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1 Introduction and summary

Starting with [2–4], F-theory has been recognized as a setup to elegantly construct Grand

Unified Theories (GUTs) in string theory. The GUT model is localized on a seven-brane S

inside a complex three-dimensional manifold B which is the base of a compact elliptically

fibered Calabi-Yau fourfold X4. Requiring a decoupling limit between gauge and gravity

degrees of freedom makes it possible to discuss many questions in a gauge theory that

captures the physics in the vicinity of the GUT brane S. These local F-theory GUTs have

a rich yet simple structure which allows to analyze many phenomenological questions in re-

markable detail. See for instance [5] for a review. Due to the localization of gauge degrees of

freedom on the seven-brane, in contrast to GUT theories coming from the heterotic string,

F-theory provides a framework for a bottom-up approach to constructing realistic models

from string theory. There, the first priority is to work out the phenomenological details of
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a model without worrying about the full string compactification. While the success of this

approach speaks for itself, it is necessary to connect the bottom-up results with top-down

constructions where the paradigm is to find a consistent string compactification which can

ideally accommodate all the features of the local models. Finding and understanding global

F-theory models has recently received increased attention.

There are several reasons to consider a full F-theory compactification on an elliptically

fibered Calabi-Yau fourfold. The obvious reason is of course that there are issues which

cannot be addressed in local models, most notably monodromies, fluxes and anomaly can-

cellation. These questions have been addressed recently in [6–20]. Another motivation,

which will be the central concern of this paper, is to explicitly construct compact Calabi-

Yau fourfolds and to check whether they are suitable for F-theory model building. This

is necessary in order to show whether the realistic models coming from a local construc-

tion have an embedding in a string compactification. Furthermore, we wanted to build a

database of examples which contains the data necessary for GUT model building.

The main goal of this paper is to give a systematic construction of a particular class

of fourfold geometries and to analyze them in view of F-theory model building. Since a

full classification of Calabi-Yau fourfolds, including the subset of elliptically fibered ones,

is not available we aim to provide a set of examples within a well-defined framework.

Toric geometry is a valuable and versatile mathematical tool for constructing Calabi-Yau

manifolds. A prescription to use toric geometry to construct global F-theory GUTs has

been given in [7] and further elaborated on in [9]. See also [21] for a recent review article

and [11] for a closely related construction. The general idea is the following: first, find

a base manifold B which is a blowup of a Fano hypersurface in P
4. In a second step,

obtain a Calabi-Yau fourfold by constructing an elliptic fibration over the base B. This

Calabi-Yau is then a complete intersection of two hypersurfaces in a six-dimensional toric

ambient space. In [22] a class of models has been worked out where the base manifold

B is a Fano hypersurface in P
4 with up to three point or curve blowups. This extended

the set of examples given in [7, 9] but the geometries were still in a very restricted class.

For instance, no examples in a general weighted projective space had been considered. In

this article we will systematically construct this more general type of models. The present

extension allows us, for example, to set up global F-theory GUTs on dP8s that have not

been found in the previous investigations.

In order to find more general fourfold geometries we look at the construction of [7]

from a slightly different point of view. Instead of considering blowups of Fano threefolds,

we pick a subset of 1088 of the 473 800 776 reflexive polyhedra in four dimensions [23].

These polyhedra describe toric ambient spaces for Calabi-Yau threefolds. In contrast to

looking at the Calabi-Yau case, we consider hypersurfaces in these toric ambient spaces

that have homogeneous equations with multidegree smaller than in the Calabi-Yau case.

This will define the base manifold B. The elliptically fibered Calabi-Yau fourfolds can be

constructed from the base data using standard tools in toric geometry. In our computer-

based search for models we have made extensive use of the software package PALP [24].

In total we have found 569 674 base geometries.

Having constructed the geometries is only the first step of the program. Step two
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is to filter out those models which are usable in F-theory model building. Our goal was

to formulate some elementary and general constraints that can be phrased in the toric

language. These constraints can be divided up into conditions on the base geometry and

conditions on the fourfold. While the former are specific to F-theory model building, the

latter are of a more technical nature. As for the base manifolds, the first constraint is

regularity. Hypersurfaces that are not Calabi-Yau may inherit the singularities of the toric

ambient space. One sufficient criterion for regular hypersurfaces, which can be examined

using toric methods, is base point freedom: given an empty base locus, any point-like

singularity of the ambient space can be avoided by a generic choice of the hypersurface

equation. We can impose further constraints on the toric divisors of the base B. Since we

would like to construct F-theory models on these divisors, del Pezzo surfaces are particularly

interesting. In local F-theory GUTs the del Pezzo condition guarantees a decoupling limit.

Furthermore, certain vanishing theorems avoid exotic matter in SU(5) GUTs [4]. For

global models decoupling limits are more subtle and yield further constraints on the base

geometries. The conditions on the complete intersection Calabi-Yau fourfold are more

elementary. In order to be able to use the tools of toric geometry, we restrict to those

examples where the Calabi-Yau data is encoded in a reflexive lattice polytope and where the

information about hypersurface equations is given by a nef partition. In our construction

it is not automatic that the nef partition is compatible with the elliptic fibration over the

base B. Another issue is the reflexivity of the polytope that encodes the toric data of

the fourfold. A majority of the fourfolds we have constructed is not described in terms

of reflexive polytopes. Reflexivity is important for mirror symmetry but since this is not

required in our setup Calabi-Yau fourfolds coming from non-reflexive polytopes may be

interesting to look at. However, we lack several mathematical and computational tools to

deal with them, which is why we have to exclude them in our discussion. Finally, there is

unfortunately also a computational constraint: since the lattice polytopes for Calabi-Yau

fourfolds can be quite large, a fair amount of models cannot be analyzed due to numerical

overflows and long calculation times.

Having reduced the number of interesting models by the constraints above we can

explicitly construct F-theory GUTs using the prescription of [7]. We will focus on SU(5)

and SO(10) GUTs and analyze some basic properties such as genera of matter curves

and the number of Yukawa couplings. We will also construct U(1)-restricted models as

introduced in [13].

This article is structured as follows. In section 2 we review the toric construction and

give a detailed explanation of the tools of toric geometry that are necessary to carry out the

calculation. In section 3 we analyze the geometries we have constructed. Furthermore we

discuss some examples and comment on the discrepancy of Euler numbers between the toric

calculation and a formula given in [7]. A match between the Euler numbers obtained from

toric geometry and those obtained from the formula of [7] indicates that a local description

of the gauge fluxes in terms of the spectral cover construction is plausible. Section 4 is

reserved for conclusions and outlook.
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2 Construction of global models

In this section we explain how to construct global F-theory models. In section 2.1 we

recall the basic structure of global F-theory GUTs. Section 2.2 is devoted to a short

self-contained review of aspects of toric geometry, focusing on the tools and objects we

need for our calculations. In section 2.3 we describe how to systematically construct the

base manifolds B as hypersurfaces in toric ambient spaces. Furthermore we discuss the

properties of GUT divisors in B. Finally, section 2.4 is devoted to the elliptically fibered

Calabi-Yau fourfolds.

2.1 Setup

The class of global F-theory models, we aim to construct, have been first introduced

in [7]. The Calabi-Yau fourfolds are complete intersections of two hypersurfaces in a

six-dimensional toric ambient space. Schematically, these equations have the following

form:

PB(yi, w) = 0 , PW (x, y, z, yi, w) = 0 . (2.1)

The first equation only depends on the coordinates (yi, w) of the base of the fibration. Here

we have singled out one coordinate w, indicating that the divisor S, defined by w = 0, is

wrapped by the seven-brane which supports the GUT theory. The second equation in (2.1)

defines a Weierstrass model, where (x, y, z) are the coordinates of the P231 fiber. For this

type of elliptic fibrations PW has a Tate form which is globally defined:

PW = x3 − y2 + xyza1 + x2z2a2 + yz3a3 + xz4a4 + z6a6 , (2.2)

where the an(yi, w) are sections of K−n
B and x and y are section of K−2

B and K−3
B , respec-

tively. Constructing a Tate model is only the first step on the way to a F-theory GUT
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model. In order for the divisor w = 0 to support the desired gauge group the sections

an(yi, w) have to have a particular structure. Via Kodaira’s classification [25] and Tate’s

algorithm [26] the base-coordinate dependent coefficients ai in the Tate equation must fac-

torize in a particular way with respect to w. In the following we will focus on the gauge

groups SU(5) and SO(10). For SU(5) we must have:

a1 = b5w
0 a2 = b4w

1 a3 = b3w
2 a4 = b2w

3 a6 = b0w
5 , (2.3)

An SO(10) model is specified as follows:

a1 = b5w
1 a2 = b4w

1 a3 = b3w
2 a4 = b2w

3 a6 = b0w
5 . (2.4)

The bis are sections of some appropriate line bundle over B that have at least one term

independent of w.

Matter arises along curves inside the base manifold at loci where a rank 1 enhancement

of the GUT group takes place. In SU(5) F-theory GUTs the matter curves are at the

following loci inside S:

b2
3b4 − b2b3b5 + b0b

3
5 = 0 5 matter SU(6) enhancement ,

b5 = 0 10 matter SO(10) enhancement . (2.5)

The matter curves for the SO(10) models are at:

b3 = 0 10 matter SO(12) enhancement ,

b4 = 0 16 matter E6 enhancement . (2.6)

Yukawa couplings arise at points inside B where the GUT singularity has a rank 2 en-

hancement. In SU(5) models the Yukawa points sit at:

b4 = 0 ∩ b5 = 0 10 10 5 Yukawas E6 enhancement ,

b2
2 − 4b0b4 = 0 ∩ b3 = 0 10 5̄ 5̄ Yukawas SO(12) enhancement . (2.7)

In the SO(10)-case we have the following Yukawa couplings:

b3 = 0 ∩ b4 = 0 16 16 10 Yukawas E7 enhancement ,

b2
2 − 4b0b4 = 0 ∩ b3 = 0 16 10 10 Yukawas SO(14) enhancement . (2.8)

By constructing the base manifold B and the elliptically fibered Calabi-Yau fourfold we are

able to give explicit expressions for the quantities defined above. Furthermore, knowing the

homology classes of divisors we can obtain intersection numbers and other topological data

of the GUT brane, the matter curves and the Yukawa couplings. In order to make these

calculations we make use of toric geometry. In the following subsections we will explain

the necessary ingredients for these computations.
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2.2 Toric geometry

In this section we give a brief overview of the construction of toric varieties and their

subvarieties in terms of lattice polytopes. We furthermore set the notation which we

will need in the rest of the paper. The reader has a vast choice of existing literature

on the subject, for example [27–29] and the very comprehensive [30], to name a few.

