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1 Introduction

Understanding strongly coupling QCD related to the RHIC and LHC experiments is at-

tracting much attention. Although a powerful method for this subject, the lattice QCD, is

being developed, when it comes to the famous sign problem, lattice techniques are not well

adapted to the case with finite real chemical potential µ and no many results have been

produced so far. The other effective approaches, models and effective field theories also

suffer from some problems in the dense matter case. On the other hand, the gauge/gravity

duality [1–4] developed in string theory, can offer new insights to hadron theory [5–13]

and strongly interacting quark gluon plasma (QGP) [14–26] in top-down and bottom-up

setups. The duality approach can easily deal with the dense matter problem at least for

the case in the deconfinement phase. However, for the hadron phase, the current status is

still not very satisfied because the builded phase diagram so far [27, 28] is different from

that of the real QCD [29–31]. One is expecting to build up a holographic model which can

completely recover the phase diagram of the real QCD.

If one considers a system with graviton and dilaton [32–40], one can obtain solutions

of Einstein equations by using the potential reconstruction method proposed in [41, 42].

However, in previous works, the back reacted geometry of the hadronic phase is not fully

identified: if one wants to consider the degrees of freedom of quarks, one should take

U(1) gauge field into consideration in the bulk [43–48]. Adding the additional field to

the graviton-dilaton system, the U(1) gauge field is dual to the baryon number current

JD = ψ†(x)ψ(x), one may generate a chemical potential by turning on an appropriate

electric field in the black hole geometry. On the other hand, in QCD the effect of finite
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quark density is introduced by adding the term JD = µψ†(x)ψ(x) to the Lagrangian in the

generating functional, so that the chemical potential µ appears as the source of the quark

density operator. According to AdS/CFT correspondence, the source of a QCD operator

in the generating functional is the boundary value of a dual field in the bulk; therefore,

the chemical potential can be considered as the boundary value of the time component of

a U(1) gauge field AM dual to the vector quark current. Note that the U(1) denotes the

gauge symmetry in the bulk and global symmetry on the boundary. The symmetry is held

by physical requirement of preservation of baryon number. Motivated from the holographic

description of unquenched QCD system, we will design a graviton-dilaton-U(1) gauge field

system to accommodate the degrees of freedom in full QCD.

The confinement/deconfinement phase transition in QCD phase diagram is a very in-

teresting issue to play with holography. In holographic QCD, it has been widely believed

that the confinement phase in the pure Yang-Mills theory corresponds to the AdS D4 soli-

ton in gravity and the deconfinement phase corresponds to the black D4 brane pointed

out by [49]. Ref. [50] argued that deconfinement in hard wall and soft wall models occurs

via a first order Hawking-Page type phase transition between a low temperature ther-

mal AdS space and a high temperature black hole. Ref. [51] extended this discussion by

studying (charged) AdS black holes with spherical or negative constant curvature horizon.

The authors of [49] and [52] investigated the deconfinement phase transition by introduc-

ing hard wall in the AdS/Reissner-Nordström black-hole with using Hawking-Page phase

transition. Recently, the authors of [53] and [54] carefully considered the correspondence

between phases and gravity backgrounds proposed by [49] and argued that the alternative

gravitational configuration named localized soliton would be properly related to the decon-

finement phase. The deconfinement transition can be realized as a Gregory-Laflamme type

transition. There are also various studies on Polyakov loop [55–59] to investigate QCD

phase structure within hQCD models. We will propose a hQCD model and study its phase

structure by studying the behavior of Polyakov loop operator in this model.

In this paper, we will extend the potential reconstruction approach [41, 42] to an

Einstein-Maxwell-Dilaton (EMD) system and build up a hQCD model with a positive

quadratic term in warped factor of the bulk metric. Furthermore, we will calculate the

free energy of two connecting Polyakov loop operators from holographic point of view

to check whether the holographic model can realize the deconfinement phase transition.

We introduce the quadratic correction term in warped factor to construct the gravity

configuration with asymptotic AdS UV behavior. The motivation of choosing the quadratic

correction is that the quadratic correction plays important roles to realize various facts in

low energy QCD. The work [60] by introducing the dilaton with form of e−c2z2 can realize

the Regge behavior of hadron spectrum which can not be achieved in hard wall hQCD

model [5, 61]. Andreev and Zakharov introduced a positive quadratic correction, ecz
2

with z the holographic coordinate and c > 0, to the warp factor of AdS5 geometry. It

turns out it is helpful to realize the linear behavior in heavy quark potential [62]. The

linear heavy quark potential can also be obtained by introducing other deformed warp

factors, e.g. the deformed warp factor which mimics the QCD running coupling [63], and

the logarithmic correction with an explicit IR cutoff log zIR−z
zIR

[64]. To produce the linear
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Regge behavior of the hadron excitations, Karch, Katz, Son and Stephanov [60] proposed

the soft-wall AdS5 model or KKSS model by introducing a quadratic correction to dilaton

background in the 5D meson action, whose effect in some sense looks like introducing a

negative quadratic correction, e−cz2 in the warp factor of the AdS5 geometry. However, it

is worth mentioning that the model with a quadratic correction in the warp factor of the

metric does not equal to the model with a quadratic correction in the dilaton background.

A positive quadratic correction ecz
2
in the dilaton background of the 5D hadron action has

also been used to investigate hadron spectra [65, 66], however, higher spin excitations in this

background will lead to imaginary mass [13, 67]. In [68, 69], the modified five-dimensional

metric at the infrared region is constructed to obtain a nontrivial dilaton solution, which

incorporates the chiral symmetry breaking and linear confinement. The modified factor

is leading terms 1 + k2z2 in ek
2z2 . They do predict the mass spectra of resonance states

in the pseudoscalar, scalar, vector and axial-vector mesons, which agree with experiment

data. Ref. [70] also confirmed that the quadratic term in dilaton plays an important role

in linear confinement in the meson sector. Recently, basd on the AdS Reissner-Nordström

black hole metric the work [71] introduced the ek
2z2 term in the dilaton, it turns out to

be helpful to realize the heavy quark potential. All these studies mentioned above do not

consider effects of back reaction of dilation and/or a modified warped factor. The work [64]

studied the topic in a non-critical string framework with back reaction effects and found

that the quadratic term ek
2z2 in warped factor is helpful to achieve the Cornell potential.

