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1 Introduction

Supersymmetric black holes play an important role in string theory. Given their impor-

tance, it is natural to ask whether or not they are classically stable: does a small initial

perturbation remain small under time evolution?

In a supergravity theory, the fact that a supersymmetric solution saturates a BPS

bound, and therefore minimises the energy (at fixed charge), does not imply classical

stability. For example, the classical stability of Minkowski spacetime in vacuum GR does

not follow from the positive energy theorem. Instead, the proof involves a lengthy analysis

of the Einstein equation [1]. Furthermore, Anti-de Sitter spacetime is a supersymmetric

solution of various supergravity theories but nevertheless it is classically unstable against

the formation of small black holes [2].

In these examples we are referring to classical stability under time evolution deter-

mined by the nonlinear Einstein equation. Recently, Aretakis has proved that even linear

perturbations of a supersymmetric black hole can exhibit an instability [3, 4].1 He con-

sidered an extreme Reissner-Nordström black hole. In ingoing Eddington Finkelstein (EF)

coordinates, the metric is

ds2 = −
(

1− M

r

)2

dv2 + 2dvdr + r2dΩ2 . (1.1)

The future event horizon H+ is at r = M . The generator of time translations is ∂/∂v.

This solution preserves half of the supersymmetry in minimal N = 2 supergravity [6].

Aretakis studied a massless scalar field ψ in this spacetime. Consider initial data for ψ

specified on a spacelike surface Σ intersecting H+ and extending to infinity (figure 1), with

ψ decaying at infinity. This uniquely determines ψ in the future domain of dependence

of Σ, which contains the part of the black hole exterior that lies to the future of Σ, and

a neighbourhood of the part of H+ that lies to the future of Σ. Aretakis proved that

the solution exhibits both stable and unstable features. Stable features are that ψ decays

at late time (large v) on, and outside, H+ and all derivatives of ψ decay outside H+.

However, by constructing certain conserved quantities on H+ (reviewed below), Aretakis

proved that ∂rψ generically does not decay at late time on H+. This implies the existence

of an instability: since ∂rψ decays for r > M but not for r =M , it follows that ∂2rψ must

blow up at late time on H+. Aretakis proved that ∂krψ generically blows up at least as fast

as vk−1 at late time on H+.

This instability is not a coordinate effect because −∂/∂r can be invariantly defined

as the tangent to ingoing radial null geodesics of unit energy. The instability involves

polynomial growth in time, which would make it hard to discover using a mode analysis.

The above results imply that the component Trr of the energy momentum tensor of ψ

decays at late time outside H+ but not on H+. One might regard this as “hair” on the

horizon of the black hole. Note that Trr is closely related to the energy density measured

by an infalling observer.

1 Ref. [5] conjectured the existence of an instability of extreme black holes.
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Figure 1. Penrose diagram for extreme RN black holes. Aretakis took initial data specified on a

spacelike surface Σ intersecting H+ and extending to infinity.

We emphasise that non-extreme black holes such as Schwarzschild or non-extreme

Kerr have been proved to be stable against massless scalar field perturbations: ψ and all

its derivatives decay on, and outside, H+ [7, 8]. One might think that extreme black holes

also should be stable because the gravitational backreaction of a perturbation would make

the black hole non-extreme. However, backreaction on the metric is a nonlinear effect.

It seems unlikely that nonlinear effects would eliminate a linear instability. What might

happen is that the endpoint of the instability is generically a non-extreme black hole, i.e.,

derivatives of ψ become large along H+ (so there is still an instability) but eventually are

damped by nonlinear effects. Second, even though generic initial perturbations will make

the final black hole non-extreme, there are probably non-generic initial perturbations for

which the horizon is extreme at late time.

Minimal N = 2 supergravity does not contain a scalar field but the Aretakis instability

can be embedded in a supersymmetric theory as follows. Consider a supersymmetric static

4-charge black hole solution of type II supergravity compactified on T 6. In general, this

solution has non-trivial moduli fields but if the 4 charges are set equal then the moduli are

all constant and the geometry is that of extreme RN. Linearized fluctuations in the moduli

are massless scalars, hence Aretakis’ result implies the existence of a linearized instability

at the horizon of an extreme RN black hole in this theory.

Aretakis has considered also the case of a massless scalar field ψ in the extreme Kerr

geometry. He has proved decay of an axisymmetric field ψ [9] and that derivatives of ψ

exhibit an instability at H+ analogous to the extreme RN instability [10]. Ref. [11] gen-

eralised these results to show that a massless scalar field instability occurs at H+ for any

extreme black hole and that a similar instability occurs for linearized gravitational pertur-

bations of the extreme Kerr solution. Ref. [12] has extended the latter result to linearized

gravitational perturbations of certain higher-dimensional extreme vacuum black holes.

Aretakis’ proof of instability (reviewed in section 2.2) involves an infinite set of con-

served quantities at H+, linear in ψ. We will call these the Aretakis constants. We will
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show in section 2.3 that these constants are closely related to a set of conserved quantities

at I+ (future null infinity): the Newman-Penrose constants [13]. Indeed, there is a con-

formal isometry of the extreme RN geometry which interchanges H+ with I+ [14]. This

map exchanges the Aretakis constants with the NP constants.

The Aretakis instability is associated to outgoing radiation at H+: the proof of insta-

bility requires that the initial data be non-vanishing at H+ and, as we will explain below

(section 2.1), the instability is closely related to the absence of a redshift for outgoing pho-

tons at H+. For string theory applications, it seems more natural to consider what happens

if one perturbs an extreme RN black hole by dropping something into it. Can one trigger

an instability using ingoing radiation? Some stability results for this case were presented

in ref. [15], which considered initial data for ψ compactly supported outside H+. It was

shown that the scalar field and all of its derivatives remain bounded in static coordinates.

However, such coordinates cover only the black hole exterior so this result does not exclude

the existence of an instability at H+.

We have investigated this problem numerically and describe our results in section 3. We

find that initial data corresponding to an ingoing wavepacket does lead to an instability at

H+. It afflicts quantities with one more r-derivative than in the outgoing case: ψ and ∂rψ

decay on, and outsideH+, ∂2rψ decays outsideH+ but generically does not decay onH+ and

∂3rψ generically blows up at late time on H+. We also study the late time behaviour (tail)

of ψ and find that the field decays more slowly if the Aretakis constants are non-zero. This

extends previous numerical work on massless scalar field tails in extreme RN [16], which

considered outgoing wavepackets outside H+, which have vanishing Aretakis constants.

It is natural to ask whether the Aretakis instability can be seen in the AdS2×S2 near-

horizon geometry of extreme RN. In section 4 we will show that it can: it occurs at the

horizon of AdS2 in Poincaré coordinates. This is not in contradiction with known stability

results for linear fields in AdS2 because it turns out to be a coordinate effect: there is no

invariant way of defining coordinates in AdS2 analogous to the (v, r) of (1.1). Nevertheless,

the AdS2 results are interesting because they are in excellent agreement with our numerical

results for the late time behaviour of ψ at H+ for the extreme RN spacetime.

The remainder of our paper concerns generalisations of Aretakis’ work to other fields.

In section 5 we consider a massive scalar field. For discrete values of the mass m (m2 =

n(n+1)M−2 for positive integer n) we prove the existence of conserved quantities analogous

to the Aretakis constants and use these to prove instability at H+. For more general values

of the mass we demonstrate instability numerically. A more massive field is more stable:

the number of r-derivatives exhibiting decay at H+ increases with the mass of the field.

However, our numerical results indicate that for any mass there exists k such that ∂krψ

generically blows up at late time on H+.

Finally, it is desirable to have an argument for instability of extreme RN that does not

rely on the existence of a scalar field. In section 6 we will consider (coupled) gravitational

and electromagnetic perturbations. We prove that for all types of perturbations of this

kind, there exist towers of conserved quantities on the horizon, which can be used to

exhibit instabilities very similar to those of the massless scalar field. We construct an

explicit gauge invariant combination of the Maxwell field strength perturbation, the metric
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perturbation and its first derivatives. The instability is strongest for the l = 2 multipole

moment, for which we show that a certain combination of the first and second r-derivatives

of this quantity is conserved on H+ and hence generically cannot decay. We argue that

this implies that a quantity with one more r-derivative generically blows up at late time

on H+. Hence there is an instability at the horizon of extreme RN in Einstein-Maxwell

theory (or minimal N = 2 supergravity).

Note added. As this paper was nearing completion, refs. [34, 35] appeared. Ref. [34] has

significant overlap with our section 2.3 relating the Aretakis and NP constants. Motivated

by our numerical results, ref. [35] gives a proof of the existence of an instability for ingoing

massless scalar field radiation. Ref. [34] also gives an argument for the existence of such

an instability.

2 Massless scalar horizon instability

2.1 Motivation for instability

To understand why there might be an instability at the horizon of an extreme black hole,

it is useful to consider first the case of a massless scalar field ψ in a non-extreme black

hole spacetime. A first step in trying to prove stability is to consider the energy of ψ,

written as an integral E[Σ] over a spacelike surface Σ extending from the future horizon

H+ to infinity. This is a non-increasing function of time, i.e., E[Σ′] ≤ E[Σ] if Σ′ lies to

the future of Σ. Outside H+, the integrand, i.e., the energy density, is a positive definite

function of ∂µψ. Hence the fact that E is non-increasing implies that ∂µψ cannot become

large. However, precisely on H+, the energy density degenerates: it does not depend on

the derivative of ψ transverse to H+. Hence it is consistent with energy conservation for

this derivative to behave badly.

For non-extreme black holes, such behaviour has been excluded using the horizon

redshift effect. This is the fact that the energy of a photon moving tangential to H+

undergoes a redshift proportional to e−κv where κ is the surface gravity and v the Killing

time along the horizon. Using the wave analogue of this effect is an important step in the

proof that ψ and all of its derivative decay on and outside H+ in a Schwarzschild [7] or

non-extreme Kerr spacetime [8].

Now consider an extreme black hole. Such a solution has κ = 0: the horizon redshift

effect is absent and so the problem of controlling derivatives transverse to H+ remains.

Aretakis has proved that this problem cannot be overcome for extreme RN and extreme

Kerr. Ref. [11] showed that it cannot be overcome for any extreme black hole. Below we

will review Aretakis’ argument for extreme RN.

We note that ref. [17] considered the case of a massless scalar field in RN and argued

that there is a qualitative difference between the extreme and non-extreme cases arising

from the behaviour of outgoing waves nearH+. However, the detailed predictions of ref. [17]

are in disagreement with numerical results of ref. [16] and also with the numerical results

that we will present below.
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2.2 Aretakis’ argument

The equation of motion of a massless scalar is

∇2ψ = 0 . (2.1)

Working in the coordinates of (1.1), first expand ψ in spherical harmonics:

ψ(v, r,Ω) =
∞
∑

l=0

ψl(v, r)Yl(Ω) (2.2)

(we suppress the azimuthal index m) and substitute into the equation of motion to obtain

2r∂v∂r(rψl) + ∂r (∆∂rψl)− l(l + 1)ψl = 0 (2.3)

where ∆ = (r −M)2. Set l = 0 and evaluating at H+ (r =M) shows that

H0[ψ] ≡
1

M
[∂r(rψ0)]r=M (2.4)

is conserved, i.e., independent of v.

For generic initial data, H0 will be non-zero. Hence it remains non-zero. Therefore ψ

and ∂rψ cannot both decay at H+. In fact, ψ decays at late time [3] hence it follows that

its transverse derivative at H+ does not decay:

(∂rψ0)r=M → H0 as v → ∞ . (2.5)

The rr component of the energy momentum tensor of ψ is Trr = (∂rψ)
2, which generically

does not decay at late time on H+. This implies that the energy density measured by

an ingoing observer at H+ does not decay, as suggested by the absence of the horizon

redshift effect.