In particular [31] addresses the construction of Calabi-Yau hypersurfaces and complete

intersections with a focus on issues related to string duality. For a more pedagogical

approach see for instance [32].

Toric varieties can be thought of as generalizations of weighted projective spaces. We

can construct a toric variety X in terms of r homogeneous coordinates, an exceptional set

ZΣ, and the group identification (C∗)r−n × G:

X = (Cr − ZΣ) /
(

(C∗)r−n × G
)

. (2.9)

These building blocks are encoded in a fan Σ that completely determines X. The fan is

a finite collection of strongly convex (i.e. they always have an apex) integral (i.e. they are

spanned by lattice vectors) polyhedral cones with their apex in the origin such that the

following conditions are satisfied: 1) any face of a cone σ ∈ Σ belongs to Σ; and 2) given

two cones σ, τ ∈ Σ, their intersection is again contained in Σ. Note that in general σ and τ

may have different dimensions. The n-skeleton Σ(n) ⊂ Σ denotes the set of n-dimensional

cones. Consider the rays ρj ∈ Σ(1). Each of them is generated by an integral vector vj in a

n-dimensional lattice, which we call the N-lattice. The primitive vector vj spans from the

origin towards the nearest point of the lattice along the direction of ρj . To each primitive

vector vj we associate a homogeneous coordinate zj and a divisor Dj = {[z] ∈ X : zj = 0}.

The group (C∗)r−n is hence determined by the r − n weighted scalings (i = 1, . . . , r − n)

(z1, . . . , zr) −→ (λwi1z1, . . . , λ
wirzr) with

∑

j≤r

wijvj = 0 ∈ N and λ ∈ C
∗ , (2.10)

where wij are the entries of a r × (r − n) matrix we refer to as weight matrix. The finite

abelian group G ∼= N/span(v1, . . . , vr) accounts for phase symmetries. It arises if the

one-skeleton does not span the entire N-lattice. For example, let us consider a lattice N̂

that is completely spanned by Σ (1). Further, consider a refinement N ⊃ N̂ such that N 6=

span (v1, . . . , vr). Then we have G ∼= N/N̂ . Furthermore the fan determines the exceptional

set ZΣ. This is the set of invariant points under the continuous group identification. A

subset of coordinates is allowed to vanish simultaneously, i.e. zj1 = · · · = zjk
= 0 (or

equivalently Dj1 · . . . ·Djk
6= 0), iff there exists a cone that contains the corresponding rays

ρj1 , . . . , ρjk
⊂ σ. The exceptional set is the union of sets ZI with minimal index sets I of

rays for which there is no cone that contains them: ZΣ = ∪IZI .

A divisor D is a codimension one subvariety of the toric ambient space and is defined

by the formal sum D =
∑

j ajDj , where the {Dj} are a finite set of irreducible divisors.

Relevant properties of divisors can be rephrased in terms of the combinatorics between

lattice points and cones [31, 33]. In order to show these relations, we first need to define

the dual lattice to N as M = Hom(N, Z) with the canonical pairing 〈, 〉. A divisor D is

– 6 –
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Cartier if to each maximal-dimensional cone σ ∈ Σ(n) there exists a point mσ ∈ M such

that the coefficient of the formal sum is aj = −〈mσ, vj〉 for all rays ρj ∈ σ. Furthermore

to each Cartier divisor D we associate a lattice polytope as follows

∆D = {m ∈ MR : 〈m, vj〉 ≥ −aj ∀ j ≤ r} ⊂ MQ, (2.11)

where MR and MQ are the real and rational extensions of M, respectively. The correspond-

ing line bundle O(D) is determined by the sections

s∆D
=

∑

m∈∆D

cm

∏

j

z
〈m,vj 〉
j . (2.12)

The globally defined hypersurface polynomial is then:

f∆D
=

∑

m∈∆D

cm

∏

j

z
〈m,vj 〉+aj

j . (2.13)

A Cartier divisor D is base point free iff mσ ∈ ∆D for all σ ∈ Σ(n). Further, a Cartier

divisor D is ample iff there is a bijection between vertices of ∆D and σ ∈ Σ(n). Consider

∆ ⊂ M defining an ample Cartier divisor. In this case it can be shown that there is a

uniquely associated fan to such a polytope: the normal fan Σ∆. This is the fan of cones

over the faces of the dual polytope ∆◦ ∈ NR defined by

∆◦ = {x ∈ NR : 〈m,x〉 ≥ −1 ∀ m ∈ ∆} . (2.14)

A lattice polytope whose dual is again a lattice polytope is called reflexive. In our work we

have considered toric ambient spaces from normal fans of reflexive polytopes. There are

three reasons for this choice. First, these toric varieties have well understood singularity

properties. Second, we know how to calculate their Hodge numbers in terms of combinato-

rial formulas due to the works [34, 35]. Third, we have a classification scheme for reflexive

polytopes up to dimension four [23].

A toric variety XΣ is smooth iff all cones of Σ are simplicial and basic (i.e. generated by

a subset of the lattice basis). The normal fan of a given reflexive polytope will not generally

satisfy these conditions. However, in our setup, we can always resolve singularities in toric

spaces by subdivisions of their fans [36–38]. Take the polytope ∆◦ ⊂ N with all its lattice

points, and consider a star triangulation thereof, i.e. a triangulation where the maximal

simplices always contain the origin. The fan over the facets of this polytope depends on

the particular star triangulation we have chosen. Then reflexivity implies that there are

no singularities at codimension lower than four. For a four-dimensional polytope, hence,

there can be only point-like singularities. A hypersurface without fixed points can always

be deformed to avoid this kind of singularities. Hence, for our setups, a base point free

(Cartier) divisor is smooth.

The intersection ring of a non-singular compact toric variety is given by the quo-

tient ring

Z [D1, . . . ,Dr] /〈ISR , Ilin 〉 . (2.15)

– 7 –
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Here ISR is the Stanley-Reisner ideal with relations of the type Dj1 · . . . ·Djl
= 0 for elements

of the minimal index set I. Furthermore one must mod out the ideal Ilin generated by the

linear relations
∑

j〈m, vj〉Dj = 0. The intersection ring of an embedded hypersurface is

given by restricting the intersection ring of the ambient space to the divisor D describing

the hypersurface as follows:1

Dj1 · . . . · Djn−1
|D =

∫

D
Dj ∧ . . . ∧ Djn−1

=

∫

X
Dj1 ∧ . . . ∧ Djn−1

∧ D . (2.16)

We need the Kähler cone of the toric variety to determine the volumes of the divisors.

With this information we will be able to make statements about the existence of a decou-

pling limit. We obtain it by starting from its dual, the Mori cone. The Mori cone is the cone

of (numerically) effective curves. We determine it using the Oda-Park algorithm [30, 39],

that has been implemented in an still unreleased version of the PALP code [40]. The ex-

tended PALP uses the SINGULAR [41] program to determine the intersection ring. The

triple intersection numbers are then redirected to PALP to calculate the Mori cone. In

what follows we approximate the Kähler cone of the embedded hypersurface by that of

the ambient space. Since there could be more effective curves on the hypersurface than

the induced ones, the Kähler cone of the hypersurface may be smaller than the one of the

ambient space.

2.2.1 Induced divisors

In our setup the base manifold is a divisor embedded in a toric ambient space. The reader

may ask under which conditions and to which extent the homology of the hypersurface

is induced from the homology classes of the toric ambient space. Indeed, not all toric

divisors of the ambient space may induce a divisor on the hypersurface. For a Calabi-Yau

hypersurface given by a reflexive polytope ∆◦, this is the case if we have a divisor Dint.i

obtained from points that lie in the interior of a facet of the polytope. To observe this, we

consider the intersection product, on the CY hypersurface, of some Dint.i with divisors not

coming from interior points,

DCY · Dint.i · Dj1 · . . . · Djn−2
= ni j1...jn−2

. (2.17)

We add to this equation intersection products of the form:

Dj · Dint.i · Dj1 · . . . · Djn−2
= 0 , (2.18)

where the Dj is a divisor that does not lie on the facet of the Dint.i. This intersection is

zero because the fan of the toric space is obtained from a maximal triangulation of the

defining lattice polytope. Hence, divisors that lie in the interior of a facet intersect only

divisors that also lie on that facet. The lattice polytopes that we consider are reflexive.

Thus, for each facet fi of the polytope we have a point mfi ∈ M in the dual lattice polytope

with 〈mfi , pj〉 = −1 for all points pj ∈ fi. From mfi we obtain the principal divisor

Dmfi
=

∑

pj∈fi

−Dj +
∑

pk∈∆◦\fi

〈mfi , pk〉Dk . (2.19)

1By abuse of notation D denotes the divisor as well as the associated Poincaré dual element of the

cohomology.
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Since DCY =
∑

pk∈∆◦ Dk, we can add up (2.17) and (2.18) to

Dmfi
· Dint.i · Dj1 · . . . · Djn−2

= −ni j1...jn−2
. (2.20)

A principal divisor always has intersection number zero with any other divisor, hence, we

obtain ni j1...jn−2
= 0. Therefore, the divisor Dint.i does not intersect with the Calabi-Yau

hypersurface.

In the case of a hypersurface with a generic (multi) degree we cannot use the above

M-lattice vector to prove that divisors obtained from interior points do not lie on the

hypersurface. However, we may find another vector m such that its principal divisor is the

sum of the divisor of the hypersurface and the sum of toric divisors that do not come from

points of the considered facet.

For the general hypersurface case not only divisors coming from interior points of facets

may not induce a divisor but also others. For example, the lower bound on the hypersurface

degrees that we will consider below is that they include all homogeneous coordinates. At

the bound we may encounter situations where one of the toric divisors has the same weight

as the hypersurface. In this case all toric divisors that do not intersect the divisor showing

up linearly in the hypersurface equation will not lie on the hypersurface.

