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1 Introduction

There is now a substantial body of research that uses gauge/gravity duality to describe the

physics of strongly coupled field theories with a view towards possible connections with con-

densed matter and many body physics (see, for example, [1–3]). Most of these constructions

have been phenomenological, or “bottom-up”, in which the gravity dual of an interesting

condensed matter system is postulated ab initio without using the well-established, but

more complicated, holographic dualities that one can derive from open/closed duality in

string theory. While it is certainly interesting to explore the possible physics one can realize

in such phenomenological gravitational models, the drawback is that one has limited infor-

mation about the dual field theory and the completeness and accuracy of the holographic

dictionary. On the other hand, if one is able to realize a given phenomenological model as

a truncation of ten- or eleven-dimensional supergravity one will have a much better control

over the dual field theory because of the well-established holographic dualities.
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There have been attempts to embed the holographic superconductor model1 of [4–6]

in IIB and eleven-dimensional supergravity [7–13]. These embeddings typically involve

studying some particular truncation of the higher-dimensional supergravity on a compact

manifold or a consistent truncation of a lower-dimensional gauged supergravity. Since the

holographic superconductors are typically not supersymmetric there might be unstable

light modes that lie outside the truncation of interest and destabilize the holographic

superconductor. This possibility was emphasized in [14], where it was demonstrated that

for some of the consistent truncations studied in [8–11], which realize the minimal model of a

holographic superconductor, there are indeed such unstable modes in the lower-dimensional

gauged supergravity.

Our goal here is to show that one can embed the minimal model of a holographic

superconductor, consisting of the metric, a charged scalar with a non-trivial potential and

an Abelian gauge field,2 in the truncation of four-dimensional maximal gauged supergravity

studied in [15]. This truncation of gauged supergravity has an SO(3)×SO(3) invariance and

contains two AdS4 critical points with different cosmological constants. The UV critical

point is the SO(8), maximally supersymmetric point that uplifts to the AdS4×S7 solution

in eleven dimensions. The IR critical point was originally found in [16, 17] and has SO(3)×
SO(3) global symmetry and no supersymmetry. An important fact about the SO(3)×SO(3)

AdS4 vacuum is that it is perturbatively stable in the full four-dimensional N = 8 gauged

supergravity [15].3 It should also be emphasized that the SO(3)×SO(3) point has the lowest

value of the cosmological constant of all known stable critical points in four-dimensional

gauged supergravity [15, 19, 20] and the cosmological constant is also lower than that of

several of the unstable critical points. Therefore the SO(3)× SO(3) point has a chance of

being the IR attractive critical point for a lot of flows in the theory on the world-volume

of M2 branes.

Using the usual Ansatz for a holographic superconductor solution employed in [6],

we numerically solve the equations of motion in the SO(3) × SO(3) invariant truncation

of gauged supergravity. Depending on the choice of boundary conditions, we find two

types of solutions with non-trivial gauge fields and scalar condensates below some critical

value of the temperature. These solutions are thermodynamically preferred over the AdS-

Reissner-Nordstrøm (AdS-RN) solution. The phase transition at the critical temperature

for one choice of boundary conditions is second order and the phase diagram looks much

like the one studied in [6, 9, 11]. The phase transition for the other choice of boundary

conditions is, however, first order. This is to be contrasted with all other embeddings of

holographic superconductors in supergravity for which a second order phase transitions for

the condensate was found [7–13]. This fact suggests that there is probably no universal

behavior of holographic superconductors embedded in higher dimensional supergravity.4

1This model involves a spontaneously broken gauge field in the bulk and therefore is more properly

described as a superfluid in the dual field theory. We will adopt the name holographic superconductor since

this usage is, by now, standard in the literature.
2This is sometimes called the Abelian Higgs model.
3An uplift of this point to eleven dimensions will be discussed in [18].
4Note that a first order superconducting phase transition was obtained in some of the phenomenological
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To elucidate the properties of the first order phase transition, we study a family of

phenomenological potentials that interpolate between the one in the SU(4) sector studied

in [9, 11], and the one in the SO(3)×SO(3) sector. We explicitly show how the order of the

phase transition changes from second to first. While the interpolating potential is “phe-

nomenological,” it is important to underline the fact that the end points of this interpolation

give potentials that live within fully consistent truncations of eleven-dimensional supergrav-

ity and so have well-established holographic interpretations. This explicitly demonstrates

that the physics of the holographic superconductor depends crucially on the truncation of

supergravity and its corresponding potential. We also study the zero temperature limit of

the solutions and show that there is an emergent conformal symmetry in the IR realized

by a domain wall solution interpolating between the two AdS4 vacua of the supergravity

truncation at hand. Since the IR AdS4 vacuum is perturbatively stable, we have an em-

bedding of the minimal holographic superconductor in gauged supergravity with a stable

zero-temperature ground state.

It is relatively easy to relate the flows considered here to the Chern-Simons theory

on the M2 branes [23]. The SO(3) × SO(3) is embedded diagonally into the SO(6) R-

symmetry of the ABJM theory so that the six manifest supersymmetries of the ABJM

theory decompose as (3, 1) ⊕ (1, 3). Thus none of the six supersymmetries of the ABJM

theory survive in the SO(3) × SO(3) invariant truncation that we will consider here. The

residual U(1) gauge field, dual to the chemical potential on the M2 brane in our model, is

the SO(2) that commutes with SO(6) inside SO(8) and is thus the U(1)b baryon number

symmetry that is used to make the Zk orbifold and determines the level of the dual Chern-

Simons theory. The SO(3)× SO(3) invariant flow of interest involves supergravity scalars

that are charged under this U(1)b and, as explained in [23], correspond to ’t Hooft, or

monopole, operators. Thus our flows involve condensates of such monopoles within the

dual Chern Simons theory.

In section 2, we present the action of the supergravity truncation of interest, the

Ansatz for the holographic superconductor solutions and the corresponding equations of

motion. In section 3, we study holographic superconductor solutions at zero and finite

temperature, present the phase diagrams for the two possible condensates and show that

the superconductor solutions are thermodynamically preferred over the AdS-RN solution.