The work [41] further confirmed the conclusion from thermal hQCD perspective. In some

sense, a positive quadratic term captures some important QCD features, although we still

do not well understand. Therefore we choose the warped factor with a positive quadratic

correction to build up an effective hQCD model.

The organization of the paper is as follows. In section 2 we briefly introduce the poten-

tial reconstruction approach and apply it to an Einstein-Maxwell-Dilaton system (EMD).

In section 3, we impose asymptotical AdS boundary conditions and regularity requirements

on generic black hole solutions and figure out general formulas of thermodynamic quantities

of the black holes. In section 4, we make use of the reconstruction approach to propose our

hQCD model with a positive quadratic k2z2 term in warped factor and calculate relevant

thermodynamic quantities such as temperature, entropy, etc., of the background solution.

We also simply check the stability of dilaton potential from AdS/CFT perspective. In

section 5, we investigate free energy of a heavy quark pair and vacuum expetation value

(VEV) of Polyakov loop which is order parameter to describe the deconfinement phase

transition. In this hQCD model, the deconfinement phase transition can be realized and a

critical point appears. Section 6 is devoted to conclusions and discussions.

2 Einstein-Maxwell-Dilaton system

Let us begin with the following 5D Einstein-Maxwell-Dilaton (EMD) action in string frame

S5D =
1

16πG5

∫

d5x
√

−gSe−2φ

(

RS + 4∂µφ∂
µφ− VS(φ)−

1

4g2g
e

4φ
3 FµνF

µν

)

, (2.1)
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where G5 and gg are 5D Newtonian constant and effective gauge coupling constant, gS and

VS(φ) are the 5D metric and dilaton potential in the string frame, respectively.

To solve this system, it is convenient to transform this action to Einstein frame. If the

metric in Einstein frame gEµν and its corresponding one in string frame gSµν are connected

by the scaling transformation

gSµν = e
4φ
3 gEµν , (2.2)

one can derive the exact relation between two actions in string frame and Einstein frame
∫

√

−gSe−2φ

(

RS + 4∂µφ∂
µφ− VS(φ)−

1

4g2g
e

4φ
3 FµνF

µν

)

=

∫

√

−gE
[

RE − 4

3
∂µφ∂

µφ− VE(φ)−
1

4g2g
FµνF

µν

]

(2.3)

up to a total derivative term, where

VS = VEe
−4φ
3 . (2.4)

Thus we have the action in Einstein frame

S5D =
1

16πG5

∫

d5x
√

−gE
(

R− 4

3
∂µφ∂

µφ− VE(φ)−
1

4g2g
FµνF

µν

)

, (2.5)

where Fµν = ∂µAν−∂νAµ is Maxwell field. Note that here we do not consider the coupling

between gauge field and dilaton field in Einstein frame.

For our aim, we are looking for black hole solutions of the system. In string frame we

suppose the metric is of the form

ds2S =
L2e2As

z2

(

−f(z)dt2 + dz2

f(z)
+ dxidxi

)

, (2.6)

with L the radius of AdS5. We will set G5 = 1 and ggL = 1 in section 3, 4 and 5. In

Einstein frame, the metric becomes

ds2E =
L2e2As− 4φ

3

z2

(

−f(z)dt2 + dz2

f(z)
+ dxidxi

)

. (2.7)

In Einstein frame, the gravitational field equations read

Eµν +
1

2
gEµν

(

4

3
∂µφ∂

µφ+ VE(φ)

)

− 4

3
∂µφ∂νφ− 1

2g2g

(

FµλF
λ
ν − 1

4
gEµνFρσF

ρσ

)

= 0, (2.8)

where Eµν is Einstein tensor. In the metric (2.7), the (t, t), (z, z) and (x1, x1) components

of the gravitational field equations are respectively

b′′(z) +
b′(z)f ′(z)

2f(z)
+

2

9
b(z)φ′(z)2 +

b(z)3VE(φ(z))

6f(z)
+

A′
t(z)

2

24g2gb(z)f(z)
= 0, (2.9)

φ′(z)2 − 9b′(z)2

b(z)2
− 9b′(z)f ′(z)

4b(z)f(z)
− 3b(z)2VE(φ(z))

4f(z)
− 3A′

t(z)
2

16g2gb(z)
2f(z)

= 0, (2.10)

f ′′(z) +
6b′(z)f ′(z)

b(z)
+

6f(z)b′′(z)

b(z)
+

4

3
f(z)φ′(z)2 + b(z)2VE(φ(z))−

A′
t(z)

2

4g2gb(z)
2
= 0 , (2.11)
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where b(z) = L2e2AE

z2
, AE(z) = As(z) − 2

3φ(z) and At(z) is electrical potential of Maxwell

field. As a consistent check, turning off At(z) in eqs. (2.9)–(2.11), one can easily reproduce

equations of motion about the graviton-dilaton system discussed in [41].