2.3 Base manifolds

2.3.1 Toric data for base manifolds

In this section we introduce the class of base manifolds B we will be working with. We will

consider base geometries that are non-negatively curved hypersurfaces in a toric ambient

space. We restrict to hypersurfaces with hyperplane class positive and strictly smaller than

the class of the anti-canonical bundle of the ambient space. An interesting class of manifolds

to look at would be Fano threefolds. However, as has been argued in [42], Fanos do not

allow for a decoupling limit. We are thus forced to look for more general hypersurfaces.

In [7, 9, 22] such examples have been obtained by constructing point and curve blowups of

those Fano threefolds which are hypersurfaces in P
4. A systematic construction for up to

three point and curve blowups has been undertaken in [22] by a classification of the weight

systems specifying the toric ambient space. What we would like to achieve here is to

construct base manifolds in a more general class of ambient spaces, using toric geometry.

In order to do so we will use a slightly different point of view than in [22]: instead of

classifying weight systems corresponding to blowups we will specify the ambient space by

reflexive polyhedra in four dimensions. These have been classified in [23]. Since we are

not looking for Calabi-Yaus each of these polytopes will give us a large number of models

since there are typically many possibilities to define hypersurfaces inside the ambient space

defined by the polytope that fulfill the above hyperplane class constraint. Therefore it

has not been possible for us to construct base manifolds from all the 473 800 776 reflexive

polyhedra in four dimensions. Instead, we will look at a class of geometries specified

by N-lattice polytopes which define toric ambient spaces which are fourfolds with Picard

number less than five. Concretely, we have looked at N-lattice polytopes with up to nine

points, including the origin. Not all the points of a polytope are also vertices. We have
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# of points # of vertices # of polytopes

6 5 3

7 5 7

7 6 18

8 5 9

8 6 70

8 7 89

9 5 13

9 6 115

9 7 406

9 8 358

1088

Table 1. Lattice polytopes specifying toric ambient spaces for B

divided up the data accordingly. This is summarized in table 1. The polytope data can

be recovered from this information at [43]. The points of the N-lattice polytopes encode

the weight matrices which we can recover using PALP. The next step in constructing the

base manifolds is to specify a hypersurface of degrees di, where i runs over the rows in

the weight matrix. The type of hypersurface we are interested in constrains the number of

possible degrees. If di =
∑

j wi,j, where wij are the homogeneous weights of the variables,

the hypersurface will be Calabi-Yau. This gives an upper bound for the degrees: for our

purposes we have to consider hypersurface degrees such that at least one of the di is strictly

smaller than the sum of the weights. Furthermore, we would like our base manifold B to be

a genuine codimension 1 hypersurface inside the toric ambient space. Therefore we impose

the condition that each variable has to appear in at least one monomial of the hypersurface

equation. If the homogeneous weight of a variable is higher than the hypersurface degree

the variable will certainly not appear in the hypersurface equation. This gives a lower

bound on the hypersurface degree. Since this bound is necessary but not sufficient, one

has to check for each model if indeed all the variables appear in the hypersurface equation.

For the ambient spaces specified by the 1088 polytopes above we have constructed all the

hypersurfaces satisfying these conditions. In this way we have obtained as many as 569 674

potential candidates for bases of an F-theory compactification.

2.3.2 GUT data from base manifolds

Even though we are ultimately interested in constructing a full F-theory compactification

on a Calabi-Yau fourfold, a lot of important information about the GUT model is already

encoded in the geometry of the base manifold. What is more, in many cases this data can

be inferred from the toric data of the ambient space. In the following we discuss what

we can learn from the geometry of B and how to compute phenomenologically relevant

data using toric geometry. In our discussion about the GUT brane S, which wraps a toric

divisor in B, we will focus on SU(5) and SO(10) models.
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Singularities. Singularities can either come from singularities of the ambient space or

the hypersurface equation. Since the ambient space of the base manifold is characterized

by a reflexive polytope in four dimensions, only point-like singularities arise there. On the

other hand the hypersurface itself can be singular. A hypersurface given by an equation

W (x1, . . . xn) = 0 is singular at a locus xsing if:

W |xsing
= 0 ∂xi

W |xsing
= 0 xsing ∈ X6 i = 1, . . . , N . (2.21)

A sufficient condition for regularity is that the divisor defining the hypersurface is base

point free. In this case the hypersurface can be transversally deformed in every point. By

Bertini’s theorem, it will not have any singularities of the kind of (2.21). Additionally, the

hypersurface will miss possible point singularities of the ambient space which are the only

singularities of our toric ambient spaces of B. The base point free condition is given purely

in terms of the combinatorics of the lattice polytope and therefore quite simple to check.

Almost Fano manifolds. An almost Fano threefold is an algebraic threefold that has

a non-trivial anti-canonical bundle with at least one non-zero section at every point. Our

toric construction of base manifolds does not necessarily lead to almost Fano manifolds.

Thus, we check this criterion by explicitly searching for non-zero sections in every example.

In the examples analyzed in [22] a connection between the almost Fano property of B and

the reflexivity of the lattice polytope associated to the elliptically fibered fourfold had been

observed.

Del Pezzo divisors. Having specified a base manifold B, the next task is to identify

suitable GUT divisors S. For this purpose we will systematically search for del Pezzo

divisors inside B. There are several motivations to look for del Pezzos. In local F-theory

GUTs the del Pezzo property ensures the existence of a decoupling limit [3, 4]. For SU(5)

GUT models, the fact that del Pezzos have h0,1 = h2,0 = 0 implies some powerful vanishing

theorems which forbid exotic matter after breaking SU(5) to the Standard Model gauge

group [4]. However, one should keep in mind that there are other possibilities besides del

Pezzos: as pointed out in [2], for the F-theory model to have a heterotic dual S may also

be a Hirzebruch or an Enriques surface. Recently, a construction of an F-theory GUT on

an Enriques surface has been discussed [44].

We will identify candidates for del Pezzo divisors inside B by their topological data.

All the calculations can be done using toric geometry. Suppose the base manifold has

hyperplane class which, by abuse of notation, we also call B and is embedded in a toric

ambient space with toric divisors Di. The total Chern class of a particular divisor S in B is:

c(S) =

∏

i(1 + Di)

(1 + B)(1 + S)
(2.22)

A necessary condition for the divisor S to be dPn is that it must have the following topo-

logical data:

∫

S
c1(S)2 = 9 − n

∫

S
c2(S) = n + 3 ⇒ χh =

∫

S
Td(S) = 1, (2.23)
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where χh is the holomorphic Euler characteristic. Since del Pezzos are Fano twofolds, we

have a further necessary condition. The integrals of c1(S) over all torically induced curves2

on S have to be positive:

Di ∩ S ∩ c1(S) > 0 Di 6= S ∀Di ∩ S 6= ∅ . (2.24)

Genus of matter curves. Assuming that we have set up the right GUT theory on the

divisor S, matter is localized at curves of further enhancement of the singularity. The

curve classes M of the matter curves can be expressed in terms of the toric divisors of the

ambient space. The genus of the matter curve can be computed using its first Chern class

and the triple intersection numbers. The total Chern class is:

c(M) =

∏

i(1 + Di)

(1 + B)(1 + S)(1 + M)
(2.25)

After expanding this expression to obtain c1(M), the Euler number can be calculated by

the following intersection product:

χ(M) = 2 − 2g(M) = c1(M) ∩ M ∩ S (2.26)

Note that we have made the assumption that the matter curves are generic and do not

factorize. This may not always be the case and then formula (2.26) will yield the sum of

the Euler numbers of the factorized curves as result. This may for instance lead to negative

values for the genus of the matter curve if we näıvely assume a single connected curve. The

genus of M gives us information about the number of moduli on the matter curve. Since

these moduli will eventually have to be stabilized, matter curves of low genus are desirable

from a phenomenological point of view.

Yukawa points. Yukawa couplings arise at points inside B where the GUT singularity

has a rank 2 enhancement. In the generic situation the equations specifying the Yukawa

points can be expressed as classes Y1, Y2 in terms of the toric divisors. The number of

Yukawa points is then given by the following intersection product:

nYukawa = S ∩ Y1 ∩ Y2 (2.27)

In order to account for the Standard Model Yukawa couplings only a small number of

Yukawa points is needed. In SO(10)-models, for example, all the Standard Model couplings

descend from 16 16 10 Yukawas, which is why it would be nice to find a geometry where

the number of 16 10 10 Yukawa points is as small as possible. Most of the known global

geometries come with a large number of Yukawa points. The situation is particularly bad

for dPn with small n [45]. Our analysis shows however that dP0 and dP1 are by far the

most common del Pezzo divisors in the base manifolds.

2Of course positivity should hold for all curves, but within the framework of toric geometry we can only

verify this for the divisors induced from the ambient space.
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Decoupling limit. One of the key issues which allows for the discussion of GUT models

within F-theory locally around the seven-branes is the existence of a decoupling limit. The

Planck mass and the mass scale of the GUT theory are related to the geometry in the

following way:

M2
pl ∼

M8
s

g2
s

Vol(B) MGUT ∼ Vol(S)−
1

4 1/g2
YM ∼

M4
s

gs
Vol(S) , (2.28)

see for instance [46]. Therefore one has:

MGUT

Mpl
∼ g2

YM

Vol(S)3/4

Vol(B)1/2
(2.29)

There are two ways to achieve a small value for MGUT /Mpl. These are often referred to

as the physical and the mathematical decoupling limit. In the physical decoupling limit

the volume of the GUT brane S is kept finite while Vol(B) → ∞. The mathematical

decoupling limit takes Vol(S) → 0 for finite volume of B. In the case of a rigid del Pezzo

divisor the mathematical decoupling limit should always be possible. Thus, it can be used

to check whether a del Pezzo is rigid. Here we study the dependence of the volumes of S

and B in terms of the Kähler moduli. This discussion tells us if a decoupling limit can in

principle be realized in the given geometry. If the limits are actually realized is a question

of moduli stabilization, which we will not discuss here.

The question of whether there exists a decoupling limit can again be addressed within

the realm of toric geometry. In order to obtain positive volumes we must find a basis of the

Kähler cone. The Kähler cone of the hypersurface describing the base is hard to compute.

Therefore we will approximate it by the Kähler cone of the ambient space. Having found

a basis Ki of the Kähler cone, the Kähler form J can be written as J =
∑

i riKi with

ri > 0. Using the Mori cone we can express Ki in terms of the toric divisors Di. The triple

intersection numbers restricted to B allow us to compute the following volumes in terms

of the Kähler parameters ri:

Vol(B) = J3 Vol(S) = S · J2 (2.30)

The existence of a mathematical and physical decoupling limits can be deduced from the

moduli dependence of these volumes. As was first observed in [9] these two decoupling

limits may be governed by different vectors in the Kähler cone.

