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1 Introduction

F-theory [1–3] is a geometrized type IIB string theory whose background is lifted to a

twelve-dimensional manifold with an elliptic fibration. The singularities of the elliptic

fibers correspond to the gauge groups on the seven-branes [4, 5]. Particularly, F-theory

allows E-type singularities which inspired the study of constructing the Grand Unifica-

tion Theory (GUT) local models admitting the down-type quark Yukawa couplings [6–9].
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Recently, F-theory and spectral cover construction [8, 10] originally introduced in the het-

erotic string compactifications [11] have been used to build an SU(5) GUT with an SU(5)

cover [8–10, 12–36], a flipped SU(5) and an SO(10) with SU(4) covers [37–39], and an

MSSM with an SU(6) cover [40]. The studies in global models can be found in [41–43].

For a systematic review of recent progress of F-theory compactifications and model build-

ings, see [44].

To break the GUT symmetry in F-theory models, one can either use Wilson

lines [6, 45] or introduce a supersymmetric U(1) flux corresponding to a fractional line

bundle [7, 18–20, 37, 38]. In local models, an abelian or a non-abelian flux of the rank

higher than two may be turned on on the bulk to break the gauge group [7]. Following this

idea, an MSSM model from breaking an SU(6) model by an U(1)×U(1) gauge flux has been

studied [46]. There are two kinds of rank three fluxes, U(1)3 and SU(2)×U(1)2, both em-

bedded in the E6 gauge group with commutants including the Standard Model (SM) gauge

structure. We are particularly interested in the second case containing a non-abelian SU(2)

gauge flux. In this paper, we shall study the physics of the E6 GUT model [47] broken by

the SU(2) × U(1)2 fluxes. E6 GUT models with U(1)PQ symmetry in local F-theory has

been explored in [48]. The detailed study of the non-abelian fluxes and the corresponding

vector bundles will be presented elsewhere [49].

There are many breaking routes from E6 to a subgroup containing the SM gauge group,

such as via SO(10) and then SU(5), via SU(6), via Pati-Salam, or via trinification. Basically,

these breaking routes end up with two resulting gauge groups, G1 : SU(3)×SU(2)L×U(1)3

and G2 : SU(3)×SU(2)L×SU(2)×U(1)2. These two subgroups are referred to as extended

MSSM models of rank 6. By suitable rotation of the U(1) gauge groups and the third

component of the SU(2) gauge group, we can show that these two subgroups are equivalent.

It was found that the extended MSSM models can be obtained from an E6 unification by

an SU(2) × U(1)2 or U(1)3 flux1 in the heterotic string models [51]. In the literature the

gauge group obtained by breaking E6 can be rank 5 or rank 6 depending on the flux turned

on [51–59]. When a non-abelian flux SU(2) × U(1)2 is turned on, E6 is broken directly

to a rank 5 model with a gauge group SU(3) × SU(2)L × U(1)Y × U(1)η after rearranging

the U(1)s. Normally rank 6 models have more degrees of freedom with which to solve

the problems in phenomenology. However, the U(1) gauge groups induce additional gauge

bosons and increase exotic fields. By giving a large VEV to one of the U(1) gauge groups,

the rank 6 models can be further reduced to the so-called effective rank 5 models. By

arranging the matter assignments, one can build many interesting low energy models, such

as SU(3)×SU(2)×U(1)Y ×U(1)N . In the rank 6 model, U(1)N is inherited from the third

U(1) gaining a VEV, whereas in the rank 5 model, U(1)η is fixed and does not possess

additional symmetries.

