
J
H
E
P
0
3
(
2
0
1
2
)
0
1
2

Published for SISSA by Springer

Received: February 7, 2012

Accepted: February 17, 2012

Published: March 5, 2012

Constrained BV description of string field theory

Nathan Berkovits

ICTP South American Institute for Fundamental Research
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1 Introduction

Field theory actions with reducible gauge symmetries require ghosts and ghosts-for-ghosts.

A convenient formalism for describing such actions is the Batalin-Vilkowisky (BV) formal-

ism [1] in which the action is expressed in terms of fields ψI and antifields ψ∗
I . The fields

ψI typically describe the physical states as well as the Faddeev-Popov ghosts and ghosts-

for-ghosts. And for each field ψI , one introduces an antifield ψ∗
I with opposite statistics

satisfying the BV antibracket

{ψ∗
I , ψ

J} = δJI . (1.1)

Note that the antibracket is fermionic since ψ∗
I and ψJ have opposite statistics but δJI is

bosonic.

This BV description closely resembles classical mechanics in which the fields ψI are

identified with coordinates and the antifields ψ∗
I are identified with momenta. However,

since fields and antifields have opposite statistics, the “time” derivative ∂
∂t

which relates

coordinate and momenta should be a fermionic operation. It has been previously proposed

[2] that the BRST operator plays the role of such a fermionic time derivative, and this

proposal will be confirmed here for string field theory.1 Just as momenta pI in classical

mechanics are defined by the constraint pI = ∂L(q, ∂q
∂t
)/∂(∂q

I

∂t
), it will be shown that

antifields in string field theory can be defined by the constraint

Ψ∗ = ∂L(Ψ, QΨ)/∂(QΨ) (1.2)

1I would like to thank Klaus Bering for describing to me this previous proposal.
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where Q is the worldsheet BRST operator and L is the string field theory Lagrangian. This

new interpretation of antifields will reproduce the conventional BV description of open and

closed bosonic string field theory and will drastically simplify the BV description of open

superstring field theory.

The spacetime field theory action for string theory has a complicated set of reducible

gauge symmetries, and the BV formalism is an extremely efficient method for organizing

the ghost structure [3–7]. In open bosonic string field theory, the classical action is [4]

S = 〈ΦQΦ+
2

3
Φ3〉 (1.3)

where Φ is a fermionic string field of +1 worldsheet ghost number, Q is the worldsheet

BRST operator of +1 ghost number, and 〈 〉 denotes the measure factor on a disk of

+3 ghost number. In this case, the complete BV action including all ghosts-for-ghosts is

obtained by simply allowing the string field Φ to have arbitrary ghost number.

In the conventional BV description [6], states of ghost number ≤ 1 are identified as

spacetime fields and states of ghost number > 1 are identified as spacetime antifields. So

Φ splits as

Φ = Ψ+Ψ∗ (1.4)

where Ψ only includes states with ghost number ≤ 1 and describes spacetime fields, and

Ψ∗ only includes states with ghost number > 1 and describes spacetime antifields. The BV

antibracket of (1.1) then implies that

{Φ(Y ),Φ(Y ′)} = δ(Y − Y ′) (1.5)

where Y includes all modes of all worldsheet variables and δ(Y − Y ′) is defined such that

〈Φ(Y )δ(Y − Y ′)〉 = Φ(Y ′).

In the new constrained BV description, Φ of (1.3) will be replaced by a string field

Ψ with unrestricted ghost number which describes the spacetime fields. The spacetime

antifields will then be described by a separate string field Ψ∗ with unrestricted ghost

number which is required to satisfy the constraint of (1.2) where L is the Lagrangian

of (1.3). Introducing separate string fields Ψ and Ψ∗ with unrestricted ghost number

naively doubles the number of fields and antifields. But the constraint of (1.2) implies that

Ψ∗ = ∂L/∂(QΨ) = Ψ which cuts by half the number of independent fields and antifields.

Note that the constraint Ψ∗ − Ψ = 0 is second-class, which means the BV antibrackets

of (1.1) need to be modified using the standard Dirac procedure as in [8]. Following this

Dirac procedure, one reproduces the antibracket of (1.8) which proves that the constrained

and conventional BV descriptions of open bosonic string field theory are equivalent.

This Dirac procedure for the kinetic term 〈ΦQΦ〉 is similar to the quantization proce-

dure for a Weyl spinor ψα in field theory. The spinor kinetic term S =
∫

dDx ψαγnαβ∂nψ
β

implies that the canonical momenta for ψα is ψ∗
α = ∂L/∂(∂0ψ

α) = (γ0ψ)α. The con-

straint ψ∗
α − (γ0ψ)α = 0 is a second-class constraint, and the resulting Dirac bracket is

{ψα(x), ψβ(x′)} = 1
2γ

αβ
0 δD(x− x′).

Similarly, in closed bosonic string field theory, the classical action is [7]

S = 〈ΦQ(c− c̄)0Φ〉+ . . . (1.6)
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where Φ is a bosonic string field of +2 ghost number satisfying the constraint (b− b̄)0Φ = 0,

Q is the sum of the left and right-moving BRST operators, (b0, c0) and (b̄0, c̄0) are the zero

modes of the left and right-moving Virasoro ghosts, 〈 〉 denotes the measure factor on a

sphere of +6 ghost number, and . . . denote the interaction terms. As before, the complete

BV action including all ghosts-for-ghosts is obtained by simply allowing the string field Φ

to have arbitrary ghost number.

