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1 Introduction

The last 15 years have seen extraordinary progress in the analytical and numerical compu-

tation of cross sections in the Standard Model at one- and two-loops and even higher orders.

Once considered the bottleneck of numerical applications, higher- than-tree-level correc-

tions exhibit high complexity, partly due to the enormous number of Feynman diagrams

needed, sometimes numbered in hundreds or even thousands, for important cross sections.

Important efforts have been devoted to developing efficient methods able to boost forward

the calculational capability both at the multi-leg and the multi-loop frontier. Today, 2 → 4

processes at next-to-leading order (NLO), either from Unitarity based methods, [1–3], or

from a more traditional Feynman diagrammatic approach, [4], are affordable and are even

becoming standardized. There has also been a lot of progress concerning next-to-next-to

leading order (NNLO) calculations [5–16].

The importance of higher order corrections cannot be overstated. While leading-order

(LO) predictions of multi-particle processes at hadron colliders in perturbative Quantum

Chromodynamics (pQCD) provide, in general, a rather poor description of experimental

data, NLO is the first order at which normalizations, and in some cases, the shapes, of

cross sections can be considered reliable [17]. NNLO, besides improving the determina-

tion of normalizations and shapes, is also generally accepted to provide the first serious

estimate of the theoretical uncertainty in pQCD. Despite the relatively smaller coupling,

electroweak (EW) radiative NLO corrections might also be sizable at the LHC, [18, 19].

Precision theoretical predictions for background and signal multi-particle hard scattering

processes, in the SM and beyond, are mandatory for the phenomenological interpretation

of experimental data, and thus to achieve a successful exploitation of the LHC physics

programme.
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In [20], a novel method was developed for the calculation of multileg one-loop ampli-

tudes. Called the Duality Theorem, it applies directly the Cauchy Residue Theorem to

one-loop integrals. The result can be represented by single cuts to Feynman diagrams,

integrated over a modified phase space. (Note also [21] where the author uses retarded

boundary conditions to obtain a duality between loop and tree graphs). The Duality The-

orem was extended in [23] beyond the one-loop level, to two- and three-loops and it was

shown how it can be extended to an arbitrary number of loops. The main feature and

advantage of this approach is that at any number of loops, an amplitude can be written

as a sum of tree-level objects, obtained after making all possible cuts to the lines of a

Feynman diagram, one cut per loop and integrated over a measure that closely resembles

the phase space of the corresponding real corrections. This modified phase-space, raises

the intriguing possibility that virtual and real corrections can be brought together under

a common integral and treated with Monte-Carlo techniques at the same time. In these

papers the Duality Theorem was developed for diagrams and their integrals, that do not

possess identical propagators. This possibility does not appear at one-loop for a convenient

choice of gauge [20], but it is always present for higher order corrections. Identical propa-

gators possess higher than single poles and the Duality Theorem developed so far, which

is based on the Cauchy formula for single poles, must be extended to accomodate for this

new feature.

The purpose of this work is to extend the Duality Theorem to graphs and integrals with

multiple poles at two- and three-loops and to present a procedure, a strategy for dealing

with higher poles in an amplitude calculation that retains the features and advantages of

the Duality theorem as detailed in [23]. The paper is organized as follows: in section 2

we recall the basic definitions and results concerning the Duality Theorem at one- and

two-loops and beyond, for integrals with single poles. In section 3 we derive in detail the

extension of the Duality Theorem to integrals with double and multiple propagators, which

exhibit multiple poles in the complex plane. In section 4 we present an alternative method

to deal with multiple poles at two- and three-loops which retains the basic advantages of

the Duality Theorem. It is based on Integration By Parts relations that allow to rewrite

integrals with multiple poles in terms of integrals involving only single poles.

2 Duality relation at one- and two-loops

A general one-loop N -leg, scalar integral, such as the one shown in figure 1, is written as:

L(1)(p1, p2, . . . , pN ) =

∫

ℓ1

N∏

i=1

GF (qi) , (2.1)

where

GF (qi) =
1

q2i −m2
i + i0

(2.2)

is the Feynman propagator. The four-momenta of the external legs are denoted pi, i =

{1, 2, . . . N}. All are taken as outgoing and ordered clockwise. The loop momentum is ℓ1,

which flows anti-clockwise. The momenta of the internal lines qi, are defined as

qi = ℓ1 + p1,i , i ∈ α1 = {1, 2, . . . N} , p1,i = p1 + . . .+ pi . (2.3)

– 2 –
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Throughout this paper we use the short-hand notation

δ̃ (qi) ≡ 2π i θ(qi,0) δ(q
2
i −m2

i ) = 2π i δ+(q
2
i −m2

i ) ,

∫

ℓi

• = −i

∫
ddℓi
(2π)d

• (2.4)

where the subscript + of δ+ refers to the on-shell mode with positive definite energy,

qi,0 ≥ 0. Hence, the phase-space integral of a physical particle with momentum qi, i.e., an

on-shell particle with positive-definite energy, q2i = m2
i , qi,0 ≥ 0, reads:

∫
ddqi

(2π)d−1
θ(qi,0) δ(q

2
i −m2

i ) · · · ≡

∫

qi

δ̃ (qi) · · · . (2.5)

It was shown in [20, 23] that using the Cauchy residue theorem the one-loop integral can

be written in the form:

L(1)(p1, p2, . . . , pN ) = −
∑

i

∫

ℓ1

δ̃ (qi)
N∏

j=1
j 6=i

GD(qi; qj) , (2.6)

where

GD(qi; qj) =
1

q2j −m2
j − i0 η(qj − qi)

, (2.7)

is the so-called dual propagator, as defined in ref. [20], with η a future-like vector,

η0 ≥ 0, η2 = ηµη
µ ≥ 0 , (2.8)

i.e., a d-dimensional vector that can be either light-like (η2 = 0) or time-like (η2 > 0) with

positive definite energy η0. The result in eq. (2.6), contrary to the Feynman-Tree theorem

(FTT) [25, 26], contains only single-cut integrals. Multiple-cut integrals, like those that

appear in the FTT, are absent thanks to modifying the original +i0 prescription of the

uncut Feynman propagators by the new prescription −i0 η(qj − qi), which is named the

‘dual’ i0 prescription or, briefly, the η prescription. The dual i0 prescription arises from the

fact that the original Feynman propagator GF (qj) is evaluated at the complex value of the

loop momentum ℓ1, which is determined by the location of the pole at q2i −m2
i +i0 = 0. The

i0 dependence of the pole of GF (qi) modifies the i0 dependence in the Feynman propagator

GF (qj), leading to the total dependence as given by the dual i0 prescription. The presence

of the vector ηµ is a consequence of using the residue theorem and the fact that the residues

at each of the poles are not Lorentz-invariant quantities. The Lorentz-invariance of the

loop integral is recovered after summing over all the residues. Furthermore, in the one-loop

case, the momentum difference η(qj − qi) is independent of the integration momentum ℓ1,

and only depends on the momenta of the external legs (cf. eq. (2.3)).