Section 4 is devoted to the study of a one-parameter family of phenomenological potentials

that interpolate between the potential in the SU(4) sector of gauged supergravity studied

in [9, 11, 14] and the SO(3) × SO(3) potential that is the primary focus of this paper.

In particular, we show that the order of the phase transition for one of the condensates

changes from first to second as we vary the parameter in the interpolating potential. In

section 5 we discuss the holographic dictionary for our model in some detail and point out

that our flows do not realize spontaneous symmetry breaking in the M2 brane field theory

but nevertheless they realize holographic superconductors. We conclude in section 6 with

a discussion and possible avenues for further study.

models studied in [21, 22]. To the best of our knowledge these examples have not been embedded in

supergravity/string theory.
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2 The gauged supergravity truncation

2.1 The truncated action

We will study a truncation of four-dimensional N = 8 gauged supergravity, [24], to the

SO(3) × SO(3) invariant sector. Under this group, the eight supersymmetries decompose

as (3, 1) ⊕ (1, 3) ⊕ (1, 1) ⊕ (1, 1). In particular, the invariant subsector under one of the

SO(3)’s is simply the N = 5 gauged supergravity discussed in [25]. We may therefore

obtain the theory of interest as the SO(3) invariant sector of N = 5 gauged supergravity.

The relevant truncation is also discussed in [15, 18]. The theory is N = 2 supergravity

coupled to a hypermultiplet and the bosonic sector of the theory consists of the graviton,

the graviphoton and two complex scalar fields, ζ1, ζ2, with charges ±1 under the SO(2)

R-symmetry:

ζ1 −→ eiαζ1 , ζ2 −→ e−iαζ2 . (2.1)

There are five complex scalars in N = 5 gauged supergravity which parametrize the coset

SU(5, 1)/U(5), and thus the scalars ζ1, ζ2 will be the SO(3)-invariant subsector of this and

will parametrize the coset
SU(2, 1)

SU(2)×U(1)
. (2.2)

With our choice of gauge transformation, (2.1), the graviphoton, A, gauges the diagonal

U(1) subgroup of the denominator SU(2) and the covariant derivatives of the complex

scalars are:

∇µζ1 = ∂µζ1 + ig Aµ ζ1 , ∇µζ2 = ∂µζ2 − ig Aµ ζ2 , (2.3)

where g is the coupling constant of the gauged supergravity.

Then the truncated bosonic action is:5

e−1L =
1

2
R− 1

4
FµνF

µν − gζiζ̄j∇µζi∇
µζ̄j − P , (2.4)

where the metric on the coset (2.2) is given by:

gζiζ̄jdζidζ̄j =
dζ1dζ1 + dζ2dζ2

1− |ζ1|2 − |ζ2|2
+

(ζ1dζ1 + ζ2dζ2)(ζ1dζ1 + ζ2dζ2)

(1− |ζ1|2 − |ζ2|2)2
, (2.5)

and the potential is:

P = −1

2
g2 12− 16(|ζ1|2 + |ζ2|2) + 3(|ζ1|4 + |ζ2|4) + 10|ζ1|2|ζ2|2

(1− |ζ1|2 − |ζ2|2)2
. (2.6)

Since we are going to need the holographic dictionary of the N = 8 theory, it is

important to relate the scalars ζ1 and ζ2 to those of the N = 5 theory and thereby to those

the N = 8 theory. Define:

φ1 ≡
1√
2

(ζ1 + ζ2) , φ2 ≡
i√
2

(ζ1 − ζ2) , (2.7)

5Note that the coefficient of the F ∧ F term vanishes identically in our truncation.
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then these scalars have gauge transformations as a two-dimensional vector of SO(2) and

may be viewed as two of the five complex scalars of the N = 5 theory. One can easily

verify that with this change of variables the scalar potential, (2.6), is precisely the SO(3)

invariant truncation of the potential of the N = 5 theory [25]. The real parts of the φi
are scalars and the imaginary parts are pseudoscalars. Thus the former are dual to boson

bilinears in the M2 brane theory and the latter are dual to fermion bilinears.

In addition to the maximally supersymmetric SO(8) critical point for which ζ1 = ζ2 =

0, there are the non-trivial SO(3)× SO(3)-invariant critical points at:

ζi = 0 , ζj = ± 2√
5
, i 6= j = 1, 2 , (2.8)

which correspond to

φ1 = i ε1 φ2 = ε2

√
2

5
, (2.9)

with ε21 = ε22 = 1. As shown in [15], this critical point is not supersymmetric but is still

perturbatively stable in the full N = 8 gauged supergravity, that is, all seventy scalars

have masses above the BF bound [26].

The potential, (2.6), is invariant under ζ1 ↔ ±ζ2 and under ζi → −ζi for i = 1, 2

separately. Indeed, one can show that it is consistent with all the equations of motion

derived from (2.4) to set ζ1 = 0 and we will do so henceforth. Note that setting ζ1 = 0

sets φ2 = −iφ1 and thus locks together scalars and pseudoscalars. Since the scalars and

pseudoscalars lie in different SO(8) representations of the N = 8 supergravity theory,

setting ζ1 = 0 cannot be induced as a part of the gauge symmetry and thus the ζ1 → −ζ1

symmetry that allows this identification should be viewed as an “accidental symmetry” of

the action. This symmetry does, however, make the analysis of the flow to the non-trivial

critical point far simpler.

It is convenient to perform the following change of variables:

ζ2 = tanhλ eiϕ , (2.10)

and this simplifies the action to the form that we will use throughout the rest of the paper:

e−1L =
1

2
R− 1

4
FµνF

µν − ∂µλ∂µλ−
sinh2(2λ)

4
(∂µϕ− gAµ)(∂µϕ− gAµ)− P , (2.11)

with the potential:

P = −g2

(
6 cosh4(λ) − 8 cosh2(λ) sinh2(λ) +

3

2
sinh4(λ)

)
. (2.12)

The critical points of the potential are at

λ = 0 , λ = log(2 +
√

5) , (2.13)

having SO(8) and SO(3)× SO(3) global symmetry respectively.