Note that the above three equations are not independent. In (2.9)–(2.11), there are

only two independent functions, therefore one of the three equations can be used to check

the consistence of solutions. From those three equations one can obtain following two

equations which do not concern the dilaton potential VE(φ),

A′′
s(z) +A′

s(z)

(

4φ′(z)

3
+

2

z

)

−A′
s(z)

2 − 2φ′′(z)

3
− 4φ′(z)

3z
= 0 (2.12)

f ′′(z) + f ′(z)

(

3A′
s(z)− 2φ′(z)− 3

z

)

− z2e
4φ(z)

3
−2As(z)A′

t(z)
2

g2gL
2

= 0. (2.13)

Eq. (2.12) is our starting point to find exact solutions of the system. Note that eq. (2.12) in

the EMD system is the same as the one in the Einstein-dilaton system considered in [41, 42]

and the last term in eq. (2.13) is an additional contribution from electrical field.

The equation of motion of the dilaton field is given as

8

3
∂z

(

L3e3As(z)−2φf(z)

z3
∂zφ

)

− L5e5As(z)− 10
3
φ

z5
∂φVE = 0. (2.14)

And the equation of motion for the Maxwell field is

1
√

−gE
∂µ
√

−gEFµν = 0. (2.15)

Note that in (2.9)–(2.11) we have only considered the gravitational configurations with

electric charge.

We can see from the equations of motion of the system that once given a geometric

structure As(z), one can derive a generic solution to the system in Einstein frame. The

generic solution takes the form

φ(z) =

∫ z

0

e2As(x)
(

3
2

∫ x
0 y

2e−2As(y)A′
s(y)

2 dy + φ1
)

x2
dx+

3As(z)

2
+ φ0, (2.16)

At(z) = At0 +At1

(∫ z

0
ye

2φ(y)
3

−As(y) dy

)

, (2.17)

f(z) =

∫ z

0
x3e2φ(x)−3As(x)





At1
2
(

∫ x
0 ye

2φ(y)
3

−As(y) dy
)

g2gL
2

+ f1



 dx+ f0, (2.18)

VE(z) =
e

4φ(z)
3

−2As(z)

L2

(

r2f ′′(z)− 4f(z)
(

3z2A′′
s(z)− 2z2φ′′(z) + z2φ′(z)2 + 3

)

−3z4e
4φ(z)

3
−2As(z)A′

t(z)
2

2L2g2g

)

, (2.19)

where φ0, φ1, At0, At1, f0, f1 are some integration constants, and will be determined by

suitable UV and IR boundary conditions. Generally, one cannot give the explicit form of
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VE(φ). But for some special cases, we can use the generating function As(z) to obtain some

analytical solutions of the graviton-dilaton-electric field system. In appendix, we give two

analytical solutions which are generated by this potential reconstruction approach.

For a consistent check, one can reproduce the general solution of graviton-dilaton

system given by [41] by turning off the electrical field At(z). An alternative way to check is

that one can set As = 0, φ = 0, f(z) = 1, At(z) = 0 to obtain a constant dilaton potential

VE(z) = − 12
L2 as expected.

3 Black hole solutions and associated thermodynamics

In this section, we will work out general formulas of some thermodynamical quantities for

the semi-analytical gravity solutions of the graviton-dilaton-electrical field system by using

eq. (2.16)–(2.19) for given metric ansatz in Einstein frame (2.7). Here we are interested

in a series of solutions whose UV behavior is asymptotic AdS5 (aAdS). We also impose

the requirements: f(0) = 1, and φ(z), f(z), At(z) are regular from z = 0 to zh. Here zh is

supposed to be the black hole horizon with f(zh) = 0. In addition, we impose At(zh) = 0,

which is due to the physical requirement: AµA
µ = gttAtAt must be finite at the black hole

horizon z = zh.

The first is how to parameterize the Hawking temperature of the black hole solution,

which is defined by f ′(z)
4π . A black hole solution with a regular horizon is characterized by

the existence of a surface z = zh, where f(zh) = 0. The Euclidean version of the solution

is defined only for 0 < z < zh, in order to avoid the conical singularity, the periodicity of

the Euclidean time is required as

τ → τ +
4π

|f ′(zh)|
. (3.1)

This determines the temperature of the solution as

T =
|f ′(zh)|

4π
. (3.2)

With help of f(0) = 1 and black hole horizon zh, there f(zh) = 0, we can fix the

integration constants f0 and f1 in metric function f(z) in eq. (2.18) as follows.

f(z) = 1 +
A2

t1

g2gL
2

∫ z
0 g(x)

(

∫ zh
0 g(r)dr

∫ x
r g(y)

1
3dy
)

dx
∫ zh
0 g(x)dx

−
∫ z
0 g(x)dx
∫ zh
0 g(x)dx

, (3.3)

where f(0) = 1, f1 = − At1
2

g2ggL
2

∫ zh
0 dxg(x)

∫ x

0 g(y)
1
3 dy+1

∫ zh
0 g(x)dx

, and the function g(x) is defined as

g(x) = x3e2φ(x)−3As(x). (3.4)

One can easily check that f(zh) = 0 from eq. (3.3). One should confirm that there is no

other zh satisfying f(zh) = 0 in the region 0 < z < zh. From eq. (3.2), one can easily read

out the relation between temperature and the black hole horizon from eq. (3.3) as

T =

∣

∣

∣

∣

∣

A2
t1

4πg2gL
2

g(zh)
∫ zh
0 g(r)dr

∫ zh
r g

1
3 (y)dy − g(zh)

∫ zh
0 g(x)dx

∣

∣

∣

∣

∣

. (3.5)
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Following the standard Bekenstein-Hawking entropy formula [72, 73], from the geom-

etry given in eq. (2.7), we obtain the black hole entropy density s, which is defined by the

area Aarea of the horizon

s =
Aarea

4G5V3
=

L3

4G5

(

eAs− 2
3
φ

z

)3∣
∣

∣

∣

zh

, (3.6)

where V3 is the volume of the black hole spatial directions spanned by coordinates xi
in (2.7). Note that the entropy density is determined in terms of horizon area in Ein-

stein frame.