In the conventional BV description [7], states of ghost number ≤ 2 in Φ are identified

as spacetime fields and states of ghost number > 2 are identified as spacetime antifields.

So Φ splits as

Φ = Ψ+Ψ∗ (1.7)

where Ψ only includes states with ghost number ≤ 2 and describes spacetime fields, and

Ψ∗ only includes states with ghost number > 2 and describes spacetime antifields. The BV

antibracket of (1.1) then implies that

{Φ(Y ),Φ(Y ′)} = (b− b̄)0δ(Y − Y ′) (1.8)

where the factor of (b0 − b̄0) comes from the constraint on Φ.

In the new constrained description, Φ of (1.6) is replaced by Φ = (b− b̄)0Ψ where Ψ is

a fermionic string field of unrestricted ghost number which describes spacetime fields. In

terms of Ψ, the action of (1.6) is

S = 〈ΨQ(b− b̄)0Ψ〉+ . . . , (1.9)

so the bosonic string field Ψ∗ for the spacetime antifields is defined by

Ψ∗ = ∂L/∂(QΨ) = (b− b̄)0Ψ. (1.10)

In this case, the constraint Ψ∗− (b− b̄)0Ψ = 0 has a first-class and second class piece where

the first-class piece is (b− b̄)0Ψ
∗ = 0 and generates the gauge invariance

δΨ = (b− b̄)0Λ (1.11)

for any Λ. One can then use the standard Dirac procedure to compute the antibracket

of any operators which are gauge-invariant under (1.11). The operator Φ = (b0 − b̄0)Ψ is

gauge invariant, and one can easily show that its antibracket reproduces the conventional

result of (1.8).

Finally, in the WZW-like version of open superstring field theory, the conventional

BV construction is much more complicated. The classical action for the Neveu-Schwarz

sector is [9]

S = 〈(e−ΦQeΦ)(e−Φη0e
Φ) +

∫ 1

0
dt(e−tΦ∂te

tΦ){(e−tΦQetΦ), (e−tΦη0e
tΦ)}〉 (1.12)

where Φ is a string field in the “large” Hilbert space with zero picture and zero ghost

number, Q is the worldsheet BRST operator, η0 carries −1 picture and +1 ghost number

and is the zero mode coming from Friedan-Martinec-Shenker fermionization of the (β, γ)
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ghosts, and 〈 〉 is the standard measure factor in the “large” Hilbert space which carries −1

picture and +2 ghost number. This classical action has the WZW-like gauge invariances

δ(eΦ) = (QΛ−1,0)e
Φ + eΦ(η0Λ−1,1) (1.13)

where Λg,p are gauge parameters with ghost number g and picture p.

As explained in [10] [11] [12] [13], the conventional BV description of this action

involves an infinite pyramid of ghosts-for-ghosts Φg,p together with their antifields. This

can be seen from the linearized version of the above gauge transformation

δΦ = QΛ−1,0 + η0Λ−1,1, (1.14)

which has the linearized gauge-for-gauge invariance

δΛ−1,0 = QΛ−2,0 + η0Λ−2,1, δΛ−1,1 = QΛ−2,1 + η0Λ−2,2, (1.15)

which has linearized gauge-for-gauge-for-gauge invariances, etc. Generalizing the classical

action of (1.12) to include this infinite pyramid of ghosts-for-ghosts and their antifields is a

difficult problem since it involves states of different pictures which interact in a complicated

manner. Partial results for the construction of this nonlinear conventional BV action will

be described in [11].

On the other hand, the open superstring field theory action easily generalizes to include

ghosts-for-ghosts using the constrained BV description. One simply replaces the string

field Φ in (1.12) with a string field Ψ of zero picture and unrestricted ghost number which

describes the spacetime fields. The spacetime antifields are described by a fermionic string

field Ψ∗ of −1 picture and unrestricted ghost number which is constrained to satisfy

Ψ∗ = ∂L/∂(QΨ) = η0Ψ+
1

3
(Ψ(η0Ψ)− (η0Ψ)Ψ) + . . . (1.16)

where L is the Lagrangian of (1.12) and the nonlinear terms in . . . are easily determined.

As in the case of closed bosonic string field theory, the constraint of (1.16) has a first-class

and second-class piece where the first-class piece generates the gauge invariance

δ(eΨ) = eΨ(η0Λ). (1.17)

One can then use the standard Dirac procedure to compute the antibracket of any

operators which are gauge-invariant under (1.17). The operator J = (η0e
Ψ)e−Ψ is gauge

invariant, and satisfies the antibracket2

{JK(Y ), JL(Y ′)} = hKLη0δ(Y − Y ′) + fKLM JM (Y )δ(Y − Y ′) (1.18)

where (K,L,M) are Lie-algebra indices coming from the Chan-Paton factors and hKL and

fKLM are the metric and structure constants of the Lie algebra. The BV action S of (1.12)

is also gauge-invariant under (1.17), and one finds that

{S, JK(Y )} = Q(JK(Y )), {S, S} = 0. (1.19)

2I would like to thank Andrei Mikhailov for suggesting a simple form for this antibracket.
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The antibracket of (1.18) closely resembles the OPE’s of holomorphic Kac-Moody currents

of a two-dimensional WZW sigma model, and the antibracket of (1.19) implies that the

BV transformation of gauge-invariant operators is equivalent to acting with the worldsheet

BRST operator Q which is manifestly nilpotent.