The extension of the Duality Theorem to two loops has been discussed in detail

in [23, 24]. Here we recall the basic points. We extend the definition of propagators of

single momenta to combinations of propagators of sets of internal momenta. Let αk be any

set of internal momenta qi, qj with i, j ∈ αk. We then define Feynman and dual propagator

functions of this set αk in the following way:

GF (αk) =
∏

i∈αk

GF (qi) , GD(αk) =
∑

i∈αk

δ̃ (qi)
∏

j∈αk

j 6=i

GD(qi; qj) . (2.9)
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ℓ1
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q1
p2

q2

qN

pN

p3

Figure 1. Momentum configuration of the one-loop N -point scalar integral.

By definition, GD(αk) = δ̃ (qi), when αk = {i} and thus consists of a single four momentum.

At one-loop order, αk is naturally given by all internal momenta of the diagram which

depend on the single integration loop momentum ℓ1, αk = {1, 2, . . . , N}. However, let us

stress that αk can in principle be any set of internal momenta. At higher order loops, e.g.,

several integration loop momenta are needed, and we can define several loop lines αk to

label all the internal momenta (cf. eq. (2.19)) where eq. (2.9) will be used for these loop

lines or unifications of these. We also define:

GD(−αk) =
∑

i∈αk

δ̃ (−qi)
∏

j∈αk

j 6=i

GD(−qi;−qj) , (2.10)

where the sign in front of αk indicates that we have reversed the momentum flow of all the

internal lines in αk. For Feynman propagators, moreover, GF (−αk) = GF (αk). Using this

notation the following relation holds for any set of internal momenta αk:

GA(αk) = GF (αk) +GD(αk) , (2.11)

where GA(qi) is the advanced propagator:

GA(qi) =
1

q2i −m2
i − i0 qi,0

, (2.12)

and

GA(αk) =
∏

i∈αk

GA(qi) . (2.13)

The proof of eq. (2.11) can be found in ref. [23]. Note that individual terms in GD(αk)

depend on the dual vector η, but the sum over all terms contributing to GD(αk) is inde-

pendent of it. Another crucial relation for the following is given by a formula that allows

to express the dual function of a set of momenta in terms of chosen subsets. Considering

the following set βN ≡ α1 ∪ . . .∪ αN , where βN is the unification of various subsets αi, we

can obtain the relation:

GD(α1 ∪ α2 ∪ . . . ∪ αN ) =
∑

β
(1)
N

∪β
(2)
N

=βN

∏

i1∈β
(1)
N

GD(αi1)
∏

i2∈β
(2)
N

GF (αi2) . (2.14)
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Figure 2. Momentum configuration of the two-loop N -point scalar integral.

The sum runs over all partitions of βN into exactly two blocks β
(1)
N and β

(2)
N with elements

αi,

i ∈ {1, . . . , N}, where, contrary to the usual definition, we include the case: β
(1)
N ≡ βN ,

β
(2)
N ≡ ∅. For the case of N = 2, e.g., where β2 ≡ α1 ∪ α2, we have:

GD(α1 ∪ α2) = GD(α1)GD(α2) +GD(α1)GF (α2) +GF (α1)GD(α2) . (2.15)

Naturally it holds that:

GF (α1 ∪ α2 ∪ . . . ∪ αN ) =
N∏

i=1

GF (αi) . (2.16)

Since in general relation (2.14) holds for any set of basic elements αi which are sets of

internal momenta, one can look at these expressions in different ways, depending on the

given sets and subsets considered. If we define, for example, the basic subsets αi to be

given by single momenta qi, and since in that case GD(qi) = δ̃ (qi), eq. (2.14) then denotes

a sum over all possible differing m-tuple cuts for the momenta in the set βN , while the

uncut propagators are Feynman propagators. These cuts start from single cuts up to the

maximal number of cuts given by the term where all the propagators of the considered

set are cut. Using this notation, the Duality Theorem at one-loop can be written in the

compact form:

L(1)(p1, p2, . . . , pN ) = −

∫

ℓ1

GD(α1) , (2.17)

where α1 as in eq. (2.3) labels all internal momenta qi. In this way, we directly obtain the

duality relation between one-loop integrals and single-cut phase-space integrals and hence

eq. (2.17) can also be interpreted as the application of the Duality Theorem to the given

set of momenta α1. It obviously agrees, at one loop, with eq. (2.6).

– 5 –
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We now turn to the general two-loop master diagram, as presented in figure 2. Again,

all external momenta pi are taken as outgoing, and we have pi,j = pi+ pi+1+ . . .+ pj , with

momentum conservation p1,N = 0. The label i of the external momenta is defined modulo

N , i.e., pN+i ≡ pi. In the two-loop case, unlike at the one-loop order, the number of

external momenta might differ from the number of internal momenta. The loop momenta

are ℓ1 and ℓ2, which flow anti-clockwise and clockwise respectively. The momenta of the

internal lines are denoted by qi and are explicitly given by

qi =





ℓ1 + p1,i , i ∈ α1

ℓ2 + pi,l−1 , i ∈ α2

ℓ1 + ℓ2 + pi,l−1 , i ∈ α3 ,

(2.18)

where αk, with k = 1, 2, 3, are defined as the set of lines, propagators respectively, related

to the momenta qi, for the following ranges of i:

α1 ≡ {0, 1, . . . , r} , α2 ≡ {r + 1, r + 2, . . . , l} , α3 ≡ {l + 1, l + 2, . . . , N} . (2.19)

In the following, we will use αk for denoting a set of indices or the set of the corresponding

internal momenta synonymously. Furthermore, we will refer to these lines often simply as

the “loop lines”.