In order to find out exact expressions about chemical potential and charge density, we

should impose proper boundary conditions on At. Expanding At near z = 0, we have

At(z) = At0 +At1e
2φ(y)

3
−A(y)

(

1 + y(
2φ′(y)

3
−A′(y))

) ∣

∣

∣

∣

y=0

z2 + . . . (3.7)

Having considered the boundary condition that At(zh) = 0, we can obtain from eq. (3.7)

the chemical potential µ and the integration constant At1, which is related to the black

hole charge,

At0 = µ (3.8)

At1 =
µ

∫ zh
0 ye

2φ
3
−As(y)dy

=
µ

∫ zh
0 g(y)

1
3dy

. (3.9)

Clearly the integration constant At1 can be determined by chemical potential µ and horizon

zh. From the coefficient of the z2 term in (3.7), one can obtain the charge density of the

black hole configuration.

Before ending this section, we would like to stress that the integration constants ap-

pearing in φ(z) and VE(z) do not occur in the solutions of electrical field At(z) and f(z).

As stated in [42], some integration constants will make contribution to the dilaton potential

VE(φ), but this does not affect application of the potential reconstruction approach to the

EMD system. Based on the builded gravitational configurations, one can build up various

hQCD models by choosing proper As. In this paper, we only focus on construction of

holographic model to realize the deconfinement phase transition by investigating Polyakov

loop. In addition, to be of physical interest, the builded balck hole solutions should be

thermodynamical and dynamical stable. Therefore it is important to check the stability of

the black hole solutions generally. In the next section, we will show that the mass of scalar

field in our hQCD model indeed satisfies the Breitenlohner-Freedman (BF) bound.

4 The hQCD model with a quadratic correction in warped factor

From various works of constructing holographic QCD models for describing the heavy quark

potential and the light hadron spectra, we learn that a quadratic background correction

is related to the confinement property, i.e. the linear quark anti-quark potential [64] and

the linear Regge behavior [13]. A positive quadratic correction, ecz
2
with c > 0, in the

– 7 –
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deformed warp factor of AdS5 can help to realize the linear heavy quark potential [62].

A quadratic dilaton background in the 5D meson action, whose effect in some sense looks

like introducing a negative quadratic correction, e−cz2 , in the warp factor of the AdS5
geometry, is helpful to realize the linear Regge behavior of hadron excitations [60]. In our

previous study in [41], it shows that the hQCD model with a positive quadratic correction

in warped factor is favored. Therefore, we introduce the following hQCD model with a

positive quadratic correction in the warp factor of AdS5 in eq. (2.6), i.e. we take

As(z) = k2z2 (4.1)

where k is a parameter related to energy scale of the model, which will be fixed later. As(z)

is the generating function of the solution (2.16)–(2.19). In terms of the general expressions

for the solution of graviton-dilaton-electric field system, we can obtain the configuration of

φ field as

φ(z) =
3

4
k2z2(1 +H(z)), (4.2)

where we have set φ0 = 0 to keep the metrics (2.6) and (2.7) are asymptotical AdS, and

H(z) is

H(z) = 2F2

(

1, 1; 2,
5

2
; 2k2z2

)

. (4.3)

With As and φ, we can obtain the metric function f as

f(z)≡ f(z, zh, µ)

= 1 +
1

g2gL
2

(

µ
∫ zh
0 g(y)

1
3 dy

)2
∫ z
0 g(x)

(

∫ zh
0 g(r)dr

∫ x
r g(y)

1
3dy
)

dx
∫ zh
0 g(x)dx

−
∫ z
0 g(x)dx
∫ zh
0 g(x)dx

, (4.4)

where

g(x) = x3e
3
2
k2x2(1+H(x))−3k2x2

. (4.5)

With the solutions of As(z) and φ(z), one can obtain the expression of the electric field

At(z) = µ+
µ

∫ zh
0 g(y)

1
3dy

∫ z

0
xe

1
2
k2x2(−1+H(x))dx. (4.6)

Further one can obtain the potential of the dilaton field. The potential includes the contri-

bution from the electrical field. The form of the potential is too complicated and therefore

we do not present it here. Instead we will discuss the UV behavior of the dilaton potential

to check whether the potential satisfies the constraint from the 5D Breitenlohner-Freedman

(BF) bound.

The conformal invariance in the UV can be restored when φ ∼ 0 at the UV boundary

z → 0. One can expand φ(z) at UV boundary z ∼ 0 as

φ(z → 0) ∼ 3k2z2

2
+

3k4z4

10
+ · · · . (4.7)
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The behavior shown in eq. (4.7) is consistent with the requirement of the asymptotic AdS5
near the ultraviolet boundary.

Through the AdS/CFT dictionary, for any scalar field Φ, we have

lim
Φ→0

V (Φ) = − 12

L2
+

1

2L2
∆(∆− 4)Φ2 +O(Φ4). (4.8)

By using the following relationship

∂2ΦV (Φ) =
∂r

∂Φ

∂

∂r

(

∂r

∂Φ

∂V (z)

∂r

)

=M2
Φ +O(Φ) + · · · , (4.9)

one can easily get the conformal dimension of the scalar field. In eq. (4.8), ∆ is defined

as ∆(∆− 4) = M2
ΦL

2, which is constrained by the BF bound 2 < ∆ < 4. Comparing our

case to the standard formula, one should notice the realtion Φ =
√

8
3φ, thus we have

M2
Φ = − 4

L2
. (4.10)

Therefore, the conformal dimension of the dilaton field is ∆ = 2 in our model. The dilaton

therefore satisfies the BF bound but does not correspond to any local, gauge invariant

operator in 4D QCD. Although there have been some discussions in recent years of the

possible relevance of a dimension two condensate in the form of a gluon mass term [74, 75],

it is not clear whether we can associate φ with dimension-2 gluon condensate, because the

AdS/CFT correspondence requires that bulk fields should be dual to gauge-invariant local

operators. This situation is the same as the case in the recent paper [41]. Note that in the

potential reconstruction approach, the electrical field does not change the configuration of

dilaton and the UV behavior of the dilaton potential.