In section 2 of this paper, open bosonic string field theory will be described using

the constrained BV description. In section 3, closed bosonic string field theory will be

described using the constrained BV description. And in section 4, open superstring field

theory will be described using the constrained BV description.

2 Open Bosonic String Field Theory

2.1 Conventional BV description

As discussed in the introduction, the conventional BV action for open bosonic string field

theory is obtained from the classical action [4]

S = 〈ΦQΦ+
2

3
Φ3〉 (2.1)

by simply allowing Φ to have unrestricted ghost number. In this description, states in Φ

of ghost number ≤ 1 are identified as spacetime fields ψI and states of ghost number > 1

are identified as spacetime antifields ψ∗
I . So Φ splits as

Φ = Ψ+Ψ∗ (2.2)

where Ψ only includes states with ghost number ≤ 1 and describes spacetime fields ψI ,

and Ψ∗ only includes states with ghost number > 1 and describes spacetime antifields ψ∗
I .

For general operators A and B, the BV antibracket is defined as

{A,B} =

(

A
∂

∂ψ∗
I

)(

∂

∂ψI
B

)

−

(

B
∂

∂ψ∗
I

)(

∂

∂ψI
A

)

(2.3)

where
(

A ∂
∂ψ∗

I

)

denotes that the partial derivative ∂
∂ψ∗

I

acts from the right on A. By

expanding Φ in terms of spacetime fields and antifields, this implies that

{Φ(Y ),Φ(Y ′)} = δ(Y − Y ′) (2.4)

where Y includes all modes of all worldsheet variables, δ(Y − Y ′) is defined such that

〈Φ(Y )δ(Y − Y ′)〉Y = Φ(Y ′), and 〈 〉Y denotes functional integration over the Y variables.

Note that δ(Y − Y ′) carries ghost number +3 and is proportional to

(c− c′)−1(c− c′)0(c− c′)1 (2.5)

where (c1, c0, c−1) are the zero modes on a disk of the Virasoro c ghost. Since the factor

of (2.5) implies that δ(Y − Y ′) = −δ(Y ′ − Y ), the definition of (2.4) is consistent with the

fact that {Φ(Y ),Φ(Y ′)} = −{Φ(Y ′),Φ(Y )}.

Using the action S of (2.8), one finds that S satisfies the antibracket

{S,Φ} = 2(QΦ+ ΦΦ) (2.6)
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which is interpreted as the BV transformation δBV Φ. Using the fermionic nature of the

antibracket, one finds that

δBV δBV Φ = {S, {S,Φ}} = −2Q{S,Φ}+ 2{S,Φ}Φ− 2Φ{S,Φ} (2.7)

= −4Q2Φ− 4Q(ΦΦ) + 4(QΦ)Φ + 4(ΦΦ)Φ− 4Φ(QΦ)− 4Φ(ΦΦ) = 0.

So the BV transformation is nilpotent as desired.

2.2 Constrained BV description

In the constrained BV description of open bosonic string field theory, the BV action is

S = 〈ΨQΨ+
2

3
Ψ3〉 (2.8)

where Ψ has unrestricted ghost number but contains only spacetime fields. The canonical

momenta to Ψ which contains the spacetime antifields is defined by a separate string field

Ψ∗ of unrestricted ghost number which is constrained to satisfy

Ψ∗ = ∂L/∂(QΨ) = Ψ. (2.9)

Note that both Ψ and Ψ∗ are fermionic string fields.

As in classical mechanics, the Poisson antibracket of Ψ and its canonical momentum

Ψ∗ is defined by

{Ψ∗(Y ),Ψ(Y ′)}P = δ(Y − Y ′), {Ψ(Y ),Ψ∗(Y ′)}P = δ(Y − Y ′), (2.10)

{Ψ∗(Y ),Ψ∗(Y ′)}P = 0, {Ψ(Y ),Ψ(Y ′)}P = 0,

where { , }P denotes Poisson antibracket. However, because the constraint Ψ∗ − Ψ = 0

of (2.9) is a second-class constraint, the Poisson antibracket needs to be modified to a Dirac

antibracket in order that the antibracket of Ψ∗ −Ψ with any other operator vanishes. As

explained in [8], this modification follows the standard Dirac procedure where the Dirac

antibracket of operators A and B is defined by

{A,B} = {A,B}P − {A,CI}PM
IJ{CJ , B}P (2.11)

where CI are the second-class constraints and M IJ is the inverse of the matrix {CI , CJ}P .

For the constraints C(Y ) = Ψ∗(Y )−Ψ(Y ), one finds that {C(Y ), C(Y ′)} = −2δ(Y −

Y ′) so that M(Y, Y ′) = −1
2δ(Y − Y ′). So the Dirac antibracket is given by

{Ψ∗(Y ),Ψ(Y ′)} =
1

2
δ(Y − Y ′), {Ψ(Y ),Ψ∗(Y ′)} =

1

2
δ(Y − Y ′), (2.12)

{Ψ(Y ),Ψ(Y ′)} =
1

2
δ(Y − Y ′), {Ψ∗(Y ),Ψ∗(Y ′)} =

1

2
δ(Y − Y ′).