Now act on (2.3) with ∂r, set l = 0 and evaluate at H+ to obtain
[

∂v∂
2
r (rψ0) + ∂rψ0

]

r=M
= 0 . (2.6)

Hence
[

∂v∂
2
r (rψ0)

]

r=M
→ −H0 as v → ∞ (2.7)

which, together with decay of ψ0 and (2.5), implies blow-up of the second transverse deriva-

tive of ψ at late time on H+:

(∂2rψ0)r=M ∼ −H0

M
v as v → ∞ . (2.8)

By taking further r-derivatives of (2.3) it can be shown that (∂krψ0)r=M ∝ vk−1 for large

v [4].

This instability is a property of s-wave (l = 0) perturbations. There is a corresponding

result for l > 0: acting on (2.3) with ∂lr and evaluating at r =M reveals that

Hl[ψ] ≡
1

M2

{

∂lr [r∂r(rψl)]
}

r=M
(2.9)

is conserved. Aretakis shows that ∂krψl decays on, and outside H+ for k ≤ l [3]. Using

this, it follows that ∂l+1
r ψl generically does not decay at H+ and, arguing as above, ∂l+2

r ψl

generically blows up linearly at H+ [4].

– 6 –
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2.3 Conformal isometry

The extreme RN solution has a discrete conformal isometry [14]. In static coordinates

(t, r, θ, φ) it is

Φ : (t, r, θ, φ) → (t, r′ =M +
M2

r −M
, θ, φ) (2.10)

This is self-inverse: Φ = Φ−1. The push-forward of the metric under this diffeomorphism is

Φ∗(g) = Ω2g (2.11)

where

Ω =
M

r −M
. (2.12)

To understand how this acts on the horizon, we will write it in Eddington-Finkelstein co-

ordinates, related to the static coordinates as follows. First define the tortoise coordinates

r∗(r) = r −M + 2M ln

( |r −M |
M

)

− M2

r −M
, (2.13)

and note that Φ sends r∗ to r′∗ = −r∗. Now let

u = t− r∗, v = t+ r∗ (2.14)

and so Φ sends u to u′ = v and v to v′ = u. Hence Φ maps the point with ingoing EF

coordinates (v, r, θ, φ) to the point with outgoing EF coordinates (u′ = v, r′, θ, φ). It follows

that Φ maps H+ to I+ and vice-versa.

The extreme RN geometry has vanishing Ricci scalar, which implies that the massless

scalar wave equation is conformally covariant: if ψ is a solution in the extreme RN geometry

with metric g then Ω−1ψ is a solution in the geometry with metric Ω2g. Hence the conformal

isometry can be used to generate a new solution ψ̃ of the massless scalar wave equation

from an old one ψ̃ = Ωψ ◦ Φ. In coordinates:

ψ̃(u, r, θ, φ)O =
M

r −M
ψ(v′ = u, r′, θ, φ)I (2.15)

On the left, the subscript O indicates that outgoing EF coordinates are used, on the right

the subscript I indicates that ingoing EF coordinates are used.

What happens to the Aretakis conserved quantities under this map? Long ago Newman

and Penrose (NP) argued that there is an infinite set of conserved quantities associated

to linear massless fields at I+ [13]. These can be defined by developing an asymptotic

expansion in inverse powers of r near I+: for the l = 0 multipole moment of ψ assume the

expansion

ψ0 ∼
f0(u)

r
+
f1(u)

r2
(2.16)

as r → ∞.2 The equation of motion for ψ implies that the quantity f1 is independent of

u: this is the NP constant of ψ0 which we will denote by f1[ψ]. It is easy to check that the

2This can be deduced if we assume that Ω−1ψ is smooth at I+ in the conformally compactified spacetime.
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conformal isometry exchanges the Aretakis conserved quantity with the NP constant, i.e.,

the Aretakis conserved quantity for ψ0 is the NP constant of ψ̃0 and vice versa. Explicitly

we find

H0[ψ] =
f1[ψ̃]

M3
. (2.17)

The physical interpretation of the NP constants is not well-understood but it is clear that

they are closely related to ingoing radiation at I+, just as the Aretakis constants are

related to outgoing radiation at H+. The NP constants influence the decay rate (tail) of

ψ outside the horizon: there is evidence that initial data with non-vanishing NP constants

results in slower decay than data with vanishing NP constants [18]. We will return to this

point below.

As explained above, if any of the Aretakis conserved quantities of ψ is non-zero then

ψ has an instability at H+. Does this mean that there is an instability of ψ at I+ if its

NP constants are non-zero? Even in Minkowski spacetime, there is a late-time blow-up of

transverse derivative of Ω−1ψ at I+ when the NP constants are non-zero [13]. However,

unlike H+, I+ is not part of the physical spacetime hence this is not an instability: the

field and all its derivatives decay in the physical spacetime.

The definition of the NP constants has been criticized because of the assumed smooth-

ness of Ω−1ψ at I+ [19]. For spacetimes with non-vanishing NP constants, generically one

expects only a finite degree of differentiability at I+. In contrast, ψ will be smooth at

H+ if it arises from smooth initial data prescribed on a surface Σ which extends a finite

distance behind H+ as in figure 1. Thus there is an asymmetry present in the amount of

differentiability to be expected at H+ and I+. Starting from initial data specified on Σ we

get a solution ψ smooth at H+ but generically not smooth at I+. Applying the above map

then gives a solution ψ̃ for which Ω−1ψ̃ is smooth at I+ but ψ̃ is not smooth at H+. Such

ψ̃ does not correspond to smooth initial data on Σ and therefore lies outside the class of

solutions considered in this paper.

3 Numerical results for massless scalar

3.1 Double null coordinates

A crucial assumption in Aretakis’ proof of instability is that the conserved quantities Hl[ψ]

are non-vanishing. This requires that the scalar field ψ be non-vanishing at the intersection

of H+ and the hypersurface Σ on which initial data is specified. Hence the results in

section 2.2 do not reveal what happens if one perturbs an extreme RN black hole by sending

waves into the black hole from outside. We will investigate this problem numerically. To

do this we first introduce coordinates which are better suited to numerical evolution.

In (u, v)-coordinates the extreme RN black hole metric is

ds2 = −F (r(u, v))dudv + r(u, v)2dΩ2 , (3.1)

where

F (r) =

(

1− M

r

)2

(3.2)

– 8 –
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and r(u, v) can be determined by solving r∗(r) = (v − u)/2 with r∗ defined by (2.13).

This metric is singular at H+. Since we wish to investigate time evolution of per-

turbations on the horizon, we need a regular metric there. Thus, we introduce a further

coordinate transformation defined by

u

2
= −r∗(M − U) = U − 2M ln

( |U |
M

)

− M2

U
. (3.3)

From the definition of r∗, we have du/dU = 2/F (M − U). In (U, v)-coordinates H+ is

located at U = 0 and and U < 0 corresponds to the exterior of the black hole. In this

coordinate system the metric reads

ds2 = − 2F (r)

F (M − U)
dUdv + r2dΩ2 , (3.4)

where r = r(U, v). Using r∗(r) = (v − u)/2 it can be seen that r is analytic in U, v. In

particular we can expand r for small U (and fixed v) to obtain

r −M = −U +
v

2M2
U2 +

(

v

M3
− v2

4M4

)

U3 + · · · . (3.5)

It follows that F (r)/F (M −U) = 1+O(U) for small U and the metric (3.4) is analytic at

H+, i.e., it can be analytically continued to the black hole interior U > 0.

3.2 Klein-Gordon equation and initial data

Consider the Klein-Gordon equation

(∇2 −m2)ψ = 0 (3.6)

in the extreme RN background. Defining φ ≡ rψl, where ψl is the lth multipole moment

of ψ as in equation (2.2), we obtain a wave equation for φ. In the (U, v)-coordinates

introduced above this reads

− 4∂U∂vφ = V̂ (U, v)φ (3.7)

V̂ (U, v) =
2F (r)

F (M − U)

(

F ′(r)

r
+
l(l + 1)

r2
+m2

)

.

In this section, we study the massless scalar field m = 0. We will consider the massive

scalar in section 5.

We consider a null “initial” surface defined by

Σ0 = {U = U0, v ≥ v0} ∪ {U ≥ U0, v = v0} (3.8)

and impose the following initial data:

φ(U, v0) = exp

(

−(U − µ)2

2σ2

)

, φ(U0, v) = 0 , (3.9)

– 9 –
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outgoing wave ingoing wave

Figure 2. Schematic plot of the setup used in the numerical calculations.

or

φ(U, v0) = 0 , φ(U0, v) = exp

(

−(v − µ′)2

2σ′2

)

, (3.10)

which correspond to an outgoing and ingoing wavepacket, respectively. In figure 2 we give

a schematic plot of the setup.

We will solve this problem numerically. In our numerical calculations, we use units

such that M = 1 and set U0 = −0.5 and v0 = 0. We describe the details of this in

appendix A.1.

3.3 Numerical simulation for spherically symmetric mode

In this section we study spherically symmetric solutions, i.e., we set l = 0. In this case

Aretakis’ conserved quantity defined in eq. (2.4) is simply given byH0[ψ] = ∂rφ|r=M . Hence

the outgoing wave initial data (3.9) has H0[ψ] 6= 0 (unless µ = 0) whereas the ingoing wave

initial data (3.10) has H0[ψ] = 0 (since its support does not intersect the horizon).

3.3.1 Non-zero Aretakis constant

Firstly, we consider solutions for which H0[ψ] 6= 0. Although, in this case, the insta-

bility of the scalar field has been shown analytically, as reviewed in section 2.2, we will

investigate finer details of the time evolution of the scalar field by solving the wave equa-

tion numerically.

Although we used the (U, v) coordinates for our numerical calculations, we will display

our results using (v, r) coordinates. The reason for this is that the (v, r) coordinates are a

preferred set of coordinates associated to the symmetries of the background. In particular,

∂/∂v is the generator of time translations and −∂/∂r is tangent to ingoing radial null

geodesics of unit energy. The (U, v) coordinates are not so closely associated to geometric

invariants e.g. the generator of time translations is not ∂/∂v in these coordinates. Hence

when working in (U, v) coordinates it is less clear whether something is a physical effect or

merely a coordinate effect.

– 10 –
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Figure 3. Functions φ(v, r) and ∂rφ(v, r) for l = 0 and H0 6= 0 on fixed v slices. We consider

outgoing wave initial data (3.9) with (σ, µ) = (0.1,−0.1). The horizon is at r = 1. We can see that

∂rφ becomes steeper near the horizon as v increases. This implies that ∂2rφ blows up on the horizon

at large v.
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Figure 4. Time dependence of φ|r=M and ∂2rφ|r=M for l = 0 and H0 6= 0. We choose parameters

as (σ, µ) = (0.1,−0.1), (0.05,−0.1), (0.1,−0.05) in the outgoing wave initial data (3.9). We can see

that ∂2rφ|r=M blows up as ∼ v.

Consider outgoing initial data (3.9) with (σ, µ) = (0.1,−0.1). The time evolution

of φ and ∂rφ in (v, r)-coordinate is plotted in figure 3. We can see that φ decays as v

increases. On the other hand, ∂rφ does not decay along the horizon because ∂rφ|r=M must

be conserved. However, outside the horizon, ∂rφ decays. As a result, ∂rφ becomes steeper

near the horizon as time increases. This is consistent with the fact that ∂2rφ|r=M must

blow up along the horizon.

In figure 4, we plot the time evolution of φ|r=M and ∂2rφ|r=M for various initial data:

(σ, µ) = (0.1,−0.1), (0.05,−0.1), (0.1,−0.05). We can see that the time behaviour of

∂2rφ|r=M is consistent with the expected linear blow up shown in section 2.2. In ap-

pendix A.2, we describe our method for evaluating the transverse derivatives on the horizon

∂nr φ|r=M .