– 5 –



J
H
E
P
0
3
(
2
0
1
2
)
0
6
4

2.2 The equations of motion

The action in (2.11) is that of a charged scalar with a non-trivial potential coupled to grav-

ity. These are the minimal ingredients of the holographic superconductor model studied

in [4–6]. Below we will show that indeed this consistent truncation of four-dimensional

gauged supergravity admits solutions that can be interpreted as holographic superconduc-

tors. To do this we take the following Ansatz for the metric, the gauge field and the scalar:6

ds2 = −G(r)e−χ(r)dt2 + r2(dx2
1 + dx2

2) +
dr2

G(r)
, A = Ψ(r)dt , λ = λ(r) . (2.14)

It is straightforward to substitute this Ansatz in the equations of motion derived from (2.11)

and find a system of ordinary differential equations that govern radial flows (that is, flows

that depend only upon r). The (t, r) component of Einstein equations leads to the follow-

ing equation:

sinh2(2λ)Ψ
dϕ

dr
= 0 . (2.15)

Since we are interested in solutions with non-trivial profiles for λ and Ψ we choose to solve

this by taking ϕ to be a constant and, because of the symmetry, we can take this to be

zero. With this choice, the rest of the equations of motion reduce to:

χ′ + 2r(λ′)2 +
g2reχ sinh2(2λ)Ψ2

2G2
= 0 , (2.16)

(λ′)2 +
G′

rG
+
eχ(Ψ′)2

2G
+
P
G

+
1

r2
+
g2eχ sinh2(2λ)Ψ2

4G2
= 0 , (2.17)

Ψ′′ +

(
2

r
+
χ′

2

)
Ψ′ − g2 sinh2(2λ)Ψ

2G
= 0 , (2.18)

λ′′ +

(
2

r
− χ′

2
+
G′

G

)
λ′ − 1

2G

dP
dλ

+
g2eχ sinh(4λ)Ψ2

4G2
= 0 , (2.19)

where ′ denotes d/dr. Equations (2.16) and (2.17) are appropriate linear combinations

of the tt and rr components of Einstein equations. Equation (2.18) is the t component

of Maxwell equations and (2.19) is the equation of motion for the scalar λ. The xixi
components of the Einstein equations lead to equations that can be derived from (2.16)

and (2.17) and are therefore not independent. We will numerically solve equations (2.16)–

(2.19) in section 3.

Since we will be looking for black-hole solutions in a static metric, the horizon will be

the zero locus ofG(r). Specifically, the horizon is located at r = rH whereG(r) ∼ O(r−rH).

Regularity also requires that Ψ(r) ∼ O(r − rH) at the horizon. The temperature of the

solution can be computed in the standard way by imposing regularity of the Euclidean

metric near r = rH . Indeed, if one uses (2.17) and extracts the simple pole term at r = rH
one obtains a simple expression for the temperature:

T = − rH
8π

(2Pe−χ/2 + (Ψ′)2eχ/2)|r=rH . (2.20)

6For ease of comparison, we have used the same Ansatz as in [6, 9, 11].
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3 Holographic superconductors

3.1 Solutions at finite temperature

We will show below that, at finite temperature, there are, in general, two types of solutions

to the equations of motion. One is the familiar AdS-RN black hole that exists for all

values of the temperature.7 Below some critical value of the temperature we find a new

branch of solutions that have scalar hair and are thermodynamically preferred over the

AdS-RN solution.

The equations of motion, (2.16)–(2.19), and the background fields have the following

scaling symmetries that need to be fixed before constructing a solution:

t→ β1t , χ→ χ+ 2 log β1 , Ψ→ β−1
1 Ψ , (3.1)

t→ β2t , r → β2r , g → β−1
2 g , (3.2)

(t, x1, x2)→ β−1
3 (t, x1, x2) , r → β3r , Ψ→ β3Ψ , G→ β2

3G , (3.3)

where (β1, β2, β3) are real scaling parameters. These symmetries can be used to choose

arbitrary values for the location of the horizon, the coupling constant of gauged supergrav-

ity, g, and the asymptotic value of the metric function χ∞ = lim
r→∞

χ(r). We will chose the

following values

rH = 1 , g = 1 , lim
r→∞

χ = 0 . (3.4)

3.1.1 The AdS-RN black hole

The AdS-RN solution is simply obtained by setting λ = 0 and χ = 0. The metric function

and the gauge fields are given by8

G = 2r2 − 1

r

(
2r3
H +

ρ2

2rH

)
+

ρ2

2r2
, Ψ = ρ

(
1

rH
− 1

r

)
. (3.5)

The chemical potential is given by the potential difference between the horizon and infinity,

µ = ρ/rH , the charge density in the dual field theory is ρ and the temperature of the black

hole is given by:

T =
12r4

H − ρ2

8πr3
H

. (3.6)

The extremal AdS-RN black hole has T = 0 and therefore ρ = 2
√

3r2
H . The metric function

is then:

G =
2

r2
(r − rH)2(r2 + 2rr2

H + 3r2
H) . (3.7)

It is clear from this expression that the two horizons of the AdS-RN black hole coincide

at T = 0. It is not hard to show that the extremal AdS-RN black hole is a solution

interpolating between AdS4 (as r →∞) and AdS2 × R2 (as r → 0).

7Strictly speaking this is only true when one studies black holes with flat horizons, as we do here. In

global coordinates there is a Hawking-Page phase transition at sufficiently low temperature.
8From now on we will fix the coupling constant of gauged supergravity g = 1. This also sets the scale of

the AdS4 critical points of the scalar potential.
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3.1.2 Hairy black hole

We will now look for solutions of the equations of motion (2.16)–(2.19) that have a non-

trivial profile for the scalar. We will use a numerical shooting technique and we will impose

initial conditions in the IR, that is, at the black hole horizon, and read off the solution at

asymptotic infinity. The series solution near the horizon has the expansion:9

χ = χ0 + χ1(r − rH) + . . . ,

λ = λ0 + λ1(r − rH) + . . . ,

Ψ = Ψ1(r − rH) + Ψ2(r − rH)2 + . . . ,

G = G1(r − rH) + . . . .