As mentioned in the introduction, these Dirac antibrackets in string field theory re-

semble the Dirac brackets of fermionic Weyl spinors in field theory. Just as the 〈ΦQΦ〉

kinetic term of string field theory is linear in Q, the
∫

dDx ψαγmαβ∂mψ
β kinetic term for

a Weyl spinor ψα is linear in ∂
∂xm

. So canonical quantization implies that the canonical

– 6 –
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momenta ψ∗
α for ψα satisfies the second-class constraint ψ∗

α = ∂L/∂(∂0ψ
α) = (γ0ψ)α. The

resulting Dirac brackets are

{ψ∗
α(x), ψ

β(x′)} =
1

2
δβαδ

D(x− x′), {ψα(x), ψ∗
β(x

′)} =
1

2
δαβ δ

D(x− x′), (2.13)

{ψα(x), ψβ(x′)} =
1

2
(γ0)αβδD(x− x′), {ψ∗

α(x), ψ
∗
β(x

′)} =
1

2
γ0αβδ

D(x− x′).

Comparing (2.12) with (2.4), one learns that the antibrackets of the constrained BV

formalism agree with the antibrackets of the conventional BV formalism where Φ = 1√
2
(Ψ+

Ψ∗). So the nilpotent BV transformation δBV of (2.6) is unchanged in the constrained

formalism. Using the interpretation ofQ as a fermionic time derivative, it is a useful exercise

to check that the action S is proportional to the Noether charge for this BV transformation.

As usual, the Noether charge can be constructed by computing the change in the action

when the constant parameter ǫ of a global symmetry transformation is treated as a local

parameter. In classical mechanics, the change in the action is δS =
∫

dt( ∂
∂t
ǫ)f(q, ∂

∂t
q) and

the Noether charge is defined by f(q, ∂
∂t
q). In the constrained BV description, the change

in the action is

δS = 〈(Qǫ)f(Ψ, QΨ)〉 (2.14)

and the Noether charge is defined by 〈f(Ψ, QΨ)〉.

In this case, the transformation is

δΨ = ǫδBVΨ = 2ǫ(QΨ+ΨΨ) (2.15)

where ǫ is treated as a local fermionic parameter. Under this transformation, one finds that

δS = 〈(δΨ)QΨ+ΨQδΨ+ 2(δΨ)Ψ2〉 (2.16)

= 〈4(Qǫ)(ΨQΨ+
2

3
Ψ3)〉

where 〈Q( )〉 = 0 and 〈Ψ4〉 = 0 have been used. So the Noether charge is 4〈ΨQΨ + 2
3Ψ

3〉

which is proportional to S as claimed.

3 Closed Bosonic String Field Theory

3.1 Conventional BV description

In the conventional BV description of closed bosonic string field theory, the action is [7]

S = 〈ΦQ(c− c̄)0Φ〉+ . . . (3.1)

where Φ is a bosonic string field of unrestricted ghost number satisfying the constraint

(b − b̄)0Φ = (T − T̄ )0Φ = 0, Q is the sum of the left and right-moving BRST operators,

(b0, c0) and (b̄0, c̄0) are the zero modes of the left and right-moving Virasoro ghosts, T and

T̄ are the left and right-moving Virasoro constraints, 〈 〉 denotes the measure factor on a

sphere of +6 ghost number, and . . . denote the interaction terms.

– 7 –
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In this conventional BV description, states of ghost number ≤ 2 in Φ are identified as

spacetime fields and states of ghost number > 2 are identified as spacetime antifields. So

Φ splits as

Φ = Ψ+Ψ∗ (3.2)

where Ψ only includes states with ghost number ≤ 2 and describes spacetime fields, and

Ψ∗ only includes states with ghost number > 2 and describes spacetime antifields. The BV

antibracket of (1.1) then implies that

{Φ(Y ),Φ(Y ′)} = (b− b̄)0δ(Y − Y ′) (3.3)

where the factor of (b0 − b̄0) comes from the constraint on Φ. Note that δ(Y − Y ′) carries

ghost number +6 and is proportional to

(c− c′)−1(c− c′)0(c− c′)1(c̄− c̄′)−1(c̄− c̄′)0(c̄− c̄′)1 (3.4)

where (c1, c0, c−1) and (c̄1, c̄0, c̄−1) are the zero modes on a sphere of the left and right-

moving Virasoro ghosts. So (b− b̄)0δ(Y − Y ′) is proportional to

(c+ c̄− c′ − c̄′)0(c− c′)−1(c− c′)1(c̄− c̄′)−1(c̄− c̄′)1. (3.5)

Since (b− b̄)0δ(Y −Y ′) = −(b′− b̄′)0δ(Y ′−Y ), the definition of (3.3) is consistent with the

fact that {Φ(Y ),Φ(Y ′)} = −{Φ(Y ′),Φ(Y )}.

Using the action S of (3.1), one finds that S satisfies the antibracket

{S,Φ} = QΦ+ (b− b̄)0(ΦΦ) + . . . (3.6)

which is interpreted as the BV transformation δBV Φ. After including the appropriate

interaction terms . . ., one finds that

δBV δBV Φ = {S, {S,Φ}} = 0. (3.7)

So the BV transformation is nilpotent as desired.

