denotes the CP-odd

operator Ouds.

the sum of the Feynman diagrams in figure 3 gives

d(Ñ)
n = −e∆32G2

F

m2
c

(

ρÑ Nuds
MÑ−MN

)

. (3.16)

The electromagnetic vertex estimated from the measured transition Ñ → n+γ becomes

ρÑ ≈(0.34±0.08)GeV−1. The induced weak CP-odd vertex is estimated in the dimensional

way, for the dimension-ten operator Ouds yielding

|Nuds| ≈ κ µ6ψ µhadr. (3.17)

Finally this estimate reads

|dn|(Ñ)≈e∆32G2
F

m2
c

κµ6ψ µhadr
ρÑ

MÑ−Mn
≈1.4 · 10−31e·cm× κ

(

µψ
0.25GeV

)6( µhadr
0.5GeV

)

.

(3.18)

This value is consistent with the direct dimensional estimate of the non-local contribution,

in particular considering the fact that the lowest excited state alone may not necessary

saturate it. Therefore, in further applications we generally follow the more straightforward

estimates paralleling eq. (3.14).

Finally, our estimate for dn in the SM centers around 10−31 e·cm although even the

values 5 to 10 times larger may not be excluded.

The natural benchmark for the CKM dn in the SM evidently lies about

dn ∝ ∆G2
Fµ

3
hadr. (3.19)

In the same terms the loop-less contribution considered above is

dn ∝ ∆G2
Fµ

3
hadr ·

µ2hadr
m2
c

·κ. (3.20)

The last factor reflects the absence of valence strange quarks in the nucleon. The re-

lated suppression is unavoidable for dn in one form or another; it is natural to think

that paying the price by the soft strangeness content in the nucleon state is the mini-

mal burden. Therefore, from this perspective such a contribution appears to bear a mild

model-specific suppression, since mc in practice only moderately exceeds the characteristic

hadronic scale µhadr.
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At the same time dn does not contain parametric chiral enhancement, lnµ2hadr/m
2
π

or numerically significant scalar matrix elements possible in the case of generic couplings.

This implies also a loss of a potential factor of a few; it may be recovered by the interactions

generated beyond the SM.

Throughout the long history of the conventional long-distance contributions to dn in

the SM it has usually been considered [11] that the principal effect comes from the diagram

in figure 1 peculiar by showing a chiral singularity. It has been calculated in ref. [17],

dn ≈ eG2
F∆

Cpertαs

27
√
2π3

ln
m2
t

m2
c

2|〈ψ̄ψ〉|m2
π

fπms
Ã(2α−1)gA ln

mK

mπ
(3.21)

(Ã is a strong constant parameterizing the conventional CP-even vertex and α a dimension-

less ratio of two SU(3) meson-to-baryon axial couplings, while Cpert stands for additional

perturbative factors). The original authors’ estimate was close to dn ≈ 2 ·10−32e·cm. It

was done in 1981 when even the size of the CKM admixture of the third generation was

unknown and was thought to be of the scale of θC . The equivalent of the CP-violating

parameter ∆ likewise was estimated assuming mt ≈ 30GeV, yet a value only 1.5 times

larger than known today, see eq. (2.3), was used. At the same time the used log ratio

of the t and c quark masses was somewhat smaller. The size of this contribution is now

usually cited as dn≈10−32 e·cm [11].

The dn value eq. (3.21) is proportional to αs/π from the short-distance Penguin loop.

It also contains a factor m2
π ∝ mq compared to the benchmark eq. (3.19), however the

overall light-quark mass scaling is remarkable: mu,d enter divided by ms rather than by

µhadr. Therefore, in the SU(3) chiral limit where all mu,d,s → 0, mq/ms fixed it would

stay finite.

In practice, however the SU(2) chiral limit mu,d → 0, ms fixed is more relevant in

numeric estimates. In this case eq. (3.21) has an additional factor of the light-quark mass

mq compared to the benchmark value eq. (3.19). This is in agreement with the general

fact stated in appendix A: the contribution contains a chiral log and therefore must include

an explicit factor of mq since the SM weak amplitudes do not contain right-handed light

quark fields. As emphasized there, it is sufficient to check this for the bare weak vertices.

This illustrates the underlying problem in estimating dn in the SM: the physically

distinct chirally singular contributions have to be mq-suppressed. The leading-mq con-

tributions are not related to soft pions and are rather saturated at the loop momenta of

the typical hadronic mass scale µhadr, or by resonances with a significant mass gap. Such

effects are generally uncertain and may involve cancellations.