We shall now extend the duality theorem to the two-loop case, by applying eq. (2.17)

iteratively. We consider first, in the most general form, a set of several loop lines α1 to αN

depending on the same integration momentum ℓi, and find
∫

ℓi

GF (α1 ∪ α2 ∪ . . . ∪ αN ) = −

∫

ℓi

GD(α1 ∪ α2 ∪ . . . ∪ αN ) , (2.20)

which states the application of the duality theorem, eq. (2.17), to the set of loop lines be-

longing to the same loop. Eq. (2.20) is the generalization of the Duality Theorem found at

one-loop to a single loop of a multi-loop diagram. Each subsequent application of the Du-

ality Theorem to another loop of the same diagram will introduce an extra single cut, and

by applying the Duality Theorem as many times as the number of loops, a given multi-loop

diagram will be opened to a tree-level diagram. The Duality Theorem, eq. (2.20), however,

applies only to Feynman propagators, and a subset of the loop lines whose propagators are

transformed into dual propagators by the application of the Duality Theorem to the first

loop might also be part of the next loop (cf., e.g., the “middle” line belonging to α3 in

figure 2). The dual function of the unification of several subsets can be expressed in terms

of dual and Feynman functions of the individual subsets by using eq. (2.14) (or eq. (2.15))

though, and we will use these expressions to transform part of the dual propagators into

Feynman propagators, in order to apply the Duality Theorem to the second loop. There-

fore, applying eq. (2.20) to the loop with loop momentum ℓ1, reexpressing the result via

eq. (2.15) in terms of dual and Feynman propagators and applying eq. (2.20) to the second

loop with momentum ℓ2, we obtain the duality relation at two loops in the form:

L(2)(p1, p2, . . . , pN )

=

∫

ℓ1

∫

ℓ2

{−GD(α1)GF (α2)GD(α3)+GD(α1)GD(α2 ∪ α3)+GD(α3)GD(−α1 ∪ α2)} .

(2.21)

– 6 –



J
H
E
P
0
3
(
2
0
1
3
)
0
2
5

This is the dual representation of the two-loop scalar integral as a function of double-cut

integrals only, since all the terms of the integrand in eq. (2.21) contain exactly two dual

functions as defined in eq. (2.9). The integrand in eq. (2.21) can then be reinterpreted as

the sum over tree-level diagrams integrated over a two-body phase-space.

The integrand in eq. (2.21), however, contains several dual functions of two different

loop lines, and hence dual propagators whose dual i0 prescription might still depend on the

integration momenta. This is the case for dual propagators GD(qi; qj) where each of the

momenta qi and qj belong to different loop lines. If both momenta belong to the same loop

line the dependence on the integration momenta in η(qj − qi) obviously cancels, and the

complex dual prescription is determined by external momenta only. The dual prescription

η(qj − qi) can thus, in some cases, change sign within the integration volume, therefore

moving up or down the position of the poles in the complex plane. To avoid this, we

should reexpress the dual representation of the two-loop scalar integral in eq. (2.21) in

terms of dual functions of single loop lines. This transformation was unnecessary at one-

loop because at the lowest order all the internal momenta depend on the same integration

loop momenta; in other words, there is only a single loop line.

Inserting eq. (2.15) in eq. (2.21) and reordering some terms, we arrive at the following

representation of the two-loop scalar integral

L(2)(p1, p2, . . . , pN )

=

∫

ℓ1

∫

ℓ2

{GD(α1)GD(α2)GF (α3)+GD(−α1)GF (α2)GD(α3)+G∗(α1)GD(α2)GD(α3)} ,

(2.22)

where

G∗(α1) ≡ GF (α1) +GD(α1) +GD(−α1) . (2.23)

In eq. (2.22), the i0 prescription of all the dual propagators depends on external momenta

only. Through eq. (2.23), however, eq. (2.22) contains also triple cuts, given by the contri-

butions with three GD(αk). The triple cuts are such that they split the two-loop diagram

into two disconnected tree-level diagrams. By definition, however, the triple cuts are such

that there is no more than one cut per loop line αk. Since there is only one loop line at

one-loop, it is also clear why we did not generate disconnected graphs at this loop order.

For a higher number of loops, we expect to find at least the same number of cuts as the

number of loops, and topology-dependent disconnected tree diagrams built by cutting up

to all the loop lines αk. These results can be generalized at three-loops and beyond without

any additional effort. The reader is refered to [23] for further details.

3 Duality relation for multiple poles

In the previous section we applied the Residue Theorem to one- and two-loop graphs that

contain only single poles, i.e. no identical propagators. At one-loop this is always the case

for a convenient choice of gauge [20]. However, at higher loops there exists the possibility of

identical propagators, i.e. higher order poles. Obviously, we need to generalize the Duality

– 7 –
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pN

p1

p2

ℓ1ℓ2

ℓ1 + ℓ2

Figure 3. The two-loop N -point scalar integral with a double pole.

Theorem to accomodate for such graphs. The first occurence of higher order poles is at

the two-loop level, with the sole double pole generic graph shown in figure 3. The Duality

Theorem can be derived for such graphs as well, using the Residue Theorem for multiple

poles

Res{z=z0}f(z) =
1

(k − 1)!

(
dk−1

dzk−1
(z − z0)

kf(z)

)∣∣∣∣
z=z0

. (3.1)

The derivation follows similar steps as with the single pole case and is independent of any

particular coordinate system. We will derive an expression both in cartesian and light-cone

coordinates, to demonstrate this independence. We start with the cartesian system. We

write the Feynman propagator in a form that makes the poles explicit, i.e,

GF (qi) =
1

(qi0 − q
(+)
i0 )(qi0 + q

(+)
i0 )

, (3.2)

where q
(+)
i0 =

√
q2
i +m2

i − i0 is the position of the pole. Then, applying the Residue

Theorem by selecting poles with negative imaginary part, we have

Res{Im qi0<0}G
2
F (qi) = −

2

(2q
(+)
i0 )3

= −

∫
dq0

1

2(q
(+)
i0 )2

δ+(q
2
i −m2

i ). (3.3)

The imaginary component of the new denominator 1/2(q
(+)
i0 )2 is irrelevant, because it is

always a positive quantity. We refer the reader to [20] where the calculation for the case of

simple poles is explained in more detail. Then, we assume the following Lorentz-invariant

prescription of the residue

Res{Im qi0<0}G
2
F (qi) = −

∫
dq0

η2

2(ηqi)2
δ+(q

2
i −m2

i ) , (3.4)

– 8 –
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where ηµ = (η0,0) is a future-like vector, η0 > 0, in cartesian coordinates. Contrary to

the one loop case, where numerators depending on the loop momentum do not modify the

duality prescription, in the two loop and higher orders cases the derivative in the residue

calculation introduced by the higher order poles act on every single term in the numerator

and also on the remaining propagators. Let N(αk) be a function of a set of momenta ql,

with l ∈ αk. Then the residue of a double pole is given by

Res{Im qi0<0}



G

2
F (qi)



∏

j 6=i

GF (qj)


N(αk)



=

∂

∂q0

1

(qi0 + q
(+)
i0 )2



∏

j 6=i

GF (qj)


N(αk)

∣∣∣∣∣∣
qi0=q

(+)
i0

=



∏

j 6=i

GD(qi; qj)


 1

(2q
(+)
i0 )2


− 1

q
(+)
i0

−
∑

j 6=i

(2qj0)GD(qi; qj) +
∂

∂q0


N(αk) ,

(3.5)

which can be written as

Res{Im qi0<0}



G2

F (qi)



∏

j 6=i

GF (qj)


N(αk)



 =

∫
dq0δ+(q

2
i −m2

i )



∏

j 6=i

GD(qi; qj)




×


− η2

2(ηqi)2
−
∑

j 6=i

ηqj
ηqi

GD(qi; qj) +
1

2ηqi

∂

∂ηqi


N(αk) .