3.2 Constrained BV description

In the new constrained description, Φ of (3.1) is replaced by Φ = (b − b̄)0Ψ where Ψ is

a fermionic string field of unrestricted ghost number which describes spacetime fields. In

terms of Ψ, the action of (1.6) is

S = 〈ΨQ(b− b̄)0Ψ〉+ . . . (3.8)

where the only constraint on Ψ is the level-matching condition (T0 − T̄0)Ψ = 0. Note that

the interaction term . . . does not involve the Q operator and all Ψ’s in the interaction term

appear in the combination (b− b̄)0Ψ. So one can trivially show that (3.8) is invariant under

the gauge transformation

δΨ = (b− b̄)0Λ (3.9)

for arbitrary Λ satisfying the level-matching condition.

– 8 –



J
H
E
P
0
3
(
2
0
1
2
)
0
1
2

Using the definition Ψ∗ = ∂L/∂(QΨ) for the spacetime antifields, one finds that in

addition to the level-matching condition (T0 − T̄0)Ψ
∗ = 0, Ψ∗ must satisfy the constraint

Ψ∗ = ∂L/∂(QΨ) = (b− b̄)0Ψ. (3.10)

This constraint implies (b − b̄)0Ψ
∗ = 0 which is a first-class constraint and generates the

gauge transformation of (3.9). So the constraint Ψ∗ − (b − b̄)0Ψ = 0 has a first-class and

second class piece and one has two options for modifying the Poisson antibracket

{Ψ∗(Y ),Ψ(Y ′)}P = δ(Y − Y ′) (3.11)

into a Dirac antibracket.

The first option is to gauge-fix the invariance of (3.9) which generates a new constraint.

For example, a convenient gauge choice is

(c− c̄)0Ψ = 0. (3.12)

In the presence of this new constraint, the constraint of (3.10) becomes completely second-

class and one can follow the same Dirac procedure as in (2.11).

The second option is to not gauge-fix (3.9), in which case the Dirac antibracket is only

well-defined for operators which commute with the first-class constraints. In other words,

the Dirac bracket can only be defined for operators which are gauge-invariant with respect

to (3.9). In this second option, the matrix M IJ in (2.11) is defined to be the inverse of the

matrix {CI , CJ} where I and J range only over the second-class constraints. The choice

of how to split off these second-class constraints from the first-class constraints does not

lead to ambiguities since the operators A and B in (2.11) are required to have vanishing

Poisson bracket with the first-class constraints.

Although both options are completely straightforward, only the second option will

be discussed here. Gauge-invariant operators with respect to (1.11) include the operators

(b− b̄)0Ψ and Ψ∗, as well as the action of (3.8). Following the Dirac prescription of (2.11),

one finds that the Dirac antibracket is given by

{Ψ∗(Y ), (b′ − b̄′)0Ψ(Y ′)} =
1

2
(b− b̄)0δ(Y − Y ′), (3.13)

{(b− b̄)0Ψ(Y ),Ψ∗(Y ′)} =
1

2
(b− b̄)0δ(Y − Y ′),

{(b− b̄)0Ψ(Y ), (b′ − b̄′)0Ψ(Y ′)} =
1

2
(b− b̄)0δ(Y − Y ′),

{Ψ∗(Y ),Ψ∗(Y ′)} =
1

2
(b− b̄)0δ(Y − Y ′).

If one defines the operator Φ in the conventional description by Φ = 1√
2
[(b− b̄)0Ψ+Ψ∗],

the antibrackets of (3.13) reproduce the antibracket of (3.3) in the conventional description.

And since the action of (3.8) is equivalent to the action of (3.1) , the BV transformations

in the constrained description coming from δBV Φ = {S, 1√
2
[(b− b̄)0Ψ+Ψ∗]} are the same

as (3.6) in the conventional description.
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4 Open Superstring Field Theory

4.1 Classical action

In thw WZW-like version of open superstring field theory, the classical action for the

Neveu-Schwarz sector is [9]

S = 〈(e−ΦQeΦ)(e−Φη0e
Φ) +

∫ 1

0
dt(e−tΦ∂te

tΦ){(e−tΦQetΦ), (e−tΦη0e
tΦ)}〉 (4.1)

where Φ is a string field in the “large” Hilbert space with zero picture and zero ghost

number, Q is the worldsheet BRST operator, η0 carries −1 picture and +1 ghost number

and is the zero mode coming from Friedan-Martinec-Shenker fermionization of the (β, γ)

ghosts as (β = ∂ξe−φ, γ = ηeφ), and 〈 〉 is the standard measure factor in the “large” Hilbert

space which carries −1 picture and +2 ghost number. Note that 〈ξ0c−1c0c1δ(γ 1

2

)δ(γ− 1

2

)〉

is nonvanishing where δ(γ 1

2

)δ(γ− 1

2

) = e−2φ, enφ is defined to carry zero ghost number and

n picture, and (η, ξ) is defined to carry ghost number (+1,−1) and picture (−1,+1). This

classical action has the WZW-like gauge invariances

δ(eΦ) = (QΛ−1,0)e
Φ + eΦ(η0Λ−1,1) (4.2)

where Λg,p are gauge parameters with ghost number g and picture p.

It is interesting to point out that the same classical action of (4.1) can be used to

describe any critical N = 2 open string field theory by replacing Q and η0 with the

corresponding operators
∫

G+ and
∫

G̃+ in the criticalN = 2 string. As explained in [9, 14],

this includes the N = 2 string of [15] which describes D = 4 self-dual Yang-Mills theory,

as well as the N = 2 hybrid formalism of [16] which describes the open superstring

compactified on a Calabi-Yau three-fold. So constructing the BV version of the open Neveu-

Schwarz action of (4.1) automatically provides the BV action for these other theories.