The conventional SM contribution eq. (3.21), therefore, has an additional light-mass

suppression ∝ mq on top of the perturbative short-distance factor. Although it is par-

tially offset by numerically large factors accompanying the amplitudes with right-handed

light quarks, together with the perturbative loop factor it results in a certain suppres-

sion. This may explain the larger number for the loopless EDM which we estimate to be

around 10−31e·cm.
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3.2 Neutron EDM and a BSM charm CP violation

In order to estimate the effect of the |∆C|=1 amplitudes on the neutron EDM we should

replace one of the two Lw in the product L2 by the New Physics operators. We will assume

that we get a reasonable estimate when considering one operator at a time; this basically

corresponds to the assumption that in the neutron EDM we do not have a destructive

interference absent from the charm decays.

As is clear from the analysis of the SM case, the operator structure obtained upon in-

tegrating out charm depends on its chirality in the NP amplitude: in the left-handed case

it follows the SM case. Where the charm field is right-handed, only the odd-power terms

1/mc, 1/m
3
c . . . survive. In this case the leading term suffers less from the µhadr/mc suppres-

sion, however it does not include the leading contact photon vertex (the photon operator

O1 is an exception in this respect) which appeared to yield a few times larger contribution,

at least within our estimates. The contact photon vertex is then delayed till order 1/m3
c .

Such a peculiarity introduces certain difference, but in view of the relatively mild numeric

power suppression the presence of the nonlocal T -product term to the leading 1/mc order

for the right-handed charm does not appear to bring in a notable numeric difference.

The chiral content of the light valence quarks generally makes a bigger difference.

The nucleon matrix elements with both left-handed and right-handed fields are usually

numerically enhanced as seen on the example of the nucleon σ-term. Moreover, a CP-odd

scalar pion-to-nucleon coupling may be induced. Although the CP-nonconservation case

is more involved, it can be stated that this vertex at small momentum transfer would be

proportional to the light quark masses and therefore negligible in practice unless the New

Physics operators include right-handed light quarks, see appendix A.

The contact photon vertex contribution to dn does not depend on the induced pion-

nucleon interaction. The scalar pion vertex Gs p̄nπ−, on the other hand, generates a chirally

enhanced long-distance contribution to the T -product piece with the π−p intermediate

state, described by the diagrams in figure 4:

− e
GsgπNN
16π2MN

ln
Λ2

m2
π

ūniσµνq
νγ5un = −e GsgA

8π2fπ
ln

Λ2

m2
π

ūnσµνq
νiγ5un (3.22)

with Λ the ultraviolet cutoff. In the actual world the chiral ln
µ2hadr
m2

π
constitutes a moderate

factor about 3 and therefore is remarkable more in the conceptual aspect. However it

comes proportional to the large couplings and this makes up for the loop factor. In the few

considered examples the overall chiral enhancement roughly offsets the typical suppression

(at the same order in 1/mc) of the T -product piece relative to the contact photon vertex

contribution. Regardless of the details, it is clear that the chiral log per se is a too weak

singularity to change dramatically the expected magnitude of dn.

The effect of the scalar pion-to-nucleon vertex can be more pronounced in atomic

EDMs. The pion-mediated nuclear forces are relatively long-range and may be additionally

amplified for the isoscalar coupling in heavy atoms.

The current algebra technique allows to unambiguously determine the induced scalar

vertex in the chiral limit, see appendix A. Of course, in the general case it would require
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n

γ

n p
π
−

Figure 4. The chirally singular diagram generated by the scalar vertex. One of the vertices

is the usual strong CP-conserving pseudoscalar coupling while another is the induced CP-odd

scalar vertex.

the nucleon expectation values of similar high-dimension effective operators, currently es-

timated in a rather crude way. An additional uncertainty would come from possible can-

cellations due to the second, pole-subtraction term in eq. (A.1). As a rule, aiming only at

the overall magnitude, we simply neglect this term.

Contracting charm propagator we end up with the multi-quark CP-odd operators. The

neutron EDM induced by them is evaluated applying the dimensional estimates elaborated

for the SM case; they are described in section 3.1. The non-valence strange quarks are

neglected here and no factor κ appears.

Considering the quark bilinears, we start with the more natural gluonic O2. In view

of the above mentioned difference in the OPE, we consider separately the cases of OR2
and OL2 containing right- and left-handed c-field, respectively, rather than its scalar and

pseudoscalar versions.