(3.8)

Substituting this into the equations of motion yields four independent algebraic equations

relating the seven parameters. Thus we really have three independent parameters which

give us the initial conditions at the horizon. We can choose the following to be the inde-

pendent ones:

χ0 , λ0 , Ψ1 . (3.9)

Our numerical scheme is as follows: First we fix g = 1 and rH = 1 using two of the

scaling symmetries of the equations of motion (3.2) and (3.3). We also fix χ0 = 4 (one could

also pick any other value), and this ultimately generates some non-zero value for χ∞ which

we then shift, via the scaling symmetry (3.1), to χ∞ = 0. Then we scan the parameter

space {λ0,Ψ1} and generally obtain a two-parameter family of solutions. However, we need

to fix the asymptotic boundary behaviour of the scalar field λ. The asymptotic behaviour

of λ is given by

λ ∼ λ1

r
+
λ2

r2
+ . . . , (3.10)

and we will choose either λ1 = 0 or λ2 = 0. Making this choice ultimately leaves us

with a one-parameter family of solutions which we then choose to parametrize in terms of

the temperature.

To calculate the thermodynamic properties of our solutions we will also need the

linearized solution in the UV. Near the boundary of AdS4, r → ∞, the solution has

the following expansion:

G = G−2r
2 +G−1r +G0 +

G1

r
+ . . . ,

χ = χ∞ +
χ1

r
+
χ2

r2
+
χ3

r3
+
χ4

r4
+ . . . ,

λ =
λ1

r
+
λ2

r2
+
λ3

r3
+ . . . , (3.11)

Ψ = µ− ρ

r
+

Ψ2

r2
+

Ψ3

r3
+

Ψ4

r4
+ . . . .

9We have put Ψ0 = 0 as required by regularity.
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The parameters {χ∞, λ1, λ2, µ, ρ} are all functions of the temperature10 and contain phys-

ical information. After substituting the series expansion in the equations of motion and

solving up to O(1/r6), we can solve for the other coefficients

G−2 = 2 , G−1 = 0 , G0 = 2λ2
1 , G1 = 3λ1λ2 − ε ,

χ1 = 0 , χ2 = λ2
1 , χ3 =

8

3
λ1λ2 , χ4 =

1

4

(
λ4

1 + 8λ2
2 − eχ∞λ2

1µ
2
)
,

λ3 =
1

24
λ1

(
2λ2

1 − 3eχ∞µ2
)
, Ψ2 =

µ

2
λ2

1 , Ψ3 =
µ

3
λ1λ2 .

(3.12)

Note that in G1 we have introduced the parameter ε which corresponds to the mass of the

hairy black hole and, once on solves (2.16)–(2.19) and uses (3.11) and (3.12) in (2.20), one

also finds that ε is a function of the temperature.

With all these preliminaries, we can now solve for the hairy black hole background.

Depending on our choice, we can either have the condensate O1 ∼ λ1 6= 0 or O2 ∼ λ2 6=
0. There exists a one-parameter family of both these types of solutions. This family of

solutions generate the corresponding condensate as a function of the temperature. As

in [5, 6] we will work in the fixed charge ensemble otherwise known as the canonical

ensemble. The condensates and the temperature are all dimensionful quantities and we

will measure them in units of the charge density ρ. The dependences are shown in figure 1

and figure 2 respectively. The phase transition for O1 is second order and the one for O2 is

first order.11 To determine whether the hairy black hole solutions are thermodynamically

preferred one has to compute their free energy and show that it is lower than that of

the AdS-RN solution. Computing the free energy also enables us to obtain the critical

temperature for the first order phase transition for the O2 condensate. This will be the

subject of the next section.

3.1.3 Thermodynamics

One can use standard holographic technology to compute the free energy of our solutions.

Since this procedure is well known we will omit many of the calculational details here and

will just present the relevant final formulae (for more details see for example [6, 18]). The

basic idea is that the Gibbs free energy in the grand canonical ensemble of the dual field

theory is given by the renormalized on-shell Euclidean supergravity action.12 The final

result depends on the UV boundary condition one imposes, that is, whether one keeps λ1

or λ2 in (3.10) fixed. We find

Ω

T
= −1

2

∫
d3xe−χ∞/2 (ε− 5λ1λ2) with λ1 = fixed ,

Ω

T
= −1

2

∫
d3xe−χ∞/2 (ε− 13λ1λ2) with λ2 = fixed ,

(3.13)

10Which we can find only numerically after integrating the equations of motion.
11See section 5 for an interpretation of these solutions in the dual field theory and a discussion on whether

they can be interpreted as realizing spontaneous symmetry breaking.
12For a review on holographic renormalization see [27].

– 9 –



J
H
E
P
0
3
(
2
0
1
2
)
0
6
4

0.05 0.10 0.15 0.20

T

Ρ

0.1

0.2

0.3

0.4

0.5

0.6

O1

Ρ

Figure 1. The condensate, O1 ∼ λ1, as a function of temperature with boundary condition λ2 = 0.

The phase transition is second order and happens at Tc/
√
ρ ≈ 0.2403.
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Figure 2. The condensate, O2 ∼ λ2, as a function of temperature with boundary condition λ1 = 0.

The critical temperature at which there is a first order phase transition with a discontinuous jump

in the value of the condensate is determined from the free energy computation shown in figure 4

and the value is shown here by the dashed vertical line. The thermodynamically preferred phase

has O2 = 0 for T > Tc and the value of the condensate jumps discontinuously to the upper branch

of the solid blue curve for T < Tc and follows it to T = 0.

where Ω is the Gibbs free energy in the grand-canonical ensemble, T is the tempera-

ture (2.20), and ε was defined in (3.12). For all the hairy black hole solutions we study we

impose either λ1 = 0 or λ2 = 0, hence the second term in the final expression for Ω above

does not contribute and we end up with a formula identical to the one obtained in [6].