4.2 Conventional BV description

As discussed in [10, 11], the standard procedure for constructing the BV action is to

introduce ghosts for the gauge invariances of (4.2) and follow the Faddeev-Popov procedure.

Because of the gauge-for-gauge invariances, this gives rise to an infinite pyramid of bosonic

ghosts-for-ghosts

Φ (4.3)

Φ−1,0 Φ−1,1

Φ−2,0 Φ−2,1 Φ−2,2

. . .

where Φg,p carries ghost number g and picture p and comes from the gauge parameters

of (1.14) and (1.15). Furthermore, each of the bosonic fields Φg,p comes with a fermionic

antifield Φ∗
2−g,−p−1 with ghost number 2− g and picture −p− 1.
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To quadratic order, the BV action can be easily determined from the structure of the

linearized gauge invariances of (1.14) and (1.15) and one finds

S = 〈(QΦ)(η0Φ) + Φ∗
2,−1(QΦ−1,0 + η0Φ−1,1) (4.4)

+ Φ∗
3,−1(QΦ−2,0 + η0Φ−2,1) + Φ∗

3,−2(QΦ−2,1 + η0Φ−2,2) + . . .〉

Using the antibrackets of Φ∗
2−g,−p−1 and Φg,p, one can easily verify to quadratic order that

{S, S} = 0.

The next step is to construct a nonlinear generalization of (4.4) where the term

〈(QΦ)(η0Φ)〉 is replaced by the WZW-like action of (4.1). Since the ghost fields Φg,p
can have different picture from the classical field Φ, it is unclear if one should combine

them into a single string field as was done in open and closed bosonic string field theory.

As will be described in [11], there are several approaches to constructing this conventional

BV action for open superstring field theory. However, a closed-form expression for the

complete nonlinear BV action has not yet been found using this conventional approach.

4.3 Constrained BV description

In the constrained BV description, the classical string field Φ in (4.1) will be replaced by

a bosonic string field Ψ of zero picture and unrestricted ghost number which will describe

the spacetime fields. So the BV action is

S = 〈(e−ΨQeΨ)(e−Ψη0e
Ψ) +

∫ 1

0
dt(e−tΨ∂te

tΨ){(e−tΨQetΨ), (e−tΨη0e
tΨ)}〉. (4.5)

One then introduces a fermionic string field Ψ∗ of −1 picture and unrestricted ghost number

to describe the spacetime antifields and imposes the constraint that

Ψ∗ = ∂L/∂(QΨ) (4.6)

where L is the WZW-like Lagrangian of (4.5). To be more explicit, the exponentials in the

WZW-like action can be expanded in a power series to give

S =
∞
∑

M,N=0

2

M !N !(M +N + 1)(M +N + 2)
(−1)N 〈(QΨ)ΨM (η0Ψ)ΨN 〉. (4.7)

So the constraint of (4.6) is

Ψ∗ =
∞
∑

M,N=0

2

M !N !(M +N + 1)(M +N + 2)
(−1)NΨM (η0Ψ)ΨN . (4.8)

To quadratic order, the BV action is S = 〈(QΨ)(η0Ψ)〉 and the BV constraint is

Ψ∗ = η0Ψ. This closely resembles the quadratic action (3.8) and constraint (3.10) of closed

bosonic string field theory where η0 is replaced by (b−b̄)0. However, unlike in closed bosonic

string field theory where the linearized gauge invariance δΨ = (b − b̄)0Λ is unaffected by

interactions, the linearized gauge invariance δΨ = η0Λ of open superstring field theory

generalizes to the nonlinear gauge invariance

δ(eΨ) = eΨ(η0Λ). (4.9)
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So the linearized constraint Ψ∗ = η0Ψ is also generalized to the nonlinear constraint

of (4.8).

The constraint of (4.8) contains both a first-class piece and a second-class piece where

the first-class piece generates the gauge invariance of (4.9). So as discussed in the previous

section, one option for defining Dirac brackets is to gauge-fix (4.9) and turn the first-class

constraints into second-class constraints. Alternatively, one can define Dirac brackets of

operators which are gauge-invariant with respect to (4.9). We will follow the second option

here, but will later discuss the first option when we compare the constrained BV approach

with Witten’s cubic version of open superstring field theory.

Gauge-invariant operators with respect to (4.9) include the operator J = (η0e
Ψ)e−Ψ as

well as the action S of (4.7). The Poisson antibrackets of Ψ and Ψ∗ are defined as usual by

{Ψ∗(Y ),Ψ(Y ′)}P = δ(Y − Y ′), {Ψ(Y ),Ψ∗(Y ′)}P = δ(Y − Y ′), (4.10)

{Ψ∗(Y ),Ψ∗(Y ′)}P = 0, {Ψ(Y ),Ψ(Y ′)}P = 0.

To compute the Dirac antibrackets of J and S, it is convenient to first compute the Dirac

antibrackets at the linearized level and then use the nonlinear gauge invariance to deduce

the nonlinear antibrackets.