We start with OR2 = mcc̄gsiσG(1−γ5)u. Here charm induces already the 1/mc ef-

fect generating dn via the T -product with the electromagnetic current. The contact term

emerges only to order 1/m3
c , and we discard it. The corresponding CP-odd operator is

O(−)=−i Im c2
G2
F sin2θc cos

2θc
m0
c

[

ū gsiσαβG
αβγµ(1−γ5)d d̄γµ(1−γ5)u− d↔ s

]

+H.c.

(3.23)

For the scale estimate we simply factor out the operator gsiσαβG
αβ and assume it has the

value similar to the one in heavy mesons or baryons, 2µ2G ≈ 0.7GeV2. A close value is

obtained if we use the vacuum condensate 〈q̄gsiσGq〉 ≈ 0.8GeV2〈q̄q〉. Discarding strange

quarks and applying to the rest our dimensional estimate we get

|dn| ≈ Im c2G
2
F sin2θc cos

2θc 32µ
2
G

(0.25GeV)6

(µhadr)5
χfl ≈ 1.1 · 10−26e·cm · Im c2 χfl , (3.24)

where χfl≈1 to 2 is a flavor factor which accounts for the fact that there are two d quarks

in the neutron. Using eqs. (2.26) for Im c2 we get

|dn| ≈ 10−30 χfl

| sin δπ+π− |e·cm ≈ 2.3χfl · 10−30e·cm . (3.25)

Here and in what follows we assume | sin δFSI| ≈ 0.5 as a typical value. Thus we expect an

enhancement of roughly a factor of thirty.

Now we turn to OL2 =mcc̄gsiσG(1+γ5)u. Here the leading term 1/mc vanishes like in

the SM and the 1/mc expansion starts with 1/m2
c , yet we have the right-handed u-quark

which entails chiral enhancements in the nucleon matrix elements. There are two distinct
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contributions to the leading order like in the SM, the contact and non-local. For the latter

we obtain

O(−) = −i Im c2
2G2

F sin2θc cos
2θc

m1
c

× (3.26)

×
[

ūgs

(

Gµν − iG̃µν+Gµασαν − σµαGαν +
1

2
δµνσαβG

αβ

)

×

×Dν(1− γ5)d d̄γµ(1− γ5)u− d↔ s

]

+H.c.

and the contact electromagnetic vertex is given by

Oν(−) = −i Im c2
2G2

F sin2θc cos
2θc

m1
c

× (3.27)

×
[

ūgs

(

Gµν − iG̃µν +Gµασαν − σµαGαν +
1

2
δµνσαβG

αβ

)

×

×(1− γ5)d d̄γµ(1−γ5)u− d↔ s

]

+H.c.

It likewise may have a numeric chiral enhancement due to right-handed u-quark, yet no

literal chiral log from the pion loop. Our estimate for it reads as

|dn|loc ≈ 2

3
Im c2G

2
F sin2θc cos

2θc
32µ2G
mc

(0.25GeV)3

µhadr
χfl χscal

≈ 2.5·10−26 e ·cm · Im c2 χfl χscal, (3.28)

where we, as above, have equated the whole bracket containing the gluon field strength,

including gs, with 2µ2G; yet another factor χscal has been added to indicate a possible

enhancement of the scalar expectation value (cf. the size of the nucleon σ-term). This is

about 3 times larger than in eq. (3.24).

The non-local contribution estimated dimensionally is typically 2.5 to 3 times smaller

than the contact one. However here the right-handed u-quark induces the nonvanishing

scalar pion-nucleon vertex and the π−p intermediate state yields a chiral log, cf. eq. (3.22).

Combined with the current algebra result for the scalar version as described above this

enhancement numerically turns out about 3.5, i.e. we get a number close to the contact

estimate eq. (3.28).

Thus, we can use for this case the local estimate eq. (3.28) and Im c2 from

eq. (2.26). Then

|dn| ≈ 2.5·10−30 χfl χscal

| sin δπ+π− | e·cm ≈ χfl χscal · 5·10−30 e·cm . (3.29)

For this chiral structure we get about an 80-fold enhancement compared to the SM.

The photonic operators O1 are the simplest case since only the contact photon vertex

should be considered to the leading order in α. For the case of the right-handed c quark,

OR1 =emcc̄iσF (1−γ5)u the leading term in the 1/mc expansion yields

Oν(−) = 2i Im c1G
2
F sin2θc cos

2θc ∂µ
[

ūiσµνγα(1−γ5)d d̄γα(1−γ5)u− d↔ s
]

+H.c. (3.30)
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The matrix elements of the CP-even partner of such an operator may have been estimated

in the literature. Applying our standard recipe we get

|dn| ≈ 16|Im c1|G2
F sin2θc cos

2θc (0.25GeV)3 χfl

≈ 3.2 · 10−26 e·cm · Im c1 ·χfl

≈ 3.4·10−27e·cm·χfl . (3.31)

Owing to its nature this operator yields the largest enhancement of all the new physics

operators. Nevertheless it is still safe in respect to experimental bounds.

