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Abstract: Motivated by the recent dilaton-based proof of the 4d a-theorem, we study

the dilaton effective action for RG flows in d dimensions. When d is even, the action

consists of a Wess-Zumino (WZ) term, whose Weyl-variation encodes the trace-anomaly,

plus all Weyl-invariants. For d odd, the action consists of Weyl-invariants only. We present

explicit results for the flat-space limit of the dilaton effective action in d-dimensions up to

and including 8-derivative terms. GJMS-operators from conformal geometry motivate a

form of the action that unifies the Weyl-invariants and anomaly-terms into a compact

general-d structure.

A new feature in 8d is the presence of an 8-derivative Weyl-invariant that pollutes

the O(p8)-contribution from the WZ action to the dilaton scattering amplitudes; this may

challenge a dilaton-based proof of an a-theorem in 8d.

We use the example of a free massive scalar for two purposes: 1) it allows us to

confirm the structure of the d-dimensional dilaton effective action explicitly; we carry out

this check for d = 3, 4, 5, . . . , 10; and 2) in 8d we demonstrate how the flow ∆a = aUV−aIR

can be extracted systematically from the O(p8)-amplitudes despite the contamination from

the 8-derivative Weyl-invariant. This computation gives a value for the a-anomaly of the

8d free conformal scalar that is shown to match the value obtained from zeta-function

regularization of the log-term in the free energy.
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1 Introduction & summary

The recent proof of the 4d a-theorem by Komargodski and Schwimmer (KS) [1] makes

exquisite use of the low-energy effective interactions of the dilaton, a field that can be

thought of as the Goldstone mode of spontaneously broken conformal symmetry or as a

compensator background field. KS showed, following earlier work [2], that the form of

the dilaton effective action is dictated by its Weyl-transformation properties and that the

low-energy behavior of the 4-point dilaton scattering amplitude

A4(s, t) = ∆a
4

f4
(s2 + t2 + u2) (1.1)

encodes the flow of the a-anomaly ∆a = aUV−aIR. In the forward limit t→ 0, A4(s, 0)/s3

has a simple pole at s = 0 whose residue is 4∆a/f4. A contour integral argument then gives

∆a =
f4

4π

∫ ∞
0

ds
ImA(s, 0)

s3
> 0 . (1.2)
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Since the integrand on the r.h.s. is positive definite, this proves aIR < aUV for an RG flow

from a 4d UV CFT to a 4d IR CFT. The convergence of the dispersion integral has been

clarified in [3, 4].

Zamolodchikov’s c-theorem [5] and the Cardy-KS a-theorem [1, 6] demonstrate the

irreversibility of the RG flow between 2d and 4d CFT fixed points, respectively. It is

interesting to ask if this property generalizes to other dimensions. Holographic arguments

indicate that it does generalize, and they provide an interesting connection to entanglement

entropy [7–9]. In even dimensions, the irreversibility of the flow can be encoded in an a-

theorem for the ‘type A’ anomaly a associated with the Euler density term in the trace

anomaly polynomial [10]1

〈Tµµ〉 =
∑
i

ciIi − (−)d/2aEd . (1.4)

In odd dimensions, the constant term in the free energy F = − logZ offers a candidate for

an analogous F -theorem; for recent work see [12–17].

The dilaton can be introduced in even as well as in odd dimensions, and one may ask

what information can be extracted from its low-energy effective action: in particular if it

can be used to prove a higher-d a-theorem and whether it plays a role for odd-d RG flows.

The focus of this paper is to study the structure of the dilaton effective action in general

d dimensions.

The dilaton-based approach [1, 3] to the a-theorem was examined recently in [18] for

RG flows between 6-dimensional CFTs. The 6d dilaton effective action was constructed

up to 6-derivative order and its structure verified in explicit examples. The examples also

served to clarify the distinctive roles of the dilaton in the cases of spontaneous and explicit

breaking of the conformal symmetry. In the former case, the dilaton is a dynamical field of

the low-energy theory and it contributes as such to the scattering amplitudes via Feynman

diagrams with internal dilaton lines; this was demonstrated explicitly with the example of

the 6d (2,0) theory on the Coulomb branch [18]. (See also [19].) On the other hand, when

the conformal symmetry is broken explicitly, the dilaton is introduced as a compensator

field which can be made arbitrarily weakly coupled such that in the low-energy scattering

amplitudes it may be treated as a source field. This case was illustrated in [18] by the

example of the 6d free massive scalar.

The simple KS approach to proving aIR < aUV in 4d does not directly carry over to

6d [18], and no general proof of the 6d a-‘theorem’ has yet been offered. One technical

difficulty with generalizing the KS dispersion relation argument is that in 6d the anomaly

flow ∆a is associated with the 6-derivative terms in the action: the 4-dilaton amplitude

is then A4(s, t) ∼ ∆a stu, and since it vanishes in the forward limit no clean positivity

statement is extracted; for details see [18].

1We normalize the d = 2k-dimensional Euler density as

E2k(gµν) =
1

2k
Rµ1ν1

ρ1σ1 . . . Rµkνk
ρkσk ερ1σ1...ρkσk ε

µ1ν1...µkνk . (1.3)

The ‘type B’ anomalies ci multiply a set of independent Weyl-invariant scalars
√
−gIi; there is 1 in 4d, 3

in 6d, and [11] found 12 in 8d. The c-anomalies do not always decrease along an RG flow.

– 2 –
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It would seem easier to derive a positivity result based on a 4-point amplitude of the

form A4(s, t) ∼ (s4 + t4 + u4). Indeed in 8d, the a-anomaly is associated with 8-derivative

terms in the action, and at order O(p8) the 4-dilaton amplitude takes this form. However,

the 8d dilaton effective action also contains an 8-derivative Weyl-invariant that contributes

non-trivially to the scattering amplitudes [18]. In fact, proving positivity of the coefficient

of the O(p8)-terms in the 4-dilaton amplitude amounts to proving only that the coefficient

of this new Weyl-invariant is positive and does not yield ∆a > 0.

One purpose of this paper is to clarify the structure of the terms in the dilaton effective

action in 8d up to and including 8-derivative terms. We will also show that despite the

pollution from the 8-derivative Weyl-invariant, the flow ∆a can be extracted systematically.

We demonstrate this explicitly for the example of the 8d free massive scalar. The result for

∆a = ascalar,8d agrees with that found using zeta-function regularization of the coefficient

of the log-term in the free energy.

It must be noted that the study of 8d RG flows is motivated by the wish to understand

the structure of the dilaton effective action and the generality of the dilaton-based approach

of KS in even dimensions. We know of no examples of interacting 8-dimensional conformal

theories (and there can be no superconformal ones [20]), so an 8d (or higher-d) a-theorem

may be of limited applicability.

The analysis in 8d is part of our more general study of the dilaton effective action in

d dimensions, with d even or odd. The trace-anomaly exists only for even d, and therefore

it is a priori clear that for d odd, the low-energy dilaton effective action simply consists

of a derivative-expansion of Weyl-invariants.2 Such Weyl-invariants must also be included

when writing down the dilaton effective action in even d, in addition to the Wess-Zumino

action whose Weyl-variation produces the integral of the trace anomaly polynomial (1.4).

Despite the obvious difference between even and odd d, we find a compact unifying form

for the terms in the dilaton effective action that contribute with non-vanishing local matrix

elements to the on-shell dilaton amplitudes; these are the terms that are non-vanishing un-

der the equations of motion. For flows induced by explicit breaking of conformal symmetry

this is all that is needed. The unified form is given in terms of

Wk =

(
2

d− 2k

)2

e−(d/2−k)τPk e
−(d/2−k)τ , (1.5)

where τ is the dilaton field and Pk = (�k + curvature terms) is a GJMS-operator [22].

The GJMS operators Pk are higher-derivative generalizations of the conformal Laplacian

(k = 1) and the Paneitz operator (k = 2) [23].3 The ‘covariance’ of Pk under conformal

transformations (see (2.40)) ensures that Wk behaves well under Weyl-transformations,

τ → τ + σ and gµν → e2σgµν : for k 6= d/2 it transforms as Wk → e−d σWk so that
√
−gWk

is Weyl-invariant. We find that up to and including 8-derivative terms, the d-dimensional

2A holographic approach to the dilaton effective action in d-dimensions was recently discussed in [21].
3Although commonly referred to as the Paneitz operator in the math literature, this 4-derivative operator

actually first appeared in Fradkin and Tseytlin’s work [24, 25] from 1982.
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action in flat space can be written

S =

∫
ddx
√
−g
[

(d− 2)2

8
fd−2W1 + α(d)W2 + β(d)W3

+γ(d)W4 + γ̃(d) (d− 4)2

4
ed τ (W2)2 + . . .

]∣∣∣∣
gµν=ηµν

, (1.6)

where the ellipses stand for terms that vanish on-shell. If d is even,
√
−gWd/2 reduces

to τ�d/2τ in flat space. This is not Weyl-invariant, and it is known from d = 4 [3] and

d = 6 [18] that this form encodes4 the anomaly flow as d
2∆a τ�d/2τ . We demonstrate it in

this paper for d = 8. So in d = 4, 6, 8 one simply re-interprets the coefficient ofWd/2 as d
2∆a.

The action (1.6) should be thought of as a generator of the dilaton amplitudes for the

case of flows induced by explicit breaking of conformal symmetry. In general backgrounds,

the GJMS-operators Pk exist for all k for d odd, but only for k ≤ d/2 when d is even [22];

k = d/2 is of course the order where the trace anomaly enters. However, for conformally

flat backgrounds, the GJMS-operators exist for all k in both even and odd dimensions [28].

We carry out a non-trivial test of the result for the dilaton effective action (1.6) us-

ing the example of the d-dimensional free massive scalar. In this example, the dilaton is

introduced as a compensator to restore conformal symmetry. The massive scalar couples

quadratically to the dilaton, so the n-dilaton amplitudes can be calculated as 1-loop ampli-

tudes with the massive scalar running in the loop. The low-energy expansion of these 1-loop

amplitudes can then be compared with the dilaton amplitudes produced by S in (1.6). We

obtain a perfect match; the specific coefficients α(d), β(d), γ(d) and γ̃(d) of the action (1.6)

are listed in table 1 in section 5 for d = 3, 4, 5, . . . , 10.