Now, we investigate the late time behaviour of φ|r=M . By fitting the absolute

value of φ|r=M to a power law decay va, we obtain the following exponents: a =
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−0.999,−1.018,−0.991 for (σ, µ) = (0.1,−0.1), (0.05,−0.1), (0.1,−0.05), respectively.3 We

used the numerical data in the range 1000 ≤ v ≤ 2000 for the fitting. These results

suggest that the scalar field on the horizon φ|r=M decays as v−1 at late time. To de-

termine the coefficient of the power law decay, we fit the φ|r=M to the function αH0/v

for 1000 ≤ v ≤ 2000. Then, we find the fitting parameter α = −1.997,−2.035,−1.979

for (σ, µ) = (0.1,−0.1), (0.05,−0.1), (0.1,−0.05), respectively. Hence, for all cases that we

have considered, the leading term of the late time behaviour of φ|r=M is given by

φ|r=M ∼ −2.0H0

v
v → ∞ . (3.11)

In section 4 we will show that the same expression can be obtained analytically from an

AdS2 calculation. In ref. [4] it was shown analytically that the scalar field on the horizon

at late time decays at least as fast as v−3/5, which is consistent with our results. All of our

initial data has vanishing NP constant. We will explain below why the coefficient of v−1

must be modified for initial data with non-vanishing NP constant.

We can relate this late time behaviour to earlier results of ref. [18] by using the con-

formal isometry (2.10).4 Applying this map to our solutions gives solutions which are

smooth5 at I+ whose late time behaviour at I+ is determined by our result for the late

time behaviour at H+. In particular, the result φ ∼ −2H0/v at H+ maps to the result

φ ∼ −2f1/u at I+ where f1 is the NP constant defined in eq. (2.16). This agrees with the

late time behaviour found in ref. [18], which studied a massless scalar field in the region

r > R of the Schwarzschild spacetime, with reflecting boundary conditions imposed on the

surface r = R > 2M . For small M/R, it was shown perturbatively that

φ ∼ −2f1
u

+
4Mf1 lnu

u2
+O(u−2) (M/R≪ 1) (3.12)

This perturbative result was confirmed by solving numerically for the scalar field.

The result (3.12) suggests that, in our case, we should find ln v/v2 corrections to (3.11)

at next order in v. To investigate this, define

δ =
v2

H0

(

φ|r=M +
2H0

v

)

. (3.13)

We plot δ as a function of v in figure 5. This suggests that δ is a linear function of ln v at

late time. Thus, we have (with M = 1)

φ|r=M ∼ −2.0H0

v
+
γH0 ln v

v2
v → ∞ . (3.14)

To determine the coefficient of the logarithmic term γ, we fit δ to the function γ ln v + γ′

for 1000 ≤ v ≤ 2000 and obtain γ = 3.88, 4.35, 3.89 for (σ, µ) = (0.1,−0.1), (0.05,−0.1),

3The exponents do not change up to the third decimal place even if we change the grid size as (δU, δv) →

(4δU, 5δv). Thus, the numerical error mainly comes from truncations. The truncation error can be estimated

as O(1/v) ∼ 10−3. The exponents obtained here are reliable up to around second decimal place.
4 We are grateful to the referee for noticing the connection between our results and those of ref. [18].
5 See the end of section 2.3 for a discussion of why smoothness at I+ is non-trivial.
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Figure 5. Time dependence of δ. We can see that δ is linear in log v at late time.

(0.1,−0.05), respectively. These numbers are probably accurate only to 1 significant figure

so γ = 4. This is consistent with the expectation that γ is independent of the initial

data (because if one subtracts two solutions with the same H0 one obtains a solution with

vanishing H0 for which we show below that φ|r=M ∼ v−2).6 After applying the conformal

isometry we obtain φ ∼ −2f1/u + γf1 lnu/u
2 at I+ which has the same form as (3.12)

(M = 1 here). Furthermore, our result γ = 4 is in striking agreement with (3.12).

In summary, using the conformal isometry, our results for the late time behaviour at

H+ can be mapped to late time behaviour at I+ of solutions smooth at I+. Our results for

extreme RN agree with the perturbative result (3.12) for Schwarzschild with a reflecting

boundary. This agreement suggests that the behaviour (3.12) is universal in the sense that

it will hold for a larger family of asymptotically flat spacetimes, at least for fields which

are smooth at I+.

3.3.2 Zero Aretakis constant

Now consider the case where H0[ψ] = 0. This includes the case of an ingoing wavepacket

as well as an outgoing wavepacket with µ = 0. The proof of the Aretakis instability in

section 2.2 does not apply now; instead we will use a numerical calculation to study this

case. For the outgoing wave (3.9), we take µ = 0 and σ = 0.05, 0.1, 0.15. For the ingoing

wave (3.10), we choose the parameters (σ′, µ′) = (3.0, 10.0). In figure 6 we plot φ|r=M ,

∂2rφ|r=M and ∂3rφ|r=M as functions of v. Our results are consistent with the following

behaviour: φ|r=M decays, ∂2rφ|r=M approaches a non-zero constant and ∂3rφ|r=M blows up

proportionally to v. Thus, we conclude that there is an instability even for initial data

with H0[ψ] = 0.

Now consider the late time behaviour of φ|r=M . Figure 6 suggests that φ|r=M decays as

a power law va at late time. Fitting to such a decay law we find the exponents a = −2.000,

−1.997, −1.995 for the outgoing wave with σ = 0.05, 0.1, 0.15 and a = −1.975 for the

ingoing wave. This suggests that, for H0 = 0, the late time behaviour of φ|r=M is given by

φ|r=M ∼ C

v2
v → ∞ . (3.15)

6Similarly Γ must be independent of the initial data because if one subtracts two solutions with the

same f1 one obtains a solution with vanishing f1, for which φ ∼ u−2 at I+ [18].
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Figure 6. We depict φ|r=M , ∂2rφ|r=M and ∂3rφ|r=M as functions of v for l = 0 and H0 =

0. We take several initial data: σ = 0.05, 0.1, 0.15 and µ = 0 for an outgoing wavepacket and

(σ′, µ′) = (3.0, 10.0) for an ingoing wavepacket. For the ingoing wavepacket there is a period of

damped oscillation (quasinormal ringing) before the power-law tail behaviour takes over. In all

cases we find that, for large v, φ|r=M decays as v−2, while ∂2rφ|r=M approaches a non-zero constant

and ∂3rφ|r=M blows up as v. This implies that there is an instability even for initial data with

H0[ψ] = 0.

We could not find a simple expression for C: it may depend on the initial data in a

complicated way.

3.4 Numerical simulation for l = 1

3.4.1 Non-zero Aretakis constant

Now we consider the case of the l = 1 partial wave, first withH1 6= 0. For the outgoing wave

we choose the parameters in the initial data to be (σ, µ) = (0.1, 0), (0.1,−0.05), (0.05, 0).

In figure 7 we plot φ|r=M and ∂3rφ|r=M as functions of v. We can see that φ|r=M decays

and ∂3rφ|r=M blows up linearly in v, as proved by Aretakis.

Next we consider the late time behaviour of φ|r=M . Figure 7 is consistent with a power

law decay of φ|r=M of the form va for large v. Fitting the absolute value of φ|r=M to such

a power law in the range 1000 ≤ v ≤ 2000, we obtain the exponents a = −1.993, −2.001,

−1.995 for (σ, µ) = (0.1, 0), (0.1,−0.05), (0.05, 0), respectively. These results suggest that

the scalar field decays as v−2 along the future horizon. To determine the coefficient of the

power law decay, we fit the φ|r=M to the function αH1/v
2 for 1000 ≤ v ≤ 2000. Then we

find α = 0.659, 0.665, 0.661 for (σ, µ) = (0.1, 0), (0.1,−0.05), (0.05, 0), respectively. Hence,

– 14 –



J
H
E
P
0
3
(
2
0
1
3
)
0
3
5

1e-00�

0����1

0���1

0��1

0�1

1

1 10 100 1000

1

10

100

1000

10000

100000

1e+006

1 10 100 1000

Figure 7. Time dependence of φ|r=M and ∂3rφ|r=M for l = 1 and H1 6= 0. We consider

outgoing wavepackets with (σ, µ) = (0.1, 0), (0.1,−0.05), (0.05, 0). After some damped oscillations

(quasinormal ringing), φ|r=M exhibits power-law decay while ∂3rφ blows up linearly in v.

for all cases that we have considered, the late time behaviour of φ|r=M is given by

φ|r=M ∼ 0.66H1

v2
v → ∞ . (3.16)

We will see in section 4 that eq. (3.16) can be obtained from an AdS2 calculation. In

ref. [4] it was shown analytically that the l = 1 mode of the scalar field decays at least as

fast as v−3/4 for large v; this is consistent with our numerical result. As we will explain

below, we expect the coefficient of v−2 to be modified for initial data with non-vanishing

NP constant.

3.4.2 Zero Aretakis constant

Now consider the case l = 1 with H1 = 0. For the outgoing wavepacket we choose the

parameters σ = 0.05, 0.1 and µ = σ(σ−
√
σ2 + 4M2)/(2M) to set H1 = 0. For the ingoing

wave we choose the parameters (σ′, µ′) = (3.0, 10.0). We plot the time evolution of φ|r=M

and ∂4rφ|r=M in figure 8. This is consistent with the following behaviour: φ|r=M decays and

∂4rφ|r=M blows up linearly in v. Thus, we can conclude that there is an instability for l = 1

even when the Aretakis constant vanishes. However, just as for l = 0, it affects quantities

with one more r-derivative than in the case with non-vanishing Aretakis constant.

Now consider the late time behaviour of φ|r=M . Fitting the absolute value of φ|r=M

to a power law decay va, we obtain the exponents a = −3.001, −2.990 for the outgoing

wave with σ = 0.05, 0.1 and a = −2.990 for the ingoing wave, respectively. This suggests

that, for H1 = 0, the late time behaviour of φ|r=M is given by

φ|r=M ∼ C

v3
v → ∞ , (3.17)

for some constant C depending on the initial data.

3.5 Late time tails outside the horizon

Now we consider the late time behaviour of the scalar field outside the horizon. We

consider outgoing wavepackets with (σ, µ) = (0.1,−0.1), (0.1, 0), (0.05,−0.05) for l = 0, 1, 2,
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Figure 8. Time evolution of φ|r=M and ∂4rφ|r=M for various initial data with l = 1 and H1 = 0:

outgoing wavepackets with σ = 0.05, 0.1, µ = σ(σ−
√
σ2 + 4M2)/(2M) and an ingoing wavepacket

with (σ′, µ′) = (3.0, 10.0). We find that φ|r=M decays and ∂4rφ|r=M blows up linearly in v.
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Figure 9. Time dependence of scalar field φ outside the horizon: r = 1.5M . We consider

outgoing wavepackets with (σ, µ) = (0.1,−0.1), (0.1, 0), (0.05,−0.05) for l = 0, 1, 2, respectively.

For such initial data, the conserved quantities are non-zero. After an initial period of damped

oscillation (quasinormal ringing) we find power law decay φ|r=1.5M ∼ Cv−2l−2.

respectively. In figure 9 we plot the time dependence of φ at r = 1.5M . Initially the field

is supported near the horizon (r = M) so the amplitude at r = 1.5M is small. The

amplitude grows as the field disperses outwards from the black hole, and then decays as

the field disperses to infinity.

Our results are consistent with power law decay at late time. Fitting to va we obtain

the exponents a = −2.008, −4.006, −6.026 for l = 0, 1, 2, respectively. For the fitting, we

use numerical data in the range 1000 ≤ v ≤ 2000 for l = 0, 1. For l = 2, we used data in

the range 800 ≤ v ≤ 1000 since the numerical calculation breaks down at v ≥ 1000. (We

observed small oscillations which depend on the resolution.)