The operator O1 with the opposite chiralities, OL1 = emcc̄σF (1+γ5)u has a mild sup-

pression by a factor µhadr/mc, however it can be enhanced by larger matrix elements

appearing with the right-handed u quark. Therefore we expect to have here the same

numeric estimate as for OR1 , within a factor of 0.5 to 2.

Finally we consider the four-quark operator O4. This is the case of both the leading-

order 1/mc contribution and of the chiral enhancement from the light valence quarks in

the nucleon. Neglecting the strange quarks we have

O(−) = i Im c4
G2
F sin2 θc cos

2 θc
mc

[

d̄γµ(1− γ5)d ūγµγν(1− γ5)d d̄γ
ν(1− γ5)u

]

+h.c. (3.32)

The contact photon interaction would come suppressed by two powers of 1/mc. On the

other hand, the above leading-mc interaction enjoys a chiral pion loop enhancement in

the T -product with Jem. Taking the axial charge commutator and neglecting the pole

subtraction term in eq. (A.1) the scalar pion vertex becomes

Gsūpun = −i Im c4
G2
F sin2 θc cos

2 θc
mcfπ

2〈p|ūγµ(1− γ5)d d̄γµγν(1 + γ5)d d̄γ
ν(1− γ5)d|n〉q=0.

(3.33)

According to our dimensional rules this amounts to

|Gs| = |Im c4| 8
G2
F sin2θc cos

2θc
mcfπ

(0.25GeV)6 χscal χ
2
fl (3.34)

and results in

|dn| ≈ |Im c4|
G2
F sin2θc cos

2θc
π2f2πmc

gA ln
µ2hadr
m2
π

(0.25GeV)6 χscal χ
2
fl

≈ 6·10−28e·cm · Im c4 χscal χ
2
fl. (3.35)

Using the estimate eq. (2.26) we end up with

|dn| ≈ 5.7·10−30 e·cm χscal χ
2
fl. (3.36)

Should we apply the simple-minded dimensional estimate to the T -product contribution

without considering specifically the pion loop or paying attention to the potential chiral

enhancement, we would get a somewhat smaller but a consistent value

|dn| ≈ 4·10−28 e·cm · |Im c4|χ2
fl ≈ 4·10−30 e·cmχ2

fl. (3.37)
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i〈π+π−|Ok|D0〉 | sin δFSI Im ck| |dn|, e·cm

O1 8
√
2πα qd fπf

D→π
+ (0)M2

D 5.2·10−2 4·10−27

O2 4πgs
√
3 fπf

D→π
+ (0)M2

D 1.0·10−4 8·10−30 3·10−30

O3 fπf
D→π
+ (0)M2

D 2 ·10−3 10−30

O4 fπf
D→π
+ (0)M2

D
1
Nc

2m2
π

(mu+md)mc
4.6·10−3 10−29

Table 1. The estimated D0 decay amplitudes, the strength of the CP-odd couplings and expected

dn. The two sub-columns for the chromomagnetic operator O2 correspond to the left-handed (left)

and right-handed (right) charm fields, respectively.

Therefore, in the case of O4 the induced dn is about 100 times the SM. The origin is

evident: O4 has a color structure unfavorable to D→π+π−. At the same time, the chirality

choice is optimal for both charm and light quarks, in the nucleon matrix elements. The

combination of the two yields an additional factor of 10 enhancement in our estimates.

For convenience, table 1 summarizes our estimates of dn in this section along with the

values of Im ck from section 2.2.

3.3 A comment on the atomic EDMs

The atomic size exceeds the nucleon radius by several orders of magnitude, and as a

matter of principle they may have larger EDMs; in particular, this applies to paramagnetic

atoms. The enhanced EDM, however may originate there mainly through T-violation in

the lepton sector, with the electron EDM itself or via the induced contact interaction with

the nucleons. Such manifestations of New Physics are not directly associated with the

milliweak interaction of quarks and are beyond the subject of the present study.