2.4 Elliptically fibered Calabi-Yau fourfolds

2.4.1 Construction of the fourfolds

We now go on to construct an elliptically fibered Calabi-Yau fourfold from B. We obtain

such an elliptic fibration by first fibering P231[6] over the toric ambient space of the base

manifold. Thus, we extend the weight matrices describing the ambient space of B by

suitable weights for the new fiber coordinates (x, y, z). This is done such a way that x, y,

and z transform as K−2
B , K−3

B , and OB , respectively. We also add an extra weight vector

(2, 3, 1, 0, 0, . . . , 0) to account for the P231. In order to have a well defined torus fibration,
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the coefficients ai of equation (2.2) have to be sections of K−n
B with some appropriate

power n. The sums of the degrees of the hypersurface equation of the base and of the

equation specifying the elliptic fibration are now equal to the degree of the anti-canonical

bundle of the ambient toric sixfold. Hence, the complete intersection of these two equations

is a Calabi-Yau manifold. This variety may be singular in some cases. The complete

intersection Calabi-Yaus we consider here are given in terms of a pair of reflexive lattice

polytopes ∆ and ∆◦, together with a nef partition:

∆ = ∆1 + . . . + ∆r ∆◦ = 〈∇1, . . . ,∇r〉conv

(∇n,∆m) ≥ −δnm (2.31)

∇◦ = 〈∆1, . . . ,∆r〉conv ∇ = ∇1 + . . . + ∇r

Here, 〈. . .〉conv denotes a convex hull of lattice polytopes, and ∆ = ∆1 + . . . + ∆r (and

analogously for ∇) is a Minkowski sum.

The extension of the weight systems of the base threefold is straight forward. However,

there are several issues of both conceptual and technical nature which prevent us from

constructing an F-theory compactification for every base B. These are discussed in the

following.

Software constraints. There are two main constraints affecting our search for complete

intersection Calabi-Taus (CICYs). First, PALP was originally designed to analyze complete

intersection Calabi-Yaus of the type (2.31), which does not cover all the possibilities we

encounter in our construction of global F-theory GUTs. The software efficiently analyzes

combined weight systems to find their description in terms of (six-dimensional) reflexive

polytopes. Afterwards PALP determines their nef partitions and the Hodge numbers of

the CICY. Given a six-dimensional reflexive polytope describing the ambient space, the

common zero locus of any two transversal equations is a suitable Calabi-Yau. Note that

the two defining equations do not have to descend from the nef partitions, but only for

nef partitions it is known how to determine the Hodge numbers of the CICY in terms of

combinatorial data [35]. Thus, we could only do detailed calculations for examples that

fulfill the requirements of (2.31). In fact, not all of the combined weight systems we have

constructed extending the base weight matrices correspond to reflexive polytopes or do

have nef partitions. Table 5 in section 3 shows how many CICYs satisfy these conditions.

Reflexivity has turned out to be a severe constraint.

The second obstacle in our analysis of the fourfolds is that due to computational

constraints we have not been able to determine the six-dimensional N polytopes for all

weight matrices. The last column of table 5 shows where the software has failed. The entries

in the columns give information of two types of errors that can occur when determining

the polytopes in the N-lattice: in most cases the error comes from the the issue that PALP

cannot determine the N-lattice polytope by solving the equations encoded in the weight

matrices. This problem might in principle be overcome by choosing the points of the N-

lattice polytope as an input instead of the weight matrix. In fewer cases the N-lattice

polytope can be found but an upper bound to the number of points is violated. The upper

bound could be increased but that usually leads to very long computation times. The
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error distribution is in agreement with the intuitive idea that the complexity of the weight

matrices increases with the number of points. For the fibrations over polytopes with 8

points where 7 of which are vertices we get an error in 10, 9% of the cases, for polytopes

with 9 points and 8 vertices we have an error occurrence of 28, 5%.

The fourfold data available at [1] do not contain the Hodge numbers of the CICYs.

They can be easily determined with help of the nef-function of PALP.3 However, due to

the complexity of the polytopes their calculation would have been too time consuming to

be applied to every model we had.

Compatibility with the elliptic fibration. Once we have found a Calabi-Yau fourfold

characterized by a pair of dual polyhedra and its nef partitions, we still need to make sure

that one of the nef-partitions is compatible with the desired elliptic fibration. The most

elementary requirement for a well-defined Weierstrass model is of course that the points

in ∆◦ corresponding to the coordinates of the torus fiber are all in the same component

of the nef-partition. However, this criterion is not sufficient in order to recover the desired

Weierstrass model. We also have to make sure that the coefficients an in (2.2) transform

appropriately as sections of K−n
B . This translates into conditions on the (sums of) weights

of the variables in the individual nef partitions.

2.4.2 Engineering GUT models

By now we have constructed complete intersection Calabi-Yau fourfolds of type (2.1).

The next step is to obtain a GUT model. This is achieved by imposing the factorization

constraints such as (2.3) or (2.4) on the coefficients ar(yi, w) in the Tate equation (2.2).

The procedure can be done within the toric framework, as has been proposed first in [7].

The hypersurface constraints can be recovered from the toric data as follows:

fm =
∑

wk∈∆m

cm
k

2
∏

n=1

∏

νi∈∇n

x
〈νi,wk〉+δmn

i m,n = 1, 2 , (2.32)

where the cm
k are complex structure parameters. The Tate form (2.2) implies that the an

appear in the monomials which contain zn. We can isolate these monomials by identifying

the vertex νz in (∇1,∇2) that corresponds to the z-coordinate. All the monomials that

contain zr are then in the following set:

Ar = {wk ∈ ∆m : 〈νz, wk〉 − 1 = r} νz ∈ ∇m, (2.33)

where ∆m is the dual of ∇m, which denotes the polytope containing the z-vertex. The

polynomials ar are then given by the following expressions:

ar =
∑

wk∈Ar

cm
k

2
∏

n=1

∏

νi∈∇n

y
〈νi,wk〉+δmn

i |x=y=z=1 (2.34)

3In fact nef.x yields the Hodge numbers by default. The flag -p deactivates their calculation. For more

details we refer to the help information: nef.x -h.
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Now we can remove all the monomials in ar which do not satisfy the factorization con-

straints of the singularity classification. In order to perform this calculation we have to

identify the fiber coordinates (x, y, z) and the GUT coordinate w within the weight matrix

of the fourfold.

The restriction to a specific GUT group amounts to removing a considerable amount

of M-lattice points. As has been observed in [22] these manipulations may destroy the

reflexivity of the polytope. The dual polytope in the N-lattice will have acquired additional

points that can be interpreted as exceptional divisors obtained by blowing up the GUT

singularity [7, 9].

U(1)-restricted models. Recently there has been active discussion in the literature on

how to globally define fluxes in F-theory models. While a full answer to this problem is

still unknown there has been some progress in incorporating the spectral cover construction

into global models [13, 14]. For phenomenological reasons one has to make sure that,

in SU(5) models, the spectral cover splits. This is necessary to forbid dimension four

proton decay operators. In SO(10) models a split spectral cover is used to generate chiral

fermions [22, 47]. However, as has been argued in [12, 13] the local picture of a split

spectral cover may in general not be sufficient. The authors of [13] have shown that a lift

of the local split spectral cover construction to a globally defined “U(1)-restricted Tate

models” can give the needed further selection rule. This is achieved by imposing a global

U(1)X symmetry in the elliptic fibration. In terms of the Tate model this is achieved by

setting a6 = 0. In the toric language this corresponds to removing even more points in the

M-lattice, in addition to the manipulations needed for imposing the GUT model. Due to

this procedure the Euler number decreases significantly, which is problematic for tadpole

cancellation. Since the U(1)-restriction removes even more points from the M-lattice,

reflexivity might not be maintained.

3 Data analysis

In this section we analyze our data.4 In total we have produced 569 674 base geometries.

We will discuss their properties and the associated elliptically fibered fourfolds.

3.1 Base manifolds

We collect the information about the base geometries in several tables. Our discussion will

be concerned with properties of the base manifold, properties of its divisors and furthermore

matter curves, Yukawa couplings as well as the existence of a decoupling limit.

In table 2 we summarize some information about the base geometries. We subdivide

the models into classes pnvm, denoting models based on polytopes which have n points and

m vertices. The last three columns in the table indicate how many of the base manifolds are

Cartier divisors, base point free or almost Fano. We note that base point freedom and in

4The complete data concerning the base manifolds, their analysis, as well as the elliptically fibered

fourfolds and the GUT models is available at [1]. For details on the data format we refer to the README.txt

file the reader can find there.
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class # of polytopes # of base manifolds Cartier BP-free almost Fano

p6v5 3 12 6 6 10

p7v5 7 155 66 31 39

p7v6 18 307 199 131 94

p8v5 9 812 424 86 73

p8v6 70 6691 3265 816 584

p8v7 89 8168 4464 1542 779

p9v5 13 8238 1243 77 155

p9v6 115 84848 27037 1651 1542

p9v7 406 257024 107119 10515 5955

p9v8 358 203419 101562 14564 5677

total 1088 569674 245385 29401 14908

Table 2. Analysis of the base manifolds.

particular the almost Fano property are extremely rare items. As for almost Fano, it turns

out that this property of the base manifold is not needed in order to have a Calabi-Yau

fourfold that is characterized by a reflexive polytope.

In our search for geometries that are suitable for F-theory model building we have fo-

cused on identifying del Pezzo divisors inside the base manifold. The results of our search

are summarized in table 3. All the divisors in this counting satisfy (2.23) and (2.24). Among

all the base geometries, we have identified 269 636 models with del Pezzo divisors, and a

total number of 471 844 del Pezzos. The dPn with n = 0, 1, 2 are the most common ones.

So far, our discussion has included all possible choices of base manifolds. We can now

collect those models which have some attractive features. For that reason we will now

focus on those models where B is regular and has at least one del Pezzo divisor that allows

for a mathematical or physical decoupling limit. This leaves us with only a small fraction

of models, as indicated in table 4. In the first column we count the number of models

where the hypersurface divisor of B is Cartier and there is at least one del Pezzo divisor

with a mathematical or physical decoupling limit. In the second column we furthermore

implement the constraint that B is base point free. In the third column we count the

total number of all del Pezzos (also those without decoupling limit) in the base point free

geometries, where at least one dP-divisor allows for a decoupling limit.