We discuss the structure of the action (1.6) further in sections 2.5 and 5.2; and we show

that at the order of 10- and 12-derivatives, the GJMS-based building blocks Wk are not

sufficient and new structures are needed. Perhaps this points to possible generalizations of

the GJMS-operators.

The paper is structured as follows. In section 2 we analyze the dilaton effective action

in d dimensions order by order in derivatives up to O(∂8) and calculate the corresponding

dilaton matrix elements, assuming the context of explicit breaking and hence an arbitrarily

weakly coupled dilaton. In section 3 we study the example of the free massive scalar in

8d and show how to systematically extract ∆a from the dilaton amplitudes. We review in

section 4 how the d-dimensional anomaly can be calculated as the coefficient of the log-term

in the free energy for the free massive scalar and explicitly verify a compact formula for

ascalar by Diaz [29] for d = 4, 6, . . . , 20. In particular, the d = 8 result matches that of our

dilaton amplitude calculation in section 3. We generalize the analysis of the free massive

scalar to d-dimensions in section 5 and use it to verify the general result for the dilaton

effective action. Details of our calculations can be found in four appendices.

4The d-dimensional results can be obtained from a generalization of the analysis in section 2 of [3]; or it

can be motivated by an argument [26] based on Branson’s Q-curvature [27].
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2 Dilaton effective action and scattering in d dimensions

The dilaton effective action S consists of diff×Weyl invariant terms and in even dimensions

the Wess-Zumino action whose Weyl variation produces the trace anomaly,

δσSWZ =

∫
ddx
√
−g σ 〈Tµµ〉 =

∫
ddx
√
−g σ

(∑
i

ciIi − (−)d/2aEd

)
. (2.1)

The construction of SWZ was detailed in [1, 2, 18] and results given explicitly for d = 4, 6;

we outline the construction for d = 8 in appendix A and discuss the result in section 2.4.

In a spacetime with fixed background metric gµν , the diff×Weyl invariant terms are

curvature scalars constructed from the ‘hatted’ metric ĝµν = e−2τgµν , where τ is the

dilaton field. Here we are concerned with the dilaton effective action in flat space, so in

the following we take

ĝµν = e−2τηµν . (2.2)

For a conformally flat background, any appearance of the Riemann tensor can be replaced

by the Weyl tensor plus Ricci scalar and tensor terms via (A.2). Thus we can construct

our Weyl-invariants from the Ricci scalar, Ricci tensor and covariant derivatives thereof.

Examples are R̂µνR̂
µν and R̂�R̂.

We organize the dilaton low-energy effective action as a derivative expansion

S = S∂
2︸ ︷︷ ︸

(2.9)

+ S∂
4︸ ︷︷ ︸

(2.11)

+ S∂
6︸ ︷︷ ︸

(2.20)

+ S∂
8︸ ︷︷ ︸

(2.28)

+ . . . (2.3)

compact form: (2.14) (2.23) (2.36)

SWZ is included as part of the d-derivative action for d even. In the following, we sys-

tematically construct S∂
2k

for k = 1, 2, 3, 4 in d-dimensions.5 The equation reference given

below each term in (2.3) indicates where to find the result at order O(∂2k). The com-

pact form refers to the terms in GJMS-form (1.6) discussed in the Introduction. Before

we analyze each S(∂2k) and calculate the O(p2k) scattering amplitudes, let us make a few

general comments:

• Physical dilaton. In order to calculate dilaton scattering amplitudes, we introduce

the physical dilaton field ϕ defined by

e−
d−2
2
τ = 1− ϕ

f (d−2)/2
= Ω f−(d−2)/2 . (2.4)

This definition ensures that the physical dilaton has on-shell condition k2 = 0.

• Explicitly broken conformal symmetry. In this paper, we focus entirely on the scenario

of explicitly broken conformal symmetry. This means that we treat the dilaton as

arbitrarily weakly coupled, so that any contributions to the dilaton amplitudes from

diagrams with internal dilaton lines are suppressed [18]. As a result, the low-energy

5All tensor manipulations were done through a combination of pencil, paper, and the Mathematica

package xAct [30].
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dilaton amplitudes at O(p2k) derive solely from the contact-terms with 2k derivatives.

The only terms in the action that contribute to the amplitudes are therefore those

that do not vanish on the leading order (i.e. 2-derivative) dilaton equations of motion.

• From action to amplitudes. In the dilaton effective action we find terms such as

e−
d−2k

2
τ �ke−

d−2k
2

τ . (2.5)

Expanding (2.5) in powers of ϕ gives terms ϕn2�kϕn1 whose contributions to the

n-point matrix elements are easy to compute:

ϕn2�kϕn1 → n1!n2!
∑

1≤i1<i2<···<in1≤n
ski1 i2 ... in1

. (2.6)

Here n = n1 + n2 and the Mandelstam invariants are defined as

si1 i2 ... i` = −(pi1 + pi2 + . . . pi`)
2 . (2.7)

The simplicity of (2.6) was exploited previously in [18] for the calculation of the

dilaton matrix elements in 4d and 6d. In this paper, the action also contains terms

such as ϕ�2ϕ2�2ϕ2 which produce polynomials of the form (s2
12s

2
34 + perms).

2.1 Kinetic term and dilaton equations of motion

The kinetic term for the dilaton is generated by the unique 2-derivative diff×Weyl invariant√
−ĝR̂. In a flat background we have

√
−ĝ R̂ = 2(d− 1)

(
�τ − d− 2

2
(∂τ)2

)
e−(d−2)τ , (2.8)

so after partial integration we can write

S∂
2

= −1

8

d− 2

d− 1
fd−2

∫
ddx
√
−ĝ R̂ = −(d− 2)2

8
fd−2

∫
ddx (∂τ)2 e−(d−2)τ

= −1

2

∫
ddx (∂ϕ)2 . (2.9)

The constant f has dimension of mass, and the overall factor is chosen such that the

physical dilaton, ϕ defined in (2.4), has a canonically normalized kinetic term.

It follows from (2.9) that the dilaton equation of motion is

�τ =
d− 2

2
(∂τ)2 or �ϕ = 0 . (2.10)

The latter form tells us that the on-shell condition for the physical dilaton is k2 = 0, as

noted below (2.4). Note that by (2.8), R̂ vanishes on-shell.

– 6 –



J
H
E
P
0
3
(
2
0
1
3
)
0
3
4

2.2 4-derivative action

There are two 4-derivative Weyl-invariants,
√
−ĝ R̂2 and

√
−ĝ
(
R̂µν

)2 ≡ √−ĝ R̂µνR̂µν , so

we write the 4-derivative action

S∂
4

=

∫
ddx
√
−ĝ
[
α1R̂

2 + α2

(
R̂µν

)2
]
− δd,4 ∆aSWZ , (2.11)

where αi are constants. In 4d, the flat-space limit of SWZ is [1, 2]

SWZ =

∫
d4x

[
− 4(∂τ)2�τ + 2(∂τ)4

]
. (2.12)

The Weyl-invariant R̂2 is zero on-shell, but

√
−ĝ
(
R̂µν

)2
=

(d−2)2

2

[
2d(d−1)

(d− 2)2
(�τ)2− 3d2−8d+8

(d− 2)
(�τ)(∂τ)2+

(
d2−4d+6

)
(∂τ)4

]
e−(d−4)τ

EOM−−−→ −1

4
(d− 4)(d− 2)2 (∂τ)4 e−(d−4)τ . (2.13)

This vanishes in d = 4, as found in [1], so the WZ term is the only contribution to the

O(p4) matrix elements in 4d. This feature facilitated KS’s proof of the a-theorem. For

d 6= 4, the Weyl-invariant (2.13) gives non-vanishing contributions to the O(p4) matrix

elements, as in 6d [18].

The 4-derivative action (2.11) can be written compactly as

S∂
4

=

∫
ddx

[
α

(
2

d− 4

)2

e−
d−4
2
τ �2e−

d−4
2
τ + . . .

]
, (2.14)

where the “. . . ” refer to terms that vanish on-shell. To see how (2.14) can be compatible

with the WZ term, note:

• For d 6= 4, the WZ term is absent, and straightforward algebra with the expres-

sions in (B.2) shows that e−
d−4
2
τ �2e−

d−4
2
τ = 4−d

(d−2)2

√
−ĝ
(
R̂µν

)2
+ terms that vanish

on-shell.

• In d = 4, the only contributions to the O(p4) dilaton matrix elements come from the

WZ action. As noted in [3], the flat-space limit of the SWZ can be written in terms of

−2∆a τ�2τ+ terms that vanish on-shell. But this is exactly the expression recovered

in the limit d→ 4 of (2.14) with α = 2∆a.

Practically both cases above require solving a system of 3 equations, matching the coeffi-

cients of each unique type of term in (B.2) — (�τ)2, (∂τ)2�τ , and (∂τ)4 — with (2.14),

using only the 2 variables α1 and α2 [3]. It is noteworthy that a solution exists.

The n-point matrix elements at order O(p4) can be expressed in terms of a basis of

polynomials in the Mandelstam invariants (2.7) as

P (4)
n ≡

∑
1≤i<j≤n

s2
ij . (2.15)

– 7 –
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As an example, consider the O(p4) to the amplitudes determined by S∂
4

in (2.14).

Changing variables from τ to ϕ via (2.4) gives

α

(
2

(d− 2)2

)2 1

f2d−4
ϕ2�2ϕ2 + O(ϕ5) , (2.16)

so using (2.6) we can directly read off the 4-point amplitude

A(4)
4 = α

(
2

(d− 2)2

)2 1

f2d−4
2! 2!