Once the metric function f is given, one can easily find the relation between the black

hole temperature and the horizon radius zh. In figure 1 we plot the relation between the

temperature and horizon with different chemical potential. One can see from figure 1 that

the black hole temperature can not reach zero temperature if the chemical potential is

zero. On the other hand, if one turns on a nonvanishing chemical potential, the lowest

temperature can reach zero, this case corresponds to an extremal black hole. In the case

with a nonvanishing chemical potential, as one can see from the figure that the behavior of

the temperature heavily depends on the value of chemical potential. Basically the behavior

of the temperature can be classified into two cases: when chemical potential µ > µc, the

temperature decreases monotonically to zero as zh increases, while if µ < µc, it decreases

monotonically to a minimum at zm, then goes to a maximum at zM and then decreases

to zero. The critical chemical potential depends on the parameter k. In our model, we

take parameter k = 0.3GeV, which is consistent with the lattice data for equation of state,

heavy quark potential and so on [41]. We have checked that if one changes the value of

k, our conclusions in this paper do not change qualitatively. In the case of k = 0.3GeV,

the corresponding critical chemical potential µc = 0.34GeV. Here the critical chemical

potential is determined by T (µ = µc, zh = zm) = T (µ = µc, zh = zM ). And zm and zM
have been presented in figure 2.
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Figure 1. The black hole temperature versus horizon zh with different chemical potential. When

µ = 0, the temperature behavior is similar to the case considered in [41]. When µ > µc the

temperature monotonically decreases to zero as zh increases. While 0 < µ < µc, the temperature

decreases to a minimum at zm and then grows up to a maximum at zM and then decreases to zero

monotonically. When µ = µc, one has zm = zM . zm and zM are marked explicitly in figure 2. In

our model, we fix k = 0.3GeV and accordingly the critical chemical potential is µc = 0.340GeV.

From the behavior of the temperature, one can see that the black hole solution is

locally thermodynamical stable when µ > µc, because in this case, the heat capacity of the

solution is positive (Note that the horizon size of the black hole is 1/zh). On the other hand,

the case with µ < µc has to be discussed separately. To clearly see the stability of the black

hole solution in the case µ < µc, in figure 2 we plot the temperature versus the horizon zh
in the case µ = 0.1GeV < µc. We can see from the figure that the background black hole

is thermodynamical unstable in the region zm < zh < zM , where zm and zM are the black

hole horizons, respectively, corresponding to the minimal and maximal temperatures. In

this region, the heat capacity of the black hole is negative. The black hole solutions in the

regions zh < zm and zh > zM are thermodynamical stable. When µ = µc, zm and zM are

degenerated to one point.

The existence of the critical chemical potential plays a crucial role to realize the critical

point in QCD phase diagram. We will see this in the next section by calculating the heavy

quark potential in this hQCD model.

5 Heavy quark potential, Polyakov loop and QCD Phase diagram

To investigate some properties of the hQCD model constructed in the previous section, let

us study an infinitely heavy quark-antiquark pair, at distance r from each other. It is in-

teresting to investigate how the free energy of such a system changes with temperature and

chemical potential by using the holographic description of loop operators [76–78]. The free

energy is a proper quantity to describe the confinement/deconfinement phase transition.

– 10 –



J
H
E
P
0
3
(
2
0
1
2
)
0
3
3

zp

zM

zm

z ''pz 'p

Μ = 0.1 < Μc

zhm

0.2 0.4 0.6 0.8
zh�fm

0.1

0.2

0.3

0.4

0.5

0.6

0.7

T�GeV

Figure 2. The temperature of the black hole with µ = 0.1GeV. The three black hole solutions

with horizon z′p, zp and z′′p have the same temperature. The black hole with zm < zp < zM is

thermodynamically unstable. In the figure we take ggL = 1, k = 0.3GeV.

5.1 Heavy quark potential and Polyakov loop

At finite temperature, the free energy F (r, T ) of an infinitely heavy quark-antiquark pair at

distance r can be obtained in QCD from the correlation function of two Polyakov loops [78]

〈P(~x1)P†(~x2)〉 = e−
1
T
F (r,T )+γ(T ) (5.1)

with r = |~x1 − ~x2| and γ(T ) a normalization constant. Moreover, the vacuum expectation

value of a single Polyakov loop

〈P〉 = e−
1
2T

F∞(T ) (5.2)

(F∞(T ) = F (r = ∞, T ) and the normalization factor is neglected) is an order parameter

for the deconfinement transition of a gauge theory [78]. Within the gauge/string duality

approach, we can attempt a calculation of the expectation values in (5.1) and (5.2) by

considering a fundamental string configuration with Polyakov loop on the boundary. The

Nambu-Goto action of the string is

SNG =
1

2πα′

∫

d2ξ
√

det [gab] =
1

2πα′

∫

d2ξ
√

det [gMN (∂aXM ) (∂bXN )] (5.3)

In terms of the geometry background gMN given by (2.6), the induced metric gab can be

expressed as

gab =





− e2As(z)f(z)
z2

0

0
e2As(z)

(

1
f(z)

dz2

dx2
+1

)

z2



 , (5.4)

where we have chosen the static gauge ξ0 = t and ξ1 = x. We are interested in the

configurations of two static quarks on the boundary. The configurations should obey the

boundary conditions: z(x = 0) = z0 and z′(x = 0) = 0 and z(x = ± r
2) = 0. Here the prime

stands for the derivative with respect to x. There are two independent configurations as

shown in figure 3 which satisfy the boundary conditions. Figure 3(a) stands for the case
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Figure 3. The two configurations represent the confinement phase and deconfinement phase. In

figure (a) there is a fundmental string connecting with two static quarks on the boundary. This con-

figuration denotes the confining phase. In figure (b) one string beaks into two segments, both of them

extend to the horizon of the black hole. This configuration corresponds to the deconfinement phase.

with two static quarks linked by a fundamental string. This configuration describes the

confining phase. Figure 3(b) describes the case where the string is broken into two segments,

each of them extends to the horizon of black hole. This configuration stands for two static

decoupled quarks, which corresponds to the deconfinement phase. The configuration in

figure (a) corresponds to the “Minkowski embedding”, while figure (b) to the “black hole

embedding” in the D3/D7 setup [79].