From these result, we extrapolate that the late time behaviour of the lth partial wave

of the scalar field outside the horizon is given by

φ|r=r0 ∼ Cv−2l−2 v → ∞ (3.18)

where r0 > M for some constant C depending on r0 and the initial data. We will reproduce
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this power-law from an AdS2 calculation in the next section.7

Ref. [16] argued that the decay outside the horizon should be proportional to v−(2l+µ+1)

where µ = 1 if the NP constant is non-zero and µ = 2 otherwise.8 Our results show that

this is not quite correct: instead we should have µ = 1 if either the Aretakis constant or

the NP constant is non-zero (Ref. [16] considered only initial data with vanishing Aretakis

constant.) This makes sense given the existence of the conformal isometry discussed in

section 2.3, which interchanges a solution with non-vanishing Aretakis constant with one

with non-vanishing NP constant.

Ref. [16] found that the decay along the horizon is proportional to v−(l+1) for vanishing

Aretakis constant but non-vanishing NP constant. This implies that, in general, the coef-

ficient of v−1 in (3.11) and v−2 in (3.16) will contain an extra term proportional to the NP

constant (which is zero for our initial data). The decay along the horizon is proportional

to v−(l+µ), as found in ref. [16], but with µ defined as above.

4 Scalar fields in AdS2

In this section we will show that certain features of the late time behaviour on and outside

the horizon of extreme RN can be deduced by looking purely at the near-horizon geometry.

4.1 Coordinates

The near-horizon limit of extreme RN is AdS2×S2 where each factor has radiusM . Taking

M = 1, the AdS2 metric in static coordinates is

ds2 = −r2dt2 + dr2

r2
. (4.1)

Defining

u = t+
1

r
, v = t− 1

r
(4.2)

we obtain the metric in ingoing Eddington-Finkelstein coordinates

ds2 = −r2dv2 + 2dvdr . (4.3)

These coordinates are regular at the future Poincaré horizon r = 0. We can also use (u, v)

as coordinates:

ds2 = − 4

(u− v)2
dudv . (4.4)

Now define Kruskal-like coordinates

U = tan−1 u, V = tan−1 v (4.5)

to obtain

ds2 = − 4

sin2(U − V )
dUdV . (4.6)

7 The decay at fixed r outside the horizon involves a different power of v than the decay on the horizon.

This is consistent: C will diverge as r → r0.
8 Ref. [16] said that µ = 1 for an “initially static moment” and µ = 2 otherwise. But, according to

ref. [18], the precise notion of an “initially static moment” is a non-vanishing NP constant.
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Figure 10. Penrose diagram for AdS2.

These are global coordinates on AdS2. The Penrose diagram for AdS2 is depicted in

figure 10. The region covered by the static coordinates is −π/2 < V < U < π/2. The left

timelike infinity is U = V + π, the right timelike infinity is U = V . The future Poincaré

horizon of the static patch is U = π/2, the past Poincaré horizon is V = −π/2.

4.2 Massless scalar in AdS2

Consider first a massless scalar ψ field in AdS2. Since its equation of motion is conformally

invariant, we can write down the general solution:

ψ = f(U) + g(V ) (4.7)

for arbitrary functions f, g. To compare with our earlier results, we need to calculate

the Aretakis conserved quantity. Writing out the wave equation in (v, r) coordinates and

evaluating at r = 0 (or taking the near-horizon limit of (2.4)) shows that the following

quantity is conserved along the future Poincaré horizon

H0[ψ] ≡ (∂rψ)r=0 . (4.8)

Let’s evaluate this in (U, V ) coordinates. Converting from (v, r) coordinates to (U, V )

coordinates gives

∂

∂r
= −sin2(U − V )

2 cos2 V

∂

∂U
. (4.9)

Hence

H0 = −1

2
f ′(π/2) . (4.10)

Now consider the second r-derivative of the field at the horizon:

(∂2rψ)r=0 =
1

2
f ′(π/2) tanV +

1

4
f ′′(π/2) = −H0v +

1

4
f ′′(π/2) (4.11)
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so when H0 6= 0 we have linear growth in v, just as for extreme RN. On the other hand

if H0 = 0 then we see that ∂2rψ|r=0 is a constant; by taking another r-derivative we see

that if this constant is non-zero then ∂3rψ|r=0 will blow up linearly in v, just as we found

numerically for extreme RN.

Is this an instability of the scalar field in AdS2? No: working in (U, V ) coordinates

one sees that ψ and all of its derivatives are bounded. The blow-up in (v, r) coordinates

is simply a coordinate effect, it has no invariant significance. By contrast, in extreme RN,

the (v, r) coordinates are a preferred set of coordinates that follow from the symmetries of

the spacetime. The function r is defined using spherical symmetry and there is a unique

Killing vector field Kµ that is timelike and canonically normalized (K2 = −1) at infinity

which is used to define v. In AdS2 there exist infinitely many timelike Killing vector fields

analogous to Kµ. Hence, unless one has some reason to regard one of these as preferred,

then there is no invariant way of introducing (v, r) coordinates and hence no instability.

Now consider the late time behaviour of the field. The value of the field on the Poincaré

horizon is

ψ(π/2, V ) = f(π/2) + g(V ) . (4.12)

Converting to (v, r) coordinates, the late time behaviour of the field at the horizon (v → ∞,

r = 0) is

ψ(π/2, V ) = f(π/2) + g(π/2)− g′(π/2)

v
+O

(

1

v2

)

. (4.13)

So far we have imposed no boundary condition on ψ. Note that the value of ψ on the right

timelike infinity is9

ψ∞(U) ≡ f(U) + g(U) (4.14)

where we use U as the coordinate at right timelike infinity. We now impose the boundary

condition that ψ∞(U) and ψ′
∞(U) decay at late time at right timelike infinity:

ψ∞(U) → 0, ψ′
∞(U) → 0, as U → π/2 , (4.15)

which is equivalent to

g(π/2) = −f(π/2), g′(π/2) = −f ′(π/2) (4.16)

and hence

ψ(π/2, V ) = −2H0

v
+O

(

1

v2

)

. (4.17)

This agrees to good accuracy with our numerical results for extreme RN (summarized in

equation (3.11)).10 The late time behaviour outside the horizon (v → ∞ at fixed r > 0) is,

if we make the extra assumption ψ′′
∞(U) → 0 as U → π/2,

ψ = −4H0

rv2
+O

(

1

v3

)

. (4.18)

9 In the language of AdS/CFT, ψ∞(U) is the source for the operator dual to ψ.
10Recall that this result applies only for the case of vanishing NP constant. If the NP constant is non-

zero then there is radiation present near infinity in extreme RN. Maybe one could reproduce results for this

case by modifying the boundary condition for ψ′

∞ in (4.15). Note also that we do not obtain the ln v/v2

corrections of (3.14) from this AdS2 calculation.
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This is in good agreement with (3.18). Note that our assumptions on ψ∞ are all satisfied

if there exists U0 < π/2 such that ψ∞ vanishes for U > U0.

4.3 Massive scalar in AdS2

Now consider a scalar field ψ of mass m in AdS2. Since the general solution of the wave

equation is not so simple in the massive case, we will proceed more heuristically than we

did above. We assume that, in a neighbourhood of U = V = π/2 (i.e. late time at right

timelike infinity) the field satisfies “normalizable” boundary conditions

ψ = (U − V )∆mF (V ) +O((U − V )∆m+1) (4.19)

where F (V ) is an arbitrary function and

∆m ≡ 1

2
+

√

m2 +
1

4
. (4.20)

Taking the near-horizon limit of the lth multipole ψl of a massless scalar in extreme RN

(setting M = 1) results in a scalar field of mass m in AdS2 where

m2 = l(l + 1), l = 0, 1, 2, . . . (4.21)

and therefore ∆m = l + 1. In this case, the conserved quantity at the Poincaré horizon is

simply

Hl[ψ] = (∂l+1
r ψ)r=0 . (4.22)

We can now calculate Hl[ψ] at large v: r = 0, v → ∞ is equivalent to U = π/2, V → π/2,

and we can use the behaviour (4.19) of ψ near the boundary to obtain

Hl =
(−1)l+1(2l + 1)!

2l+1l!
F (π/2) . (4.23)

Hence, near U = V = π/2 we have11

ψ =
l!

(2l + 1)!
Hl (−2(U − V ))l+1 +O((U − V )l+2) . (4.24)

From this expression we can calculate the late time behaviour along the Poincaré horizon

in (v, r) coordinates (r = 0, v → ∞):

ψ =
l!

(2l + 1)!
Hl

(

−2

v

)l+1

+O
(

1

vl+2

)

. (4.25)

For l = 1 this agrees to good accuracy with our numerical result (summarised in (3.16)) for

the full extreme RN geometry. The late time behaviour outside the horizon (r > 0 fixed,

v → ∞):

ψ =
l!

(2l + 1)!
Hl

(

− 4

rv2

)l+1

+O
(

1

v2l+3

)

(4.26)

in agreement with (3.18).

11 It follows that, in AdS/CFT, the conserved quantity Hl is proportional to the late time limit of the

expectation value of the operator dual to ψ.
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Why are these AdS2 results in such good agreement with our numerical results for

the full extreme RN geometry? One might have thought that the late time behaviour at

the horizon would exhibit some dependence on the geometry outside the horizon, which is

different in AdS2 and extreme RN. Maybe the numerical coefficients in (3.11) and (3.16)

would deviate from the AdS2 values if they were computed to higher accuracy. Or maybe

all that matters at late time is the geometry exactly at the horizon, which would explain

the agreement. It would be nice to understand this better.

Observe that taking the near-horizon limit of a spherically symmetric scalar of mass

m in extreme RN (again with M = 1) also results in a scalar of mass m in AdS2. From the

above we deduce that if m2 = n(n+1) where n is a positive integer the above calculations

remain valid (with the replacement l → n). In particular, we learn there are conserved

quantities for certain massive scalar fields in the near-horizon geometry of extreme RN. In

section 5.1 we show that in fact a massive scalar field in the full extreme RN also possesses

such conserved quantities, for these specific values of the mass, and show they lead to

instabilities.

For general m it does not appear possible to construct conserved quantities on the

horizon; however from (4.19) we may still deduce the late time behaviour. As v → ∞ we

find that on the horizon

(∂krψ)r=0 ∼
(−1)kΓ(∆m + k)F (π/2)

2kΓ(∆m)
vk−∆m (4.27)

for all k ≥ 0: we see this blows up for k ≥ ⌊∆m⌋ + 1, where ⌊ ⌋ denotes the integer part.

In section 5 we will demonstrate numerically that instabilities of this nature indeed occur

in the full extreme RN for certain m such that ∆m is not integer (despite the absence of

a conserved quantity). For completeness, the late time behaviour outside the horizon at

fixed r > 0 is

ψ ∼ F (π/2)

(rv2)∆m

. (4.28)

5 Massive scalar field

In this section we consider the evolution of a spherically symmetric massive scalar field

in the extreme RN background. First we will show that, for special values of the mass of

the scalar field, a tower of conserved quantities exists just as for the massless scalar field.

These can be used to deduce the existence of instabilities. Then we will solve the equation

of motion numerically as in the massless case to investigate the evolution in more detail.