When we constructed the hairy black hole solutions we fixed the charge in the dual

field theory and this corresponds to choosing the canonical ensemble. The Helmholtz free

energy in the canonical ensemble is given by

Fhairy = Ω + µρ

∫
d2x =

(
− ε

2
+ µρ

)
VR2 , (3.14)
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Figure 3. The difference in free energy between the AdS-RN and the hairy black hole solutions

for the hairy solutions with a non-zero O1 condensate. The critical temperature, Tc/
√
ρ ≈ 0.2403,

is determined by where O1 vanishes (see figure 2) and the hairy black hole solution has a lower free

energy for T < Tc and the phase transition is second order.

where VR2 is the spatial volume in the (x1, x2) plane and we further note that the physical

temperature is given by
∫
dτe−χ∞/2 = 1/T , where τ is the Euclidean time.

As in [6], we can also easily compute the Helmholtz free energy in the canonical en-

semble for the AdS-RN solution

FRN = Ω + µρVR2 =
1

rH

(
−r4

H +
3

4
ρ2

)
VR2 . (3.15)

To decide whether the hairy back hole solution is thermodynamically preferred over the

AdS-RN black hole we have computed the difference in free energy between the two solu-

tions, ∆F = FAdS-RN − Fhairy. The thermodynamically preferred branch will have lower

free energy. The result for the O1 and O2 condensates are plotted in figure 3 and figure 4

respectively. It is clear that for T < Tc the hairy black holes have lower free energy and

therefore are the thermodynamically preferred phase of the system. The plot for the O2

free energy also clearly demonstrates that there is a “kink” in the free energy, i.e. a discon-

tinuity in the first derivative, at T = Tc and therefore the corresponding phase transition

is first order.

3.2 Zero-temperature solutions

It was argued on general grounds in [28] that, at zero temperature, the solution of the

Abelian Higgs model with an appropriate potential interpolates between two AdS4 spaces.13

This was later realized in [8–11], where a zero temperature domain wall, which is dual

to spontaneous symmetry breaking of a U(1) symmetry, was constructed in consistent

truncations of IIB and eleven-dimensional supergravity. It is natural to ask whether the

13As discussed in [29, 30] in general there is the possibility of having a Lifschitz solution in the IR but

one can show that there are no Lifshitz solutions in the SO(3)× SO(3) truncation we study here.
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Figure 4. The difference in free energy between the AdS-RN and the hairy black hole solutions for

the hairy solutions with a non-zero O2 condensate. The blue (horizontal) curve is the free energy

for T > Tc and the kink in the free energy at T = Tc indicates a first order phase transition. The

dashed maroon (lower) curve represents a phase that is not thermodynamically favored.

SO(3) × SO(3) truncation discussed above admits such zero temperature solutions. One

can show that such solutions indeed exist for both choices of boundary conditions, λ1 = 0

or λ2 = 0. To find these solutions we have again used a numerical shooting technique and

have specified initial condition in the IR, which is now at r → 0, since there is no black hole

horizon at zero temperature. To specify initial conditions in the IR we use the linearized

solution of the equations of motion for r → 0

λ = log(2 +
√

5) + λ1rα + . . . ,

Ψ = Ψ1rβ + . . . ,

G =
14

3
r2 + . . . ,

χ = χ0 + . . . .

(3.16)

where we have defined

α ≡
√

303

28
− 3

2
, β ≡

√
247

28
− 1

2
. (3.17)

Using the scaling symmetry of the equations of motion one can fix the values14 of Ψ1 and

χ0 and thus the only free parameter one can vary in the IR is the coefficient λ1. We use

this initial condition as a knob to set either λ1 = 0 or λ2 = 0 in the UV. The scalar and the

gauge field for these solutions are plotted in figure 5 and figure 6. These zero-temperature

solutions should be interpreted as the ground states of the holographic superconductors

with λ1 = 0 or λ2 = 0 boundary conditions.

14We choose to work with Ψ1 = 1 and χ0 = 4.
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Figure 5. The scalar, λ, and the gauge field, Ψ, as functions of r for the T = 0 flow with λ2 = 0

boundary condition.
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Figure 6. The scalar, λ, and the gauge field, Ψ, as functions of r for the T = 0 flow with λ1 = 0

boundary condition.

4 A family of interpolating potentials

We now generalize the discussion above by considering the same action as in (2.11):

e−1L =
1

2
R− 1

4
FµνF

µν − ∂µλ∂µλ−
sinh2(2λ)

4
(∂µϕ− gAµ)(∂µϕ− gAµ)− P , (4.1)

but now with a family of phenomenological potentials given by:

P = −g
2

2
cosh4(λ)(3− 4 tanh2(λ))− a3g2

2
(2 + cosh(2λ))

= −(3 a+ 1)

2
g2 (3 cosh4 λ− 4 cosh2 λ sinh2 λ) − 3 a

2
g2 sinh4 λ ,

(4.2)

for some parameter, a. For a = 1 the potential reduces to (2.12) in the SO(3) × SO(3)

sector. For a = 0 the potential is the one of the SU(4) sector of gauged supegravity [14],

a holographic superconductor in this sector was studied in [9, 11].15 The reason we are

interested in studying this action is to illustrate how the superconducting phase transition

for the condensate O2 smoothly transforms from second to first order as one varies the

parameter a.

15The action is equivalent to the one in section 3.1 of [14] with ηBHPW = 0 and the redefinition ghere =

2gBHPW.
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Figure 7. The phase diagram for the O1 condensate for five representatives of the one-parameter

family of interpolating solutions. The maroon (rightmost) one is for the SO(3) × SO(3) potential,

that is, a = 1. The blue (leftmost) curve is for the SU(4) potential, that is, a = 0. The three dashed

curves in the middle have a = {0.9, 0.5, 0.1} from right to left.