From (5.3) and (5.4), we obtain the free energy of the string configuration

F (r, T ) =
gp
π

∫ 0

−r/2
dx
ek

2z2

z2

√

f(z) + (z′)2, (5.5)

where gp = L2

α′ . One can see from (5.5) that the configuration of the string satisfies the

constraint

H =
ek

2z2

z2
f(z)

√

f(z) + (z′)2
, (5.6)

where H is a conservation quantity, the Hamiltonian of the string configuration.

For later convenience, we express F (r, T ) in terms of z0 and f0 = f(z)|z=z0 . Defining

v = z
z0
, and subtracting the UV (v → 0) divergence in (5.5), which corresponds to sub-

tract the infinite quark and antiquark mass in four dimensional QCD [76], we obtain the

regularized free energy for the string configuration in the confining phase

F̂ (λ, T ) =
gp
πλ

[

−1 +

∫ 1

0

dv

v2

(

eλ
2v2

τ(v)
− 1

)]

, (5.7)

where F̂ = F/k, λ = k z0 and

τ(v) =

√

1− f0
f(z0v)

v4e2λ2(1−v2) . (5.8)
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The distance r̂ = kr can also be parameterized by z0,

r̂(z0) = 2λ2
√

f0

∫ 1

0
dv

v2 eλ
2(1−v2)

τ(v)f(z0v)
. (5.9)

Next we calculate the regularized free energy for the configuration in the decconfine-

ment phase. In this case, one has z0 = zh. Using the gauge ξ0 = t and ξ1 = z and x′(z) = 0,

we obtain the regularized free energy

F̂∞(T̂ ) =
gp
π

[

− 1

ẑh
+

∫ ẑh

0

dẑ

ẑ2

(

eẑ
2 − 1

)

]

+ ζ(µ̂, T̂ ), (5.10)

where T̂ = T/k and ẑ = kz. ζ(µ̂, T̂ ) is a term related to the regularization procedure,

and we identify the maximum of the free energy F̂ (r, T ) with F̂∞ to fix the regularization

term following [71].

5.2 QCD phase diagram

In this subsection, we will discuss the phase diagram of the hQCD model by analyzing

the regularized free energies obtained in the previous subsection for those two different

configurations.

To analyze the behavior of r̂(z0) is helpful to distinguish two different phases. Note

that there might exist a divergence in (5.9) for some parameters due to a vanishing τ(v). An

infinite r̂ in figure 2(a) implies that two static quark are still coupled even with infinite sep-

aration. This means that the case with the infinite r̂ is in the confining phase. If there does

not exist any divergence in r̂(z0), one can find a maximum r̂max at some z0 with fixed chem-

ical potential µ and temperature T . Beyond r̂max, the string configuration in the confining

phase becomes unstable, and the deconfinement phase transition happens in this case.

We can see from (5.8) that when v = 1, one has τ = 0. This means that the divergence

in (5.9) appears when τ = 0. Note that other factors in (5.9) do not lead to any divergence.

Let us first analyze the behavior of τ(v) near v = 1. Expanding the quantity in the square

root in τ(v) at v = 1, one has

τ(v) ∼
√

c1(1− v) + c2(1− v)2 +O((1− v)2), (5.11)

where c1 and c2 are two expansion coefficients. Note that the following relations

∫ 1

0
dv

1√
1− v

= 2,

∫ 1

0
dv

1

1− v
= ∞. (5.12)

We can see that if c1 = 0, the integration in (5.9)) is divergent, otherwise it always gives a

finite result. Furthermore we find that c1 is of the following form

c1 ∼
z0

f(z0, zh, µ)

df(z0, zh, µ)

dz0
+ 8k2z20 − 4, (5.13)
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Figure 4. This plot shows the behavior of c1 with respect to z0 with three different black hole

horizons zh and a fixed chemical potential µ = 0.1GeV The solid red curve represents the decon-

finement phase, the solid black curve corresponds to the confinement phase, and the solid blue

one denotes the deconfinement phase transition. zp is the critical horizon which leads c1 to have

a single zero root. zh < zp and zh ≥ zp correspond to the deconfinement phase and confinement

phase respectively. Here we take ggL = 1 and k = 0.3GeV.

with positive zh, µ and 0 < z0 < zh. Note that the first term in the right hand side

in (5.13) is negative due to ∂f(z,zh,µ)
∂z < 0 in the region z0 < zh, and the second term is

always positive. Therefore, in the case with fixed µ, if zh is large enough, c1 can reach zero

at some z0(< zh). At that point, r̂(z0) is divergent. On the other hand, in some region of

parameters zh and µ, c1 is always positive definite and r̂(z0) is then finite in that region.

Let us stress again that the case with a vanishing c1 is always in the confining phase,

while the case with positive definite c1 corresponds to deconfinement phase. In figure 4 we

show the behavior of c1 with respect to z0 for various zh and a fixed chemical potential

µ = 0.1GeV.

One can also obtain free energy F of the static quark-antiquark potential in two differ-

ent phases through (5.7). In figure 5, we plot the function r(z0) with a fixed µ = 0.1GeV.