∑
1≤i<j≤4

s2
ij = α

32

(d− 2)4

1

f2d−4

(
s2 + t2 + u2

)
. (2.17)

For d = 4, we identify α = 2∆a, so (2.17) agrees with the result (1.1). Taking d = 6, we

find A(4)
4 = α

8f8

(
s2 + t2 + u2

)
. This matches the result in eq. (3.18) of [18] in which A(4)

4

was expressed in terms of a coefficient b related to α by α = 4b.

The higher-point matrix elements of S∂
4

are straightforward to extract from (2.14). To

avoid cluttering the main text, we list the O(p4) matrix elements in (C.1) for the general

d-dimensional case.

2.3 6-derivative action

For a d-dimensional conformally flat metric, any 6-derivative Weyl-invariant can be written

in terms of

R̂3 , R̂
(
R̂µν

)2 ≡ R̂(R̂µνR̂νµ) , R̂ �̂R̂ , and
(
R̂µν

)3 ≡ (R̂µνR̂νρR̂ρµ), (2.18)

up to total derivatives. For example [31],

R̂µν�̂R̂µν =
1

(d− 2)(d− 1)
R̂3 − 2d− 1

(d− 2)(d− 1)
R̂
(
R̂µν

)2
+

d

4(d− 1)
R̂�̂R̂+

d

d− 2

(
R̂µν

)3
+ total derivatives . (2.19)

Using the basis (2.18), the 6-derivative action takes the form:

S∂
6

=

∫
ddx
√
−ĝ
[
β1 R̂

3 + β2 R̂
(
R̂µν

)2
+ β3 R̂�̂R̂+ β4

(
R̂µν

)3]
+ δd,6 ∆aSWZ , (2.20)

where βi are constants.6 A curved-space derivation of the WZ action in d = 6 dimensions

is given in [18] and [19]. The flat space limit is

SWZ =

∫
d6x

[
− 24(�τ)2(∂τ)2 + 24(∂τ)2(∂∂τ)2 + 36�τ(∂τ)4 − 24(∂τ)6

]
. (2.21)

Explicit expressions for each of the four Weyl-invariants are available in appendix B. The

three invariants proportional to R̂ vanish on-shell, so only
(
R̂µν

)3
contributes to the O(p6)

dilaton matrix elements:(
R̂µν

)3 EOM−−−→ − 1

4
e−(d−6)τ (d− 6)(d− 2)3

(
(∂∂τ)2(∂τ)2 − 2(∂τ)6

)
. (2.22)

6The observant reader may notice that the 6-derivative action for d = 6 in [18] contains only three

curvature invariants. This is sufficient in 6d because one can use that the Euler density E6 is a total

derivative to eliminate one of the four invariants.
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This vanishes in d = 6, hence for the case of explicitly broken conformal symmetry, only

the WZ action generates contact-term contributions to the 6d matrix elements at O(p6).7

The 6-derivative action (2.20) can be written in the compact form

S∂
6

=

∫
ddx

[
β

(
2

d− 6

)2

e−
d−6
2
τ �3e−

d−6
2
τ + . . .

]
, (2.23)

where the “. . . ” refer to terms that vanish on-shell. When d→ 6, the action (2.23) reduces

to 3∆a τ�3τ and we identify β = 3∆a. The equivalence of (2.20) and (2.23) requires a

solution to an overconstrained system of 8 equations (from matching the coefficients of the

8 distinct terms in the expressions of (B.3)–(B.6), e.g. (�τ)(�2τ), with (2.23)) using only

the 4 variables β1, . . . , β4 from (2.20).

The local matrix elements with n ≤ 8 external dilatons can at O(p6) be expressed in

terms of two linearly independent symmetric Mandelstam polynomials,

P
(6)
n,A =

∑
1≤i<j≤n

s3
ij , P

(6)
n,B =

∑
1≤i<j<k≤n

s3
ijk . (2.24)

Writing the amplitudes in this basis requires identities such as∑
1≤i<j<k<l≤8

s3
ijkl = − 2P

(6)
8,A + 2P

(6)
8,B . (2.25)

We list the O(p6) amplitudes in (C.2). In 6d, the 4-, 5- and 6-point amplitudes repro-

duce (3.19)-(3.21) of [18] with β = 3∆a. For example,

A(6)
6 =

64(d+ 2)

(d− 2)6

β

f3d−6

(
4 dP

(6)
6,A + (d+ 2)P

(6)
6,B

)
d→6−−−→ 3∆a

f12

(
3P

(6)
6,A + P

(6)
6,B

)
. (2.26)

In 8d, we have

A(6)
6

d→8−−−→ 20β

729f18

(
16P

(6)
6,A + 5P

(6)
6,B

)
. (2.27)

We match this and the other O(p6) n-point amplitudes, n ≤ 8, for the example of the free

massive scalar in sections 3 and 5.

2.4 8-derivative action

For a d-dimensional, conformally flat metric, we find nine independent Weyl-invariants (up

to total derivatives) by explicit calculation, so the off-shell action can be written as

S∂
8
=

∫
ddx
√
−ĝ
[
γ1R̂

4+ γ2R̂
2
(
R̂µν

)2
+ γ3R̂

(
R̂µν

)3
+ γ4

(
(R̂µν)2

)2
+ γ5

(
R̂µν

)4
+ γ6

(
�̂R̂
)2

+γ7

(
�̂R̂µν

)2
+ γ8R̂

(
∇̂µR̂

)2
+ γ9

(
R̂µν

)2
�̂R̂
]
− δd,8 ∆aSWZ , (2.28)

with constants γi. We have abbreviated some index contractions, e.g. (R̂µν
)4 ≡

(R̂µνR̂
ν
ρR̂

ρ
λR̂

λ
µ

)
, see also (B.8).

7In the case of spontaneous breaking, the 4-derivative terms also contribute through pole diagrams [18].
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In flat space, the 8d WZ action is

SWZ = 48

∫
d8x
[
3(�2τ)(∂τ)4+ 6(�τ)3(∂τ)2+ 36(�τ)2(∂∂τ∂τ∂τ)+ 16(�τ)(∂∂∂τ∂τ∂τ∂τ)

−12(�τ)(∂∂τ)2(∂τ)2 − 24(∂∂τ∂τ∂τ)(∂∂τ)2

+12(�τ)2(∂τ)4 − 12(∂∂τ)2(∂τ)4 − 20(�τ)(∂τ)6 + 15(∂τ)8
]
. (2.29)

Details of the derivation are described in appendix A. Applying the equations of motion,

we find

SWZ
EOM−−−→ 144

∫
d8x
[
− 8(∂∂τ∂τ∂τ)

(
∂∂τ)2− 32(∂∂τ∂τ∂τ)2 − 2

(
∂∂τ)2 (∂τ)4 + 3(∂τ)8

]
.

(2.30)

It is clear from (2.29) and (2.30) that SWZ contributes to 5- and higher-point amplitudes,

but not to the 4-point amplitude.

We have obtained explicit expressions for the d-dimensional Weyl-invariants in (2.28);

the procedure for calculating them is straightforward, though to simplify them requires

some effort with multiple applications of partial integration. Since the general-d results are

rather involved, we present them in appendix B only for d = 8.

Six of the nine Weyl-invariants in (2.28) vanish on-shell; the only non-vanishing ones

are
(
(R̂µν)2

)2
,
(
R̂µν

)4
, and

(
�̂R̂µν

)2
. These three are also related on-shell; for d > 2:

√
−ĝ
(
�̂R̂µν

)2 EOM←−−−→ d

(d− 2)2

(
−
√
−ĝ
(
(R̂µν)2

)2
+ d

√
−ĝ
(
R̂µν

)4)
. (2.31)

The two Weyl-invariants on the r.h.s. give distinct expressions√
−ĝ
(
(R̂µν)2

)2 EOM−−−→ 1

48
e−(d−8)τ (d− 2)4

(
48(∂∂τ)4 + 192(∂∂τ∂τ∂τ)(∂∂τ)2

+ 192(∂∂τ∂τ∂τ)2

− 24(d− 4)(∂τ)4
(
∂∂τ)2 − (d− 4)(d− 44)(∂τ)8

)
, (2.32)√

−ĝ
(
R̂µν

)4 EOM−−−→ 1

96
e−(d−8)τ (d− 2)4

(
48(∂∂τ)4 − 48(d− 12)(∂∂τ∂τ∂τ)

(
∂∂τ)2

−192(d− 9)(∂∂τ∂τ∂τ)2 + 6
(
d2 − 22d+ 96

)
(∂τ)4

(
∂∂τ)2

+
(
d3 − 48d2 + 626d− 2304

)
(∂τ)8

)
, (2.33)

except in d = 8:√
−ĝ
(
R̂µν

)4 EOM←−−−−→
d=8

1

2

√
−ĝ
(
(R̂µν)2

)2
(2.34)

EOM−−−→
d=8

648
(

(∂∂τ)4 + 4(∂∂τ∂τ∂τ)(∂∂τ)2 + 4(∂∂τ∂τ∂τ)2

−2
(
∂∂τ)2 (∂τ)4 + 3(∂τ)8

)
.

So in general d > 2, the on-shell matrix elements at O(p8) depend on two free parameters:

for d = 8 they are ∆a and the coefficient of (say)
(
R̂µν

)4
, while for d 6= 8 they are the

– 10 –



J
H
E
P
0
3
(
2
0
1
3
)
0
3
4

coefficients of
(
R̂µν

)4
and

(
(R̂µν)2

)2
. We can summarize this as

S∂
8

=

∫
ddx
[

Γ1

(
(R̂µν)2

)2
+ Γ2

(
R̂µν

)4
+ . . .

]
− δd,8 ∆aSWZ , (2.35)

where the “. . . ” stand for terms that vanish on-shell. In 8d the amplitudes depend only

on ∆a and the combination Γ8d ≡ 2Γ1 + Γ2.

As with 4- and 6-derivatives, the 8-derivative action can also be written in an alterna-

tive form,

S∂
8
=

∫
ddx

[
γ

(
2

d− 8

)2

e−(d−8)τ/2�4e−(d−8)τ/2 + γ̃

(
2

d− 4

)2

e4τ
(
�2e−

d−4
2
τ
)2

+ . . .