5.1 Conserved quantities on the horizon

We start by writing down the massive wave equation (3.6) for a spherically symmetric

massive scalar field in ingoing EF coordinates

2r∂v∂r(rψ) + ∂r (∆∂rψ)−m2r2ψ = 0 . (5.1)
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We find that the construction of the conserved quantities for the massless scalar field (2.9)

can be generalised to a massive scalar for special values of the mass:

m2 = n(n+ 1)M−2 (5.2)

where n is a positive integer. This gives a very similar term in the equation of motion to

the centrifugal barrier of a massless scalar field, so the construction of conserved quantities

proceeds analogously to that of the massless scalar with n↔ l. Explicitly, we find

Hn[ψ] ≡
1

M
{∂nr [fn(r)∂r(rψ)]}r=M (5.3)

is conserved along H+, where fn(r) is a polynomial defined by12

fn(r) ≡
n
∑

k=0

ck

( r

M
− 1
)k

(5.4)

whose coefficients are recursively determined by c0 = 1, c1 = −n and for 2 ≤ k ≤ n

ck = −n(n+ 1) [2(n− k + 1)ck−1 + (n− k)ck−2]

k(n− k + 2)(2n− k + 1)
. (5.5)

It follows that generically not all of the quantities ∂jrψ for 0 ≤ j ≤ n + 1 can decay at

late time on H+. By analogy with the l > 0 massless scalar, we expect, and our numerics

confirms, that ∂jrψ decays at late time on H+ for j ≤ n. Then ∂n+1
r ψ does not decay and

∂n+2
r ψ blows up linearly along H+.

It is interesting to ask what happens for general mass m. Although we do not find

any conservation laws in this case, by continuity in the mass parameter one might expect

that, generically, ∂n+1
r ψ does not decay, and ∂n+2

r ψ blows up, at late time on H+ where n

is given by

n = ⌊∆m⌋ − 1 (5.6)

where ∆m is given by eq. (4.20) with m replaced by Mm and ⌊ ⌋ represents the integer

part. We confirm this expectation numerically in the next section.

5.2 Numerical results

Consider the massive scalar wave equation in the coordinates developed earlier (3.7). Using

the numerical method introduced for the massless scalar field discussed in section 3, we

study the time dependence of a massive scalar field.

5.2.1 Non-zero conserved quantity

In this section, we study the time evolution for the case corresponding to that studied in

section 3.3.1, for which the conserved quantities (5.3) are non-zero.

12In fact any smooth fn(r) whose derivatives f
(k)
n |r=M , for k = 0, . . . , n, coincide with those of this

polynomial will do.
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Figure 11. φ(v, r) and H1(v, r) for the massive scalar field with (Mm)2 = 2.

First of all, we show the time evolution of φ(v, r) = rψ(v, r) on and outside the horizon

for n = 1 ((Mm)2 = 2) using the outgoing wave initial data (3.9) with (σ, µ) = (0.1,−0.1).

In figure 11, we plot φ(v, r) and the quantity H1(v, r) defined by

H1(v, r) ≡
1

M
∂r [f1(r)∂rφ] =

1

M

[

(

2− r

M

)

∂2rφ− 1

M
∂rφ

]

, (5.7)

which coincides with the conserved quantity (5.3) for n = 1 at the horizon. Panel (a) shows

that φ(v, r) quickly decays on and outside the horizon. Panel (b) shows that H1(v, r) stays

constant on the horizon while it decays to zero outside the horizon. This property is

consistent with ∂2rφ|r=M being constant and ∂3rφ|r=M diverging linearly in v at late time.

In figure 12, we show φ|r=M and ∂3rφ|r=M for (Mm)2 = 2 for various initial data

with H1 6= 0. To generate this plot, we used the outgoing initial data (3.9). Panel (b)

shows that ∂3rφ|r=M is linearly divergent with respect to time, as expected from existence

of the conserved quantity H1 (this could be proved analytically in the same way as for the

massless scalar with l = 1).

In Panel (a), we find that, at late time, φ|r=M (v) shows oscillation with frequency

ω = m. Oscillations with this frequency have been seen in previous studies of massive

scalar fields in black hole backgrounds [20–22]. It is convenient to separate the value of the

field at the horizon into its mean value and an oscillating component:

φ|r=M (v) = φmean(v) + φosci(v)
∣

∣

r=M
, (5.8)

where φ|mean
r=M (v) ≡ T−1

∫ v+T/2
v−T/2 φ|r=M (v′)dv′ with T = 2π/m. At late time, the oscillating

component decays more slowly than the mean value. On the other hand, we observed that

for ∂k≥1
r φ|r=M , the oscillations are subdominant at late time for generic initial data. This

suggests that the instability is associated to φmean.

Next we examine in more detail the behaviour of each component in φ|r=M . First, we

show the behaviour of φ|mean
r=M (v) for (Mm)2 = 2 in figure 13. We find that φ|mean

r=M (v) decays

by a power law, and its value is governed by the conserved quantity H1 as

φ|mean
r=M ∼ 0.66H1

v2
, (5.9)
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Figure 12. Time evolution of φ|r=M and ∂3rφ|r=M at the horizon for (Mm)2 = 2.
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Figure 13.
∣

∣v2φ|mean
r=M/H1

∣

∣ for outgoing wave initial data for (σ, µ) = (0.1,−0.1), (0.15,−0.1),

(0.05,−0.1), (0.1,−0.15) and (0.1,−0.05). For any initial data, |v2φ|mean
r=M/H1| tends to 0.66 at late

time.

for several different choices of outgoing wave initial data. More precisely, we calculated

the late-time behaviour of φ|r=M for outgoing wave initial data for (σ, µ) = (0.1,−0.1),

(0.15,−0.1), (0.05,−0.1), (0.1,−0.15) and (0.1,−0.05). We fitted φ|mean
r=M to the function

αH1/v
2 for 1000 ≤ v ≤ 2000, and found α = 0.715, 0.662, 0.668, 0.658 and 0.665 respec-

tively for these initial data. We also found that α for (σ, µ) = (0.1,−0.1) becomes 0.657

if we change the fitting function into αH1/v
2 + β log v/v3 introducing an ansatz for the

subleading term. Note that the behaviour of eq. (5.9) was seen also in the case of massless

scalar field with l = 1 (See eq. (3.16)).

Next, we examine the behaviour of φ|oscir=M . Since this component oscillates with fre-

quency ω = m at late time, it is useful to focus on its amplitude A|oscir=M (v) defined by

A|oscir=M (v) ≡
√

φ2 +m−2(∂vφ)2
∣

∣

∣

osci

r=M
. (5.10)

In Panel (a) of figure 14, we plot A|oscir=M (v) in the case of outgoing wave initial data with

(σ, µ) = (0.3,−0.1) for (Mm)2 = 2, 4 and with (0.15,−0.1) for (Mm)2 = 2. Fitting the
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Figure 14. Panel (a): Amplitude of φ|oscir=M and A|oscir=M (v), in the case of outgoing wave initial data

with (σ, µ) = (0.3,−0.1) for (Mm)2 = 2, 4 and that with (0.15,−0.11) for (Mm)2 = 2. Panel (b):

A|osci(v) at r = 1.5M for the same initial data. Numerical results suggest that A|oscir=M (v) and

A|oscir=1.5M (v) become proportional to v−5/6 at late time for any initial data.

data to the function Cva, we find the power of decay is a = −0.84, 0.83 and 0.82 for our

different initial data. These results are consistent with the scaling A|oscir=M (v) ∝ v−5/6. We

plot also the oscillation amplitude of φ(v, r) outside the horizon in Panel (b) for the same

initial data, which shows the same scaling A|oscir=1.5M (v) ∝ v−5/6. More precisely, fitting the

late time behaviour with Cva gives a = −0.84, 0.84 and 0.82 for our different initial data.

Note that v−5/6 scaling for the late-time tail of a massive scalar field outside a black hole

horizon has been discussed previously in refs. [20–23]. The constant C in these fits does

not appear to be simply related to the conserved quantity H1.

We also comment on the dependence of φ|r=M on the scalar field mass m. For this

purpose, it is useful to focus on time dependence of H0 and H1, which are conserved when

(Mm)2 = 0 and 2, respectively. We summarize their time dependence in figure 15. These

quantities are dominated by φmean, and show power law decay or growth at late time.

Assuming the power-law dependence Hn ∝ vpn , we can obtain the powers pn by fitting

the numerical data. We summarize the resulting pn in figure 16. The numerical results

strongly suggest for general m

Hn ∝ vpn , pn = n+ 1−∆m . (5.11)

Using the results in section 4.3, we can see that this is the same scaling as appears for a

massive scalar field in an AdS2 background.

Note in Panel (b) of figure 15 that p1 is positive for (Mm)2 = 1 which confirms

the existence of an instability in this case, for which the analytic argument above does not

apply. The instability involves blow-up ∂2rφ|r=M , in agreement with the prediction of (5.6).

We close this section with some comments on the behaviour of derivatives of the

field outside the horizon. In figure 17, we show ∂2rφ on the horizon for (Mm)2 = 2,

and also that quantity off the horizon for (Mm)2 = 2, 8. As expected from the general

argument, ∂2rφ
∣

∣

r=M
converges into a constant at late time. On the other hand, ∂2rφ outside
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Figure 15. m2 dependence of H0(v) and H1(v) for (Mm)2 = 0, 2, . . . , 8.
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Figure 16. m2 dependence of pn, where we assume Hn ∝ vpn . In both panels, the numerically

obtained pn for (Mm)2 = 0, 1, . . . , 8 are shown with analytic curves pn = n+
(

1−
√

1 + 4(Mm)2
)

/2.

For any data point, relative error of the numerical value from the analytic value is∼ 5×10−2 at most.

the horizon shows damped oscillation whose amplitude decays as v−5/6. This behaviour

appears universal for any scalar field mass m and also order of the derivative, that is,

the envelope of the damped oscillation of ∂krφ is proportional to v−5/6 for any k and m.

Conservation or blow up of ∂krφ is a property that occurs only on the horizon of an extreme

black hole, and away from the horizon these quantities simply decay (as proved by Aretakis

in the massless case).

5.2.2 Zero conserved quantity

In this section, we briefly comment on the cases Hn[ψ] = 0 for the massive scalar field. We

focus on the case n = 1 ((Mm)2 = 2), but the results for general n are analogous.

First, we show the time dependence of φ|r=M in figure 18. To set H1 = 0, we used

the outgoing wave initial data with µ = −σ
(

σ +
√
σ2 + 4M2

)

/(2M). The behaviour for

the outgoing wave initial data is similar to the Hn 6= 0 case studied above in that φmean

and φosci are non-negligible at r = M . On the other hand, φ|r=M (v) for the ingoing wave
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while ∂2rφ off the horizon decays as ∝ v−5/6 irrespective of the mass m.
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Figure 18. φ|r=M (v) for (Mm)2 = 2 with H1 = 0. We used the outgoing wave initial data with

σ = 0.05 and 0.1, and also the ingoing wave initial data with (σ, µ) = (3.0, 10.0). For the outgoing

wave initial data, µ is fixed as µ = −σ
(

σ +
√
σ2 + 4M2

)

/(2M) by the requirement of H1 = 0.

initial data is dominated by the oscillatory component with negligible contribution from

φmean.

We summarize the behaviour of the mean and oscillatory components of φ|r=M in

figure 19. First, we find from Panel (a) that the mean component shows the power-law

decay φ|mean
r=M ∝ v−3, which is one power faster than the H1 6= 0 case studied above. This

property is similar to that of the massless case with l = 1, and we can show that ∂4rφ|r=M

diverges linearly in time (as it did in the massless case). Hence, just as in the massless

case, vanishing H1 requires one more r-derivative to see the instability.

Next, we find from Panel (b) that the amplitude of the oscillatory component shows the

power-law decay A|oscir=M (v) ∝ v−5/6 at late time. This is the same power law as the H1 6= 0

case shown in figure 14, and thus the time dependence of Aosci seems to be insensitive to

the value of the conserved quantity.