In diamagnetic atoms like mercury the screening mandated by the Schiff theorem is

rather effective and the overall EDM appears to be dominated by the induced isoscalar

CP-odd π0NN coupling affecting non-pointlike electromagnetic potential of the nucleus —

yet still at a rather suppressed level,

dHg ≈ Gs ·3.5·10−18 e·cm, (3.38)

see refs. [11, 21]. Using, for instance the estimate eq. (3.34) we can expect for the isoscalar

coupling |Gs|≈10−15. Therefore, as anticipated the diamagnetic atom EDMs, while prob-

ably not yet fully competitive in sensitivity with the direct dn, may become comparable

in certain NP scenarios yielding amplitudes with a right-handed light quark, owing to the

recent radical improvement [22] in the precision for the 199Hg EDM.

4 Conclusions

The KM mechanism of CP violation in the Standard Model is an instructive example of a

realistic phenomenological theory where the dominant contribution to the electric dipole

moment of neutron comes not from the effective CP-odd operators of lowest dimension, but
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via a nontrivial interplay of different amplitudes at a relatively low energy scale. In the SM

this evidently roots in an intricate nature of the CP violation intimately related to flavor

dynamics requiring existence of a few generations. It may be interesting to investigate, in

general terms, if a similar pattern can naturally fit theories beyond the SM which would

describe flavor dynamics at a more fundamental level.

We have argued that in the SM itself with vanishing θ-term the neutron electric dipole

moment has natural size about 10−31 e·cm and may even exceed this, due to the interfer-

ence, at the momentum scale around 1GeV of the two ∆C =1, ∆S =0 weak four-quark

amplitudes. This mechanism does not require short-distance loop effects, is finite in the

chiral limit and does not depend on the strange- vs. down-quark mass splitting.

The CP-odd direct-type D0 decay asymmetry reported recently at the level of 10−2

does not naturally conform the expectations in the SM, which are typically an order of

magnitude smaller. This may be an indication for new CP-odd forces beyond the SM,

although such an interpretation should still be viewed cautiously.

If New Physics indeed induce a milliweak CP-odd decay amplitude in charmed parti-

cles, it may also be expected to generate, at the NP scale, flavor-diagonal CP-odd interac-

tions in the light hadron sector. The EDMs of nucleons and atoms are extremely sensitive

to them, and the existing experimental bounds place strong constraints on the effective

interactions seen at low energies. Such low-energy effective operators are model-dependent

and their connection to the charm CP violation is indirect, to say the least.

Nevertheless, a certain, possibly subdominant contribution to dn is generated at the

charm energy scale in a direct analogy with the Standard Model. It is fully independent of

the effects originating from the NP scale and directly reflects the scale of CP violation in

charmed particles. Our analysis suggests that this would increase dn compared to the SM

prediction by more than an order of magnitude: the typical enhancement is between 30 and

100, depending on the chiral, color and flavor composition of the charm NP amplitudes. In

an ad hoc case of the CP violation through the electromagnetic c→u dipole operator alone

the neutron EDM can be even as larger as 5·10−27 e·cm. However, the possibility itself for

NP to generate such a CP-odd electromagnetic operator but not a similar chromomagnetic

one of the commensurate strength, does not look natural.

We conclude that New Physics CP violation in charm at the reported level remains

safe in respect to existing strong experimental bounds on EDMs, as long as the direct

effects are considered. At the same time it would significantly reduce the gap between the

bounds and the expected size of the EDMs, and would make the new generation of the

EDM experiments more topical.

In the present analysis we have assumed that a new source of CP violation appears

solely in |∆C|=1 interactions. Eventually the known flavor dynamics must be embedded

in a full picture of flavor together with CP violation at some high scale, where new dynamic

fields are also present. Attempts to investigate the new phenomena along these lines have

been reported in [7, 8], considering the observed ∆aCP e.g. in a supersymmetric framework.

This generically induces additional CP violation compared to our scenario, which would

modify the impact on the EDMs.
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A Generalized Goldberger-Treiman relation and the scalar πNN vertex

CP-odd perturbations in general induce the parity-violating scalar pion-to-nucleon vertex

which may not vanish at small pion momentum. Such amplitudes often play a special

role owing to the small (vanishing in the chiral limit) pion mass. Here we give a compact

current algebra derivation of the corresponding small-momentum limit for a general CP-odd

perturbation operator O−. We also point out that the induced CP-odd vertex necessarily

vanishes in the chiral limit at zero pion momentum for any operator O− which does not

involve the right-handed light quarks (their absence may be established at arbitrary chosen

normalization point).