3.2 Fourfolds

In this section we discuss the Calabi-Yau fourfolds which are elliptic fibrations over the base

threefolds. The toric data of the fourfolds is obtained by extending the weight matrices

associated to the base manifolds, as discussed in section 2.4.1. Complete intersection

Calabi-Yaus can be analyzed by PALP. The fourfold data contains a lot of information

which is relevant for finding global F-theory GUT models. We can use the data to answer

the following questions:
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class base manifolds with dPs # of dPn dP0 dP1 dP2 dP3 dP4 dP5 dP6 dP7 dP8

p6v5 6 25 9 6 - - - - 6 4 -

p7v5 66 150 36 72 4 - 2 1 17 14 4

p7v6 206 597 121 239 35 11 17 9 73 64 28

p8v5 429 787 133 431 43 - 14 8 75 45 38

p8v6 3322 6259 1074 2883 539 157 164 171 520 458 293

p8v7 4888 11449 1868 4162 1325 670 451 532 931 947 563

p9v5 3213 5415 1562 1740 274 61 115 31 617 949 66

p9v6 31160 45039 8598 20261 4228 1167 992 1023 3763 3823 1184

p9v7 113364 181672 31926 72056 22238 9432 5812 6632 12061 13839 7376

p9v8 112982 220451 35669 73549 32191 18130 11098 11394 14950 15183 8887

total 269636 471844 80996 175399 60877 29628 18665 19801 33013 35326 18439

Table 3. Results of the del Pezzo analysis.
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class Cartier+dec+dP BP-free+dec+dP # dP for BP-free+dec

p6v5 - - -

p7v5 29 22 74

p7v6 85 72 277

p8v5 224 74 212

p8v6 1492 665 2073

p8v7 2412 1264 4490

p9v5 726 62 239

p9v6 10900 1332 3334

p9v7 46142 8933 26776

p9v8 53356 13108 50930

total 115366 25532 88405

Table 4. Base manifolds with del Pezzo divisors and decoupling limit.

1. Does the extension of the weight matrix of the base lead to a reflexive polytope?

2. How many of the Calabi-Yau fourfolds have nef partitions that are compatible with

the elliptic fibration over B?

3. Do the “good” base manifolds (i.e. those which are regular, have del Pezzo divisors

and a decoupling limit) always extend to Calabi-Yau fourfolds, which are described

in terms of reflexive polytopes and nef partitions?

4. After imposing a GUT group using the construction of [7], are the fourfold polytopes

still reflexive?

5. Does imposing the GUT model lead to further non-abelian enhancements on divisors

other than the GUT divisor?

6. Can we implement a U(1)-restricted Tate model in order to impose a global U(1)-

symmetry [13] without destroying desirable properties on the Calabi-Yau fourfold?

Even though we have the tools to answer all these questions, working out the details for a

large class of models is quite tricky and takes up a lot of computing time. This is why we

will address some of these issues, in particular the fifth question, only in several examples.

We start by answering the first question above. As a somewhat surprising outcome,

only a very small fraction of threefold base manifolds can be extended to a Calabi-Yau

fourfold which is described by a pair of reflexive polyhedra and at least one nef partition.

We have found 27 345 such models. The results are summarized in table 5. About one

quarter of the extended weight systems could not be analyzed due to their complexity.

For the rest of the discussion we will focus on those fourfolds which can be characterized

by reflexive polytopes and have at least one nef-partition. At first we merge the fourfold

data with the data of the base manifold in order to check how many of the “good” base
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class (base) reflexive+nef part. reflexive, no nef part. non-reflexive PALP errors

p6v5 10 - 2 -

p7v5 65 6 84 -

p7v6 128 7 172 -

p8v5 197 103 308 188 + 16

p8v6 1170 344 4481 660 + 36

p8v7 1051 267 5958 892 + 0

p9v5 256 146 583 7187 + 66

p9v6 4033 3530 61211 14861 + 1213

p9v7 12101 8963 176598 58439 + 928

p9v8 8334 5266 131835 57918 + 66

total 27345 18632 381232 140145 + 2325

Table 5. Fourfold Polytopes.

class CY4+refl+nef Cartier base+dPn+dec. BP-free base+dPn+dec.

p6v5 10 - -

p7v5 65 24 18

p7v6 128 61 57

p8v5 197 94 38

p8v6 1170 685 402

p8v7 1051 760 591

p9v5 256 5 -

p9v6 4033 1679 414

p9v7 12101 6909 2714

p9v8 8334 5794 3152

total 27345 16011 7386

Table 6. CY fourfolds where the base manifolds are suitable for F-theory model building.

manifolds also lead to Calabi-Yau fourfolds that are characterized by reflexive polytopes

with nef partitions. Our findings are collected in table 6. The number of models which

have a reflexive fourfold polytope, where the base is regular and there is at least one del

Pezzo divisor with a mathematical and/or physical decoupling limit is 7386. In table 7

we list the distribution of del Pezzos in these “good” models. Even if we have a reflexive

fourfold polytope with nef partitions it is not implied that the nef partitions are compatible

with the elliptic fibration over B. The extended weight systems will always lead to elliptic

fibrations, but not necessarily over the base manifold we want. In many cases, there may

even be more than one nef partition that is compatible with the elliptic fibration over B.

However, these nef-partitions always lead to the same Tate model. Taking this into account

we are left with 3978 Calabi-Yau fourfolds. Our results can be found in table 8. With a

nef partition in hand we can go on to construct GUT models for a particular gauge group,

as described in section 2.4. For the 3978 fourfold geometries in table 8 which have a nef
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class # models # of dPn dP0 dP1 dP2 dP3 dP4 dP5 dP6 dP7 dP8

p6v5 - - - - - - - - - - -

p7v5 18 66 17 39 - - 2 - 6 2 -

p7v6 57 212 39 92 10 7 7 5 26 21 5

p8v5 38 100 6 86 - - 3 - 2 3 -

p8v6 402 1198 172 696 83 44 48 39 42 68 6

p8v7 591 2287 284 894 287 192 124 154 131 178 43

p9v5 - - - - - - - - - - -

p9v6 414 855 102 494 91 44 33 27 30 30 4

p9v7 2714 7378 902 3383 1122 931 375 384 198 324 59

p9v8 3152 12334 1377 4161 2343 1605 768 881 533 507 159

total 7386 24430 2899 9845 3936 2823 1360 1490 968 1133 276

Table 7. Distribution of del Pezzos in “good” F-theory geometries.

class (base) # of models w/ ell. comp. nef # of ell. comp. nef

p6v5 - -

p7v5 4 6

p7v6 46 83

p8v5 3 5

p8v6 110 215

p8v7 445 1157

p9v5 - -

p9v6 69 116

p9v7 1014 2538

p9v8 2287 7677

total 3978 11797

Table 8. CY fourfolds with Tate models.

partition which is compatible with the elliptic fibration, we have constructed SU(5) and

SO(10) GUT models on every del Pezzo divisor. In order to make this calculation we have

to identify the coordinates of the torus fiber and the GUT divisor in the toric data of the

Calabi-Yau fourfold. This can be done by matching the columns of the weight matrix of B

with the columns of the weight matrix of X4. Note that this identification may not always

be unique due to symmetries of the weight matrix. Of course, the different choices do not

lead to different GUT models. One prominent example of a weight matrix with such a

symmetry is the dP5-model discussed in [9].

Carrying out this procedure we get a total number of 45 304 global F-theory GUTs.

After removing redundancies coming from symmetries in the weight matrix, we are still

left with 30 922 models. Note however that not all of these models will be usable, since the

removal of points in the M-lattice in order to implement the GUT group may destroy the

reflexivity of the polytope. In very few examples it might also happen that there is no longer
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with redundancies without redundancies

type refl. non-refl. no nef refl. non-refl. no nef

SU(5) 17099 5553 - 11275 4186 -

SO(10) 16625 6020 7 10832 4622 7

SU(5) + U(1)-restr. 17099 5553 - 11275 4186 -

SO(10) + U(1)-restr. 16625 6020 7 10832 4622 7

Table 9. Reflexivity of polytopes after implementing the GUT group.

a nef partition. We collect this information in table 9. We make two observations: first, in

about one third of the models, imposing the GUT group destroys reflexivity, and second,

U(1)-restriction, does not put any further constraints on the reflexivity of the polytopes.

In the final step of our data analysis we search for new examples of F-theory GUTs

which might be interesting for string phenomenology. Therefore we would like to isolate

models where the GUT divisor S has matter curves with a small number of moduli and

not too many Yukawa points. Even though the geometries we have started with have GUT

divisors with very diverse topological data, the cuts we have imposed put severe restric-

tions on the geometry and as a consequence also on the topological numbers of the divisors.

In table 10 in the appendix we list the matter genera and Yukawa points for SU(5) and

SO(10) del Pezzos with a physical decoupling limit, and their occurrence in global models

where the fourfold polytopes are reflexive after imposing the GUT group with or with-

out U(1)-restriction. Similar results can be obtained for del Pezzos with a mathematical

decoupling limit.

3.3 Examples

We will now discuss some examples in more detail. We focus mostly on dP7 and dP8 since

they are quite rare and dP8s have not been discussed previously in the context of global

models. We will also make some comments on the calculation of Euler numbers using the

following formula proposed in [7]: given a resolved Calabi-Yau fourfold with GUT group

G, denoted by X̄G, the Euler number is given by:

χX̄G
= χX̄4

− χE8
+ χH , (3.1)

where χX̄4
is the Euler characteristic of the resolved X4 and χH denotes a correction

related to H, which is the commutant subgroup of G in E8. The Euler number for a

smooth elliptically fibered Calabi-Yau fourfold is:

χX̄4
= 360

∫

B
c3
1(B) + 12

∫

B
c1(B)c2(B) (3.2)

Defining η = 6c1(S) + c1(NS), the correction for H = SU(n) (n ≤ 5) is given by:

χSU(n) =

∫

S
c2
1(S)(n3 − n) + 3nη(η − nc1(S)) (3.3)
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Originally, the formula (3.1) was motivated from heterotic/F-theory duality and the spec-

tral cover construction. In [13] (3.1) has been shown to be consistent with mirror sym-

metry, under which G and H are exchanged. Note that (3.1) is only valid if there are

no further non-abelian gauge enhancements away from the GUT brane S. Furthermore,

equation (3.1) is not valid for U(1)-restricted models. In the following examples we will see

that such extra enhancements can occur and lead to discrepancies in the Euler numbers of

the Calabi-Yau fourfold computed by (3.1) and those Euler numbers obtained by PALP,

which uses a formula of Batyrev and Borisov [35].