It is important to emphasize that the interpolating potential (4.2) has the following

series expansion around λ = 0

P = −g2(1 + 3a)

(
3

2
+ λ2

)
+O(λ4) . (4.3)

This implies that the scalar, λ, for all values of the parameter a has the dimensionless mass

m2L2 = −2 , where L is the scale of the AdS4 in the UV. The only role of the parameter,

a, at the linearized level is to determine the particular value of L. Therefore the parameter

a does not affect the linearized UV action, that is, the mass and charge of the scalar are

independent of a. The importance of the parameter, a, is that it sets the depth of the

non-trivial critical point of the potential and determines the steepness of the descent to

that point.

We have plotted the phase diagrams for O1 and O2 for some particular values of a in

figure 7 and figure 8 respectively. This clearly shows that the full non-linear form of the

potential, which we deduced from gauged supergravity, is crucial for capturing the physics

of the holographic superconductor. In particular, the phase transition for O2 depicted in

figure 8 changes between second order and first order as a becomes larger. The phase

transition for the the condensate O1 remains second order for any value of a ∈ [0, 1]. One

should also note that, due to lack of numerical precision in our IR shooting procedure,

we are not able to find solutions with non-zero O2 condensate for very low values of the

temperature. We believe this is due to our imprecise numerics and is not physical.

5 The holographic dual

5.1 The standard, “top-down” holographic dictionary

From the standard holographic dictionary of N = 8 supergravity we know that super-

gravity scalars are dual to bosonic bilinears in the M2 brane theory while supergravity
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Figure 8. The phase diagram for the O2 condensate for six representatives of the one-parameter

family of interpolating solutions. The maroon (leftmost) one is for the SO(3) × SO(3) potential

(a = 1). The blue (rightmost) curve is for the SU(4) potential (a = 0). The four dashed curves in

the middle have a = {0.9, 0.5, 0.3, 0.1} from left to right. Clearly the order of the phase transition

changes from first to second as a is decreased.

pseudoscalars are dual to fermion bilinears. At the maximally supersymmetric AdS4 criti-

cal point, all seventy supergravity scalars have masses, m, obeying:

m2 L2 = − 2 , (5.1)

where L is the radius of curvature of the AdS4. This is related to the scaling dimension, ∆,

of the couplings or operator vevs on the M2 brane via the relation m2L2 = ∆(∆−3) and so

the supergravity fields correspond to couplings or vevs of operators with ∆ = 1 or ∆ = 2.

The standard dogma in holographic theories is that non-normalizable supergravity

modes correspond to coupling constants in perturbations of the Lagrangian of the dual

theory, while normalizable supergravity modes correspond to states of the field theory on

the M2 brane, described by vevs. However, as discussed in [31], this standard dogma does

not necessarily apply for a certain range of scalar masses and there is an ambiguity in the

choice of quantization scheme of the supergravity scalar modes. The value m2L2 = −2

in AdS4 falls precisely in this range. In standard quantization, the standard dogma ap-

plies but there is an “alternative quantization” that reverses the dictionary with non-

normalizable modes describing vevs and normalizable modes representing perturbations of

the Lagrangian. Moreover, it was shown in [26] that to preserve the supersymmetry in

N = 4 supergravity (and therefore to preserve the supersymmetry in N = 8 supergrav-

ity) the supergravity pseudoscalars must be quantized in exactly the opposite way to the

supergravity scalars. Thus, if the supergravity scalars obey the standard dogma then the

supergravity pseudoscalars must have the opposite dictionary, and vice versa.

Therefore, there are two choices of holographic dictionary for the seventy spin-0 par-

ticles of supergravity. However there is only one choice in which the scaling dimensions of

the supergravity modes matches precisely with the scaling dimensions of the operators or

couplings of the dual M2 brane theory. The correct holographic dictionary is thus:
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• The non-normalizable (∆ = 1) modes of the 35 pseudoscalars describe fermion masses

on the M2 brane while for the 35 scalars the ∆ = 1 modes correspond to vevs of boson

bilinears.

• The normalizable (∆ = 2) modes of the 35 pseudoscalars describe vevs of fermion

bilinears on the M2 brane while for the 35 scalars the ∆ = 2 modes correspond to

bosonic masses.

This is the only dictionary that is consistent with the following three features of the maxi-

mally symmetric AdS4 vacuum (where all the supergravity scalars and pseudoscalars van-

ish) and the Hilbert space erected on it: a) N = 8 supersymmetry, b) the relationship be-

tween supergravity scalars and bosonic couplings/vevs on the M2 brane and supergravity

pseudoscalars and fermionic couplings/vevs on the M2 brane, and c) the scaling dimensions

of supergravity fields match the scaling dimensions of dual couplings or vevs.

To understand this holographic dictionary in more detail, one starts from the N = 8

theory in the SU(8) frame in which the supersymmetries transform as the 8s of SO(8). The

scalars and pseudoscalars transform in the 35v and 35c, respectively, of SO(8) and can be

represented by a complex, self-dual four-form, ΣIJKL:

ΣIJKL =
1

24
εIJKLMNPR ΣMNPR , (5.2)

where ΣIJKL is the complex conjugate of ΣIJKL and I, J, . . . = 1, . . . , 8. The real parts

of Σ are scalars and the imaginary parts of Σ are the pseudoscalars. To get the N = 5

theory one simply imposes SO(3)-invariance where the SO(3) acts on the indices (6, 7, 8).

The SO(3)-invariant scalars are thus:

φi ↔ Σi678 = Σjk`m , (5.3)

where i = 1, . . . , 5 and (i, j, k, `,m) is an even permutation of (1, 2, 3, 4, 5). Note that

φ1 and φ2 are precisely the scalars defined in (2.7) and that φ1 is invariant under the

SO(4) × SO(4) that acts on the index sets (2, 3, 4, 5) and (1, 6, 7, 8) and φ2 is invariant

under the SO(4) × SO(4) that acts on the index sets (1, 3, 4, 5) and (2, 6, 7, 8). If both φ1

and φ2 are non-zero then the SO(8) is broken to SO(3)×SO(3) that acts on the index sets

(3, 4, 5) and (6, 7, 8).