To sum up, the behaviour of the component φ|mean
r=M of a massive scalar field with
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Figure 19. Panel (a): φ|mean
r=M (v) of (Mm)2 = 2 and H1 = 0 for the outgoing wave initial data

with σ = 0.05 and 0.1. Fitting the curves with the function Cva, we find the power of the decay

to be a = −3.01 and −2.99 for each initial data. We do not show the result for the ingoing wave

initial data since φ|mean
r=M is almost vanishing compared to φ|oscir=M for it. Panel (b): Amplitude of the

damped oscillation of φ|oscir=M (v), A|oscir=M (v), for the ingoing wave initial data with (σ, µ) = (3.0, 10.0)

and outgoing wave initial data with σ = 0.30, 0.15. Fitting the data, we find the decay −0.85, −0.84

and −0.84. These results suggests that A|oscir=M (v) becomes proportional to v−5/6 at late time, which

is the same power law as in the H1 6= 0 case studied above.

(Mm)2 = 2 can be described by eq. (3.16), which was proposed for the massless scalar

field with l = 1. For general value of the scalar field mass m, our results for φ|mean
r=M are

consistent with a power-law decay v−∆m for generic initial data, or v−∆m−1 for initial data

with H1 = 0, where ∆m is defined below eq. (5.11). On the other hand, the amplitude of

the damped oscillation of φ|oscir=M or the derivative ∂krφ outside the horizon, appears to be

proportional, at late time, to v−5/6 irrespective of m and also of order of the derivative.

6 Gravitational and electromagnetic perturbations

In this section we show that an analogue of Aretakis’ scalar field instability occurs for

the coupled linearised gravitational and electromagnetic perturbations of the extreme RN

solution. To demonstrate this we will employ past work on the linearized perturbations of

extreme RN. Several formalisms were developed for studying this problem, see [24–31] and

also [32] which relates the various methods. These works established the mode stability of

the RN black hole (including the extreme case).

We will use Moncrief’s gauge invariant formalism [25–27] due to the remarkable sim-

plicity of the resulting perturbation equations. This approach is based on the Hamiltonian

formulation of the Einstein-Maxwell equations, where the perturbation variables are certain

gauge invariant combinations (under both infinitesimal diffeomorphisms and electromag-

netic gauge transformations) of components of the metric and gauge field. We will first

briefly explain Moncrief’s formalism and variables, then we present conservation laws for

these variables and associated instability results.
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6.1 Moncrief’s gauge invariant formalism

Moncrief simplified the perturbation equations for the RN solution by employing a reduc-

tion method based on the Hamiltonian formulation of Einstein-Maxwell theory of ADM.

First recall that in the Hamiltonian formulation one chooses a preferred time function

t and decomposes the spacetime fields on hypersurfaces Σt of constant t, with coordinates

xi for i = 1, 2, 3, as follows. The metric gµν is written in terms of the lapse N = −(gtt)1/2,

shift Ni = gti and the induced 3-metric gij on Σt, whereas the gauge field Aµ is decomposed

in terms of the scalar potential A0 and the spatial vector potential Ai. The canonically

conjugate momenta to gij and Ai are the tensor densities πij =
√
g(Kij − Kgij) and

Ei = N
√
gF ti respectively, where Kij is the extrinsic curvature on Σt. Variation of the

action functional with respect to these canonically conjugate pairs leads to dynamical

evolution equations, whereas variation with respect to N,Ni, A0 leads to the constraint

equations H = Hi = E = 0.

We are now ready to give a brief review Moncrief’s reduction method, see [27] for more

details. The perturbation equations can be derived by taking the second variation of the

action functional evaluated on an exact solution. The canonical variables for the linearised

ADM equations are simply the first order perturbations of the canonical variables (gij , π
ij)

and (Ai, E
i), which we will denote by (δgij , δπ

ij) and (δAi, δE
i). Similarly, the constraint

equations for the perturbed problem are the linearised constraints δH = δHi = δE = 0

of the exact problem; these must be conserved in time as a consequence of the evolution

equations for the canonical variables. There are two crucial facts about the linearised

constraint functions δH, δHi, δE : they generate infinitesimal diffeomorphisms and electro-

magnetic gauge transformations, and mutually commute under the Poisson bracket. These

properties allow one to perform a canonical transformation to new canonical variables such

that δH, δHi, δE are a subset of the momenta and their conjugate variables are cyclic and

gauge-dependent. Hence the remaining canonical pairs, which by construction now will

commute with δH, δHi, δE , must be gauge-invariant. In terms of these new canonical vari-

ables the problem greatly simplifies: the evolution equations for the gauge-invariant pairs

decouple from all gauge dependent quantities and the constraints can be eliminated.

Moncrief applied the above general method to perturbations of the RN solution: nat-

urally the time function t was chosen to correspond to the static time coordinate. The

background data is thus (we don’t yet assume extremality)

N2 = F (r) ≡ 1− 2M

r
+
Q2

r2
, gijdx

idxj =
dr2

F (r)
+ r2dΩ2, (6.1)

Ni = 0, πij = 0, Ai = 0, Er = 2Q sin θ . (6.2)

Spherical symmetry of the background solution allows one to further simplify the problem.

One expands all perturbation variables in terms of spherical harmonics Ylm which then

leads to decoupled equations for each value of l = 0, 1, 2, . . . . We now describe the basis

used to do this, which is essentially that used by Regge and Wheeler.

There are three classes of perturbation depending on whether they transform as a

scalar, vector or tensor on S2. A basis for each of these (written covariantly) is given by
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the following harmonics:

Scalar (l ≥ 0) : Y = Ylm where − ∇̂2Y = l(l + 1)Y (6.3)

Vector (l ≥ 1) : êa = −ǫ̂ b
a ∂bY, f̂a = ∂aY (6.4)

Tensor (l ≥ 2) : êab = ǫ̂ c
(a ∇̂b)∇̂cY, f̂ab = ∇̂a∇̂bY, ĝab = Y (dΩ2)ab, (6.5)

where dΩ2, ∇̂a, ǫ̂ab are the round metric, the associated connection and volume form on

the unit S2 and a, b, . . . are S2 indices. As always the Ylm are orthonormal with respect to

the unit S2 measure; from the properties of Y one may deduce corresponding properties

for the vector and tensor harmonics. These harmonics all have a well defined parity under

the discrete isometry which reverses the orientation. In particular Y, f̂a, f̂ab, ĝab have parity

(−1)l, whereas êa, êab have parity (−1)l+1. Traditionally these are referred to as even or

odd parity respectively; for each l the perturbation equations for the two types of parity

therefore decouple. We note that since we are in four dimensions perturbations of the

tensor components of the Maxwell two form can be expanded in the basis Y ǫ̂ab, which is

an odd parity harmonic.

By Birkhoff’s theorem any l = 0 perturbation must correspond to the RN family of

solutions. Perturbations which correspond to a slowly rotating Kerr-Newman black hole

are contained in the l = 1 odd type, as discussed below. Hence any instability must either

be an l ≥ 2 perturbation or a non-stationary l = 1 perturbation.

Moncrief showed [25–27] that each type of perturbation can be fully described by

either one gauge invariant variable (l = 1) or a pair of gauge invariant variables (l > 1).

We describe these below and more fully in appendix B. Remarkably, each of these variables

satisfies a decoupled wave equation of the general form:

− r2

∆
∂2t ψ + ∂r(r

−2∆∂rψ) = r−2W (r)ψ (6.6)

where ∆ = r2F , for some explicitly known function W (r). However, one shortcoming of

Moncrief’s approach is that since the various ψ are defined using static coordinates, it is

not obvious if they are smooth on the horizon (since those coordinates breakdown there).

In appendix B we show that in fact all the relevant gauge invariant variables ψ are indeed

smooth on the future horizon H+. Hence we may convert to EF coordinates resulting in

the master equation

2∂v∂rψ + ∂r(r
−2∆∂rψ) = r−2W (r)ψ . (6.7)

All terms in this equation are smooth on H+ which is at the largest root r = r+ of ∆.

The odd parity perturbations are simplest, so let us describe the gauge invariant vari-

ables in this case (see appendix B for more detail on their construction).

General l ≥ 1 odd perturbations of the gauge field must be of the form δAa = Aêa
for some function A. It turns out πf = A is one of Moncrief’s gauge-invariant canonical

momentum variables. This variable can be defined invariantly as follows:

πf ≡ 1

l(l + 1)

∫

S2(v,r)
dΩ (êa)∗δAa =

1

l(l + 1)

∫

S2(v,r)
Y ∗
lmδF (6.8)
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where S2(v, r) a sphere of constant (v, r) in EF coordinates and the second equality

follows from integration by parts. Under a gauge transformation δF = LξF = diξF

where ξµ is a vector generating infinitesimal diffeomorphisms. For odd perturbations

ξµdx
µ = C(v, r)êadx

a and it is readily checked that this implies δFab = 0. Hence πf
is indeed gauge invariant and the above definition shows it is also smooth on the horizon.

The relevant variable to describe l ≥ 1 odd perturbations of the metric turns out

to be p1, which is the conjugate momentum to the metric perturbation δgra = h1êa. In

appendix B we give details of general odd perturbations of the metric and show that

p1 =

∫

S2(v,r)
dΩ (êa)∗

(

∂vδgra − ∂rδgva +
2δgva
r

)

, (6.9)

where here δgµν is written in EF coordinates, which explicitly shows p1 is a smooth quantity

on H+. It is easily checked this is gauge-invariant directly. For odd perturbations an

infinitesimal diffeomorphism must be of the form δgµν = ∇(µξν) where again ξµdx
µ =

C(v, r)êadx
a. Hence δgva = ∂vC and δgra = ∂rC − 2C/r; it follows that δπ1 = 0 as

claimed.

Moncrief showed that l > 1 odd perturbations reduce to two decoupled wave equa-

tions (6.7) for ψ = P± where P± are certain constant linear combinations of πf and

πg ≡ rp1 −
2Ql(l + 1)

r
πf . (6.10)

From above we deduce that πf , πg and hence P± are indeed smooth functions on the

horizon.

For l = 1 odd perturbations Moncrief showed that the quantity δa ≡ − 1
6M (12r

2p1 −
2Qπf ), which from the above is gauge invariant and smooth on H+, is in fact a constant.

In this case the perturbation equations reduce to a single wave equation of the general

form (6.7) with

ψ = Pf ≡ πf − 2Qδa

r
, W = 2

(

1 +
2Q2

r2

)

. (6.11)

From the above we deduce that Pf is a gauge invariant quantity which is smooth on the

horizon (since both πf and δa are). Note that Pf ≡ 0 corresponds to a perturbation

to a slowly rotating Kerr-Newman black hole with rotation parameter δa (explaining the

notation); indeed this is the most general regular stationary solution in this case [32].

The even parity perturbations are more complicated to describe. In appendix B we

explain their definition and show that the gauge invariant quantities appearing in Mon-

crief’s final decoupled equations (6.7) are also all smooth on the horizon. We establish this

by showing how to express them as linear combinations of the metric and field strength

perturbations in EF coordinates.

6.2 Conservation laws and blow up on the horizon

As explained in the previous section, Moncrief’s perturbation equations can all be reduced

to the form (6.7) for some gauge invariant function ψ which is regular on H+. We will
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now restrict to the extreme RN solution Q = M so ∆ = (r −M)2 and r+ = M . Using

this general form we now derive necessary and sufficient conditions for the existence of

certain conserved quantities on the horizon. As we will show below, remarkably, these

conditions are satisfied for all types of l ≥ 1 perturbation. Hence coupled gravitational and

electromagnetic perturbations of an extreme RN solution possess a tower of conservation

laws on the horizon. In turn, these conserved quantities lead to blow up results and hence

instabilities for all types of perturbation.