On the other hand, one of the motivations to consider models with an additional

gauge group U(1)′ as a gauge extension of the Standard Model (NMSSM) is for solving

the µ-problem. The minimum matter content for such a model with gauge group SU(3)×

1For breaking scenarios via discrete Wilson lines in the context of orbifold constructions, please see [50]

and references therein.
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SU(2) × U(1)Y × U(1)′ includes the MSSM fermions, two Higgs doublets H and H̄, an

SM singlet S with a non-zero U(1)′ charge, and exotic color triplets. The effective scale of

µ-term can arise from the coupling SHH̄ when the singlet S acquires a VEV. The radiative

breaking of the U(1)′ gauge symmetry is usually achieved by the large Yukawa couplings

between the singlet S and the exotic fields. This model can be naturally embedded in a

model with the E6 gauge group while the fields mentioned above are included in the three

families of 27-plets. For the desire of gauge unification without introducing anomalies, a

pair of Higgs-like doublets from one or more additional (27+27) is also needed. Recently,

the minimum MSSM from the E6 GUT has been studied, for example, in [60–64], and

phenomenology such as the neutrino physics [65], leptogenesis [66], and baryogenesis [67]

were also discussed.

In this paper we construct E6 GUT models in F-theory by using the spectral cover

construction and study their breaking down to the rank 5 extended MSSM by turning on

the non-abelian fluxes. We only consider the case that the Higgs multiplets are located

on a different 27 due to the reasons of desiring for more degrees of freedom as well as

the singularity structure of Yukawa coupling in F-theory. We represent a few examples

corresponding to two spectral cover factorizations. In the example of (2, 1) factorization in

dP7, all the fermions are located on one 27 curve and the introduction of fluxes for gauge

breaking results in extra copies of quarks and leptons which are exotic to the conventional

three-generation E6 models. We find a better model in the (1, 1, 1) factorization where

the fermions are from two different 27 curves and there is only a pair of vector-like triplet

exotic field. Both examples in dP7 contain exotic fields on the Higgs 27 curve, and we

assume they obtain zero vacuum expectation values.

The organization of the rest of the paper is as follows: in section 2, we give a brief review

of the SU(3) spectral cover and its factorizations. In section 3, we discuss the subgroups

of E6 and introduce non-abelian SU(2)×U(1)2 fluxes. Tadpole cancellation conditions for

the model building are discussed in section 4. We demonstrate several numerical results of

rank 5 models in section 5, and then conclude in the last section.

2 Spectral cover

In this section we briefly review the construction of an SU(3) spectral cover inducing an

SU(3) Higgs bundle breaking the gauge group E8 down to E6. We also construct (2, 1) and

(1, 1, 1) factorizations of the cover as well as universal fluxes for semi-local model building.

2.1 SU(3) spectral cover

Let X4 be an elliptically fibered Calabi-Yau fourfold πX4 : X4 → B3 with a section σB3 :

B3 → X4 and S be one component of the discriminant locus of X4 with a projection

π̃ : X4 → S, where X4 develops an E6 singularity.2 To describe X4, let us consider the

following Tate model [5]:

y2 = x3 + b3yz
2 + b2xz

3 + b0z
5, (2.1)

2From now on, S will be assumed to be a del Pezzo surface unless otherwise stated [68, 69].

– 3 –



J
H
E
P
0
3
(
2
0
1
1
)
1
2
9

where x, y are the coordinates of the fibration and z is the coordinate of the normal direction

of S in B3. Note that the coefficients bk generically depend on the coordinate z and that

eq. (2.1) can be regarded as unfolding of an E8 singularity3 into an E6 singularity. For

convenience, we define the shorthand notations c1(S) ≡ c1, t ≡ −c1(NS/B3
), and η ≡ 6c1−t

where c1 is the first Chern class and NS/B3
is the normal bundle of S in B3. To maintain

the Calabi-Yau condition c1(X4) = 0, it is required that x and y in eq. (2.1) are sections

of K−4
B3

and K−6
B3

, respectively. It follows that the homological classes [bk] are η − kc1.

Note that the fiber π̃−1(b) for b ∈ S is an ALE space [70–75]. The singularity of the fiber

over S is determined by the volumes λk of (−2) 2-cycles of the ALE space. So unfolding a

singularity corresponds to setting the volumes of some of these 2-cycles finite. In the Tate

model eq. (2.1), the fibration singularity is determined by the coefficients bk. Indeed the

coefficients bk encode the information of the volumes λk. In what follows, we shall introduce

the spectral cover construction making the relation between the coefficients bk in eq. (2.1)

and the volumes λk of (−2) 2-cycles manifest.4 Before introducing the spectral cover, we

would like to briefly review the BPS equations arising from the compactification of the eight-

dimensional N = 1 super-Yang-Mills theory on S. The details could be found in [6, 8, 16].