For simplicity of the notations we consider the charge pion. Its amplitude off the

nucleon takes the following form in the limit of vanishing pion momentum:

Aπ−NN (0) =
1

fπ

[

〈N |1
i
[Q+

5 (0), O
(−)]0|N〉 − 〈0|1

i
[Q3

5(0), O
(−)]0|0〉

−〈0|ψ̄ψ|0〉 〈N |ūd(0)|N〉
]

. (A.1)

where Q+
5 =u†γ5d, Q

3
5=q

† τ3

2 γ5q are the axial charge densities and the equal-time commu-

tators marked with the null subscript are calculated according to the standard rules.

To prove it, we first establish a counterpart of the Goldberger-Treiman relation for the

general case where parity can be violated. To this end we consider the exact nucleon matrix

element of the non-singlet light-flavor axial current Jµ (let it be J+
µ 5, for concreteness)

〈N |J5
µ|N〉 = gA(q

2)Ψ̄Nγµγ5ΨN + b(q2)Ψ̄Nσµνq
νγ5ΨN + C(q2)qµΨ̄Nγ5ΨN

+a(q2)Ψ̄NγµΨN + b(q2)Ψ̄Nσµνq
νΨN + c(q2)qµΨ̄NΨN , (A.2)

where the last three terms violate parity being induced by O(−). Consequently,

〈N |∂µJ5
µ|N〉 = (2MNgA(q

2) + q2C(q2))Ψ̄N iγ5ΨN + ic(q2)q2Ψ̄NΨN . (A.3)

which gives two relations, for the pseudoscalar and for the scalar structures.

Noether theorem relates the divergence of the current obtained from the quark equa-

tions of motion to the variation of the Lagrangian under the chiral symmetry transforma-

tion; in the case of QCD the variation comes from the conventional light quark mass term

and from the corresponding commutator of the axial charge with O(+) which we denote by
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−iD+:5

∂µJ
5
µ = 2mqūiγ5d+D+, D(+) =

1

i
[Q+

5 (0), O
(−)]0, (A.4)

and therefore

〈N |2mqūiγ5d+D(+)|N〉 = (2MNgA(q
2) + q2C(q2))Ψ̄N iγ5ΨN + ic(q2)q2Ψ̄NΨN . (A.5)

This equation can be taken in the limit mq→0 and to the first order in the O(−) pertur-

bation. The pseudoscalar structure becomes the Goldberger-Treiman relation fπgπNN =

2MNgA stating the existence of the Goldstone boson through the pole in C(q2) as long

as MNgA(0) 6=0. The scalar term dictates that the pion pole residue likewise carries the

scalar nucleon vertex proportional to 〈N |D(+)|N〉 at zero momentum transfer:

AπNN =
〈N |D(+)(0)|N〉′

fπ
. (A.6)

D(+) in eq. (A.4) is just the conventional PCAC commutator. The subtlety is important,

however that the matrix element above stands for the exact nucleon states rather than for

the unperturbed QCD ones as is usually implied when expanding in perturbation; this fact

is indicated by the prime in eq. (A.6). The difference becomes important in the chiral limit

where the pion mass is parametrically small, as illustrated later.

To bypass this complication we apply a Lagrange multiplier trick, namely consider,

instead, the CP-odd perturbation O
(−)
λ =O(−)−λ(ūiγ5u−d̄iγ5d) with an arbitrary λ, and

keep mq nonzero. On one hand, the operator ūiγ5u− d̄iγ5d = 1/mq ∂µJ
(3)
µ 5 is the total

derivative in QCD and does not change any strong amplitude; hence it can be added to

the perturbation for free. On the other hand, λ can be taken such that the perturbation

O
(−)
λ becomes nonsingular in the chiral limit. (In other words, in this case one can safely

perform a double expansion in mq and in O(−).) Since the chiral singularity comes from

the pion pole in the correlators, the value of λ is determined by vanishing of the residue

〈π|O(−)
λ |0〉, or

λ = lim
mq→0

〈0|O(−)|π0〉
〈0|ūiγ5u−d̄iγ5d|π0〉

= lim
mq→0

〈0|1
i
[Q3

5(0), O
(−)]0|0〉

−2〈0|ψ̄ψ|0〉 (A.7)

With this choice of O
(−)
λ the exact nucleon states in eq. (A.6) enjoy a regular expansion

in bothmq and in O
(−)
λ free from a 1/mq enhancement. Therefore, to the first order in O

(−)
λ

at mq≪µhadr we can ignore the difference between the exact and the unperturbed nucleon

states in eq. (A.6). The net effect of the resummation of the pole terms then amounts to

subtracting from D(+) the divergence of the current with the mass term λ(ūiγ5u−d̄iγ5d)
which is equal to 2λ ūd. This is the relation eq. (A.1).