3.3.1 Three dP8s

Models where the GUT divisor is a dP8 are interesting for phenomenology since the genera

of the matter curves and the number of Yukawa points is typically low. Unfortunately dP8s

are quite rare in the geometries we have constructed, and it turns out that those appearing

in suitable Calabi-Yau fourfolds do not satisfy all the properties we would like to have. We

will now discuss three examples. The base geometry of the first example is encoded in the

following weight matrix:

y1 y2 y3 y4 y5 y6 y7 y8
∑

deg

w1 3 2 1 1 0 1 0 0 8 6

w2 3 1 1 1 0 0 0 1 7 6

w3 3 0 1 1 1 0 0 0 6 6

w4 1 0 0 0 0 0 1 0 2 2

(3.4)

The second but last column indicates the sum of the weights, the last column shows the

degrees of the hypersurface equation describing the base manifold B. In our database [1]

this model is labeled by (cy4)p9v6n058d6-6-6-2t1. Let us first discuss the properties

of B. B is an almost Fano manifold and it is a Cartier divisor that is base point free.

Furthermore, we only obtain three induced Kähler classes from the ambient space, since

D7 does not intersect the hypersurface, cf. 2.2.1. There is only one del Pezzo divisor,

defined by y6 = 0, which will be our GUT divisor S. The topological data indicates that

it is a dP8. The volumes in terms of Kähler parameters ri > 0 are:

Vol(B) = 6r1r
2
2 + 2r3

2 + 36r1r2r3 + 18r2
2r3 + 54r1r

2
3 + 54r2r

2
3 + 27r3

3 + 36r1r2r4 + 18r2
2r4

+108r1r3r4 + 108r2r3r4 + 162r2
3r4 + 54r1r

2
4 + 54r2r

2
4 + 162r3r

2
4 + 54r3

4

Vol(S) = 9r2
3 (3.5)

It is easy to check that there is a mathematical as well as a physical decoupling limit.

Under the mathematical decoupling limit r3 → 0, S is the only divisor that shrinks to

zero size. If we choose r1 → ∞ as a physical decoupling limit also the divisors y2 = 0 and

y8 = 0 remain of finite size. However, studying this base geometry in more detail, we see

that it is a K3 fibration over P
1. The K3 fiber degenerates at the point, y6 = 0, of the P

1

to a dP8. Hence, it is a rigid divisor. Constructing a torus fibration over B, we observe

that the coefficients ai of the fibration only depend on the coordinates of the P
1. Thus, the

elliptic curve remains constant over the fiber, therefore, also in the case of a degeneration.
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From the discriminant we find that the torus degenerates over twelve points of the P
1.

Hence, we obtain twelve disconnected branes along the fibers at these points and not a

single connected one, as one would expect in the case of a generic fibration.

We can now näıvely proceed and calculate the genera of the matter curves and the

Yukawa numbers for a SU(5) GUT on S. We obtain the following:

gSU(6) = 11 gSO(10) = 1 nE6
= 0 nSO(12) = 0 (3.6)

Due to the absence of Yukawa couplings this dP8 is not a good candidate for a viable SU(5)

GUT model. However, it still can be used for an SO(10) GUT where the data is as follows:

gSO(12) = 2 gE6
= 1 nE7

= 2 nSO(14) = 12 (3.7)

The weight matrix (3.4) can be extended to a weight matrix describing a complete in-

tersection Calabi-Yau fourfold X4. The corresponding six-dimensional lattice polytope is

reflexive, and there is one nef partition which respects the elliptic fibration over B. Using

PALP we can compute the Euler number χ and the non-trivial Hodge numbers for X4 and

for the geometries one obtains after imposing the SO(10) gauge groups. The results are

collected in the following table:

type h1,1 h2,1 h3,1 χ

Tate 12 26 54 288

SO(10) 17 29 49 270

(3.8)

As noticed above, already the generic fibration is rather restricted. Thus, we do not

obtain 4 for h1,1 in the unconstrained case but 12 instead. This indicates that also the

SO(10) results should be considered with care.

For the SO(10) model we can compare the Euler number to the result obtained

from (3.1), which yields 168. The mismatch implies that some conditions for the validity of

this formula are violated. Indeed, looking at the SU(5)/SO(10) Weierstrass model, we find

that after imposing the GUT group on the divisor y6 = 0, we also obtain a non-abelian

enhancement on the divisor y8 = 0. Comparing with the Tate classification, we get an

Is
3-enhancement for SU(5) on y6 = 0 and an SU(3)-enhancement for SO(10). Furthermore,

note that removing all the monomials in the Weierstrass equation, that do not comply with

SU(5)/SO(10), the (a0, a1, a2, a3, a6) schematically (i.e. after setting all complex structure

parameters to 1) vanish as follows on S: (1+w2, w2 +w4, w2 +w4 +w6, w4 +w6 +w8, w6 +

w8 + . . .) for SU(5), and (w2, w2 + w4, w2 + w4 + w6, w4 + w6 + w8, w6 + w8 + . . .) for

SO(10). Thus, the singularity enhancements are actually higher than that of SU(5) or

SO(10). As we observed already above, the reason for all the problems roots in the very

ungeneric form of the coefficients in the Weierstrass model. This comes from the fact that

the anti-canonical class does not depend on all toric classes. We see that constructing a

Tate model over a promising base manifold may not lead to the wanted brane setup.

As indicated in table 10 the dP8 with the matter genera and Yukawa numbers above

is the only one with a physical decoupling limit. The dP8s we have found in the global

models we have constructed only have very few combinations of topological numbers. In
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order to also give an example where an SU(5) GUT is possible, we consider the following

base geometry:

y1 y2 y3 y4 y5 y6 y7 y8
∑

deg

w1 1 1 0 0 0 0 0 0 2 1

w2 1 0 1 0 1 0 1 0 4 3

w3 1 0 1 0 0 1 0 1 4 3

w4 0 0 1 1 1 0 0 0 3 2

(3.9)

The file name in the database is (cy4)p9v8n224d1-3-3-2t1. As in the previous examples

the base B is almost Fano. The hypersurface divisor is Cartier and base point free. There

are two del Pezzo divisors, one dP8 and one dP5. We focus on the dP8 here, which is given

by y1 = 0. The volumes of B and S are:

Vol(B) = 2r3
1 + 15r2

1r2 + 6r1r
2
2 + 18r2

1r3 + 30r1r2r3 + 6r2
2r3 + 18r1r

2
3 + 15r2r

2
3 + 6r3

3

+18r2
1r4 + 30r1r2r4 + 6r2

2r4 + 48r1r3r4 + 30r2r3r4 + 24r2
3r4 + 24r1r

2
4

+15r2r
2
4 + 24r3r

2
4 + 8r3

4

Vol(S) = (r1 + r3 + r4)(5(r1 + r3 + r4) + 4 r2) (3.10)

Clearly, there is no decoupling limit. This can also be seen from the fact that S is not a

rigid divisor. B is a P
1 fibration over a toric dP1 and S the reduction of this fibration over

a non-rigid curve in this dP1.

Computing the matter genera and the Yukawa numbers one finds for SU(5):

gSU(6) = 74 gSO(10) = 2 nE6
= 8 nSO(12) = 11 (3.11)

and for SO(10):

gSO(12) = 9 gE6
= 5 nE7

= 16 nSO(14) = 52 (3.12)

The fourfold X4 is described by a reflexive polyhedron with 17 nef partitions, four of which

describe an elliptic fibration over B. The Hodge numbers are collected in the table below:

type h1,1 h2,1 h3,1 χ

Tate 5 9 404 2448

SU(5) 13 9 84 360

SO(10) 17 11 43 342

SU(5)U(1) 14 9 44 342

SO(10)U(1) 18 11 39 324

(3.13)

Again, the Hodge numbers for SU(5)/SO(10), without U(1)-restriction, do not fit

the numbers calculated with formula (3.1). Examining the Tate equation after imposing

the GUT group, we find an additional gauge enhancement at the divisor y4 = 0. For

SU(5) the extra enhancement is also SU(5), for SO(10), the y4 = 0 also carries an SO(10)

enhancement. Note that the second del Pezzo divisor in B, y2 = 0, which is a dP5 has a

mathematical and a physical decoupling limit. It is a rigid divisor and the Euler numbers

after imposing the GUT groups on it match the Euler numbers computed with (3.1). The
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form of the Tate equation implies that in that case no other divisor gets a non-abelian

enhancement.

Finally, we consider an example of a dP8 with a mathematical decoupling limit. The

base geometry is given by the following weight matrix:

y1 y2 y3 y4 y5 y6 y7
∑

deg

w1 1 1 0 0 0 0 0 2 2

w2 1 0 1 1 1 0 0 4 3

w3 2 0 1 1 0 1 1 6 5

(3.14)

In the database this model is labeled by (cy4)p8v7n073d2-3-5t1. There are two del Pezzo

divisors: y2 = 0 is a dP0 and y5 = 0, which we will name S, is dP8. The existence of a

mathematical decoupling limits can be deduced from the volumes of the base B and S:

Vol(B) = 2r3
1+15r2

1r2+24r1r
2
2+11r3

2+15r2
1r3+60r1r2r3+48r2

2r3+30r1r
2
3+60r2r

2
3+20r3

3

Vol(S) = 4r1r2 + 5r2
2 + 8r2r3 (3.15)

The mathematical decoupling limit can be implemented by setting r2 → 0. In that case

none of the other divisors will shrink to zero size. The topological data of the matter curves

and the Yukawa couplings for SU(5)-models is:

gSU(6) = 38 gSO(10) = 0 nE6
= 2 nSO(12) = 4 (3.16)

and for SO(10):

gSO(12) = 5 gE6
= 2 nE7

= 8 nSO(14) = 32 (3.17)

Two nef partitions are compatible with the elliptic fibration. The Hodge numbers and the

Euler number are collected in the following table:

type h1,1 h2,1 h3,1 χ

Tate 4 26 182 1008

SU(5) 8 26 83 438

SO(10) 9 26 81 432

SU(5)U(1) 9 26 71 372

SO(10)U(1) 10 26 69 366

(3.18)

Even though there are no further non-abelian enhancements on the torically induced

divisors of B, the Euler numbers do not match those obtained from (3.1). The mismatch

might still be due to an extra non-abelian enhancement on a divisor which is not toric.