(3.6)

In light-cone coordinates we choose our coordinates such that in the plus component

complex plane the poles with negative imaginary part are located at:

q
(+)
i+ =

q2i⊥ +m2
i − i0

2qi−
, with qi− > 0 . (3.7)

In these light cone coordinates the Feynman propagator reads:

GF (qi) =
1

2qi−(qi+ − q
(+)
i+ )

, (3.8)

and thus

Res{Im qi0<0}θ(qi−)G
2
F (qi) = 0 , (3.9)

which, at first sight, seems to contradict equation eq. (3.4). This contradiction can be

resolved by taking into account the fact that in light cone coordinates, the dual vector η is

lightlike and therefore η2 = 0. Hence equation eq. (3.4) remains valid. Now, we are ready

to calculate the residue of a double pole in light cone coordinates:

Res{Im qi0<0}



θ(qi−)G

2
F (qi)



∏

j 6=i

GF (qj)


N(αk)



=

θ(qi−)

(2qi−)2
∂

∂q+



∏

j 6=i

GF (qj)


N(αk)

∣∣∣∣∣∣
qi+=q

(+)
i+

=

∫
dq+δ+(q

2
i −m2

i )



∏

j 6=i

GD(qi; qj)





−

∑

j 6=i

ηqj
ηqi

GD(qi; qj) +
1

2ηqi

∂

∂ηqi


N(αk) ,

(3.10)
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where now ηµ = (η+, η− = 0,0⊥). Eq. (3.10) has the same functional form as in eq. (3.6),

although with a different dual vector η. Thus we can generalize eq. (3.6) and eq. (3.10) to

an arbitrary coordinate system and combining simple and double poles in a single formula

we get in cartesian coordinates:

∫

q

G2
F (qi)



∏

j 6=i

GF (qj)


N(αk) =

−

∫

q

{
δ̃(qi)



∏

j 6=i

GD(qi; qj)





− η2

2(ηqi)2
−
∑

n 6=i

ηqj
ηqi

GD(qi; qj) +
1

2ηqi

∂

∂ηqi




+
∑

j 6=i

δ̃(qj)G
2
D(qj ; qi)




∏

k 6=i,j

GD(qj ; qk)




}
N(αk). (3.11)

Equation (3.11), is the main result of this section. It extends the Duality Theo-

rem to integrals with identical propagators or, to put it differently, with double poles

in the complex plane. For the case of the generic two-loop graph in figure 3, this re-

sult can be seen as an extension of eq. (2.15). If we have two groups of momenta,

αk, α2, one of which contains the double propagator, i.e. αk = {qn = ℓ1 + ℓ2} and α2 =

{q2 = ℓ2, q3 = ℓ2 + p1, . . . , qn−1 = ℓ2 + p1,N−1, q2 = ℓ2}, and we denote by α′
2 a group that

contains all the momenta of α2 leading to single poles, namely

α′
2 = {q2 = ℓ2, q3 = ℓ2 + p1, . . . , qn−1 = ℓ2 + p1,N−1}, then we can write:

GD(αk ∪ α2) = δ̃(q2)




n∏

j∈α′

2,αk

GD(q2; qj)





− η2

2(ηq2)2
−

n∑

j∈α′

2,αk

ηqj
ηq2

GD(q2; qj)




+
n∑

i∈α′

2,αk

δ̃(qi)G
2
D(qi; q2)




n∏

j 6=i

GD(qi; qj)


 . (3.12)

This result states that for the case of a double pole, one follows the usual procedure of

cutting every propagator line once, including the double propagator, and transforming the

rest of the propagators to dual propagators. A similar formula can be derived for the

case of multiple (triple and higher) poles. The calculation of the residue of a multiple pole

introduces, however, contributions with powers of dual propagators. In absence of a general

transformation formula analogous to eq. (2.14), it is not possible to rewrite eq. (3.11) in

terms of dual propagators whose dual +i0 prescription depends on the external momenta

only. For that reason, we will present in the next section a different strategy for dealing

with higher order poles based on the reduction of the integral using Integration By Parts.

4 Reducing to single poles with IBPs

In this section, we discuss a different approach to the generalization of the Duality Theorem

to higher order poles. We will use Integration By Parts (IBP) [28, 29] to reduce the integrals

with multiple poles to ones with simple poles. We emphasize the fact the we do not need to
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reduce the integrals to a particular integral basis. We just need to reduce them “enough”,

so that the higher order poles disappear.

To give a short introduction to the method and establish our notation, let us consider

a general m-loop scalar integral in d dimensions, with n denominators D1, . . . , Dn raised

to exponents a1, . . . , an and external momenta p1, . . . , pN :
∫

ℓ1

· · ·

∫

ℓm

1

Da1
1 · · ·Dan

n
. (4.1)

If we notice that ∫

ℓ1

· · ·

∫

ℓm

∂

∂sµ
tµ

Da1
1 · · ·Dan

n
= 0 , (4.2)

where sµ = ℓµ1 , ℓ
µ
2 , . . . , ℓ

µ
m, the integrand being a total derivative with respect to the loop

momenta, we can find relations between scalar integrals with different exponents ai. This

will allow us to express integrals with exponents larger than one, in terms of simpler

ones. In effect, we will be able to write integrals with multiple poles in terms of sums

of integrals with simple poles. In the numerator of the integrand of eq. (4.2) we can use

tµ = ℓµ1 , . . . , ℓ
µ
m, pµ1 , . . . , p

µ
N , to obtain a system of equations that relate the various integrals.