One can easily use gamma matrices to convert the 35v and 35c representations into

symmetric, traceless matrices over the 8v and 8c representations. One then finds that the

real parts of (φ1, φ2) in the 35v (or the imaginary parts of (φ1, φ2) in the 35c) correspond

to the matrices: (
a 1l4×4 b 1l4×4

b 1l4×4 −a 1l4×4

)
. (5.4)

Note that if a = 0 or b = 0 then these matrices are SO(4)× SO(4)-invariant but if a, b 6= 0

then these matrices reduce the symmetry to the diagonal SO(4) = SO(3)× SO(3).

Setting ζ1 = 0 and the phase, ϕ = 0, implies that φ1 = 1√
2

tanhλ and φ2 = i√
2

tanhλ.

One thus has one scalar and one pseudoscalar of equal magnitudes. The operator, Oλ, dual
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to λ is thus a linear combination of a fermion bilinear, OF , and a boson bilinear, OB:

Oλ = OF +OB . (5.5)

We can think of the scalar λ as a linear combination16 λ = λB +λF where λB is the scalar

dual to OB and λF is the pseudoscalar dual to OF .

One can diagonalize OB and OF to the form:

OF ≡
1

2
√

2
Tr(ψ2

1 + ψ2
2 + ψ2

3 + ψ2
4 − ψ2

5 − ψ2
6 − ψ2

7 − ψ2
8) ,

OB ≡
1

2
√

2
Tr(X2

1 +X2
2 +X2

3 +X2
4 −X2

5 −X2
6 −X2

7 −X2
8 ) .

(5.6)

The operators XI and ψA are, of course, the eight scalars and fermions of the N = 8 world-

volume theory on the N coincident M2 branes. Both OF and OB are relevant operators

with dimensions ∆OF
= 2 and ∆OB

= 1 and the corresponding couplings have dimensions

3−∆OF
= 1 and 3−∆OB

= 2.

It is also important to recall that, in five dimensions, the “pure trace” bilinear oper-

ators are not chiral and so do not have protected dimensions [32]. This means that the

holographic dictionary is ambiguous up to the addition of such operators. Assuming that

the same issue persists in four dimensions, the holographic dual of λ is ambiguous up to

the addition of the operators:

Tr

( 8∑
i=1

ψ2
i

)
, Tr

( 8∑
i=1

X2
i

)
. (5.7)

The scalar λ will have the following general expansion near the maximally symmet-

ric AdS4

λ =
λ1

r
+

λ2

r2
+ O(r−3) . (5.8)

According to the holographic dictionary above, the parameter, λ1, corresponds to a simul-

taneous vev of OB and a mass insertion into the Lagrangian for OF and the the parameter,

λ2, corresponds to a simultaneous vev of OF and a mass insertion into the Lagrangian for

OB. Because of the ambiguities (5.7), this could mean masses or vevs for either all eight

bosons or fermions or for four of them.

A flow with boundary conditions λ1 = 0 thus corresponds to (four or eight) bosons

becoming massive and (four or eight) fermions developing a vev, or a condensate, while a

flow with λ2 = 0 describes a flow in which (four or eight) fermions are becoming massive

and (four or eight) bosons are developing a vev, or condensate. As we discussed in detail

in the previous sections, the former leads to a first order phase transition while the latter

leads to a second order phase transition.

16In the full four-dimensional gauged supergravity there is of course a scalar λ̃ = λB − λF . The scalar λ̃

is, in fact, the magnitude of the complex scalar ζ1 introduced in section 2.1. This scalar is identically zero

in our truncation.
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5.2 Symmetry breaking and superconductivity

The holographic dictionary therefore implies that within the SO(3)×SO(3)-invariant trun-

cation described in section 2.1, the flow described by λ from the maximally supersymmet-

ric AdS4 critical point will always involve a relevant perturbation of the Lagrangian by

a charged operator. This means that the flows in λ always involves an explicit breaking

of the global U(1) symmetry in the field theory on the M2 brane. Thus, even though a

new condensate subsequently develops in the core of the solution, the U(1) is explicitly

and not spontaneously broken. From the perspective of the complete N = 8 theory, the

mass term breaks the SO(8) symmetry to SO(4)×SO(4) and the diagonal SO(4) commutes

with an SO(2) inside SO(8). This SO(2) is the gauge symmetry of our model and turn-

ing on a chemical potential for it will explicitly break the SO(4) × SO(4) to the diagonal

SO(4) = SO(3)× SO(3). Therefore, for the flows involving λ the symmetry is fully broken

at the Lagrangian level and the condensate induces no further symmetry breaking.

It should be remembered that the primary motivation for wanting spontaneous sym-

metry breaking is that the massless Goldstone boson will then provide the superconducting

modes. It is, of course, entirely possible that there are still superconducting modes indepen-

dent of how the symmetry is broken. Indeed, independent of the choice of UV fixed point

or quantization scheme, there is an unambiguous way to determine whether we have super-

conducting carriers in the dual field theory: One can calculate the electric DC conductivity

holographically using standard techniques (see for example [6]).

After performing this calculation, we find that, both for the flows with λ1 = 0 and

λ2 = 0, there is a delta function in the real part of the conductivity at zero frequency for

temperatures less than Tc. This delta function cannot really be detected numerically but

its presence is deduced by noticing a pole in the imaginary part of the conductivity at zero

frequency and using the standard Kramers-Kronig relation. This is standard practice in

similar AdS/CFT calculations and is very much along the lines of the conductivity cal-

culations in [6, 28].17 To illustrate this point we have plotted the imaginary part of the

electric conductivity as a function of frequency at T = 0 in figure 9. The behavior for

other values of T < Tc is qualitatively similar. The delta function in the DC conductivity

clearly indicates that in the dual field theory we have superconducting (or superfluid) car-

riers and therefore we can unambiguously claim that our supergravity flows indeed realize

holographic superconductors. This approach to detecting holographic superconductors was

emphasized in [4].

5.3 An alternative UV fixed point

There is another possible interpretation of our flows in which the dual UV fixed-point

field theory is known rather implicitly but in which we should have spontaneous symme-

try breaking. One could choose to break the N = 8 supersymmetry of the supergravity

theory ab initio, by decorrelating the quantization of the supergravity scalars and pseu-

doscalars. The resulting “supergravity” theory would have no supersymmetry and would

not correspond to the standard N = 8 superymmetric fixed-point theory on the M2 branes.