We see clearly that when zh < zp and then c1 > 0, r(z0) has a maximum rmax. This case

corresponds to the deconfinement phase. On the other hand, the zh ≥ zp cases correspond

to the confining configuration in which there exists a divergence in the blue curve r(z0). In

the confining phase, if the separation r(z0) of two static quarks can go to infinity, the phase

is called permanent confinement phase. The red and pink solid curves correspond to the

deconfinement case. In these cases, there exist some maximums in the curves r(z0) in 0 <

z0 < zh, beyond those maximums there are no stable configurations of two coupled quarks.

In figure 6, we plot the free energy with respect to z0 with a fixed µ = 0.1GeV. We

can see from the figure that in the deconfinement case, the free energy has a maximum

in 0 < z0 < zh. We identify the maximum of F (r, T ) with F∞(T ) following the strategy

given in [71]. In figure 7 the free energy is plotted with respect to the distance between

two quarks. We see from the figure that the potential with zh = zp can go to infinity when
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Figure 5. This plot shows the relation between the distance between two quarks and z0 with a

fixed µ = 0.1GeV. The blue curve corresponds to the configuration given in figure 3 (a) which

stands for confining phase, while the red and pink curves correspond to the configurations given

figure 3 (b). When zh = zp, r(z0) can be infinity at some z0 in 0 < z0 < zh. The dashed curves are

related to configurations in unstable region.

zh = zp
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Figure 6. The free energy F of string configurations versus z0 with a fixed µ = 0.1GeV. The

solid blue curve corresponds to the confinement phase and the other two to the deconfinement

phase. Here ggL = 1, gp = 1, k = 0.3GeV. The dashed curves are related to configurations in

unstable region.

r → ∞. This means the vacuum expectation value (VEV) of polyakov loop (5.2) in this

phase is vanishing, which implies the configuration is in the confining phase. On the other

hand, the free energy F in the cases zh = 0.7zp and zh = 0.9zp is finite when r → ∞.

This implies that in this case the VEV of Polyakov loop (5.2) is not vanishing and the

configuration is in the deconfinement phase.

Through the above analysis, we see that the key point of finding phase transition in
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Figure 7. This plot show the free energy F (r, T ) versus the distance r between two quarks with a

fixed µ = 0.1. The solid blue curve corresponds to the confinement phase and the other two to the

deconfinement phase. In the confining phase the free energy F goes to infinity when r → ∞. In

the deconfining phase there is a maximum in 0 < z0 < zh. Here ggL = 1, gp = 1, k = 0.3GeV. The

dashed curves are related to configurations in unstable region.

the hQCD model is to find the critical horizon zh = zp, for which r̂(z0) is divergent. The

strategy is the same as the one employed in works [71, 80]. The numerical results in figure 5

show that one can fix the critical horizon zp and then the phase transition temperature

with a fixed chemical potential µ through (5.13).

Let us first discuss the case with µ < µc. In this case the phase transition is a first order

one. To confirm this, let us see the phase transition from the Polyakov loop perspective [81].

From our numerical study, one can see that the critical horizon zp determined by free

energy of heavy quark pair always lives in zm < zp < zM when µ < µc. The phase

transition temperature corresponds to the black hole having the horizon zp. But the black

hole with zp is thermodynamical unstable. Furthermore one can see from figure 2 that

there exist another two black hole solutions with horizon z′p and z′′p , which have the same

temperature as the black hole with horizon zp. The two black hole solutions with z′p and

z′′p are thermodynamical stable. They correspond to two different phases, deconfinement

phase and confinement phase, respectively. The deconfinement phase transition happens

from the black hole with z′′p to the one with z′p at the transition temperature.

After fixing the phase transition temperature, next we calculate the VEV of a single

Polyakov loop by using (5.10), which is a function of temperature. We find that when

zh > zp, 〈P〉 is always vanishing, while 〈P〉 does not as zh < zp. Therefore there must

be a jump of 〈P〉 from 0 to a nonvanishing one in 〈P〉 − T plane as shown in figure 8(a).

The black dot and red dot in the figure represent the black hole solutions with z′′p and z′p,

respectively. We can clearly see from the figure that the phase transition is a first order

one in this case.

Now we discuss the case with µ ≥ µc. In this case, the temperature is a monotonic

function of horizon zh as shown in figure 1. After fixing the phase transition temperature
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Figure 8. The vacuum expectation of a single Polyakov loop versus temperature. The left panel

shows the case with µ < µc and the right one with µ > µc. In (a) the dashed pink curve shows the

behavior of 〈P〉 in the unstable region zm < zh < zM . Here gp = 1, k = 0.3GeV.

through (5.13), we calculate the VEV of the a single Polyakov loop by using (5.10). We

find that when zh > zp, 〈P〉 = 0, which corresponds in the confining phase, while 〈P〉
increases monotonically from 0 as zh ≤ zp. The behavior of 〈P〉 is shown in 8(b). This

case can be interpreted as a continuous transition [82]. The continuity of 〈P〉 at the phase

transition point implies that the deconfinement transition might be a crossover in the

heavy quark limit [83].

Combing the above analysis, we plot a naive T − µ phase diagram in figure 9 for

our hQCD model. In the figure the black dot denotes the critical point with µ = µc.

When µ < µc, the deconfinement transition is a first order one, while it is a continuous

transition as µ > µc. This phase diagram agrees with the expectation from effective

field theory [84, 85] and recent lattice QCD simulation [82]. By using effective theory,

the recent lattice QCD simulation [82] studies the deconfinement transition of QCD with

heavy quark. It is found that the deconfinement transition is first order in small chemical

potential region, while it is an analytic crossover in large µ region. Our results therefore are

consistent with the lattice simulation [82]. Furthermore, note that the work [71] considered

a hQCDmodel by introducing a warped factor to deform the AdS Reinsser-Nordström black

hole background and concluded that the deconfinement phase transition is a continuous

transition. Differing from the work [71], we have constructed a self-consistent gravitational

configuration by considering the back reaction of dilaton field and a critical point has been

found in the phase diagram.