]
,

(2.36)

which encodes the same O(p8) on-shell amplitudes as (2.35), with the understanding that

for d = 8 we have γ = 4∆a and γ̃ = 162(Γ8d − 2
9∆a). The equality of (2.35) and (2.36) is

found by matching the coefficients of the 23 distinct terms in (B.9)–(B.17) with the similar

terms in (2.36) using only 9 variables, γ1, . . . , γ9.

For d 6= 8, the translation between coefficients in (2.35) and (2.36) is

Γ1 =
36d

(d− 8)(d− 2)4
γ +

4

(d− 2)4
γ̃ , Γ2 = − 576

(d− 8)(d− 2)4
γ . (2.37)

Note that the linear combination Γ8d is finite in the limit d→ 8.

The n = 4, 5, . . . , 8-point amplitudes at O(p8) are given in general d dimensions

in (C.3). Let us here list the results for d = 8, using γ = 4∆a:

A(8)
4 =

2

81f12

(
36∆a+ γ̃

)(
s4 + t4 + u4

)
= Γ8d

4

f12

(
s4 + t4 + u4

)
,

A(8)
5 =

8

243f15

[(
54∆a+ γ̃

)
P

(8)
5,A + γ̃ P

(8)
5,B

]
,

A(8)
6 =

8

729f18

[(
486∆a+ 7γ̃

)
P

(8)
6,A + 2

(
81∆a+ γ̃

)
P

(8)
6,B + 7γ̃ P

(8)
6,C + 4γ̃ P

(8)
6,D

]
,

A(8)
7 =

16

243f21

[(
324∆a+ 7γ̃

)
P

(8)
7,A + 162∆aP

(8)
7,B + 7γ̃ P

(8)
7,C + 4γ̃ P

(8)
7,D

]
,

A(8)
8 =

16

2187f24

[(
14580∆a+ 301γ̃

)
P

(8)
8,A +

(
5832∆a+ 77γ̃

)
P

(8)
8,B +

(
2187∆a− 7γ̃

)
P

(8)
8,C

+ 189γ̃ P
(8)
8,D + 126γ̃ P

(8)
8,E

]
, (2.38)

where for instance,

P
(8)
5,A =

∑
1≤i<j≤5

s4
ij , P

(8)
5,B = s2

12s
2
34 + perms , (2.39)

and the definitions of the other basis polynomials for n ≥ 6 are given in (C.5)–(C.7).

We noted below (2.30) that information about the anomaly cannot enter until the 5-

point amplitude. This is verified by the second equality for the 4-point amplitude in (2.38)

where we used γ̃ = 162
(
Γ8d − 2

9∆a
)

to demonstrate that the 4-dilaton amplitude indeed

captures no information about the anomaly flow ∆a.
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It is a new feature in 8d, compared with 4d and 6d, that there is a non-vanishing

contribution from the Weyl-invariants at the same order in momentum as the flow in the

a-anomaly. In 4d and 6d, the WZ action provided the unique contributions to, respec-

tively, the O(p4) and O(p6) matrix elements. In 8d, the O(p8) dilaton matrix elements are

“polluted” by the Weyl-invariant, which does not contain information about the flow of a

in general. However, note that even from just the 5-dilaton amplitude one can determine

∆a and γ̃ uniquely, since there are two independent Mandelstam polynomials. The match

to the higher-point amplitudes is then a strong consistency check. We check consistency

explicitly in section 3.

2.5 Dilaton effective action and GJMS operators

We found above that the relevant terms in the flat-space dilaton effective action were

expressed in terms of �k up to and including O(p8). The derivation required solutions to

over-constrained systems of equations. A solution could be found in each case because �k

is the flat-space limit of the GJMS operator, Pk, which transforms in the following simple

manner under conformal transformations:

Pk[e
2σg] = e−(d/2+k)σ Pk[g] e(d/2−k)σ ; Pk[η] = �k . (2.40)

The GJMS operators are the higher-order generalizations of the well-known conformal

Laplacian (the Yamabe operator) P1 = �− (d−2)
4(d−1)R and the Paneitz operator P2 = �2 +

. . . [23–25].

Let us define

Wk ≡
(

2

d− 2k

)2

e−(d/2−k)τPk e
−(d/2−k)τ . (2.41)

Under a Weyl-transformation, τ → τ +σ and gµν → e2σgµν , and it follows from (2.40) that

Wk
Weyl−−−→ e−d σWk , (k 6= d/2) , (2.42)

so that
√
−gWk is a Weyl-invariant for k 6= d/2. It is the flat-space limit of

√
−gWk we

have encountered in the our analysis of the O(∂2k)-derivative terms.

The results for the 2k-derivative actions of the previous subsections can now be sum-

marized as

S=

∫
ddx
√
−g
[

(d−2)2

8
fd−2W1 +αW2 + βW3 + γW4 + γ̃

(d−4)2

4
ed τ (W2)2+ . . .

]∣∣∣∣
gµν=ηµν

,

(2.43)

where the ellipses stand for 1) terms that vanish upon application on the equations of

motion, and 2) terms with more than 8 derivatives.

The normalization in (2.41) was chosen such that for even d we get∫
ddx
√
−gWd/2

flat space−−−−−−→
∫
ddx τ �d/2τ . (2.44)
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As discussed in the previous subsections, this means the coefficient of Wd/2 is (d/2)∆a for

d even; i.e. α = 2∆a for d = 4, β = 3∆a for d = 6, and γ = 4∆a for d = 8.8

Note also that

(d−4)2

4
ed τ (W2)2 =

(
2

d−4

)2

e4τ
(
P2e
− d−4

2
τ
)2 flat space−−−−−−→

(
2

d−4

)2

e4τ
(
�2e−

d−4
2
τ
)2
. (2.45)

In the limit d→ 4, this simply becomes e4τ (�2τ)2.

In this section, we have shown that in the case of flows induced by explicit breaking of

the conformal symmetry, the terms that matter for extracting the on-shell dilaton ampli-

tudes from the flat-space dilaton effective action can be written in the “GJMS-form” (2.43).

In the following sections, we will verify this form explicitly using the example of the RG

flow of the free massive scalar field. It is tempting to propose that this is also the form of

the action that matters in the conformally flat case, for example the d-sphere, for which

the GJMS operators exist for all k [28].

3 Example: free scalar in 8d

The example of the free conformal scalar was studied for d = 4 in [1] and d = 6 in [18].

Here we consider d = 8 with the purpose of testing the 8d form of the dilaton effective

action derived in the previous section. We also show how the flow of the anomaly, ∆a,

can be separated systematically from the non-vanishing contribution of the 8-derivative

Weyl-invariant e8τ (W2)2 .

Consider the action for a free massive scalar in 8d,

S =

∫
d8x

(
−1

2
(∂Φ)2 − 1

2
M2Φ2

)
. (3.1)

The presence of the mass-term operator explicitly breaks the conformal symmetry of the

action. We can restore that symmetry by promoting the coupling to a scalar function of

spacetime as

M2 →M2e−2τ = λΩ2/3 , (3.2)

with λ = M2/f2.

Introducing a kinetic term for the compensator field Ω, we write

S =

∫
d8x

(
−1

2
(∂Φ)2 − 1

2
(∂Ω)2 − 1

2
λΩ2/3Φ2

)
. (3.3)

The 8d scalar fields Φ and Ω have mass dimension 3, so the exponent of 2/3 in (3.2) is

compatible with the coupling λ being dimensionless.

When the compensator acquires a VEV, 〈Ω〉 = f3, the mass-term for Φ is recovered.

The fluctuation, ϕ, defined as Ω = f3 − ϕ (cf. (2.4)) is the physical dilaton. This way

8One should be aware that terms like τ�d/2τ can be produced by more than just the Wd/2 operator.

For instance, when d = 8, edτ (W2)2 contains τ�4τ . However, the Weyl transformation of this term is

compensated by the other terms produced by that operator so that the whole expression is invariant.

– 13 –



J
H
E
P
0
3
(
2
0
1
3
)
0
3
4

the explicitly broken conformal symmetry can be treated as spontaneously broken and the

anomaly matching argument of KS [1, 3] applies. The key difference between the truly

spontaneously broken scenario and explicit breaking is that in the latter case we are free

to choose the scale f such that the dilaton is arbitrarily weakly coupled.

The fractional exponent of Ω = f3 − ϕ means that unlike the 4d and 6d cases [1, 18],

there are an infinite number of interaction vertices Φ2ϕk in the action (3.3):

S=

∫
d8x

[
−1

2
(∂Φ)2 − 1

2
M2Φ2 − 1

2
(∂ϕ)2 +

M2

3f
Φ2ϕ+

M2

18f2
Φ2ϕ2 +

2M2

81f3
Φ2ϕ3 + . . .

]
.

(3.4)

The massive Φ can be integrated out to leave the effective action for the dilaton ϕ. To

compare with our general 8d action, an easy approach [18] is to calculate the n-point on-

shell dilaton scattering amplitudes from (3.4) and compare with those of the general 8d

dilaton effective action (2.38). Taking f � M means that the calculation is effectively

1-loop: no internal ϕ’s are exchanged. (This is the case of explicit breaking, and we can

view the dilaton as a source [18].) The low-energy expansion of the amplitudes in powers of

external momenta results in divergent diagrams at O(p4); the coupling of the O(∂4) terms

are renormalized in 8d, and we do not attempt to match them to the general effective

action. At order O(p6) and O(p8) (and higher) the results of the 1-loop calculation are

finite and a precise match is obtained up to 8-point order.