Let f(r) be a smooth function which is non-vanishing on the horizon and without loss

of generality set f |r=M = 1. Multiply (6.7) by r2f(r) and differentiate p ≥ 2 times with

respect to r and then set r =M . This gives an equation of the form

2∂v[∂
p
r (r

2f∂rψ)]|r=M +

p
∑

k=0

ak∂
p−k
r ψ|r=M = 0 , (6.12)

where in particular

a0 = p(p+ 1)−W |r=M . (6.13)

Hence the quantity in square brackets in (6.12) is conserved on the horizon if and only if

ak = 0 for all 0 ≤ k ≤ p. In turn, this is equivalent to the following set of equations:

W |r=M = p(p+ 1) (6.14)

f (k)|r=M = − 1

2p+ 1− k





1

k

k
∑

q=1

(

k

q

)

f (k−q)W (q) + 2(p− k)(r−1f)(k−1)





r=M

(6.15)

where 1 ≤ k ≤ p. For each k ≥ 1 equation (6.15) determines f (k)|r=M in terms of the lower

order derivatives f (k−1)|r=M , . . . , f |r=M . It follows that for all 1 ≤ k ≤ p the f (k)|r=M

are determined (recall we have fixed f |r=M = 1). Hence by choosing f to be any function

whose derivatives satisfy these constraints we deduce that

Hp[ψ] ≡
1

M2
[∂pr (r

2f∂rψ)]|r=M (6.16)

is conserved along H+ if and only if (6.14) is satisfied. Notice that Hp depends only on the

first p derivatives of f at r =M and is therefore independent of any specific choice of f .

This conservation law implies generic non-decay at late time on H+ of a certain linear

combination of ψ and its first (p + 1) r-derivatives. Since we expect all derivatives of the

field to decay outside13 H+, it follows that certain quantities with one more r-derivative

will blow up at late time on H+.

To see this explicitly, suppose we have a conserved quantity Hp[ψ] for some p ≥ 2 as

above. Now consider (6.12) with p→ p+ 1 so

2∂v[∂
p+1
r (r2f∂rψ)]|r=M + 2(p+ 1)∂p+1

r ψ|r=M +

p+1
∑

k=1

ak∂
p+1−k
r ψ|r=M = 0 (6.17)

13 It would be surprising (and very interesting) if this expectation were false because then metric-Maxwell

perturbations would exhibit behaviour that is worse than that of scalar field perturbations. The case l = 1

is an exception for which the exterior solution might settle down to a perturbation within the Kerr-Newman

family.
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l = 1 odd l > 1 odd l = 1 even l > 1 even

ψ Pf P± H R±

W |r=M 6 l(l + 1) + 1± (2l + 1) 6 l(l + 1) + 1± (2l + 1)

p 2 l ± 1 2 l ± 1

Table 1. Conserved quantities Hp[ψ] for Moncrief’s perturbations.

where we have used (6.14) to simplify the coefficient of ∂p+1
r ψ|r=M which in this case is non

vanishing. Now (motivated by the results for the scalar field) suppose that ∂krψ|r=M → 0

as v → ∞ for 0 ≤ k ≤ p. Then (6.16) implies ∂p+1
r ψ|r=M → Hp[ψ]. Hence (6.17) implies

∂v[∂
p+1
r (r2f∂rψ)]|r=M ∼ −(p+ 1)Hp (6.18)

as v → ∞. Therefore if the constant Hp 6= 0, as will be the case for generic initial data, we

deduce the linear blow up

∂p+2
r ψ|r=M ∼ −(p+ 1)Hpv

M2
(6.19)

as v → ∞. Iterating this argument shows

∂p+n+1
r ψ|r=M ∼ −cp,nHpv

n (6.20)

for some non-zero constants cp,n and all n ≥ 1.

Let us now apply these results to Moncrief’s perturbation equations. As we show below,

remarkably, for all types of perturbation there exists some integer p ≥ 2 such that (6.14)

is satisfied, as summarised in table 1.

Hence for all types of perturbation there exists a conserved quantity (6.16) and if this

quantity is non-zero, there exists an associated blow up result for the corresponding trans-

verse derivatives. Note that the smallest value of p, i.e., the fewest transverse derivatives,

is p = 1 which occurs for l = 2.

Consider the l = 1 odd perturbation equation (6.11) for which ψ = Pf andW |r=M = 6.

In this case there exists a conserved quantity for p = 2: explicitly one can use (6.15) to get

f ′|r=M = 3/2 and f ′′|r=M = 0 and deduce that

H2[Pf ] =

(

∂3rPf +
7

M
∂2rPf +

8

M2
∂rPf

)

r=M

. (6.21)

For a generic initial perturbation, H2[Pf ] 6= 0 and hence ∂rPf , ∂
2
rPf and ∂3rPf cannot all

decay at late time on H+. In view of the results for a scalar field, the most likely behaviour

is that Pf , ∂rPf , ∂
2
rPf all decay along the horizon and hence ∂3rPf does not decay. In this

case, from the above argument, ∂4rPf will blow up linearly in v on H+. Hence we must have

an instability. This is readily translated to a statement about explicit components of the

Maxwell field: if we restrict to perturbations for which δa = 0 (e.g. by demanding vanishing

angular momentum perturbation), then we deduce the best possible generic behaviour is

that the S2 components δFab, ∂rδFab, ∂
2
r δFab all decay, ∂3r δFab does not decay and ∂4r δFab

must blow up linearly in v along H+.
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Now consider l > 1 odd perturbations. In this case the variables ψ = P± are related

to the gauge-invariant variables πf , πg defined in equations (6.8), (6.10) and (6.9), by

πf =
1

√

2(2l + 1)(l − 1)(l + 2)

[√
2l + 4 P+ −

√
2l − 2 P−

]

(6.22)

πg =
l(l + 1)

√

2(2l + 1)

[√
2l − 2 P+ +

√
2l + 4 P−

]

, (6.23)

whereas the associated functions appearing in the wave equation (6.7) are

W± = l(l + 1)− 3M

r
+

4M2

r2
± (2l + 1)M

r
. (6.24)

Therefore W±|r=M = l(l + 1) + 1 ± (2l + 1) and hence W+|r=M = (l + 1)(l + 2) and

W− = l(l − 1). We deduce that for P+ there exists a conserved quantity for p = l + 1 and

for P− a conserved quantity for p = l − 1.14

For definiteness consider the l = 2 odd case so then we have conserved quantities:

H1[P−] =

(

∂2rP− +
2

M
∂rP−

)

r=M

(6.25)

H3[P+] =
(

∂4rP+ + . . .
)

r=M
(6.26)

where the ellipsis denotes lower order r-derivatives of P+, whose explicit coefficients are

unimportant.

For a generic initial perturbation these constants will be non-zero (and independent).

Hence ∂rP− and ∂2rP− cannot both decay at late time on H+. One can relate P− directly

to the metric and Maxwell field perturbation by writing it as a linear combination of πf
and πg using (6.22) and (6.23). We can then use (6.10) to write P− in terms of πf and

p1. Recall p1 is the gauge invariant combination of metric perturbation components (6.9)

and πf is the gauge invariant Maxwell field perturbation (6.8). Hence we deduce that a

certain gauge-invariant linear combination of the first two r-derivatives of these quantities

generically does not decay at late time on H+.15

As discussed above, it seems very likely that, for l = 2, the gauge invariant quantities

and all of their derivatives will decay at late time outside H+. Hence, since we have

non-decay of a certain quantity on H+, there will be a quantity with one more r-derivative

which blows up at late time onH+. The most likely scenario is that P− and ∂rP− will decay

14 The recurrence relation (6.15) can be solved explicitly in this case. For P+

f (k)|r=M = −
3k!(−1)k(l − k + 1)(2l − k + 2)

Mkl(l + 1)(2l + 1)

and for P−

f (k)|r=M =
(−1)kk!(k + 1)(l − k − 1)

Mk(l − 1)
.

15 We emphasize that this non-decay cannot be because the perturbation is settling down to a time-

independent perturbation corresponding to a variation of parameters within the Kerr-Newman family be-

cause l = 2 here.
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at late time along the horizon, in which case ∂2rP− cannot decay and ∂3rP− will blow up at

late time on H+. Similarly, if P+, ∂rP+, ∂
2
rP+, ∂

3
rP+ all decay along H+, then ∂4rP+ cannot

decay and ∂5rP+ will blow up at late time on H+. It then follows that πf , πg, ∂rπf , ∂rπg
decay, whereas

∂2rπf |r=M ∼ −H1[P−]

2
√
5

∂3rπf |r=M ∼ H1[P−]√
5M2

v (6.27)

∂2rπg|r=M ∼ 12H1[P−]√
5

∂3rπg|r=M ∼ −24H1[P−]√
5M2

v (6.28)

in which case from equation (6.10) it follows that p1, ∂rp1 decay and

∂2rp1|r=M ∼ 6H1[P−]√
5M

∂3rp1|r=M ∼ −12H1[P−]√
5M3

v , (6.29)

as v → ∞. Hence there is an l = 2 instability where transverse derivatives of these gauge

invariant perturbations blow up linearly on the horizon.

Similar statements for l = 1 even and l > 1 even perturbations can be deduced from

table 1 and appendix B. The associated functions W in (6.7) for each variable ψ are easily

read off from [26, 27] and [32]; in table 1 we provideW |r=M which as shown above is enough

to determine the existence of a tower of conservation laws and associated instabilities on

the horizon.
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A Numerical method

A.1 Algorithm

Here, we explain our numerical method to solve eq. (3.7). We take the domain of the

numerical calculation as U ∈ [−0.5, 0] and v ∈ [0, 2000]. We discretize coordinates U and

v as (Ui, vj) (i = 0, 1, 2, · · · , N , j = 0, 1, 2 · · ·M) where U0 = −0.5, UN = 0, v0 = 0 and
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Figure 20. The potential V̂ (U, v) for m = 0 and l = 0. We take fixed v slices: v = 20, 40, 60. We

can see that the potential approaches U = 0 and tends to be sharp as v increases.

vM = 2000. Denoting φi,j = φ(Ui, vj), Vi,j = V (Ui, vj), δUi = Ui+1−Ui and δvj = vj+1−vj ,
we obtain the discretized equation for eq. (3.7) as

φi+1,j+1 = φi,j+1 + φi+1,j − φi,j −
δUiδvj

4
(V φ)i+1/2,j+1/2 +O(δU3

i δvj , δUiδv
3
j ) , (A.1)

where (V φ)i+1/2,j+1/2 = (Vi+1,j+1φi+1,j+1+Vi+1,jφi+1,j +Vi,j+1φi,j+1+Vi,jφi,j)/4. Solving

above equation for φi+1,j+1, we have

φi+1,j+1 =

(

1 +
δUiδvj
16

Vi+1,j+1

)−1(

φi,j+1 + φi+1,j − φi,j −
δUiδvj

4
(V φ)′i+1/2,j+1/2

)

+O(δU3
i δvj , δUiδv

3
j ) , (A.2)

where (V φ)′i+1/2,j+1/2 = (Vi+1,jφi+1,j + Vi,j+1φi,j+1 + Vi,jφi,j)/4. Note that φi,0 and φ0,j
are given by the initial condition (3.9) or (3.10). Thus, using eq. (A.2), we can determine

the {φi,j} in the whole domain recursively.

Now, we consider how we should take the numerical grid, (Ui, vj). In figure 20, we

depict the potential V̂ (U, v) for fixed v slices. We can see that the potential approaches

U = 0 and tends to be sharp as v increases. This implies that we need smaller grid

size as U approaches zero. Thus, we take a multigrid generated by following algorithm:

Ui = Ui+1 − cih where UN = 0 and ci = 1, 4, 16, 64, 256 for 0 ≤ i < N ′, N ′ ≤ i < 2N ′,

2N ′ ≤ i < 3N ′, 3N ′ ≤ i < 4N ′ and 4N ′ ≤ i < 5N ′, respectively. Here, we define N ′ = N/5

and h = 0.5/
∑N−1

i=0 ci. For this choice of h, we have U0 = −0.5. In our calculation, we

take the grid number as N = 4× 104. By this choice of numerical grid, we can resolve the

potential V̂ (U, v) within v . 2000. For v-direction, we take uniform grid δvj = 0.1.