6 Conclusion and discussion

The gravity/gauge theory duality is a powerful tool to investigate strongly coupling sys-

tems. In this spirit, one of dreams is to build a holographic description dual to a real low

energy QCD theory. In this paper, by using the potential reconstruction approach [41, 42],

we have given a generic formulism to find a series of asymptotically AdS black hole so-
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Figure 9. The phase diagram of the hQCD model constructed in this paper. The dashed blue

curve stands for the continuous phase transition and the solid blue one for the first order phase

transition. The black dot represents the critical point. Here gp = 1, k = 0.3GeV.

lutions for the Einstein-Maxwell-dilaton system. In this approach, the back reaction of

dialton and Maxwell field is taken into account. In this sense, our approach avoids some

shortcomings in the literature in constructing holographic QCD models.

Based on the approach, we have constructed a self-consistent gravitational configura-

tion to describe some properties of low energy QCD theory. The gravitational configuration

includes a quadratic term in warped factor of bulk metric. The behavior of temperature

of the black hole configuration is similar to that of an AdS Reissner-Nordström black hole.

The quadratic term in warped factor plays an important role in the hQCD model. By

calculating heavy quark potential and Polakov loop in this hQCD model, we have analyzed

the phase structure of the model. It has been found that there exists a critical point in T−µ
phase diagram. When the chemical potential µ < µc, the deconfinement phase transition

is a first order one, while it is a continuous transition when µ > µc. This phase diagram is

agreement with results from effective field theory [84, 85] and recent lattice QCD simula-

tion [82]. In our model, the value of the critical chemical potential depends on the model

parameter k. In our discussions, k = 0.3GeV and then µc = 0.34GeV. We have checked

other values of k and our results do not change qualitatively and the conclusions still holds.

In this work we have only studied the deconfinement transition of the hQCD model.

It would be of great interest to further investigate the hQCD model. For example, it is re-

quired in the model to further study the spectra of hadrons, chiral phase transition [46–48],

hydrodynamical properties of QGP, and color flavor locked phase [86–88], etc.
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A Two analytical black hole solutions in EMD system

In this appendix, we give two analytical black hole solutions of EMD system by using

eqs. (2.16)–(2.19). Here we are interested in the solutions whose UV behavior is asymptotic

AdS5. We impose the constraint f(0) = 1 at z = 0, and require φ(z) and f(z) to be regular

in the region z ∈ [0, zh], where z = 0 is the AdS boundary and zh corresponds to the horizon

of black hole solution.

We give black hole solutions in Einstein frame. The metric in Einstein frame takes the

following form

ds2E =
L2e2As− 4φ

3

z2

(

−f(z)dt2 + dz2

f(z)
+ dxidxi

)

(A.1)

=
L2e2AE

z2

(

−f(z)dt2 + dz2

f(z)
+ dxidxi

)

, (A.2)

where AE(z) = As(z)− 2φ(z)
3 .

The first set of exact solutions is

AE(z) = log

(

z

z0 sinh
(

z
z0

)

)

,

f(z) = 1− 4V11
3

(

3 sinh

(

z

z0

)4

+ 2 sinh

(

z

z0

)6
)

+
1

8
V 2
12 sinh

(

z

z0

)4

,

φ(z) =
3z

2z0
,

At(z) = µ− 2ggL

z0
V12 sinh

(

z

2z0

)2

, (A.3)

where z0 and µ are two integration constants, V11 and V12 are two constants from the

dilaton potential, and gg is gauge coupling. The dilaton potential is given by

VE(φ) = −12 + 9 sinh2
(2φ

3

)

+ 16V11 sinh
6
(φ
3

)

L2
+
V 2
12 sinh

6
(2φ

3

)

8L2
. (A.4)

If turn off the gauge field, one can reproduce one solution of the graviton-dilton system

given in [41, 42]. On the other hand, if set V11 = 0 and V12 = 0, one can reach the 5D BPS

solution in [42].

The second set of exact solutions is

AE(z) = − log

(

1 +
z

z0

)

, (A.5)

f(z) = 1− V21

(

z7

7z70
+

z6

2z60
++

3z5

5z50
+

z4

4z40

)

+
ρ2z80
g2gL

2

(

5z8

32z80
+

z10

60z100
+

z9

12z90
+

11z7

84z70
+

z6

24z60

)

, (A.6)

φ(z) = 3
√
2 sinh−1

(√

z

z0

)

,

At(z) = µ+ ρ

(

z0z
2

2
+
z3

3

)

. (A.7)
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where z0, µ, and ρ are integration constants and V21 is a constant from the dilaton potential

and gg is gauge coupling. The dilaton potential is given as

VE(φ) = − 12

L2
−

42 sinh4
(

φ

3
√
2

)

L2
−

42 sinh2
(

φ

3
√
2

)

L2

−
3V21 sinh

14
(

φ

3
√
2

)

35L2
−

3V21 sinh
12
(

φ

3
√
2

)

10L2
−

3V21 sinh
10
(

φ

3
√
2

)

10L2

+
ρ2z80
g2gL

2

{

sinh24
(

φ

3
√
2

)

20L2
+

3 sinh22
(

φ

3
√
2

)

10L2
+

59 sinh20
(

φ

3
√
2

)

80L2

+
15 sinh18

(

φ

3
√
2

)

16L2
+

5 sinh16
(

φ

3
√
2

)

8L2
+

5 sinh14
(

φ

3
√
2

)

28L2

}

. (A.8)

This solution is also a generalized one given in [41].

In this paper, we have not discussed thermodynamical properties of these two sets of

black hole solutions and possible applications in hQCD model from gauge/gravity duality.
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