Let us consider the eight-dimensional N = 1 gauge theory compactified on S. To

obtain unbroken N = 1 supersymmetry in four dimensions, it was shown that the bosonic

fields, a gauge connection A and an adjoint Higgs field Φ, have to satisfy the following BPS

equations: 



FA ∧ ωS + i
2 [Φ†,Φ] = 0

F 2,0
A = F 0,2

A = 0

∂̄AΦ = 0,

(2.2)

where F is the curvature two-form of A and ωS is a Kähler form of S. To solve BPS

equations, one may take V as a holomorphic vector bundle over S with the connection A

and Φ being holomorphic. The simplest solution for (A,Φ) is that Φ is diagonal and V is

a stable bundle. In particular, let us consider a 3 × 3 case as follows:

Φ =



λ1 0 0

0 λ2 0

0 0 λ3


 ,

3∑

k=1

λk = 0, (2.3)

where λk is holomorphic for k = 1, 2, 3. In this case [Φ†,Φ] = 0 and eq. (2.2) is then

reduced to the Hermitian Yang-Mills equations

F 2,0
A = F 0,2

A = 0, FA ∧ ωS = 0. (2.4)

The low energy spectrum is therefore decoupled to Φ and only depends on the Hermitian

Yang-Mills connection A. The eigenvalues λk characterize the locations of intersecting

seven-branes. Alternatively, the information of intersecting seven-branes can be encoded

in the characteristic polynomial PΦ(s) = det(sI −Φ) associated with a spectral cover over

S. For generically diagonal Φ, the polynomial equation PΦ(s) = 0 has distinct roots and the

3If b3 = b2 = 0, the elliptic fibration y2 = x3 + b0z
5 possess an E8 singularity at z=0.

4For more details, please see [10] and references therein.
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associated spectral cover is smooth. However, it is not the case when Φ is upper triangular

in the following form

Φ =




0 a b

0 0 c

0 0 0


 . (2.5)

In this case PΦ(s) = 0 is singular and the spectrum is coupled to Φ due to [Φ†,Φ] 6= 0.

Moreover, the polynomial PΦ(s) may not capture the entire information of the system any

more. In particular, one has to specify not only the spectral polynomial PΦ(s) but also the

Higgs field Φ to calculate the spectrum. Such configurations of seven-branes characterized

by upper triangular Φ are called T -branes. For the detailed analysis of T -branes, we refer

readers to [76]. In what follows, we shall focus on the case of eq. (2.3) and its associated

spectral cover. Notice that the polynomial equation

b0 det(sI − Φ) = b0s
3 + b2s+ b3 = 0 (2.6)

defines a three-sheeted cover of S inside the total space of the canonical bundle KS → S,

a local Calabi-Yau threefold, where bk ≡ bk|z=0, k = 0, 2, 3. However, this threefold is

non-compact. For well-defined intersection numbers, one can compactify the non-compact

threefold to the total space of projective bundle P(OS ⊕KS) over S. Let us define X the

total space of the projective bundle with two sections U , V and with a projection map

π : X → S. The homological classes of zero sections {U = 0} and {V = 0} are σ and

σ + c1, respectively. In compact threefold X, the spectral cover eq. (2.6) can be expressed

as a homogeneous polynomial as follows:

C(3) : b0U
3 + b2UV

2 + b3V
3 ≡ b0

3∏

k=1

(U + λkV ) = 0, (2.7)

with a projection map p3 : C(3) → S. The homological class of C(3) is given by [C(3)] =

3σ + π∗η. The singularities get enhanced at some loci of S. Let us consider the following

breaking pattern

E8 −→ E6 × SU(3)

248 −→ (78,1) + (1,8) + (27,3) + (27, 3̄).
(2.8)

The matter 27 is localized on the curve Σ27 given by the locus of {b3 = 0} where the

singularity E6 is enhanced to E7, so it implies the homological class of [Σ27] is η−3c1 in S.