For simplicity, when refering to an IBP we will use the shorthand notation:

∂

∂s
· t (4.3)

to denote eq. (4.2). The differentiation will raise or leave an exponent unchanged, while,

contractions with the loop and external momenta in the numerator of the integrand, can be

expressed in terms of the propagators to lower an exponent. Often times though, this is not

possible, leaving scalar products of momenta in the numerator, which cannot be expressed

in terms of denominators. These are called Irreducible Scalar Products (ISP). To simplify

the notation, we will denote these ISPs appearing in the numerator of the integrand as

additional factors , Dij = ℓi · pj , raised to a negative power ak. We use the notation:

F (a1a2 · · · an) =

∫

ℓ1

∫

ℓ2

1

Da1
1 Da2

2 · · ·Dan
n

(4.4)

to denote a generic two-loop integral with n propagators raised to an arbitrary integer

power, with Di = G−1
F (qi) = q2i −m2

i + i0 and qi denotes any combination of external and

loop momenta. In the following the prescription +i0 for the propagators is understood. We

will use the symbol a+
i
to denote the raising of the index ai by one i.e. 1+F (a1, a2, · · · an) =

F (a1 + 1, a2, . . . , an) and the symbol a−
i
to denote the lowering of the index ai by one i.e.

2−F (a1, a2, · · · an) = F (a1, a2 − 1, . . . , an). A combination of the two means that the

operators apply at the same time i.e. 1+2−F (a1, a2, · · · an) = F (a1 + 1, a2 − 1, . . . , an). In

the following we will use two automated codes, for the reduction, FIRE [27], a MATHEMATICA

package for the reduction of integrals and REDUZE 2 [30],1 a package written in C++,

using GiNaC [31].

1Since the most obvious first approach seems to be to try to express the integrals with multiple poles in

terms of the same integrals with only single poles, cf. eq. (4.6), we used, in addition to the “usual” version of

REDUZE 2, in some cases a special patch for REDUZE 2 which provides a modification of its integral ordering
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4.1 The case for two-loop diagrams

The only generic two-loop scalar graph with N -legs and a double propagator is shown in

figure 3. The simplest case is the two-point function with massless internal lines. The

denominators are:

D1 = ℓ21 , D2 = ℓ22 , D3 = (ℓ2 + p)2 , D4 = (ℓ1 + ℓ2)
2 , D5 = ℓ1 · p ,

where D5 is indeed an ISP.2 We stress the fact that the additional scalar product we use

(in this case and the cases below) is not an additional linear propagator. We merely use

it to reduce the original integrals with the algebraic packages FIRE and REDUZE 2. These

linear factors do not appear as linear propagators in any of the cases considered, but, they

might appear as numerators in the final reduced result, and thus do not affect applying

the Duality theorem. In our notation, the integral we want to reduce is F (12110) and to

this end we use the six total derivatives

∂

∂ℓi
· ℓj ,

∂

∂ℓi
· p , i, j = 1, 2. (4.5)

Applying these IBPs on F (a1a2a3a4a5) we get a system of recursive equations. Using

specific values for the exponents ai we can solve this system and obtain F (12110). For this

particular case, we solve the system explicitely and the reader is referred to the appendix A

for details. Finally we arrive at:

F (12110) =
−1 + 3ǫ

(1 + ǫ)s
F (11110) , (4.6)

where s = p2 + i0, a result which contains only single poles and can be treated using the

Duality Theorem [23]. For the rest of the cases below and in the three-loop case in the

next section, we have used FIRE and REDUZE 2 to perform the reductions and check our

results. For three external legs p21 = p22 = 0, p23 = (p1 + p2)
2 and massless internal lines, we

have the denominators:

D1 = ℓ21 , D2 = ℓ22 , D3 = (ℓ2 + p1)
2 , D4 = (ℓ2 + p1 + p2)

2 , D5 = (ℓ1 + ℓ2)
2 ,

D6 = ℓ1 · p1 , D7 = ℓ1 · p2 ,

where, the last two are the ISPs that appear in this case. The integral we want to reduce

is F (1211100). We use eight IBPs:

∂

∂ℓi
· ℓj ,

∂

∂ℓi
· pj , i, j = 1, 2. (4.7)

in the final result. This modified version of REDUZE 2 delivered the results for the integrals in this desired

form stated in the subsequent sections, while we used the normal version of the integral ordering for the

remaining cases.Note that we also calculated explicitely the relations obtained from the modified version,

in the easiest cases of the massless two- and three-loop integrals which can be built by insertion of the

massless one-loop two-point function, and found agreement.
2For REDUZE 2 the corresponding propagator is added and used as input instead.
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A similar analysis to the one above, gives:

F (1211100) =
3ǫ

(1 + ǫ)s
F (1111100) = −

3(1− 3ǫ)(2− 3ǫ)

ǫ(1 + ǫ)s3
F (1001100) , (4.8)

where s = (p1 + p2)
2 + i0, which, again contains only single poles and can be treated with

the Duality Theorem.

The inclusion of masses does not affect the general picture of the reduction. It solely

introduces numerators in some integrals after the reduction is done. But, as we have

stressed already, the application of the Duality Theorem is not affected by numerators

since it only operates on denominators [23]. As an illustrative example, let us consider the

two-loop graph with two external legs and one massive loop (see figure 3). For the case of

the left loop being massive (related to ℓ2), with mass m, the denominators involved are

D1 = ℓ21 , D2 = ℓ22 −m2 , D3 = (ℓ2 + p)2 −m2 , D4 = (ℓ1 + ℓ2)
2 −m2 ,

with the addition of the irreducible scalar product

D5 = ℓ1 · p , (4.9)

needed to perform the reduction. Using the same IBPs of eq. (4.5), the result of the

reduction, with FIRE is:

F (12110) =
(ǫ− 1)

[
−ǫs2 + 2m2(9ǫ− 2ǫ2 − 3)s+ 4m4(−3 + 2ǫ)(−1 + 2ǫ)

]

2ǫ(2ǫ− 1)m4s (4m2 − s)2
F (00110)

+
A

2ǫ(2ǫ− 1)m4s (4m2 − s)2
F (10110)−

(ǫ− 1)

2(2ǫ− 1)m4s
F (1− 1110)

−
(ǫ− 1)2

(
2m2 − s

)

(2ǫ− 1)m4s (4m2 − s)
F (01010)−

(ǫ− 1)
(
4ǫm2 + 2m2 − s

)

2(2ǫ− 1)m4 (4m2 − s)
F (01110)

+
2(ǫ− 1)

(
m2 − s

) (
10ǫm2 − ǫs− 3m2

)