Another possible explanation could be that we have a non-abelian enhancement over a

curve. Resolving the singularities on these curves leads to a further Kähler parameter.

However, we do not observe the corresponding Kähler modulus in the above table.
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3.3.2 Three dP7s

As a second class of examples we discuss a model which has two different dP7 divisors. The

base is specified by the following weight matrix and hypersurface degrees:

y1 y2 y3 y4 y5 y6 y7 y8
∑

deg

w1 1 1 0 0 0 0 0 0 2 2

w2 1 0 1 1 0 1 0 1 5 4

w3 1 0 0 0 1 1 0 0 3 2

w4 0 0 1 1 0 0 1 0 3 2

(3.19)

The identifier for this model is (cy4)p9v8n152d2-4-2-2t2. The two dP7s are given by

y5 = 0 and y7 = 0, and we call the associated GUT branes S5 and S7. Let us first discuss

the decoupling limits.

Vol(B) = 6r2
1r2+6r1r

2
2+2r3

2+6r2
1r3+24r1r2r3+12r2

2r3+6r1r
2
3+6r2r

2
3+6r2

1r4+24r1r2r4

+12r2
2r4 + 24r1r3r4 + 24r2r3r4 + 6r2

3r4 + 12r1r
2
4 + 12r2r

2
4 + 12r3r

2
4 + 4r3

4

Vol(S5) = 2r2
1 + 4r1r3 + 4r1r4

Vol(S7) = 4r1r3 + 4r2r3 + 2r2
3 + 4r3r4 (3.20)

As can be easily verified, S5 has a mathematical as well as a physical decoupling limit,

whereas S7 only has a mathematical decoupling limit. The Kähler parameters can always

be chosen in such a way that the respective GUT divisor is the only one whose volume goes

to zero/remains finite in the mathematical/physical decoupling limit. The matter genera

and Yukawa numbers for S5 are the following:

gSU(6) = 21 gSO(10) = 1 nE6
= 0 nSO(12) = 0 (3.21)

for SU(5) and

gSO(12) = 3 gE6
= 1 nE7

= 4 nSO(14) = 24 (3.22)

for SO(10). As in the first dP8-example, S5 is not suitable for SU(5) GUTs due to the

absence of Yukawa points. For the divisor S7 the topological data for SU(5) and SO(10)

GUTs are as follows:

gSU(6) = 48 gSO(10) = 0 nE6
= 2 nSO(12) = 4 (3.23)

for SU(5) and

gSO(12) = 6 gE6
= 2 nE7

= 10 nSO(14) = 44 (3.24)

for SO(10). The associated Calabi-Yau fourfold has 25 nef partitions, three of which

describe an elliptic fibration over B. Imposing the GUT groups on S5 (first block) and S7
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(second block) we compute the following Hodge numbers:

type h1,1 h2,1 h3,1 χ

Tate 5 11 1066 1008

SU(5) 9 10 121 768

SO(10) 10 10 120 768

SU(5)U(1) 10 10 78 516

SO(10)U(1) 11 10 77 516

SU(5) 9 11 67 438

SO(10) 10 11 65 432

SU(5)U(1) 10 11 55 372

SO(10)U(1) 11 11 53 366

(3.25)

For the SU(5) and SO(10) model on S5 the Euler numbers agree with the formula (3.1)

of [7], and there are also no further non-abelian enhancements in the Tate models. For S7

there is a mismatch of Euler numbers, even though we do not find any further non-abelian

enhancements on the toric divisors of B in the Tate model. However, there may be some

singularities over non-toric divisors.

Now we would like to discuss a dP7-model with a physical decoupling limit. For this

purpose we look at a base geometry which is specified by the following data:

y1 y2 y3 y4 y5 y6 y7 y8
∑

deg

w1 1 1 0 0 0 0 0 0 2 2

w2 1 0 1 1 0 0 0 0 3 2

w3 3 0 0 1 0 1 1 1 7 6

w4 2 0 0 0 1 1 1 0 5 4

(3.26)

In the database the label of this model is (cy4)p9v8n341d2-2-6-4t1. This model also

has two dP7s given by y3 = 0 and y4 = 0. The former has the same matter genera and

Yukawa points as S5 above, so we will focus on the latter which we will call S. The divisor

S is not rigid. To see this we have to examine B in more detail. We find that B is a dP7

fibration over P
1. Furthermore, the typical fiber of this fibration is equivalent to S. We

note further that the divisor D2 of the ambient space does not intersect the hypersurface,

cf. section 2.2.1. The existence of a physical decoupling limit is inferred from the volumes

of B and S:

Vol(B) = 6r1r
2
2 + 2r3

2 + 24r1r2r3 + 18r2
2r3 + 24r1r

2
3 + 48r2r

2
3 + 24r3

3 + 24r1r2r4 + 18r2
2r4

+48r1r3r4 + 96r2r3r4 + 120r2
3r4 + 24r1r

2
4 + 48r2r

2
4 + 120r3r

2
4 + 40r3

4

Vol(S) = 2(r2 + 2 r3 + 2 r4)
2 (3.27)

The physical decoupling limit is achieved when we take r1 → ∞ which is the volume of the

P
1, the base space of the fibration. In this limit also the other dP7 y3 = 0, which is also a

fiber, remains of finite size. The matter and Yukawa data for SU(5) and SO(10) GUTs are:

gSU(6) = 57 gSO(10) = 1 nE6
= 4 nSO(12) = 6 (3.28)
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for SU(5) and

gSO(12) = 7 gE6
= 3 nE7

= 12 nSO(14) = 48 (3.29)

for SO(10). Extending the weight matrix of the base manifold we get an elliptically fibered

Calabi-Yau fourfold which has 7 nef partitions. Three of these are elliptic fibrations over

B as given by (3.26). Computing the Hodge data, we get the following results:

type h1,1 h2,1 h3,1 χ

Tate 4 22 178 1008

SU(5) 12 22 53 306

SO(10) 16 24 50 300

SU(5)U(1) 13 22 51 300

SO(10)U(1) 17 24 48 294

(3.30)

Again, the Euler number from the Hodge data disagree with the one calculated from for-

mula (3.1). Looking at the Tate model for the F-theory GUT we find an additional SU(5)

or SO(10)-enhancement on the divisor y5 = 0.

3.3.3 The toric three-/fourfold of [48]

The last example that we consider is the model (cy4)p8v7n080d1-1-3t1, which is equiv-

alent to the compactification geometry discussed in [48], cf. also [49]. The base geometry

is given by the following weight matrix and hypersurface:

y1 y2 y3 y4 y5 y6 y7
∑

deg

w1 1 1 0 0 0 0 0 2 1

w2 0 1 1 1 0 0 0 3 1

w3 0 2 1 0 1 1 1 6 3

. (3.31)

This is an example of a base manifold which does not satisfy the almost Fano condition.

The relevant dP2 on which we will place the GUT model is D4. Together with the dP1 on

D1, these are the only two shrinkable del Pezzo surfaces as one can see from the volumes

of B, S = D4, and D1,

Vol(B) = 3r2
1r2 + 3r1r

2
2 + r3

2 + 3r2
1r3 + 18r1r2r3 + 9r2

2r3 + 12r1r
2
3 + 18r2r

2
3 + 10r3

3

Vol(S) = (r1 + 2r3)
2 (3.32)

Vol(D1) = r2(2 r1 + r2) .

Besides these two rigid del Pezzos there are other toric dP2s on D5 ∼ D6 ∼ D7 which do

not have a decoupling limit. Before we come to the fourfold geometry, we compute the

matter and Yukawa data for SU(5) and SO(10) GUTs on S:

gSU(6) = 134 gSO(10) = 0 nE6
= 6 nSO(12) = 10 (3.33)

for SU(5) and

gSO(12) = 15 gE6
= 4 nE7

= 28 nSO(14) = 128 (3.34)

for SO(10).
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Again, we extend the weight matrix of the base manifold to obtain an elliptically

fibered Calabi-Yau fourfold which has 4 nef partitions. Two of these are elliptic fibrations

over B as given by (3.31). Computing the Hodge data for this fourfold and the reduced

ones, we obtain the following results:

type h1,1 h2,1 h3,1 χ

Tate 4 0 2316 13968

SU(5) 8 0 1867 11298

SO(10) 9 0 1863 11280

SU(5)U(1) 9 0 796 4878

SO(10)U(1) 10 0 792 4860

. (3.35)

These results match with the outcome of SU(5)/SO(10) one finds from (3.1).

4 Conclusions

In this paper we have constructed a large class of Calabi-Yau fourfolds which are partic-

ularly useful for F-theory compactifications. There are several interesting directions for

continued research.

Having such a large class of examples it might be useful to extend the rather basic

analysis and to do more detailed calculations in F-theory. One possibility would be to

include calculations with fluxes. It has been argued in [7, 13–15] that the spectral cover

construction which can be used to describe fluxes locally near the GUT brane [50] is valid

in certain cases also beyond the local picture. Our data contains all the input needed to

calculate chiral indices and tadpole cancellation conditions for a large class of models. Also

the flux quantization and anomaly cancellation conditions worked out in [18, 19] could be

included into the analysis.

In [44] F-theory models where the GUT brane does not wrap a del Pezzo divisor have

been discussed. Despite the fact that the connection to many of the local GUT models

discussed in the literature is not immediate, these GUTs are interesting because they may

allow for gauge group breaking by discrete Wilson lines. The analysis we have performed

for del Pezzo divisors can be extended to toric divisors in the base which are not del Pezzo.

So far no examples have been discussed where it is possible to make contact between F-

theory GUT models and the Calabi-Yau fourfolds which are encountered in the calculation

of N = 1 superpotentials [51–56]. One could search our database for fourfold geometries

which are suited for establishing a connection between these two exciting topics.