As an example of the match, consider the 6-point O(p6) amplitudes. The calculation

of the 1-loop amplitude with 6 external ϕ’s and an internal loop of Φ’s makes use of 3-, 4-,

5-, and 6-point interactions from (3.4) and involves sums of hexagon diagrams, pentagon

diagrams, 3 types of box diagrams (with topology of “1-mass”, “2-mass-easy” and “2-mass-

hard”), 3 types of triangle diagrams, and 2 types of bubble diagrams.9 The result can be

expressed in terms of the Mandelstam basis polynomials (2.24) as

d = 8: A(6)
6 =

23M2

310 7 (4π)4 f18

(
16P

(6)
6,A + 5P

(6)
6,B

)
. (3.5)

Comparing this with (2.27) one immediately sees that the functional form matches, and

we can read off β = 2M2/(2835(4π)4). We have explicitly checked that all the other

n = 4, 5, 6, 7, 8-point amplitudes (C.1) with d = 8 are also reproduced exactly with this

value of β. While β itself has no particular interest to us10 — it is a model-dependent

dimensionful coefficient — the fact that we reproduce the O(p6) amplitudes is a strong

consistency check on the 1-loop calculation and on the structure of the dilaton effective

action at O(∂6).

Next, move ahead to the O(p8) amplitudes which in d = 8 contain information about

the flow of the trace anomaly. Details of the calculation are given in appendix D; here we

9For comparison, the equivalent calculation [18] in 6d was much easier since with only a cubic vertex,

the only diagram involved was the hexagon diagram.
10Other than we note that β is positive.
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quote the 4- and 5-point 1-loop amplitudes:

A(8)
4 =

17

3 061 800 (4π)4 f12

(
s4 + t4 + u4

)
,

A(8)
5 =

16

27f15

[
13

777 600 (4π)4
P

(8)
5,A +

11

5 443 200 (4π)4
P

(8)
5,B

]
. (3.6)

Comparing A(8)
5 in (3.6) and (2.38), we find both ∆a and γ̃ thanks to the two inde-

pendent Mandelstam polynomials. The result is

∆a =
23

5 443 200 (4π)4
=

23

27 35 52 7 (4π)4
(3.7)

and

γ̃ =
11

151 200 (4π)4
. (3.8)

This is consistent with the matching of A(8)
4 in (3.6) and (2.38) with

Γ8d =
γ̃

162
+

2

9
∆a =

17

12 247 200 (4π)4
. (3.9)

Note that ∆a > 0 in accordance with a possible 8d a-theorem. Also, the coefficient

of (s4 + t4 + u4) is positive as expected, Γ8d > 0 (cf. discussion in the Introduction). As

a further non-trivial consistency check, we have calculated the 1-loop 6, 7, 8-point ampli-

tudes and matched them exactly to the O(p8) amplitudes in (2.38) with the same val-

ues (3.7) and (3.8).

The UV theory is that of a free massless scalar with the corresponding Weyl anomaly

aUV = ascalar,8d. The mass term ignites the flow and in the deep IR the massive scalar Φ

decouples. Hence the IR theory is trivial, aIR = 0. Thus we expect that ∆a = aUV−aIR =

ascalar,8d. The anomaly ascalar,8d of a free conformal scalar can be calculated from the free

energy on a d-sphere, so our value (3.7) for ∆a = ascalar,8d is easily checked. Read on.

4 ascalar,d from zeta-function regularization of the free energy

The action for a free conformal scalar is

S =

∫
d8x
√
−g
(
−1

2
(∇Φ)2 − d− 2

4(d− 1)
RΦ2

)
. (4.1)

Consider now the theory on a d-sphere Sd. In the notation of [17], we can write the

free energy

F = − log |Z| = 1

2
log detµ−2

0

(
−∇2 +

d− 2

4(d− 1)
R

)
=

1

2

∞∑
n=0

mn

[
− 2 log(µ0r0) + log(n+ d/2) + log(n− 1 + d/2)

]
, (4.2)
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where r0 is the radius of the Sd, µ0 is the UV cutoff, and

mn =
(2n+ d− 1)(n+ d− 1)!

(d− 1)!n!
(4.3)

are the multiplicities of the eigenvalues {λn}n≥0 of the conformal Laplacian on Sd. The

coefficient of the log(µ0r0)-term in (4.2) is the a-anomaly of the free conformal scalar.

Normalizing by the integral of the Euler density over Sd, we have

ascalar,d = −
∑∞

n=0mn∫
Sd
√
g Ed

. (4.4)

In our conventions (1.3) for the Euler density this is∫
Sd

√
g Ed = d! Ωd , (4.5)

where Ωd = 2π(d+1)/2/Γ
(
d+1

2

)
is the surface volume of the d-sphere.

The sum in (4.4) is formally divergent, but can be evaluated via zeta-function regular-

ization. This gives ascalar,d odd = 0 as well as the familiar values

ascalar,4d =
1

360 (4π)2
, and ascalar,6d =

1

9072 (4π)3
. (4.6)

This method was used already in 1979 to calculate the functional determinant (4.2) [32–34];

explicit values for d = 4, 6, 8, 10 were given by Copeland and Toms in 1986 [35].11 More

recently, Cappelli and D’Appollonio [36] extended the list of explicit values up to d = 14.

A compact formula for ascalar,d was presented by Diaz [29], and it is easily translated to

our conventions using (4.5):

d even: ascalar,d =
a(d)

d!
(
d
2

)
! (4π)d/2

, with a(d) = −
∫ 1

0
dt

d/2−1∏
i=0

(i2 − t2) . (4.7)

For d = 4, 6, . . . , 20 one finds

a(d) =

{
2

15
,
10

21
,
184

45
,
2 104

33
,
2 140 592

1365
,
2 512 144

45
,
2 075 529 088

765
,

344 250 108 032

1 995
,
6 884 638 343 936

495

}
. (4.8)

We have checked explicitly that these values agree with the result of zeta-function regular-

ization of the sum (4.4).

Note that for d = 8, we have

ascalar,8d =
1

8! 4! (4π)4
× 184

45
=

23

5 443 200 (4π)4
. (4.9)

This is in perfect agreement with our 1-loop calculation (3.7).12

11Table 1 in [35] quotes an incorrect value for d = 12.
12Let us note that for odd-d, the O

(
(r0)0

)
-terms in (4.2) produce the F -coefficient for a free conformal

scalar; this is also evaluated using zeta-function regularization and explicit values can be found in [17]. An

approach using entanglement entropy for even-d and odd-d spheres was studied in [37] and [38].
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5 Free scalar in d dimensions and the dilaton effective action

In this section, we generalize to d dimensions the example of the 8d free scalar from

section 3. We match the dilaton effective action up to 8-derivative terms for d = 3, 4, . . . , 10.

Finally, we comment on the structure of higher-derivative terms.

5.1 Free scalar in d dimensions

Consider a free massless scalar, Φ. Introducing a mass term in the action,

S =

∫
ddx

(
−1

2
(∂Φ)2 − 1

2
M2Φ2

)
, (5.1)

breaks the conformal symmetry explicitly. The symmetry can be restored by promoting the

mass to a spacetime dependent quantity with the introduction of a compensator field Ω:

S =

∫
ddx

(
−1

2
(∂Φ)2 − 1

2
(∂Ω)2 − 1

2
λΩ

4
d−2 Φ2

)
. (5.2)

The coupling λ = M2/f2 is dimensionless (as is compatible with the mass-dimension

(d− 2)/2 of d-dimensional scalars). To see that this makes the classical theory conformal,

calculate the stress tensor from the action (5.2),

Tµν = − 2√
−g

δS

δgµν
= ∂µΦ∂νΦ + ∂µΩ∂νΩ− 1

2
ηµν

[
(∂Φ)2 + (∂Ω)2 + λΩ

4
d−2 Φ2

]
, (5.3)

and improve it to

Θµν = Tµν −
1

4

d− 2

d− 1
(∂µ∂ν − ηµν�)(Φ2 + Ω2) . (5.4)

Then upon application of the equations of motion

�Φ = λΩ
4
d−2 Φ and �Ω = λ

2

d− 2
Ω

4
d−2
−1 Φ2 (5.5)

one finds Θµ
µ = 0.

The model (5.2) has a moduli space along Ω when 〈Φ〉 = 0. At the origin, 〈Ω〉 = 0,

the theory is conformal, but the conformal symmetry is spontaneously broken at 〈Ω〉 =

f (d−2)/2 6= 0. In this vacuum, the original mass term is recovered since λ = M2/f2, and

the physical dilaton ϕ is the fluctuation, Ω = f (d−2)/2 − ϕ. The scale of f is unrelated to

M , so we choose f �M to make the model perturbative, λ� 1.

We are interested in calculating the n-point dilaton amplitudes in a leading order (in

λ) low-energy expansion and comparing the results with the matrix elements extracted

from the dilaton effective action in section 2. With Ω = f (d−2)/2−ϕ, the action (5.2) gives

n-point interaction terms between Φ and ϕ for all n, unless d = 3, 4, 6 when there are a

finite number of terms. At leading order in λ, the dilaton scattering amplitudes are given

by the 1-loop diagrams with n-external dilatons ϕ and the massive scalar Φ running in the

loop. The Feynman rule for the vertex with two Φ’s and k ϕ’s is

Vk = i(−1)k+1 M2

fk(d−2)/2

( k−1∏
n=0

( 4

d− 2
− n

))
. (5.6)

We refer the reader to appendix D for practical details of the 1-loop calculation.
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The results of the 1-loop calculation of the n-point dilaton amplitudes for the free

massive scalar can be compared to the general form of the amplitudes discussed in section 2

and listed in appendix C. Since to O(∂8) there are only few parameters, α, β, γ, and γ̃, in

the dilaton effective action (2.43), this provides a very non-trivial check of the structure.

We find perfect consistency for d = 3, 4, 5, . . . , 10. Specifically:

• At O(p4) and O(p6) we have checked the form of the action (2.43) for d = 3, 4, . . . , 7

(and also d = 8, 9 for O(p6)) by matching the amplitudes with n = 4, 5, 6, 7, 8 external

dilatons. To illustrate the non-triviality of the match, note that for O(p6) this requires

matching the coefficients of a total of 8 independent momentum polynomials of (C.2)

in terms of just a single free parameter, β.

• At O(p8), we have matched the d = 3, 4, . . . , 10 dilaton n-point amplitudes with

n = 4, 5, 6, 7. This requires matching the coefficients of 11 independent Mandelstam

polynomials in (C.3) using just two parameters γ and γ̃.13 For d = 8, we also

matched the 8-point amplitude with its 5 independent momentum polynomials. And

as noted in sections 3–4, the 8d anomaly flow ∆a = γ/4 for the free massive scalar

was correctly reproduced by this calculation.