ǫ(2ǫ− 1)m4s (4m2 − s)2
F (1011− 1), (4.10)

with s = p2 + i0 and

A = (1− ǫ)
[
ǫs+ 2(3− 8ǫ)m2

]
s2 + 2(1− 2ǫ)m4

[
2(3− 4ǫ)m2 − (6− 5ǫ)s

]
. (4.11)

The reduction generates two integrals with a numerator, namely

F (1− 1110) =

∫

ℓ1

∫

ℓ2

ℓ22 −m2

D1D3D4
,

F (1011− 1) =

∫

ℓ1

∫

ℓ2

ℓ1 · p

D1D3D4
,
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but the double poles have now disappeared. The result with REDUZE 2 reads:

F (12110) = −
(ǫ− 1)

(
4ǫm2 + 2m2 − s

)

2(2ǫ− 1)m4 (4m2 − s)
F (01110)

+
3(ǫ− 1)

(
8ǫm4 − 12ǫm2s+ ǫs2 − 4m4 + 4m2s

)

2ǫ(2ǫ− 1)m4s (4m2 − s)2
F (1− 1110)

+
A

2ǫ(2ǫ− 1)m4s (4m2 − s)2
F (10110)

+
(ǫ−1)

(
8ǫ2m2s− 2ǫ2s2 − 16ǫm4 + 6ǫm2s+ ǫs2 + 12m4 − 6m2s

)

2ǫ(2ǫ− 1)m4s (4m2 − s)2
F (01010),

(4.12)

where A is given by eq. (4.11). Despite the appearence of different integrals the two results

are of course equivalent. This is because, the integrals F (00110) and F (01010), in the result

obtained with FIRE, are identical (as can be seen by shifting the loop momenta), so the

sum of their coefficients gives exactly the coefficient of the result obtained with REDUZE 2.

The same argument applies for the integrals F (1011−1) and F (1−1110). The appearence

of the numerators does not affect the application of the Duality Theorem for integrals with

single poles as was detailed in [23]. For the case of the right loop in figure 3 being massive

(related to ℓ1), we have the denominators:

D1 = ℓ21 −m2 , D2 = ℓ22 , D3 = (ℓ2 + p)2 , D4 = (ℓ1 + ℓ2)
2 −m2 , D5 = ℓ1 · p .

Using the IBPs from eq. (4.5), we get with FIRE:

F (12110) =

(
32ǫ2m4 + 8ǫ2m2s+ ǫ2s2 − 32ǫm4 − 11ǫm2s− ǫs2 + 6m4 + 3m2s

)

6m4s2
F (10110)

−
(ǫ−1)

(
16ǫ3m2+4ǫ3s−20ǫ2m2−8ǫm2−7ǫs+3m2+3s

)

6(2ǫ−1)(2ǫ+1)m4s2
F (10010)

−
(ǫ− 1)ǫ

3m4s
F (1011− 1)−

(ǫ− 1)(2ǫ− 1)

2m2s
F (01110)

−
(ǫ− 1)

(
12ǫm2 + ǫs− 3m2

)

6m4s2
F (1− 1110)

−
(ǫ− 1)

(
6ǫm2 + ǫs− 3m2

)

6m4s
F (11100) , (4.13)

and with REDUZE 2:

F (12110) = −
(ǫ− 1)

(
8ǫm2 + ǫs− 2m2

)

4m4s2
F (1− 1110)

+
64ǫ2m4+16ǫ2m2s+ǫ2s2−64ǫm4−22ǫm2s−ǫs2+12m4+6m2s

12m4s2
F (10110)

−
(ǫ− 1)

(
12ǫm2 + ǫs− 6m2

)

6m4s
F (11100)

−
(ǫ− 1)(2ǫ− 3)

(
16ǫ2m2 + 2ǫ2s+ 4ǫm2 + 3ǫs− 2m2 − 2s

)

12(2ǫ− 1)(2ǫ+ 1)m4s2
F (10010) .

(4.14)
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For the case of the double pole, two-loop graph, with three external legs and one massive

loop, we have the denominators:

D1 = ℓ21, D2 = ℓ22 −m2, D3 = (ℓ2 + p1)
2 −m2,

D4 = (ℓ2 + p1 + p2)
2 −m2, D5 = (ℓ1 + ℓ2)

2 −m2,

D6 = ℓ1 · p1 , D7 = ℓ1 · p2 .

Using the IBPs from eq. (4.7) we get with FIRE:

F (1211100) =
(ǫ− 1)

{
(1 + 4ǫ)s2 − 4ǫm2s(11− 2ǫ)− 8m4(4ǫ2 − 8ǫ− 1)

}

8ǫ(2ǫ− 1)m6s (4m2 − s)2
F (0001100)

−
A1

2ǫ(2ǫ− 1)m6s (4m2 − s)2
F (1001100)

+

(
8ǫ3 − 12ǫ2 + 4ǫ− 1

)
(ǫ− 1)

8ǫ(2ǫ− 1)2m6s
F (0010100)

−
(ǫ− 1)

2(2ǫ− 1)m4
[F (0111100)− F (1011100)] +

2(ǫ− 1)

m2s (4m2 − s)
F (0101100)

+
(ǫ− 1)

(
2ǫm2 − ǫs−m2

)

2ǫ(2ǫ− 1)m6s2
F (1− 101100)

+
(ǫ− 1)2

(
8ǫm2 − 2ǫs− 6m2 + s

)

2(2ǫ− 1)m6s (4m2 − s)
F (0100100)

−
2(ǫ− 1)

(
m2 − s

) {
−ǫs2 +m2s(6ǫ− 1) + 8m4(2ǫ− 1)

}

ǫ(2ǫ− 1)m6s2 (4m2 − s)2
F (10011− 10) ,

(4.15)

where s = (p1 + p2)
2 + i0, and:

A1 = ǫ(1−ǫ)s3+m2(−1+ǫ)(−1+9ǫ)s2+m4(1−ǫ)(5+6ǫ)s+2m6(1+2ǫ)(−3+4ǫ) , (4.16)

while, with REDUZE 2, we get:

F (1211100) = −
ǫ− 1

2(2ǫ− 1)m4
F (0111100)

+
ǫ− 1

2(2ǫ− 1)m4
F (1011100)

+
2(ǫ− 1)

m2s (4m2 − s)
F (0101100)

−
3(ǫ− 1)

(
4ǫm4 − 8ǫm2s+ ǫs2 + 2m4 +m2s

)

2ǫ(2ǫ− 1)m6s (4m2 − s)2
F (1− 101100)