17More details on the conductivity calculation will be presented in [18].
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Figure 9. The imaginary part of the electric conductivity as a function of the frequency for the

solutions with λ2 = 0 (left) and λ1 = 0 (right) at T = 0. It is clear that there is a pole at ω = 0.

The interpretation of this in the dual field theory is that we have deformed the theory

on the M2 brane worldvolume by a relevant (or irrelevant) double-trace operator composed

of the bosonic (or the fermionic) bilinearOB (orOF ). This scenario was discussed in [33, 34]

where it was argued that these double-trace deformations will induce an RG flow to another

CFT in which the scalar λB (or the scalar λF ) is in alternative quantization whereas the

scalar λF (or λB) is in standard quantization. In these new CFTs the interpretation of the

constants λ1 and λ2 will be different. In the CFT obtained by the double-trace deformation

O†BOB, the coefficient λ2 is dual to a sum of two vevs for the operators dual to λB and

λF , which, due to the non-trivial RG flow, are no longer the simple bosonic or fermionic

bilinears of the M2 brane theory. Similarly, in the CFT obtained by the double-trace

deformation O†FOF the coefficient λ1 is dual to a sum of two vevs for the operators dual

to λB and λF , which again are no longer the simple bosonic or fermionic bilinears of the

M2 brane theory.

Therefore, in these new CFTs, for which we do not know the explicit Lagrangian and

operator content and are therefore of limited utility, our flows with non-zero λ1 and λ2 will

have the interpretation of spontaneous symmetry breaking flows. Following the field theory

arguments in [35] these flows could be interpreted as describing a superfluid (or supercon-

ducting after “weakly gauging” the global U(1) symmetry) phase of the dual field theory.

6 Conclusions

We have found an embedding of the minimal holographic superconductor model in a con-

sistent truncation of the maximal four-dimensional gauged supergravity. We studied finite

temperature flows with non-trivial gauge field and a condensing scalar and observed that,

depending on the choice of boundary condition for the scalar, λ, the superconducting phase

transition could be first or second order. We also demonstrated that the zero tempera-

ture limit of our holographic superconductor is a solution that interpolates between two

perturbatively stable AdS4 vacua.

We have focussed here on studying solutions of our model that exhibit the salient

features of holographic superconductors. The SO(3)×SO(3) truncation is much richer and

we will study it further in [18] where we will discuss the consistent truncation of gauged
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supergravity in more detail and will study the uplift of the SO(3)× SO(3) critical point to

eleven-dimensional supergravity. In this forthcoming work we also find uncharged flows that

realize “triangular” RG flows (along the lines of [36]) in the dual field theory and connect the

three stable AdS4 vacua of the truncation in [15]. In addition to that we find Schrödinger

solutions of our model with irrational dynamical exponent determined completely by the

value of the scalar at the SO(3)× SO(3) critical point of the scalar potential.

One of the distinguishing features of the SO(3) × SO(3) truncation is that it con-

tains the only known18 stable, non-supersymmetric AdS4 critical point of the maximal

gauged supergravity. This is important if one wants to construct minimal superconductors

with well-defined zero-temperature ground states. It will be very interesting to determine

whether there are other stable non-supersymmetric critical points in four dimensions and

study the flow solutions in the corresponding truncation.

An important outcome of our analysis is that, for one choice of boundary conditions

for the condensing scalar, we found that the superconducting phase transition is first order.

This feature is due to the particular potential in the supergravity truncation we studied.

We exhibited a one-parameter family of phenomenological potentials that interpolate be-

tween the SO(3) × SO(3) potential and the SU(4) potential of a different embedding of

the minimal holographic superconductor model in gauged supergravity [9, 11]. While this

family of phenomenological potentials considered in section 4 is very interesting, it also

embodies several cautionary tales for the unwary phenomenologist. The family of solu-

tions for the condensate O2 shows an interpolation between first order (in our model) and

second order (in the model of [9, 11]) phase transitions. Moreover, this family involves

the normalizable mode of the scalar field and so one would be very tempted to conclude,

via the “standard dogma,” that this flow solution describes spontaneous symmetry break-

ing via a pure condensate with no perturbation of the Lagrangian except for a chemical

potential. At one end of the family (a = 0) this interpretation is correct [9, 11] because

it can be embedded into the N = 8 theory for which a precise holographic dictionary is

known. However, as pointed out in [14] this solution is destabilized by low mass modes in

supergravity and the fixed point and flow are almost certainly unphysical.

At the other extreme (a = 1) there is, once again, a precise holographic dictionary that

also embeds the flow into the N = 8 theory and this time the non-trivial fixed point has the

great virtue of being stable. However, in spite of the normalizability of the supergravity

mode, the correct holographic dictionary tells us that the flow not only involves a fermion

condensate but also involves a bosonic mass term that explicitly breaks the gauge symmetry.

Therefore, while we do get a fermion condensate, the symmetry breaking is not spontaneous

but is an explicit breaking in the Lagrangian. Nevertheless we can unambiguously call this

solution with a condensing scalar a holographic superconductor since it exhibits a delta

function in the real part of the electric conductivity at zero frequency for T < Tc.

It thus seems that a minimal holographic superconductor in 2 + 1 dimensions dual to

N = 8 supergravity must navigate between Scylla and Charybdis: a non-standard, explicit

symmetry breaking in the dual Lagrangian and a perturbative instability of the ground

18See [20] for a recent exhaustive discussion of critical points in the N = 8 gauged supergravity.
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state of the system. Whether there is a way to win through and find a “top-down” holo-

graphic superconductor in the N = 8 theory that realizes spontaneous symmetry breaking

and has a perturbatively stable ground state remains to be seen. However, in the flow pre-

sented here we have shown, through a direct computation of the conductivity, that there

is still a superconducting phase even though the symmetry breaking is not spontaneous.
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