Thus the 1-loop calculation for the free massive scalar offers a highly non-trivial check of

the dilaton effective action.

In table 1, we summarize the results for the coefficients α, β, γ, and γ̃ in d =

3, 4, 5, . . . , 10. Note that the boxed values in the table correspond to the anomaly flows

∆a4d =
1

2
α◦(4π)−2 =

1

360(4π)2
,

∆a6d =
1

3
β◦(4π)−3 =

1

9072(4π)3
,

∆a8d =
1

4
γ◦(4π)−4 =

23

5 443 200(4π)4
. (5.7)

The successful match of the amplitudes for the free massive scalar and the simplicity

of the dilaton effective action S in the form (2.43) encourages us to speculate about the

higher-derivative terms in S. We outline some ideas and tests of this in the following section.

5.2 Higher-order effective action?

In section 2.5 we wrote the flat space dilaton effective action

S=

∫
ddx
√
−g
[

(d−2)2

8
fd−2W1 +αW2 +βW3 +γW4 + γ̃

(d−4)2

4
ed τ (W2)2 + . . .

]∣∣∣∣
gµν=ηµν

,

(5.8)

with the ellipses standing for terms that vanish upon application on the equations of motion,

plus terms with more than 8 derivatives. Recall that its definition in terms of the GJMS

13Note that the constrained 3d kinematics leave fewer independent Mandelstam polynomials than for

d > 3.

– 18 –



J
H
E
P
0
3
(
2
0
1
3
)
0
3
4

d α◦ β◦ γ◦ γ̃◦

3 1
960M −

1
43 008M3 − 1

92 160M5
1

7 680M5

4 1
180

1
7 560M2 − 1

85 050M4
11

37 800M4

5 M
480

67
967 680M

1
1 935 360M3

1
18 432M3

6 M2

90
1

3 024
1

113 400M2
1

7 560M2

7 M3

144
61M

483 840
1

272 160M
13

483 840M

8 div 2M2

2 835
23

1 360 800
11

151 200

9 113M3

241 920
47M

7 257 600
41M

2 419 200

10 div 151M2

4 082 400
M2

18 144

Table 1. Results for the coefficients α, β, γ, and γ̃ of the effective action (2.43) for the case of

the d-dimensional free massive scalar flow. The subscript ◦ in the table indicates that a factor of

(4π)−bd/2c was taken out, e.g. α = α◦(4π)−bd/2c. The label “div” indicates that the 1-loop scalar

integral diverges at and beyond this order. The boxed results are those encoding the d = 4, 6, 8

anomaly flows for the free massive scalar; see (5.7). Terms with negative mass-dimension are not

needed for our study of RG flows, but we include them here to illustrate that the amplitudes match

even in those higher-derivative cases.

operators Pk in (2.40) makes the behavior of Wk ≡
(

2
d−2k

)2
e−(d/2−k)τPk e

−(d/2−k)τ under

Weyl transformations particularly simple,Wk
Weyl−−−→ e−d σWk. This ensures Weyl-invariance

of the action (5.8), except for d = 2k where it produces the correct trace anomaly; the

relation between the coefficients in (5.8) and the anomaly flow was given in (5.7).

The simplicity of (5.8) encourages a guess for the 10-derivative terms, namely

S∂
10

=

∫
ddx
√
−g
[
δ W5 + δ̃

(d− 4)(d− 6)

4
ed τ W2W3 + . . .

]∣∣∣∣
gµν=ηµν

. (5.9)

The “. . . ” denote terms that vanish on-shell.14 For d = 3, 4, . . . , 10, we have checked

explicitly that the 4, 5, 6-point amplitudes produced by the action (5.9) are matched exactly

by the O(p10) dilaton amplitudes produced by the free massive scalar 1-loop computation.

For each d, this requires the coefficient of 9 distinct Mandelstam polynomials to be matched

using just two constants, δ and δ̃, and it is therefore encouraging that this guess works.

However, those two constants are not sufficient to match the 7-point amplitude; the guess

in (5.9) is incomplete. Moreover, following the pattern of the lower-order terms, we would

expect the anomaly flow in d = 10 to be encoded as ∆a = 1
5δ. Instead, we find that

1
5δ 6= ∆a10d. Hence at least one other term is required in (5.9).

A further complication (or feature) arises for the 12-derivative terms. The GJMS

14Note that terms with W1 vanish on-shell.
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construction suggests that we can write

S∂
12

=

∫
ddx
√
−g
[
ε1W6 + ε2

(d− 6)2

4
ed τ (W3)2 + ε3

(d− 4)(d− 8)

4
ed τ W2W4

+ε4
(d− 4)3

8
e2d τ (W2)3 + . . .

]∣∣∣∣
gµν=ηµν

(5.10)

However, this cannot be the full answer, because starting at O(p12), the 4-point amplitude

has two independent Mandelstam polynomials.15 For example in d = 12 we find for the

free massive scalar flow:

A(12)
4 =

1

25 33 57 72 111 131

(
− 7s2t2u2 + 2250(s6 + t6 + u6)

)
. (5.11)

The polynomial s6+t6+u6 can be produced by the terms in (5.10), but s2t2u2 cannot. This

means that new structures appear in the effective action at 12-derivative order. This may

be evidence for the existence of a new class of curved-space GJMS-type operators whose

“leading” components are not �k but are perhaps composed of various contractions of

Gµνρ = (∇µ∇ν∇ρ). For instance, a term in the action that also produces s2t2u2 could be:

ϕ Gµνρ ϕ Gµνρ Gσλκ ϕ Gσλκ ϕ . (5.12)

Such new operators may also enter the 10-derivative action and account for the mismatch of

the 1-loop amplitudes predicted by extrapolating the GJMS-type action. It would be inter-

esting to explore further the connections between RG flows, conformal geometry, functional

determinants, and the a- and F -theorems.
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A Euler density and the WZ action

We begin by constructing the d = 2k dimensional Euler density for a metric gµν from

its definition:

E2k(gµν) =
1

2k
Rµ1ν1

ρ1σ1 . . . Rµkνk
ρkσk ερ1σ1...ρkσk ε

µ1ν1...µkνk

=
d!

2k
Rµ1ν1

ρ1σ1 . . . Rµkνk
ρkσkδµ1[ρ1

. . . δνkσk] . (A.1)

15This follows the same structure as the matrix elements of the candidate counterterm operators D2kR4

in supergravity; see for example table 1 in [39].
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The Euler density can be written in terms of Ricci scalars and Ricci tensors plus terms

involving the Weyl tensor using the identity

Rµνρσ = Wµνρσ +
2

d− 2

(
gµ[ρRσ]ν − gν[ρRσ]µ

)
− 2

(d− 2)(d− 2)
Rgµ[ρgσ]ν , (A.2)

where Wµνρσ is the Weyl tensor. The 8-dimensional Euler density for conformally flat space

is then:

E8(gµν) = −16

9

(
Rµν

)4
+

8

9

(
(Rµν)2

)2
+

32

21
R
(
Rµν

)3− 344

441
R2
(
Rµν

)2
+

208

3087
R4+Weyl-terms .

(A.3)

We are interested in the Wess-Zumino action in a flat background, so we pick e−2tτηµν and

integrate t over the interval [0, 1]:

SWZ =

∫
d8x

∫ 1

0
dt τ E8(e−2tτηµν)

= 48

∫
d8x
[
3(�2τ)(∂τ)4+ 6(�τ)3(∂τ)2+ 36(�τ)2(∂∂τ∂τ∂τ)+16(�τ)(∂∂∂τ∂τ∂τ∂τ)

−12(�τ)(∂∂τ)2(∂τ)2 − 24(∂∂τ∂τ∂τ)(∂∂τ)2

+12(�τ)2(∂τ)4 − 12(∂∂τ)2(∂τ)4 − 20(�τ)(∂τ)6 + 15(∂τ)8
]
. (A.4)

B Diff×Weyl invariants in d dimensions

The diff×Weyl invariants in flat space are constructed as curvature scalars of the ‘hatted’

metric ĝµν = e−2τ ηµν . We need only work with the scalars constructed from the Ricci

tensor, Ricci scalar and covariant derivatives thereof, since the Riemann tensor can be

eliminated with (A.2).

The results for the diff×Weyl invariants are expressed in terms of the dilaton τ and

its derivatives. Since these terms will appear in the dilaton effective action, we use partial

integration to simplify the expressions. This is indicated with “
PI−→” below. The 2-derivative

terms were discussed in section 2; here we present the details for 4, 6, and 8-derivative

Weyl invariants.