At the linearized level, the constraint is Ψ∗ − η0Ψ = 0 and the linearized Dirac an-

tibrackets are

{Ψ∗(Y ), η0Ψ(Y ′)} =
1

2
η0δ(Y − Y ′), {η0Ψ(Y ),Ψ∗(Y ′)} =

1

2
η0δ(Y − Y ′), (4.11)

{Ψ∗(Y ),Ψ∗(Y ′)} =
1

2
η0δ(Y − Y ′), {η0Ψ(Y ), η0Ψ(Y ′)}P =

1

2
η0δ(Y − Y ′).

Note that δ(Y − Y ′) is defined in the large Hilbert space and is proportional to

(c− c′)1(c− c′)0(c− c′)−1(ξ − ξ′)0δ
(

γ 1

2

− γ′1
2

)

δ
(

γ− 1

2

− γ′− 1

2

)

(4.12)

where
(

γ 1

2

, γ− 1

2

)

are the zero modes of the bosonic γ ghost on a disk. So η0δ(Y − Y ′) is

proportional to

(c− c′)1(c− c′)0(c− c′)−1δ
(

γ 1

2

− γ′1
2

)

δ
(

γ− 1

2

− γ′− 1

2

)

(4.13)

and satisfies η0δ(Y − Y ′) = −η′0δ(Y − Y ′). Using these linearized antibrackets and the

quadratic action S = 〈(QΨ)(η0Ψ)〉, the antibracket of S with η0Ψ is easily computed to be

{S, η0Ψ} = Q(η0Ψ). (4.14)

At the linearized level, J = (η0e
Ψ)e−Ψ reduces to J = η0Ψ and satisfies the antibracket

{J(Y ), J(Y ′)} = 1
2η0δ(Y − Y ′), i.e.

{JK(Y ), JL(Y ′)} =
1

2
hKLη0δ(Y − Y ′) (4.15)

where J = JKTK , TK are Lie algebra generators coming from the Chan-Paton factors, and

hKL is the Lie algebra metric. But η0J = (η0e
Ψ)e−Ψ(η0e

Ψ)e−Ψ implies that

η0J
K = fKLMJ

LJM (4.16)
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where fKLM are the Lie algebra structure constants. This is inconsistent with the linearized

antibracket of (4.15) since the right-hand side of (4.15) is annihilated by η0. Fortunately,

one can modify (4.15) to the nonlinear antibracket

{JK(Y ), JL(Y ′)} =
1

2
hKLη0δ(Y − Y ′) + fKLM JMδ(Y − Y ′) (4.17)

which is consistent with (4.16) after using the Jacobi identity fK
L[Mf

L
NP ] = 0 for the structure

constants. Furthermore, (4.17) is the unique gauge-invariant modification of (4.15) which

is consistent with (4.16). As pointed out in the introduction, the structure of (4.17) closely

resembles the OPE of holomorphic Kac-Moody currents J = (∂g)g−1 in a two-dimensional

WZW model which is

JK(z)JL(z′) → (z − z′)−2hKL + (z − z′)−1fKLM JM (z). (4.18)

Starting with the linearized antibracket of S with J in (4.14), one can also use non-

linear gauge invariance to deduce that the unique gauge-invariant option for the nonlinear

antibracket is

δBV J
K = {S, JK} = QJK . (4.19)

Since Q2 = 0, this immediately implies that δBV is nilpotent when acting on JK . Note

that (4.19) implies that

δBV e
Ψ = Q(eΨ) + eΨ(η0Λ) (4.20)

for some Λ. Since gauge-invariant operators do not transform under δeΨ = eΨ(η0Λ), one

learns from (4.20) that δBV (O) = QO for any gauge-invariant operator O constructed

from Ψ.

Since δeΨ = ǫδBV e
Ψ = ǫ(QeΨ + eΨ(η0Λ)) is a global symmetry of the action, one can

compute the Noether charge for this symmetry using the same method as in (2.14). Using

the fact that all terms in the Lagrangian L of (4.5) have one Q operator, one finds that

δS = 〈ǫQL+ (Qǫ)L〉 = 2〈(Qǫ)L〉 (4.21)

where terms involving (η0ǫ) have been dropped. So using the Noether method described

in (2.14), the Noether charge for the BV transformation is proportional to S = 〈L〉 as

expected.

Because the nonlinear Dirac brackets of (4.17) and (4.19) were deduced from nonlinear

gauge invariance and were not explicitly computed, it is useful to collect additional evidence

that the constrained BV description for open superstring field theory is consistent. As

will now be discussed, two additional pieces of evidence come from comparison of the

constrained BV description with the conventional BV descriptions of WZW-like and cubic

open superstring field theory.

4.4 Comparison with conventional BV descriptions

As discussed in [10, 11], the quadratic terms in the conventional BV action for WZW-like

open superstring field theory are given by (4.4) where Φg,p is a bosonic string field with
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ghost-number g and picture p, and Φ∗
g,p is a fermionic string antifield with ghost-number g

and picture p. This action can be conveniently expressed as

S = 〈Φ0QηΦ0 +
∑

p≥0

Φ∗
−p−1(QΦp + ηΦp+1)〉 (4.22)

where for p ≥ 0,

Φp ≡
∑

g≤−p
Φg,p, Φ∗

−p−1 =
∑

g≥2+p

Φ∗
g,−p−1, (4.23)

and only terms of total ghost number +2 contribute to S.