−
A2

2ǫ(2ǫ− 1)m6s (4m2 − s)2
F (1001100)

+
A3

4ǫ(2ǫ− 1)2m6s (4m2 − s)2
F (0100100) , (4.17)
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where

A2 = 16ǫ2m6 − 6ǫ2m4s+ 9ǫ2m2s2 − ǫ2s3

−4ǫm6 + ǫm4s− 10ǫm2s2 + ǫs3 − 6m6 + 5m4s+m2s2 , (4.18)

and

A3 = (ǫ− 1)
(
128ǫ4m4 − 64ǫ4m2s+ 8ǫ4s2 − 256ǫ3m4 + 112ǫ3m2s− 12ǫ3s2 + 192ǫ2m4

− 92ǫ2m2s+ 8ǫ2s2 − 40ǫm4 + 26ǫm2s− ǫs2 − 12m4 + 4m2s− s2
)
. (4.19)

The cases with additional external legs can be treated in a similar manner. It can

always be reduced to sums of integrals with single propagators at the expense of introducing

numerators. In fact in all the cases we studied so far (also for the three-loop cases below)

it has been possible to reduce integrals with multiple propagators to integrals where only

single poles appear (see also ref. [22] where a similar strategy is used to to cancel double

propagators).

Our strategy is now clear. For a two-loop calculation, first we reduce all double pole

graphs using IBPs or any other method. The remaining integrals all contain single poles

and can be treated using the Duality Theorem at two-loops. The appearence of vector

or tensor integrals does not spoil this strategy since the Duality Theorem for single poles,

affects only the denominators of the integrands.

4.2 The case for three-loop diagrams

For three-loop graphs there exists one topology with a triple propagator and a number of

topologies with a double propagator. All topologies are shown in figure 4. The arguments

for the two-loop case are valid here as well. We first reduce the multiple pole integrands by

using IBPs until we have integrals with only single poles (possibly with numerators) and

then we can then apply single-pole Duality Theorem as it was described for the three-loop

case in ref. [23]. In the following, we show explicitly the reduction of the two-point function

for the different topologies and for massless internal lines. We use the notation:

F (a1a2 · · · an) =

∫

ℓ1

∫

ℓ2

∫

ℓ3

1

Da1
1 Da2

2 · · ·Dan
n

(4.20)

to denote a generic three-loop integral with n propagators raised to an arbitrary integer

power, with Di = G−1
F (qi) = q2i −m2

i + i0 or Di equal to any ISP and qi any combination

of external and loop momenta. For the rest of this section the prescription +i0 for the

propagators is understood. We also have s = p2 + i0. The IBPs to be used for the

reduction are:
∂

∂ℓi
· ℓj ,

∂

∂ℓi
· p , i, j = 1, 2, 3 (4.21)

In the following, we present first the result obtained with REDUZE 2 and then with FIRE.

For the single triple pole graph (a) in figure (4), we have the following expressions:
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 4. Master topologies of three-loop scalar integrals with multiple powers of internal prop-

agators. Each internal line already dressed with some external leg can be dressed with additional

external lines.

(a) The denominators used are:

D1=ℓ21, D2=ℓ22, D3=ℓ23, D4=(ℓ2−p)2, D5=(ℓ1−ℓ2)
2, D6=(ℓ3−ℓ2)

2,

D7=ℓ1 · p , D8=ℓ3 · p , D9=ℓ1 · ℓ3 ,

with the result:

F (131111000) =
2ǫ(−1 + 4ǫ)

(1 + ǫ)(1 + 2ǫ)s2
F (111111000)

=
2(−1 + 2ǫ)(−1 + 4ǫ)

(1 + ǫ)(1 + 2ǫ)s3
F (101111000) . (4.22)

For the graphs with doubles poles, (b)-(g), figure (4), we find:

(b) The denominators are:

D1=ℓ21 , D2=ℓ22 , D3=ℓ23 , D4=(ℓ2−p)2 , D5=(ℓ1−ℓ2)
2 , D6=(ℓ3−ℓ2+p)2 ,

D7=ℓ1 · p , D8=ℓ1 · ℓ3 , D9=ℓ3 · p ,

– 17 –



J
H
E
P
0
3
(
2
0
1
3
)
0
2
5

with the result:

F (121211000) =
3(−1 + 4ǫ)(1 + 3ǫ)

(1 + ǫ)2s2
F (111111000)

=
6(−2 + 3ǫ)(−1 + 3ǫ)(1 + 3ǫ)(−3 + 4ǫ)(−1 + 4ǫ)

ǫ2(1 + ǫ)2(−1 + 2ǫ)s4
F (101011000) .

(4.23)

(c) The denominators are:

D1 = ℓ21, D2 = ℓ22, D3 = ℓ23, D4 = (ℓ3 + p)2, D5 = (ℓ3 − ℓ2)
2, D6 = (ℓ1 − ℓ2)

2 ,

D7 = ℓ1 · p, D8 = ℓ2 · p, D9 = ℓ1 · ℓ3 ,

with the result:

F (122111000) =
2ǫ(−1 + 4ǫ)(−1 + 3ǫ)

(1 + 2ǫ)(1 + ǫ)2s2
F (111111000)

=
2(−2 + 3ǫ)(−1 + 3ǫ)(−3 + 4ǫ)(−1 + 4ǫ)

ǫ(1 + ǫ)2(1 + 2ǫ)s4
F (100111000) .(4.24)

(d) The denominators are:

D1 = ℓ21, D2 = ℓ22, D3 = ℓ23, D4 = (ℓ3 − p)2, D5 = (ℓ2 + ℓ3 − ℓ1)
2 ,

D6 = ℓ1 · p, D7 = ℓ2 · p, D8 = ℓ1 · ℓ2, D9 = ℓ1 · ℓ3 ,

with the result:

F (112110000) =
(−1 + 2ǫ)

ǫs
F (111110000) =

(−3 + 4ǫ)

ǫs2
F (110110000) . (4.25)

(e) The denominators are:

D1 = ℓ21, D2 = ℓ22, D3 = ℓ23, D4 = (ℓ3 − p)2, D5 = (ℓ1 + ℓ2)
2, D6 = (ℓ2 + ℓ3)

2 ,

D7 = ℓ1 · p, D8 = ℓ1 · ℓ3, D9 = ℓ2 · p ,

with the result:

F (112111000)=
(−1+4ǫ)

(1+2ǫ)s
F (111111000)=

(−2+3ǫ)(−3+4ǫ)(−1+4ǫ)

ǫ2(1+2ǫ)s3
F (100111000).