4 derivatives. There are two 4-derivative invariants:√
−ĝR̂2 PI−→ e−(d−4)τ

(
4(d− 1)2(�τ)2 − 4(d− 1)2(d− 2)(�τ)(∂τ)2

+ (d− 1)2(d− 2)2(∂τ)4
)
, (B.1)√

−ĝ
(
R̂µν

)2 PI−→ e−(d−4)τ

(
d (d− 1)(�τ)2 − 1

2
(d− 2)(3d2 − 8d+ 8)(�τ)(∂τ)2

+
1

2
(d− 2)2(d2 − 4d+ 6)(∂τ)4

)
. (B.2)
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6 derivatives. In general dimension d, there are 4 independent 6-derivative invariants:√
−ĝR̂3 PI−→ e−(d−6)τ (d− 1)3

(
8(�τ)3 − 12(d− 2)(�τ)2(∂τ)2 + 6(d− 2)2(�τ)(∂τ)4

− (d− 2)3(∂τ)6
)
, (B.3)√

−ĝR̂
(
R̂µν

)2 PI−→ 1

2
e−(d−6)τ (d− 1)

(
4(3d− 4)(�τ)3 + 4(d− 2)2(�τ)(∂∂τ)2

+ 8(d− 2)2(�τ)(∂∂τ∂τ∂τ)

− 2(d− 2)(11d− 16)(�τ)2(∂τ)2 − 2(d− 2)3(∂∂τ)2(∂τ)2

+ (13d− 18)(d− 2)2(�τ)(∂τ)4 − (d− 2)3(3d− 8)(∂τ)6
)
, (B.4)√

−ĝR̂�̂R̂ PI−→ 1

2
e−(d−6)τ (d− 1)2

(
8(�2τ)(�τ) + 12(d−2)(�τ)3 − 16(d−2)(�τ)(∂∂τ)2

+ 8(d− 10)(d− 2)(�τ)(∂∂τ∂τ∂τ)− 16(d2 − 6d− 10)(�τ)2(∂τ)2

+ 4(d− 2)2(∂∂τ)2(∂τ)2 + (5d2 − 20d− 12)(d− 2)(�τ)(∂τ)4

− (d2 − 8d+ 20)(d− 2)2(∂τ)6
)
, (B.5)√

−ĝ
(
R̂µν

)3 PI−→ 1

8
e−(d−6)τ

(
− 4(d3 − 6d2 + 4d+ 4)(�τ)3 + 12 d (d− 2)2(�τ)(∂∂τ)2

+ 24d(d−2)2(�τ)(∂∂τ∂τ∂τ) + 4(d−2)(2d3−17d2+26d−6)(�τ)2(∂τ)2

− 4(2d− 3)(d− 2)3(∂∂τ)2(∂τ)2

− (5d3 − 55d2 + 126d− 96)(d− 2)2(�τ)(∂τ)4

+ (d− 2)4(d2 − 13d+ 32)(∂τ)6
)
. (B.6)

8 derivatives. At the level of 8 derivatives, we have found 9 independent diff×Weyl in-

variants:

R4, R2(Rµν)2, R(Rµν)3,
(
(Rµν)2

)2
, (Rµν)4, (�R)2, (�Rµν)2, R(∇µR)2, (Rµν)2�R, (B.7)

where
√
−ĝ is implicit and we use the shorthand notation

(Rµν)2 ≡ RµνR
µν , (Rµν)3 ≡ RµνRνρRρµ , (Rµν)4 ≡ RµνRνρRρσRσµ ,

(∇µR)2 ≡ (∇µR)(∇µR) , (�Rµν)2 ≡ (�Rµν)(�Rµν) . (B.8)

Due to the complexity of the off-shell expressions in general d dimensions, we have
opted to display only the d = 8 forms:

R̂4 PI−→ 38416
[
(�τ)4 − 12(�τ)3(∂τ)2 + 54(�τ)2(∂τ)4 − 108(�τ)(∂τ)6 + 81(∂τ)8

]
, (B.9)

R̂2(R̂µν)2 PI−→ 784
[
5(�τ)4+ 9(�τ)2(∂∂τ)2+ 18(�τ)2(∂∂τ∂τ∂τ)− 69(�τ)3(∂τ)2− 54(�τ)(∂∂τ)2(∂τ)2

+ 342(�τ)2(∂τ)4 + 81(∂∂τ)2(∂τ)4 − 108(�τ)(∂∂τ∂τ∂τ)(∂τ)2 − 756(�τ)(∂τ)6 + 567(∂τ)8
]
,

(B.10)

R̂
(
R̂µν

)3 PI−→ 28
[
13(�τ)4+108(�τ)(∂∂τ∂∂τ∂∂τ)+54(�τ)2(∂∂τ)2+648(�τ)(∂∂∂τ∂τ∂τ∂τ)

+1728(�τ)2(∂∂τ∂τ∂τ)− 972(∂∂τ∂τ∂τ)(∂∂τ)2

+ 162(�2τ)(∂τ)4 + 276(�τ)3(∂τ)2 − 1620(�τ)(∂∂τ)2(∂τ)2 + 972(�τ)2(∂τ)4

+ 1215(∂∂τ)2(∂τ)4 − 1620(�τ)(∂∂τ∂τ∂τ)
(
∂τ)2 − 3024(�τ)(∂τ)6 + 2268(∂τ)8

]
, (B.11)
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(
(R̂µν)2

)2 PI−→ 16
[
25(�τ)4 + 90(�τ)2(∂∂τ)2 + 81(∂∂τ)4 + 180(�τ)2(∂∂τ∂τ∂τ) + 324(∂∂τ∂τ∂τ)(∂∂τ)2

− 390(�τ)3(∂τ)2 − 702(�τ)(∂∂τ)2(∂τ)2 + 324(∂∂τ∂τ∂τ)2 + 2151(�τ)2(∂τ)4

+ 1134(∂∂τ)2(∂τ)4 − 1404(�τ)(∂∂τ∂τ∂τ)(∂τ)2 − 5292(�τ)(∂τ)6 + 3969(∂τ)8
]
, (B.12)(

R̂µν
)4 PI−→ 8

[
31(�τ)4+324(�τ)(∂∂τ∂∂τ∂∂τ) + 81(∂∂τ)4−135(�τ)2(∂∂τ)2+1944(�τ)(∂∂∂τ∂τ∂τ∂τ)

+ 4590(�τ)2(∂∂τ∂τ∂τ)− 2592(∂∂τ∂τ∂τ)(∂∂τ)2 + 486(�2τ)(∂τ)4 + 1221(�τ)3(∂τ)2

− 3240(�τ)(∂∂τ)2(∂τ)2 + 324(∂∂τ∂τ∂τ)2 + 189(�τ)2(∂τ)4 + 1296(∂∂τ)2(∂τ)4

− 1620(�τ)(∂∂τ∂τ∂τ)(∂τ)2 − 1512(�τ)(∂τ)6 + 1134(∂τ)8
]
, (B.13)(

�̂R̂
)2 PI−→ 196

3

[
3(�2τ)2 + 48(�2τ)(�τ)2 + 48(�τ)(∂∂∂τ)2 − 60(�2τ)(∂∂τ)2

+ 140(�τ)4 + 192(�τ)(∂∂∂τ∂∂τ∂τ) + 384(�τ)(∂∂τ∂∂τ∂∂τ)

− 120(�2τ)(∂∂τ∂τ∂τ) + 108(∂∂τ)4 − 456(�τ)2(∂∂τ)2 − 84(�2τ)(�τ)(∂τ)2

+ 576(�τ)(∂∂∂τ∂τ∂τ∂τ) + 624(�τ)2(∂∂τ∂τ∂τ)− 432(∂∂τ∂τ∂τ)(∂∂τ)2 + 288(�2τ)(∂τ)4τ)

− 216(�τ)3(∂τ)2−72(�τ)(∂∂τ)2(∂τ)2+ 432(∂∂τ∂τ∂τ)2+ 2028(�τ)2(∂τ)4− 864(∂∂τ)2(∂τ)4

+ 3600(�τ)(∂∂τ∂τ∂τ)(∂τ)2 − 2304(�τ)(∂τ)6 + 1728(∂τ)8
]
, (B.14)(

�̂R̂µν
)2 PI−→ 2

3

[
84(�2τ)2 + 777(�2τ)(�τ)2 + 156(�τ)(∂∂∂τ)2 − 762(�2τ)(∂∂τ)2 + 662(�τ)4

− 8448(�τ)(∂∂∂τ∂∂τ∂τ)− 1272(�τ)(∂∂τ∂∂τ∂∂τ)− 1524(�2τ)(∂∂τ∂τ∂τ) + 2376(∂∂τ)4

− 2454(�τ)2(∂∂τ)2−3432(�2τ)(�τ)(∂τ)2−8064(�τ)(∂∂∂τ∂τ∂τ∂τ)−25 080(�τ)2(∂∂τ∂τ∂τ)

− 5616(∂∂τ∂τ∂τ)(∂∂τ)2 + 2016(�2τ)(∂τ)4 − 15012(�τ)3(∂τ)2 + 7488(�τ)(∂∂τ)2(∂τ)2

− 17712(∂∂τ∂τ∂τ)2 + 45444(�τ)2(∂τ)4 − 540(∂∂τ)2(∂τ)4

+ 59328(�τ)(∂∂τ∂τ∂τ)(∂τ)2 − 64512(�τ)(∂τ)6 + 48384(∂τ)8
]
, (B.15)

R̂
(
∇̂µR̂

)2 PI−→ −1372

3

[
3(�2τ)(�τ)2+14(�τ)4−18(�τ)2(∂∂τ)2−18(�2τ)(�τ)(∂τ)2−108(�τ)2(∂∂τ∂τ∂τ)

+ 27(�2τ)(∂τ)4 − 150(�τ)3(∂τ)2 + 108(�τ)(∂∂τ)2(∂τ)2 + 594(�τ)2(∂τ)4

− 162(∂∂τ)2(∂τ)4 + 648(�τ)(∂∂τ∂τ∂τ)(∂τ)2 − 864(�τ)(∂τ)6 + 648(∂τ)8
]
, (B.16)(

R̂µν
)2
�̂R̂

PI−→ 56

3

[
15(�2τ)(�τ)2+27(�2τ)(∂∂τ)2+70(�τ)4+432(�τ)(∂∂∂τ∂∂τ∂τ) + 54(�2τ)(∂∂τ∂τ∂τ)

− 162(∂∂τ)4 + 180(�τ)2(∂∂τ)2 − 117(�2τ)(�τ)(∂τ)2

+ 432(�τ)(∂∂∂τ∂τ∂τ∂τ) + 216(�τ)2(∂∂τ∂τ∂τ)

+ 297(�2τ)(∂τ)4− 696(�τ)3(∂τ)2− 108(�τ)(∂∂τ)2(∂τ)2+ 648(∂∂τ∂τ∂τ)2+ 3888(�τ)2(∂τ)4

− 486(∂∂τ)2(∂τ)4 + 3888(�τ)(∂∂τ∂τ∂τ)(∂τ)2 − 6048(�τ)(∂τ)6 + 4536(∂τ)8
]
. (B.17)

C Dilaton amplitudes in d-dimensions

Here we list the dilaton amplitudes at O(p4), O(p6), and O(p8) for n = 4, 5, . . . , 8 as derived

from the general d-dimensional dilaton effective action (2.43):

I O(p4) amplitudes:

A(4)
4 =

32

(d− 2)4

α

f2d−4

(
s2 + t2 + u2

)
, A(4)

5 =
32 d

(d− 2)5

α

f5d/2−5
P

(4)
5 ,
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A(4)
6 =

32 d (3d− 2)

(d− 2)6

α

f3d−6
P

(4)
6 , A(4)

7 =
128 d (d− 1)(3d− 2)

(d− 2)7

α

f7d/2−7
P

(4)
7 ,

A(4)
8 =

128 d (d− 1)(3d− 2)(5d− 6)

(d− 2)8

α

f4d−8
P

(4)
8 , (C.1)

where P
(4)
n ≡

∑
1≤i<j≤n

s2
ij .