It will now be shown that after partially gauge-fixing and solving for auxiliary fields,

the conventional BV action of (4.22) reduces to the quadratic term in the constrained BV

action of (4.5). If the complete nonlinear version of the conventional BV action could be

constructed, it seems reasonable to conjecture that a similar gauge-fixing procedure would

reduce this action to the complete nonlinear action of (4.5).

The first step is to note that the conventional BV action of (4.22) contains the linearized

gauge invariances

δΦp−1 = η0Λp, δΦp = QΛp (4.24)

for p ≥ 1 where Λp includes states of ghost number ≤ −p, and also contains the linearized

gauge invariances

δΦ∗
−p−1 = η0Λ−p, δΦ∗

−p = QΛ−p (4.25)

for p ≥ 1 where Λ−p includes states of ghost number ≥ 1+p. Using these gauge invariances,

one can gauge ξ0Φp = 0 for p ≥ 0 and ξ0Φ
∗
p = 0 for p ≤ −2. So only Φ∗

−1 cannot be gauged

to satisfy ξ0Φ
∗
−1 = 0.

In this gauge, one can easily verify that the equations of motion QΦp + η0Φp+1 = 0

imply that Φp are auxiliary fields for all p > 0. In other words, up to gauge transforma-

tions, all Φp’s can be solved onshell in terms of Φ0. Furthermore, the equations of motion

QΦ∗
−p−2+η0Φ

∗
−p−1 = 0 imply that Φ∗

−p−1 are auxiliary fields for all p > 0. These equations

imply that all Φ∗
p’s for p < −1 can be gauged to zero, and that η0Φ

∗
−1 = 0.

So the only fields which are not auxiliary are Φ0 and Φ∗
−1, and after solving for the

auxiliary fields, the action for these remaining fields is S = 〈Φ0Qη0Φ0 + Φ∗
−1QΦ0〉 where

η0Φ
∗
−1 is constrained to vanish. The constraint η0Φ

∗
−1 = 0 can be solved as Φ∗

−1 = η0Σ0

for some Σ0 at picture zero which includes ghost numbers ≥ 1. If one now defines

Ψ = Φ0 +
1

2
Σ0, Ψ∗ = η0Φ0 +

1

2
Φ∗
−1, (4.26)

Ψ and Ψ∗ have unrestricted ghost number and satisfy the constraint Ψ∗ = η0Ψ. Further-

more, the action of (4.22) reduces to S = 〈ΨQη0Ψ〉 which is the quadratic term in (4.5).

So it has been shown at the quadratic level that the constrained BV action reproduces a

partially gauge-fixed version of the conventional BV action.

It will now be shown that it is also possible to relate the constrained BV action of (4.5)

with the conventional BV action of cubic open superstring field theory [17–19]. Although

the cubic version of open superstring field theory is singular because of midpoint insertions
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of picture-changing operators [20], its conventional BV description is similar to that of open

bosonic string field theory. We will only explicitly compare with Witten’s cubic version

of open superstring field theory [17], but it should be possible to also compare with other

versions of cubic open superstring field theory [18, 19] using the methods discussed in [21].

Witten’s cubic action for Neveu-Schwarz superstring field theory is [17]

S = 〈V QV +
2

3
{Q, ξ

(π

2

)

}V V V 〉S (4.27)

where the classical string field V is defined in the small Hilbert space at −1 picture and

+1 ghost number, {Q, ξ(π2 )} is the picture-raising operator inserted at the string midpoint,

and 〈 〉S is defined in the small Hilbert space without the ξ zero mode. Although this cubic

action has contact-term problems because of colliding picture-changing operators [20], one

can easily define a BV version of the action by allowing V to have unrestricted ghost

number. The BV antibracket is given by

{V (Y ), V (Y ′)} = η0δ(Y − Y ′) (4.28)

where the factor of η0 comes from the measure factor 〈 〉S being defined in the small Hilbert

space. And the BV transformation of V is given by

δBV V = {S, V } = QV + {Q, ξ
(π

2

)

}V V, (4.29)

which is nilpotent up to contact-term problems.

To relate this cubic action with the constrained BV description of the WZW-like action,

use the nonlinear gauge invariance of (4.9) to gauge-fix

ξ
(π

2

)

Ψ = 0. (4.30)

Although this gauge-fixing is singular since it involves insertions at the string midpoint, it

will allow a comparison of (4.5) with Witten’s cubic action. After including the constraint

of (4.30), the constraint of (4.8) becomes second-class and one can use the standard Dirac

procedure of (2.11) to define the Dirac antibracket. Furthermore, the constraint of (4.30)

implies that

Ψ = ξ
(π

2

)

V (4.31)

for some V in the small Hilbert space. Plugging (4.31) into the action of (4.5) and using

that ξ(π2 )ξ(
π
2 ) = 0, one obtains

S = 〈ξ
(π

2

)

(V QV +
2

3
{Q, ξ

(π

2

)

}V V V )〉. (4.32)

But this is equal to (4.27) after removing the midpoint insertion ξ(π2 ) which converts the

large Hilbert space measure factor 〈 〉 into the small Hilbert space measure factor 〈 〉S .

Finally, one can use the procedure of (2.11) to compute the Dirac antibracket and one

finds the same antibrackets as (4.28) and (4.29). So in the singular gauge of (4.30), the

constrained BV description of open superstring field theory coincides with the conventional

BV version of Witten’s cubic open superstring field theory.
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