(4.26)

(f) The denominators are:

D1=ℓ21, D2=ℓ22, D3=ℓ23, D4=(ℓ2+p)2, D5=(ℓ1+ℓ2)
2, D6=(ℓ1+ℓ3)

2 ,

D7=(ℓ3−ℓ2)
2, D8=ℓ1 · p, D9=ℓ3 · p ,

with the result:

F (121111100) =
2ǫ

(1 + ǫ)s
F (111111100)

=
2(−2+3ǫ)(−1+3ǫ)(−3+4ǫ)(−1+4ǫ)

ǫ2(1+ǫ)(1+2ǫ)s4
[F (001111000)+F (100101100)]

+
2(−1 + 2ǫ)2(−1 + 4ǫ)

ǫ(1 + ǫ)(1 + 2ǫ)s3
F (101110100) . (4.27)
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(g) The denominators are:

D1 = ℓ21, D2 = ℓ22, D3 = ℓ23, D4 = (ℓ3 − p)2 ,

D5 = (ℓ1 − ℓ2)
2, D6 = (ℓ3 − ℓ2)

2, D7 = (ℓ3 − ℓ2 − p)2

D8 = (ℓ1 − ℓ3)
2, D9 = (ℓ1 − p)2 (4.28)

with the result:

F (121111100) =
(−1 + 3ǫ)2(1 + 5ǫ)

(1 + ǫ)(1 + 2ǫ)2s2
F (1111111− 10)

+
ǫ(9ǫ2 − 11ǫ− 4)

(1 + ǫ)(1 + 2ǫ)2s2
F (111111100) . (4.29)

The difference between the two results is due to the fact that the second is expressed in

terms of basis integrals while the first is expressed in terms of integrals with single poles

of the same type as the multiple pole integral (in effect the first result can be further

reduced to the second). Since we do not seek a particular basis for our reduction, as was

stressed earlier, both results are equally useful as far as application of the Duality Theorem

is concerned.

5 Conclusions

We have extended the Duality Theorem to two- and three-loop integrals with multiple poles.

A Lorentz invariant expression for the residues of double poles has been derived, which can

be extended straightforwardly to triple and, in general, multiple poles. In the absence of

a systematic procedure to express the dual +i0 prescription in terms of external momenta

exclusively, as in the case of single poles, we have explored an alternative approach. We

use IBP identities to reduce the integrals with identical propagators to ones with only

single poles. Therefore, the essential features of the loop-tree duality now remain intact.

We reiterate that our goal is not to reduce everything to some set of master integrals.

Rather, we reduce the integrals until there are no multiple poles left. Then, we can use

the Duality Theorem in its original form for single pole propagators, to rewrite them as

integrals of a tree-level object over a modified phase-space. The appearence of additional

tensor integrals, due to the reduction, does not affect our procedure, since applying the

Duality Theorem in its single-pole version, only cuts propagators, leaving the numerators

of the integrals unaffected.
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A Proof of the reduction of eq. (4.6)

Here we solve the system of equations, explicitely, to arrive at eq. (4.6). We note that we

are not aiming for a full reduction to a set of master integrals but rather to reduce the

multiple poles to single poles. Therefore, any integral which has single propagators is to

be considered known.

Using the IBPs, eq. (4.5), on the generic integral F (a1a2a3a4a5), we get the system of

equations:

d− 2a1 − a4 − a5 − a44
+1− + a44

+2− = 0 , (A.1)

a1 − a4 +
1

2
sa55

+ + a44
+(1− − 2−) + a11

+(2− − 4−) +
1

2
a55

+(2− − 3−) = 0 , (A.2)

a44
+(s+ 2− − 3− − 2 5−)− sa55

+ − 2a11
+5− = 0 , (A.3)

a2 − a4 + a22
+(1− − 4−) + a33

+(1− + 2− − 4− − 25−) + a44
+(2− − 1−) = 0 , (A.4)

d− 2a2 − a3 − a4 + a33
+(s− 2−) + a44

+(1− − 2−) = 0 , (A.5)

a2−a3+s(a22
+−a33

++a44
+)+a44

+(2−−3−−25−)+a33
+2−−a22

+3− = 0 , (A.6)

where s = p2+ i0. The appearence of the operator 5− signals that we have the ISP ℓ1 ·p in

the numerator of an integral. As long as these integrals possess single propagators, we will

not reduce them further but consider them known. We also note that a lot of the integrals

that appear after setting particular values to the parameters ai in this system, are zero in

dimensional regularization (in the massless case). Let us start by setting a2 = 2, a1 = a3 =

a4 = 1, a5 = −1 in (A.2). We get:

F (2111− 1)− F (1112− 1)−
1

2
sF (12110)−

1

2
F (11110) = 0 . (A.7)

Taking the sum of (A.5) and (A.6) and setting a1 = 1, a2 = a3 = a4 = 1, a5 = 0 we get:

(d− 4)F (11110) + sF (12110) + sF (11120)− 2F (1112− 1) = 0 . (A.8)

Taking the difference between (A.5) and (A.6) and setting a1 = 2, a2 = a3 = a4 = 1, a5 = 0

we get:

− 2F (2111− 1)− sF (12110) + sF (11210)− F (10210) = 0 . (A.9)
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Finally, setting a1 = 2, a2 = a3 = a4 = 1, a5 = −1 in (A.1), we get:

(d− 4)F (2111− 1)− F (1112− 1) + F (2012− 1) = 0 . (A.10)

The integrals F (10120) and F (11210) and F (2012− 1), in this system of equations, can be

computed simply by taking further, appropriate combinations of eqs. (A.1)–(A.6). Setting

a1 = a2 = a3 = a4 = 1, a5 = 0 in (A.1) we get F (10120) = (3 − d)F (11110). It also

holds that F (10120) = F (10210), as can be seen by making the shifts in the loop momenta

ℓ2 → −ℓ1 − ℓ2 − p. From eq. (A.5), by setting a1 = a2 = a3 = a4 = 1, a5 = 0 and using

the value of F (10120), we get: sF (11210) = (10− 3d)F (11110). Finally, adding eqs. (A.1)

and (A.2) and setting a1 = a2 = 1, a3 = 2, a4 = 1, a5 = −1 we get: F (2012 − 1) =

(d − 3)(d − 4)F (11110). The rest of the system of equations (A.7)–(A.10) can now be

solved sequencially, arriving at:

F (12110) =
(3d− 10)

(d− 6)s
F (11110) , (A.11)

a result which, after putting d = 4− 2ǫ, agrees with eq. (4.6).
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