The presence of a subtraction term beyond the conventional PCAC commutator in the

weak transition amplitudes has been appreciated in the context of electroweak calculations

in the early 1980s [23, 24], being evident when using σ-models to visualize the chiral

symmetry breaking. As noted in the end of this section, it is likewise intuitive in the

5For simplicity we assume mu=md.
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π−π− π−

0π 0π
NN N NN N

(a) (b)

Figure 5. Examples of contact a) and pole b) diagrams for the induced π−NN vertex. The pole

diagrams may contain non-singular terms as well and these are included in the contact part of the

amplitude. The light shaded blob represents the pion amplitudes off the nucleon, the solid block

shows the insertion of the CP-odd operator O(−). The dashed-dotted line is the π0 propagator with

an infinitesimal momentum.

ordinary CP-conserving weak decays, in particular of kaons, without recourse to chiral

Lagrangians. Later it was more systematically incorporated in the chiral expansion for

many EDM calculations beyond the SM [25].

The above proof, while short and general, may look somewhat mysterious since a finite

yet calculable part of the usual PCAC commutator term appears to be miraculously eaten

up only as a result of the failure of the conventional chiral expansion. The cover of mystery

is removed once the corresponding diagrams are identified and are accurately calculated.

This is possible using the double expansion, in O(−) and then in mq. We illustrate this in

what follows.

The pion-nucleon amplitude to the first order in perturbation O(−) has two pieces given

by the irreducible and the pole diagrams, respectively, see figure 5. The latter are those

which become singular in the limit of mq→ 0 or at vanishing pion momenta. We need to

consider them in the kinematics where π− has a finite momentum yet small compared to

the hadronic scale µhadr, while π
0 has nearly vanishing momentum driven down by small

mq. The pole diagrams in figure 5b have an enhancement 1/mq from the pion propagator at

zero momentum. The Adler consistency condition guarantees that the 1/mq enhancement

in the pole diagrams is canceled, but it does not protect against the finite piece we are

interested in.

The conventional PCAC vertex derived from the axial charge commutator, the first

term in eq. (A.1), is just the above contact vertex. To determine the extra finite part we

take O(−)= ūiγ5u−d̄iγ5d. Using the operator identity

ūiγ5u−d̄iγ5d =
1

mq
∂µJ

3
µ 5

we have

〈Nπ|(ūiγ5u−d̄iγ5d)(0)|N〉 = i
qµ
mq

〈Nπ|J3
µ 5(0)|N〉 = 0 at qµ→0. (A.8)

This equation is valid for arbitrary (even large!) nonzero mq and arbitrary π− momentum.

We can examine it to the first two orders in mq. Since there is a pion propagator pole,

the leading constraint is the vanishing of the 1/mq piece. This is the Adler consistency

condition: the pole residue proportional to the π0 emission amplitude at zero momentum

vanishes. Vanishing of the O(m0
q) term means the cancellation of the two contributions,
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the pole and the contact amplitudes; no further terms appear due to the Adler condition

established at the previous step. The latter comes from various regular terms not containing

poles or kinematic singularities and therefore can be calculated simply at mq = 0 and

pπ− → 0. The standard PCAC commutator applicable for soft π− is just this piece. The

former contribution is the new chirality-violating terms ∝mq which spoil the exact Adler

cancellation of the amplitude in the chiral limit. Eq. (A.8) fixes it to be exactly minus the

contact amplitude:

〈0|(ūiγ5u−d̄iγ5d)(0)|π0〉 ·
A(Nπ− → Nπ0)

m2
π

= −〈Nπ−|(ūiγ5u−d̄iγ5d)(0)|N〉. (A.9)

This relation is exact in the limit of pπ0 → 0 and is similar in spirit to the Tomozawa-

Weinberg formula [26, 27], yet is simpler and differs since only one pion is soft. It actually

applies to any hadron state, not only Nπ−.