In our calculations we have made use of an extension of the software package PALP [40],

which can compute triangulations of polytopes and calculates the Mori cone, the Stanley-

Reisner ideal and intersection rings for hypersurfaces in toric ambient spaces. An extension

of these routines to the case of complete intersection Calabi-Yaus is interesting not only for

applications in F-theory GUTs. Furthermore it would be useful to extend PALP to handle

also non-reflexive polytopes. In this context the program cohomCalg [57] may be helpful

for the calculation of Hodge numbers. Finally we should also try to overcome the problems

with numerical overflows that arose due to the complexity of the fourfold polytopes.

– 30 –



J
H
E
P
0
3
(
2
0
1
1
)
1
3
8

A more mathematical question concerns methods to partially classify Calabi-Yau four-

folds. A complete classification of Calabi-Yau fourfolds that are hypersurfaces or complete

intersections in a toric ambient space seems to be out of reach. An empirical formula due

to H. Skarke [58] estimates the number Nd of reflexive polytopes in d dimensions to be

of order Nd ≃ 22d+1−4. This implies that the number of reflexive polytopes in 5 dimen-

sion is of order O(1018). In 6 dimensions there are even expected to be O(1037) reflexive

polytopes. Since also non-reflexive polytopes may be of interest in F-theory, this number

might only be the tip of the iceberg. Even a classification of elliptically fibered Calabi-Yau

fourfolds may be too difficult. However, what could in principle be doable is a complete

classification of the geometries we have constructed in this article. The prescription is the

following: take each of the 473 800 776 reflexive polyhedra in four dimensions and put in

all possible hypersurfaces whose degree is below the degree of the Calabi-Yau hypersurface

in this ambient space. Then construct fourfolds which are elliptic fibrations over these

base manifolds. A näıve estimate shows that this procedure would yield O(1011) fourfold

geometries. Due to the overflow problem we can only claim that we have a full classifica-

tion of this type of Calabi-Yau fourfolds if they originate from reflexive polyhedra in four

dimensions which have up to seven points.

A Matter genera and Yukawa points

In the following table we list the matter genera and Yukawa numbers for those del Pezzos,

where the F-theory GUT lives on a Calabi-Yau fourfold described by to a reflexive polytope,

where at least one nef partition is compatible with the elliptic fibration. Furthermore, the

base B should be regular, and at least one of the del Pezzos inside the base should admit

a decoupling limit. Note that for the calculation of these numbers the formulas (2.26)

and (2.27) have been used. There it was assumed that the curves involved are irreducible.

Since we could not check this explicitly for every model, some of these numbers might

be incorrect.

SU(5) SO(10)

type gSU(6) gSO(10) nE6
nSO(12) gSO(12) gE6

nE7
nSO(14) #

dP8 11 1 0 0 2 1 2 12 9

dP7 57 1 4 6 7 3 12 48 187

102 2 10 14 12 6 22 76 2

75 1 6 9 9 4 16 60 5

21 1 0 0 3 1 4 24 73

48 0 2 4 6 2 10 44 1

66 0 4 7 8 3 14 56 2

dP6 85 1 6 9 10 4 18 72 161

31 1 0 0 4 1 6 36 47

58 0 2 4 7 2 12 56 32

130 2 12 17 15 7 28 100 3

76 0 4 7 9 3 16 68 4
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103 1 8 12 12 5 22 84 3

dP5 68 0 2 4 8 2 14 68 96

113 1 8 12 13 5 24 96 340

104 0 6 10 12 4 22 92 7

131 1 10 15 15 6 28 108 14

158 2 14 20 18 8 34 124 17

86 0 4 7 10 3 18 80 34

41 1 0 0 5 1 8 48 47

185 3 18 25 21 10 40 140 3

176 2 16 23 20 9 38 136 1

dP4 141 1 10 15 16 6 30 120 141

96 0 4 7 11 3 20 92 56

78 0 2 4 9 2 16 80 60

186 2 16 23 21 9 40 148 16

51 1 0 0 6 1 10 60 21

114 0 6 10 13 4 24 104 23

159 1 12 18 18 7 34 132 4

132 0 8 13 15 5 28 116 10

dP3 124 0 6 10 14 4 26 116 189

169 1 12 18 19 7 36 144 267

205 1 16 24 23 9 44 169 28

160 0 10 16 18 6 34 140 6

268 4 26 36 30 14 58 204 10

214 2 28 26 24 10 46 172 18

88 0 2 4 10 2 28 92 63

61 1 0 0 71 1 12 72 32

142 0 8 13 16 5 30 128 45

106 0 4 7 12 3 22 104 35

187 1 14 21 21 8 40 156 15

250 2 22 32 28 12 54 196 1

241 3 22 31 27 12 52 188 5

dP2 170 0 10 16 19 6 36 152 218

134 0 6 10 15 4 28 128 180

197 1 14 21 22 8 42 168 427

215 1 16 24 24 9 46 180 102

269 3 24 34 30 13 58 212 25

116 7 4 7 13 3 24 116 73

242 2 20 29 27 11 52 196 105

188 0 12 19 21 7 40 164 18

71 1 0 0 8 1 14 84 30

152 0 8 13 17 5 32 140 117

260 2 22 32 29 12 56 208 22
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323 5 32 44 36 17 70 244 10

98 0 2 4 11 2 20 104 34

296 4 28 39 33 15 64 228 19

206 0 14 22 23 8 44 176 1

305 3 28 40 34 15 66 236 2

dP1 225 1 16 24 25 9 48 192 1150

252 0 18 28 28 10 54 212 11

144 0 6 10 16 4 30 140 482

81 1 0 0 9 1 16 96 214

198 0 12 19 22 7 42 176 139

270 2 22 32 30 12 58 220 239

180 0 10 16 20 6 38 164 603

162 0 8 13 18 5 34 152 476

315 3 28 40 35 15 68 248 54

378 6 38 52 42 20 82 284 20

108 0 2 4 12 2 22 116 278

441 9 48 64 49 25 96 320 9

234 0 16 25 26 9 50 200 7

243 1 18 27 27 10 52 204 51

216 0 14 22 24 8 46 188 28

297 3 26 37 33 14 64 236 54

324 4 30 42 36 16 70 252 27

126 0 4 7 14 3 26 128 175

351 5 34 47 39 18 76 268 15

270 0 20 31 30 11 58 224 1

dP0 253 1 18 27 28 10 54 216 338

496 10 54 72 55 28 108 360 12

91 1 0 0 10 1 18 108 150

190 0 10 16 21 6 40 176 763

325 3 28 40 36 15 70 260 126

136 0 4 7 15 3 28 140 380

406 6 40 55 45 21 88 308 33

Table 10. Topological numbers of del Pezzos with physical decoupling limit.
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thesis, Eberhard-Karls-Universität Tübingen, June (2010),
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[48] J. Marsano, N. Saulina and S. Schäfer-Nameki, F-theory Compactifications for

Supersymmetric GUTs, JHEP 08 (2009) 030 [arXiv:0904.3932] [SPIRES].

[49] C. Mayrhofer, Compactifications of Type IIB String Theory and F-Theory Models by Means

of Toric Geometry, PhD thesis, Vienna University of Technology, November (2010),

http://aleph.ub.tuwien.ac.at.

[50] R. Donagi and M. Wijnholt, Higgs Bundles and UV Completion in F-theory,

arXiv:0904.1218 [SPIRES].

[51] M. Alim et al., Hints for Off-Shell Mirror Symmetry in type-II/F-theory Compactifications,

Nucl. Phys. B 841 (2010) 303 [arXiv:0909.1842] [SPIRES].

[52] T.W. Grimm, T.-W. Ha, A. Klemm and D. Klevers, Computing Brane and Flux

Superpotentials in F-theory Compactifications, JHEP 04 (2010) 015 [arXiv:0909.2025]

[SPIRES].

[53] T.W. Grimm, T.-W. Ha, A. Klemm and D. Klevers, Five-Brane Superpotentials and

Heterotic/F-theory Duality, Nucl. Phys. B 838 (2010) 458 [arXiv:0912.3250] [SPIRES].

[54] H. Jockers, P. Mayr and J. Walcher, On N = 1 4d Effective Couplings for F-theory and

Heterotic Vacua, arXiv:0912.3265 [SPIRES].

[55] M. Alim et al., Type II/F-theory Superpotentials with Several Deformations and N = 1

Mirror Symmetry, arXiv:1010.0977 [SPIRES].

[56] T.W. Grimm, A. Klemm and D. Klevers, Five-Brane Superpotentials, Blow-Up Geometries

and SU(3) Structure Manifolds, arXiv:1011.6375 [SPIRES].

[57] R. Blumenhagen, B. Jurke, T. Rahn and H. Roschy, Cohomology of Line Bundles: A

Computational Algorithm, J. Math. Phys. 51 (2010) 103525 [arXiv:1003.5217] [SPIRES].

[58] H. Skarke, private communication.

– 36 –

http://dx.doi.org/10.1007/JHEP03(2011)049
http://arxiv.org/abs/1005.5728
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=1005.5728
http://dx.doi.org/10.1088/1126-6708/2009/08/030
http://arxiv.org/abs/0904.3932
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0904.3932
http://aleph.ub.tuwien.ac.at/F/TQGD15VIGUVTG2DATGFRFTGTCLQ4GQSBQ2V1F1IQL41QBHJUHE-26032?func=full-set-set&set_number=099421&set_entry=000004&format=999
http://arxiv.org/abs/0904.1218
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0904.1218
http://dx.doi.org/10.1016/j.nuclphysb.2010.06.017
http://arxiv.org/abs/0909.1842
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0909.1842
http://dx.doi.org/10.1007/JHEP04(2010)015
http://arxiv.org/abs/0909.2025
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0909.2025
http://dx.doi.org/10.1016/j.nuclphysb.2010.06.011
http://arxiv.org/abs/0912.3250
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0912.3250
http://arxiv.org/abs/0912.3265
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0912.3265
http://arxiv.org/abs/1010.0977
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=1010.0977
http://arxiv.org/abs/1011.6375
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=1011.6375
http://dx.doi.org/10.1063/1.3501132
http://arxiv.org/abs/1003.5217
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=1003.5217

	Introduction and summary
	Construction of global models
	Setup
	Toric geometry
	Induced divisors

	Base manifolds
	Toric data for base manifolds
	GUT data from base manifolds

	Elliptically fibered Calabi-Yau fourfolds
	Construction of the fourfolds
	Engineering GUT models


	Data analysis
	Base manifolds
	Fourfolds
	Examples
	Three dP(8)
	Three dP(7)s
	The toric three-/fourfold of 


	Conclusions
	Matter genera and Yukawa points