I O(p6) amplitudes:

A(6)
4 =

128

(d− 2)4

β

f2d−4

(
s3 + t3 + u3

)
,

A(6)
5 =

128(d+ 2)

(d− 2)5

β

f5d/2−5
P

(6)
5 ,

A(6)
6 =

64(d+ 2)

(d− 2)6

β

f3d−6

(
4 dP

(6)
6,A + (d+ 2)P

(6)
6,B

)
,

A(6)
7 =

256 d (d+ 2)

(d− 2)7

β

f7d/2−7

(
(3d− 2)P

(6)
7,A + (d+ 2)P

(6)
7,B

)
,

A(6)
8 =

256 d (d+ 2)(5d− 2)

(d− 2)8

β

f4d−8

(
2(d− 2)P

(6)
8,A + (d+ 2)P

(6)
8,B

)
, (C.2)

where P
(6)
n,A =

∑
1≤i<j≤n

s3
ij and P

(6)
n,B =

∑
1≤i<j<k≤n

s3
ijk .

I O(p8) amplitudes:

A(8)
4 =

1

f2d−4
32

(d− 2)4
(9γ + γ̃)

(
s4 + t4 + u4

)
,

A(8)
5 =

1

f
5d
2 −5

32

(d− 2)5

(
[9(d+ 4)γ + dγ̃] P

(8)
5,A + 8γ̃ P

(8)
5,B

)
A(8)

6 =
1

f3d−6
16

(d− 2)6

(
4 [9(d+ 4)(d+ 1)γ + d (d− 1)γ̃] P

(8)
6,A +

[
9(d+ 4)2γ + d2γ̃

]
P

(8)
6,B

+16 (d+ 6) γ̃ P
(8)
6,C + 16 d γ̃ P

(8)
6,D

)
A(8)

7 =
1

f
7d
2 −7

64(d+ 1)

(d− 2)7

(
d [27 (d+ 4)γ + (3d+ 4)γ̃] P

(8)
7,A +

[
9(d+ 4)2γ + d (d− 8)γ̃

]
P

(8)
7,B

+16(d+ 6)γ̃ P
(8)
7,C + 16 d γ̃ P

(8)
7,D

)
A(8)

8 =
1

f4d−8
64 (d+ 1)

3(d− 2)8

(
2 d
[
81
(
2d2 + 7d− 4

)
γ +

(
18d2 + 7d− 4

)
γ̃
]
P

(8)
8,A

+ d
[
81(d+ 4)2 γ +

(
9d2 + 4d+ 8

)
γ̃
]
P

(8)
8,B

+
[
27 (d+ 1)(d+ 4)2 γ + d

(
3d2 − 29d− 16

)
γ̃
]
P

(8)
8,C

+ 288 (5d+ 2) γ̃ P
(8)
8,D + 24 d (5d+ 2) γ̃ P

(8)
8,E

)
, (C.3)
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where

P
(8)
5,A =

∑
1≤i<j≤5

s4
ij , P

(8)
5,B = s2

12s
2
34 + perms , (C.4)

P
(8)
6,A =

∑
1≤i<j≤6

s4
ij , P

(8)
6,B =

∑
1≤i<j<k≤6

s4
ijk ,

P
(8)
6,C = s2

12s
2
34 + perms , P

(8)
6,D = s2

123s
2
45 + perms (C.5)

P
(8)
7,A =

∑
1≤i<j≤7

s4
ij , P

(8)
7,B =

∑
1≤i<j<k≤7

s4
ijk ,

P
(8)
7,C = s2

12s
2
34 + perms , P

(8)
7,D = s2

123s
2
456 + perms , (C.6)

P
(8)
8,A =

∑
1≤i<j≤8

s4
ij , P

(8)
8,B =

∑
1≤i<j<k≤8

s4
ijk , P

(8)
8,C =

∑
1≤i<j<k<l≤8

s4
ijkl ,

P
(8)
8,D = s2

12s
2
34 + perms , P

(8)
8,E = s2

123s
2
456 + perms . (C.7)

Here “+perms” includes all inequivalent permutations of the external particle labels.

D Free massive scalar flow: 1-loop dilaton scattering

Here we provide some practical details of the calculation of the 1-loop dilaton scattering

amplitudes in the example of the free massive scalar in d-dimensions.

Consider a 1-loop diagram with the n external outgoing momenta p1, p2, . . . , pn
in canonical order; all other diagrams of the same topology are obtained from the one

with canonical ordering by simple permutations of the momentum labels in the result.

Momentum conservation is enforced as
∑n

i=1 p
µ
i = 0 with all momenta outgoing. The n

external ϕ’s connect to a Φ-loop via Φ2ϕk terms generated by expanding the action (5.2)

with Ω = f (d−2)/2 − ϕ, as discussed in section 5.1. We denote a canonical diagram with V

vertices by {N1, N2, . . . , NV }, where Nj are the number of external ϕ’s at the jth vertex

and
∑V

j=1Nj = n. For example, for n = 6 two distinct box diagrams are

{2, 2, 1, 1} {2, 1, 2, 1}

Let ` be the loop momentum flowing into the vertex associated with p1. The mo-

mentum of the jth internal propagator (going out of the jth vertex) is ` − Pj , where by
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momentum conservation

Pj ≡
N1+N2+...+Nj∑

r=1

pr , (D.1)

The expression for a canonical diagram {N1, N2, . . . , NV } can be written

I{N1,N2,...NV } =
1

S

∫
dd`

(2π)d

V∏
j=1

VNj
−i

(`− Pj)2 +M2
, (D.2)

where VNj is the vertex factor (5.6) associated with the jth vertex. The symmetry factor

S takes into account exchanges of identical internal propagators. All diagrams we consider

have S = 1 except the bubble diagrams with exactly two vertices, which have S = 2.

It is useful to Feynman-parameterize (D.2) as

I{N1,N2,...NV } (D.3)

=
(−1)V+N

S

M2V

fN

Nj−1∏
n=0

(
4

d−2
− n
)∫ dd`

(2π)d

 V∏
j=1

∫ 1

0
dxj

 Γ(V ) δ
(

1−
V∑
k=1

xk

)
[

V∑
m=1

xm((`−Pm)2+M2)

]V .

We are interested in the low-energy expansion of the amplitudes, so we expand the inte-

grals (D.3) in the Mandelstam invariants of the external momenta. Practically this is done

by shifting the loop-momentum ` such that the integrand can be expanded in powers of

P2/(`2 +M2), where

P2 ≡
( V∑
m=1

xmPm
)2

−
V∑

m=1

xmP2
m . (D.4)

A little algebra shows that the O(p2k) part of the diagram is

I
O(p2k)
{N1,N2,...NV } =

(−1)V+N

S

M2V

fN
Γ(V +k)

k!

Nj−1∏
n=0

(
4

d−2
− n

)(∫ dd`

(2π)d
1

[`2+M2]V+k

)

×
[( V∏

j=1

∫ 1

0
dxj

) (
P2
)k
δ
(

1−
V∑
k=1

xk

)]
. (D.5)

The momentum integral is finite for V + k > d/2 and gives (in Euclidean signature)∫ ∞
−∞

dd`

(2π)d
1

[`2 +M2]V+k
=

∫
dΩd−1

∫ ∞
0

d`

(2π)d
`d−1

[`2 +M2]V+k

=
1

(4π)d/2M2(V+k−d/2)

Γ(V + k − d/2)

Γ(V + k)
(D.6)

– 26 –



J
H
E
P
0
3
(
2
0
1
3
)
0
3
4

So we arrive at the Mathematica-friendly expression:

I
O(p2k)
{N1,N2,...NV } (D.7)

=
(−1)V+N

S

Γ(V +k−d/2)

k!

Md−2k

fN (4π)d/2

Nj−1∏
n=0

(
4

d− 2
− n

)[( V∏
j=1

1−
j−1∑
q=1

xq∫
0

dxj

) (
P2
)k ]

.

To obtain the full contribution from diagrams of a given topology {N1, N2, . . . NV }, we

must sum over inequivalent permutations of the external momenta, i.e. over arrangements

of the external momentum labels not related by cyclic permutations or reflection symmetry.

The final result can be written in terms of a basis of Mandelstam polynomials which are

fully symmetric in the external momenta, e.g. the O(p8) basis of (C.4)–(C.7).

Example: 4-point amplitude. Consider the 4-point amplitude at O(p8) in d = 8

dimensions. There are 3 types of diagrams, a bubble, a triangle and a square. The canonical

diagram {2, 1, 1} gives

=
s4

612 360 (4π)4 f12
. (D.8)

There are
(

4
2

)
= 6 distinct permutations of the momentum labels of this diagram, and

summing them gives the result in the first row of the following table:

Diagram
Unique

Permutations
Symmetry Factor

Partial

Amplitude at

O(p8) in 8d

6 1
s4 + t4 + u4

612 360 (4π)4 f12

3 2
s4 + t4 + u4

382 725 (4π)4 f12

3 1
s4 + t4 + u4

765 450 (4π)4 f12

The sum of the contributions from the three classes of diagrams in the table gives the

result for the 4-point 1-loop amplitude at O(p8) in 8d, A(8)
4 = 17

3 061 800 (4π)4 f12
, as also listed

in (3.6).
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