Now we can go back to the case of a general O(−). It cannot anymore be represented as

a total derivative, and the matrix element 〈Nπ−|O(−)|N〉 does not vanish. It is still given
by the sum of the contact and the pole diagrams. The former would again be given, for

soft π−, by the Goldberger-Treiman commutator; it should be taken over the unperturbed

nucleons, since the quark masses are kept nonzero. The latter, the chirally enhanced pole

diagrams with the strong vertices corrected at order mq depend only on mq but not on

O(−), i.e. they are given by QCD proper. The CP-odd operator O(−) enters them only at

the tadpole 〈0|O(−)(0)|π0〉, figures 5b. Multiplying the tadpole by the strong amplitude

A(Nπ− → Nπ0) over m2
π from eq. (A.9) we get, for the CP-odd part,

〈Nπ−|O(−)(0))|N〉 − 〈0|O(−)(0)|π0〉
〈0|(ūiγ5u−d̄iγ5d)(0)|π0〉

· 〈Nπ−|(ūiγ5u−d̄iγ5d)(0)|N〉. (A.10)

This representation has an advantage of still being valid at arbitrary π− momentum, yet

only to the leading order inmq (which here means discardingmq/µhadr). It clearly conforms

to eq. (A.7).

The explicit form of theN→Nπ amplitudes at arbitrary pion momentum is not known,

therefore to have a concrete expression we finally should assume pπ− ≪ µhadr. Using the

generalized Goldberger-Treiman relation for the conventional unperturbed nucleon states

(mq is finite now) we expectedly arrive at eq. (A.1). Thus, we have traced how the chiral

pole resummation generates the subtraction term exactly in the way anticipated in our

original simple derivation.

The additional general observation is useful in view of the left-handed structure of

the weak currents in the SM. Namely, for any operator not containing right-handed u- or

d-quark fields the induced πNN coupling at zero pion momentum must vanish in the chiral

limit mu,d→0. In the cases where the commutator with the axial charge does not vanish

explicitly this implies the vanishing of the corresponding zero-momentum matrix element.

This applies to any on-shell amplitude off the hadrons, not only to the nucleon vertex, and

is a counterpart of the Adler consistency condition.

The reason is that at mu,d=0 the theory is invariant under the isotriplet right-handed

chiral transformation

q(x)→ei
α
2
(1+γ5)τ3q(x);
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as long as Lw is free from uR and dR this symmetry persists in the full theory including the

weak interaction. Since it is spontaneously broken by the conventional strong dynamics,

there is an exactly massless (at mq = 0) Goldstone boson, π0, associated with the corre-

sponding exactly conserved Noether current. This current is evidently a sum of the usually

considered axial current and of a flavor-diagonal vector current. Likewise, as in the con-

ventional axial-current case, the corresponding Goldstone vertex off the exact eigenstates

vanishes at zero momentum.

The formal derivation is straightforward if one considers, instead of the conventional ax-

ial current, the corresponding left-handed current. Its divergence, the analogue of eq. (A.4)

vanishes at mq=0 by virtue of the exact quark field equations of motion, and the general-

ized Goldberger-Treiman relation eq. (A.5) says that c(0)=0, cf. eq. (A.6). The existence

itself of the exact Goldstone boson follows from eq. (A.5) considered in the limit of small

nonvanishing mq with D=0.

Therefore, any weak pion amplitude vanishes for small pion momentum in the chiral

limit unless weak Lagrangian contains right-handed u or d fields. More generally, it may

only remain finite if there is no combination of vector and non-anomalous axial transfor-

mation that leaves Lw invariant. Furthermore, the invariance can be checked at arbitrary

normalization scale, and usually it is most evident for the bare operators. As an example,

the bare Lw in the Standard Model contains only left-handed fields, but Penguins [5, 6]

induce the operators with the right-handed light quarks in the conventionally considered

effective renormalized Lagrangian. Nevertheless the zero-momentum pion amplitude van-

ishes in the chiral limit in the Standard Model.

Unlike the pseudoscalar vertex, the induced CP-violating scalar pion-nucleon vertex

describes the Lorentz structure in the amplitude that does not vanish at zero momentum

transfer. Therefore, it must vanish in the chiral limit unless the weak interactions include

right-handed u or d fields.

Concluding the brief discussion of the application of the current algebra technique we

note that the similar methods can be applied, for instance to the usual weak decays, e.g. of

kaons or hyperons, both parity-conserving and parity-violating. In the parity-conserving

∆S = 1 decays we may subtract from the weak Lagrangian the scalar operator s̄d with

an arbitrary coefficient λ, rewriting it as ∂µ(s̄γµd)/(ms−md). This demonstrates that the

decay amplitude is not changed regardless of λ. For parity-violating transitions we can

subtract s̄iγ5d= ∂µ(s̄γµγ5d)/(ms+md). This is also useful in establishing the absence of

the chiral enhancement in the K-decay amplitudes mediated by composite quark bilinears

like s̄iσµνG
µνd, and to elucidate other similar cancellations. We do not expand on the

related applications here.
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