A.2 Evaluating transverse derivatives on the horizon

In sections 3 and 5, we evaluate ∂nr φ|r=M (n = 1, 2, 3, 4) from the numerical solution φ(U, v).

The numerical differentiations tend to lose the accuracy as n increases. Thus, we use a
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trick to evaluate the differentiations. In the (v, r)-coordinates, the wave equation (3.7) can

be written as

2∂v∂rφ+ F (r)∂2rφ+ F ′(r)∂rφ− V (r)φ = 0 , V (r) =
F ′(r)

r
+
l(l + 1)

r2
+m2 . (A.3)

where ′ ≡ d/dr. From the equation, we obtain recursion equations for ∂nr φ|r=M (n =

1, 2, · · · ) as

2∂v∂rφ|r=M = [V φ]r=M , (A.4)

2∂v∂
2
rφ|r=M =

[

− 2

M2
∂rφ+ V ∂rφ+ V ′φ

]

r=M

, (A.5)

2∂v∂
3
rφ|r=M =

[

− 6

M2
∂2rφ+

12

M3
∂rφ+ V ∂2rφ+ 2V ′∂rφ+ V ′′φ

]

r=M

, (A.6)

2∂v∂
4
rφ|r=M =

[

− 12

M2
∂3rφ+

48

M3
∂2rφ− 72

M4
∂rφ

+ V ∂3rφ+ 3V ′∂2rφ+ 3V ′′∂rφ+ V ′′′φ

]

r=M

. (A.7)

These equations are obtained by operating ∂mr and setting r = M in eq. (A.3) where m

is taken to be m = 0, 1, 2, 3. Once we know φ|r=M from the numerical calculation, we

can determine ∂rφ|r=M by integrating eq. (A.4) with respect to v. From the φ|r=M and

∂rφ|r=M , we can also determine ∂2rφ|r=M by integrating eq. (A.5). In a similar way, we

can determine ∂nr φ|r=M .

B Regularity of Moncrief’s variables

In this section we will explain Moncrief’s parameterisation of metric and gauge field per-

turbations of the RN solution. The essential point is to expand each type of perturbation

in a Regge-Wheeler basis for scalar, vector and tensor harmonics on S2 which we have

written covariantly in (6.3), (6.4), (6.5).

As explained Moncrief works in the Hamiltonian formalism. Hence the perturbation

variables consist of the various metric and gauge field components and their conjugate

momenta. We will need explicit expressions for δπij , δEi. The former can be computed

using [27]

δπij =

√
g

2N
(gikgjl − gijgkl)[∂tδgkl −∇kδNl −∇lδNk] , (B.1)

where ∇i is the connection associated to gij . The latter can be computed from

δEi = −
√
g

N
gijδFtj +

(

−δN
N

+
1

2
gklδgkl

)

Ei − gikElδgkl (B.2)

which is valid if the background solution satisfies Ni = 0, Fij = 0, as is the case for the RN

solution we will consider. Indeed the RN background is given by equations (6.1) and (6.2).

We will also show that the subset of Moncrief’s variables which appear in the reduced

gauge invariant perturbation equations, see table 1, are smooth on the horizon.
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B.1 Odd perturbations

For odd perturbations Moncrief’s parameterisation of the perturbed metric and gauge field

is [25, 33]

δgijdx
idxj = 2h1drêadx

a + h2êabdx
adxb (B.3)

δNidx
i = h0êadx

a (B.4)

δAidx
i = Aêadx

a . (B.5)

The momenta conjugate to δgra = h1êa and δgab = h2êab are given by (see e.g. [33])

δπra =
p1 sin θê

a

2l(l + 1)
, δπab =

2p2 sin θê
ab

l(l + 1)(l − 1)(l + 2)
(B.6)

where the normalisations are chosen so that p1, p2 is conjugate to h1, h2 when one integrates

the action over S2. The momentum conjugate to δAa = Aêa is

δEa =
E sin θêa

l(l + 1)
. (B.7)

Hence perturbations are described by the set of function (A,E, h1, h2, p1, p2, h0).

For l > 1, Moncrief performs a canonical transformation to a new set of canonical

variables (h1, h2, A, p1, p2, E) 7→ (k1, k2, f1, π1, π2, πf ), where in particular πf = A and

π1 = p1. All the new variables are gauge invariant except k2 which is cyclic; its conjugate

momentum π2 is the only constraint function (which follows by variation with the respect

to the lapse h0). Hamilton’s equations for the remaining pairs (k1, π1) and (f1, πf ) can be

combined to give two second order coupled equations for πf and πg = rπ1−2Ql(l+1)πf/r.

These equations can be decoupled into two wave equations of the form (6.7) for ψ = P±

which are two certain constant linear combinations of πf , πg (these are given in [32] and

we have written them in the extreme case in equation (6.22) and (6.23)).

For l = 1 there are no tensor perturbations and so we have h2 = p2 = 0. Moncrief

performs a canonical transformation (h1, A, p1, E) 7→ (k1, f1, π1, πf ), where in particular

πf = A and π1 = 1
2r

2p1 − 2QA. Variation of the lapse h0 in this case gives the constraint

π1,r = 0, and together with the fact that k1 is cyclic, this implies π1 is a constant. Hamil-

ton’s equations for the remaining pair (f1, πf ) can be written as a single second order wave

equation of the form (6.6) for ψ = Pf ≡ πf − 2Qδa/r where δa ≡ −π1/(6M) is a constant

by the previous remarks.

The above discussion shows that to examine smoothness of P± (l > 1) and πf (l = 1),

we need to only examine smoothness of A, p1 from the original variables. The latter can

be computed using (B.1) and we find

p1 = l(l + 1)

(

∂th1 − ∂rh0 +
2

r
h0

)

, (B.8)

giving an explicit expression in terms of metric components.

A general odd perturbation of the metric regular on H+ in EF coordinates is

δgµνdx
µdxν = 2(hvdv + hrdr)êadx

a + hêabdx
adxb (B.9)

– 38 –



J
H
E
P
0
3
(
2
0
1
3
)
0
3
5

where hr, hv, h are smooth on the horizon H+. Converting to static coordinates gives

δgµνdx
µdxν = 2

[

hvdt+

(

hr +
hv
F

)

dr

]

êadx
a + hêabdx

adxb . (B.10)

Hence comparing to Moncrief gives

h0 = hv h1 = hr +
hv
F

h2 = h (B.11)

and so we deduce that h0, h2 are regular on the horizon, but h1 is not. The momentum

conjugate to h1 (B.8) in EF coordinates is therefore

p1 = l(l + 1)

(

∂vhr − ∂rhv +
2

r
hv

)

(B.12)

which is indeed smooth on the horizon.

A general odd perturbation of the Maxwell field regular on H+ in EF coordinates is

δFµνdx
µdxν = (fvadv + fradr) ∧ êadxa + fY ǫ̂abdx

a ∧ dxb , (B.13)

where fva, fra, f are smooth. In static coordinates this becomes

δFµνdx
µdxν =

[

fvadt+

(

fra +
fva
F

)

dr

]

∧ êadxa + fY ǫ̂abdx
a ∧ dxb . (B.14)

Comparing to Moncrief gives f = −1
2 l(l + 1)A, where we have used dê = ǫ̂∇̂2Y = −l(l +

1)Y ǫ̂. Therefore we deduce that A is indeed smooth on H+.

B.2 Even perturbations

Even perturbations are more complicated so we will not explain the derivation of the

variables we need. The metric and gauge field are parameterised as [26, 27]

δgijdx
idxj = F−1H2Y dr

2 + 2h1drf̂adx
a + r2(Gf̂ab +Kĝab)dx

adxb (B.15)

δNidx
i = H1Y dr + h0f̂adx

a (B.16)

δN = −1

2
F 1/2H0Y (B.17)

δAidx
i = (a1 + a2,r)Y dr + a2f̂adx

a (B.18)

δA0 = a0Y . (B.19)

There are analogous expressions for the conjugate momenta δπij and δEi; the only one we

will actually need is

δEr = f1 sin θY . (B.20)

We can compute this explicitly using (B.2)

f1 = −r2
∫

S2

δFtrY
∗
lm +Q (H0 −H2 + 2K − l(l + 1)G) . (B.21)
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For l > 1 Moncrief transforms (H2, h1,K,G) to the variables (k1, k2, k3, k4) defined by

k1 = K + rFG,r −
2

r
Fh1 k2 =

1

2F
(H2 −K)− r

2F
K,r +

rF ′

4F 2
K (B.22)

k3 = G k4 = h1 . (B.23)

Moncrief shows that k1, k2 are gauge invariant. He eventually managed to reduce the

perturbation equations to a pair of coupled second order wave equations of the form (6.6)

for the variables16

Q1 ≡
q1
√

(l − 1)(l + 2)

Λ
where q1 ≡ 4rF 2k2 + l(l + 1)rk1 (B.24)

H ≡ F̃ − 2Qq1
Λr

where F̃ ≡ f1 +Ql(l + 1)k3 (B.25)

where Λ = (l−1)(l+2)+6M/r−4Q2/r2. It turns out that F̃ is gauge invariant and therefore

(Q1, H) are both gauge-invariant. The variables appearing in the decoupled equations in

this case are certain constant linear combinations R± of (Q1, H). Therefore to examine

smoothness of the final variables R± we need to examine smoothness only of q1, k3, f1.

For l = 1 we must have G = 0. Moncrief reduces this system to a single wave equation

of the form (6.6) for the gauge-invariant variable ψ = H where17

H ≡ f1 −
4Q

Λ
k̂2 where k̂2 = FH2 − F 3/2∂r(rF

−1/2K) +K − 2Fh1
r

. (B.26)

Hence to examine smoothness of H we need to examine only f1, k̂2.

A general even perturbation of the metric regular on the future horizon is

δgµνdx
µdxν = (hvvdv

2+2hvrdvdr+hrrdr
2)Y +2(hvdv+hrdr)f̂adx

a+r2(Kĝab+Gf̂ab)dx
adxb

(B.27)

where all component functions are smooth. Converting to static coordinates gives

δgµνdx
µdxν =

[

hvvdt
2 + 2dtdr

(

hvr +
hvv
F

)

+ dr2
(

hrr +
2hvr
F

+
hvv
F 2

)]

Y

+

[

hvdt+

(

hr +
hv
F

)

dr

]

f̂adx
a + r2(Kĝab +Gf̂ab)dx

adxb . (B.28)

Comparing to Moncrief’s variables shows K,G are the same and

h0 = hv h1 = hr +
hv
F

(B.29)

H0 =
hvv
F

H1 = hvr +
hvv
F

H2 = Fhrr + 2hvr +
hvv
F

. (B.30)

For l > 1 we deduce that the quantities k1, F
2k2, k3 given in (B.22), (B.23) are smooth on

the horizon, and hence q1 also is. For l = 1 we deduce that k̂2 given in (B.26) is smooth

on the horizon.
16In Moncrief’s paper [27] the variable Q1 is called Q; we have renamed this to avoid confusion with the

electric charge Q.
17Here k̂2 = Fk2 where k2 is the l = 1 variable Moncrief used [27]: we avoided referring to this to avoid

confusion with k2 for the l > 1 variable.
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A general even perturbation of the Maxwell field in EF coordinates is

δFµνdx
µdxν = fvrY dv ∧ dr + (fvadv + fradr) ∧ f̂adxa (B.31)

which in static coordinates becomes

δFµνdx
µdxν = fvrY dt ∧ dr +

[

fvadt+

(

fra +
fva
F

)

dr

]

∧ f̂adxa . (B.32)

Therefore we find that (B.21) is given by

f1 = −r2fvr +Q(−Fhrr − 2hvr + 2K − l(l + 1)G) (B.33)

and hence this quantity is also smooth on the horizon.

Putting everything together we deduce: the gauge-invariant functions R± for l > 1

and H for l = 1 are indeed smooth on H+.
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