Alternatively, it follows from λi = 0 in eq. (2.7) that the homological class of [Σ27] can be

also computed by [C(3)] · σ|σ = η − 3c1. With a spectral cover C(3), one can obtain a Higgs

bundle p3∗L on S by the pushforward of a line bundle L on C(3). To maintain the traceless

condition c1(p3∗L) = 0, it is required that p3∗γ
(3) = 0 where c1(L) ≡ γ(3)+ 1

2r
(3) ∈ H4(X,Z)

and r(3) is the ramification divisor of the projection map p3 : C(3) → S. Up to a constant,

the unique solution of the traceless condition p3∗γ
(3) = 0 is γ(3) = (3− p∗3p3∗)[C(3)] · σ, and

– 5 –
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one can calculate the chiral spectrum by turning on the traceless flux γ(3). More precisely,

the net chirality N27 of the matter field 27 can be computed as

N27 = γ(3) · Σ27 = −η ·S (η − 3c1). (2.9)

To obtain three generations for 27, it is required that (6c1 − t) ·S (3c1 − t) = −3 which

is a non-trivial constraint on embedding of S into the Calabi-Yau fourfold X4. On the

other hand, the irreducible cover C(3) only provides a single matter curve, so we need more

matter curves and more degrees of freedom on the cover flux to promise realistic models.

Therefore we shall study the factorizations of the spectral cover C(3) in what follows.

2.2 (2,1) factorization

Let us consider the factorization C(3) → C(a) × C(b):

b0U
3 + b2UV

2 + b3V
3 = (a0U

2 + a1UV + a2V
2)(d0U + d1V ) (2.10)

with projection maps pa : C(a) → S and pb : C(b) → S, respectively. Let [d1] ≡ ξ, one can

write the homological class of remaining sections as

[an] = η − (n+ 1)c1 − ξ, n = 0, 1, 2, [d0] = c1 + ξ. (2.11)

It follows from eqs. (2.10) and (2.11) that the homological classes of the covers C(a) and

C(b) are given by

[C(a)] = 2σ + π∗(η − ξ − c1), [C(b)] = σ + π∗(ξ + c1). (2.12)

With the homological classes [C(a)] and [C(b)], one can compute the homological classes of

matter curves Σ
(a)
27

and Σ
(b)
27

as

[Σ
(a)
27

] = [C(a)] · σ|σ = η − 3c1 − ξ, [Σ
(b)
27

] = [C(b)] · σ|σ = ξ. (2.13)

The ramification divisors of the maps pa : C(a) → S and pb : C(b) → S are given by

r(a) = [C(a)] · π∗(η − 2c1 − ξ), r(b) = [C(b)] · (−σ + π∗ξ). (2.14)

The traceless fluxes γ
(a)
0 and γ

(b)
0 is defined as (2 − p∗apa∗)[C(a)] · σ and (1 − p∗bpb∗)[C(b)] · σ,

respectively, where pa∗γ
(a)
0 = 0 and pb∗γ

(b)
0 = 0. The explicit forms of the traceless fluxes

γ
(a)
0 and γ

(b)
0 are given by

γ
(a)
0 = [C(a)] · (2σ − π∗(η − 3c1 − ξ)), γ

(b)
0 = [C(b)] · (σ − π∗ξ). (2.15)

The chirality of matter 27 on each matter curve due to the fluxes γ
(a)
0 and γ

(b)
0 is then

shown in table 1.

Due to the factorization, one can introduce the additional fluxes δ(a) = (1−p∗bpa∗)[C(a)]·
σ and δ(b) = (2 − p∗apb∗)[C(b)] · σ. It is not difficult to obtain [20]:

δ(a) = [C(a)] · σ − [C(b)] · π∗(η − 3c1 − ξ), δ(b) = [C(b)] · 2σ − [C(a)] · π∗ξ. (2.16)
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γ
(a)
0 γ

(b)
0

27(a) −(η − c1 − ξ) ·S (η − 3c1 − ξ) 0

27(b) 0 −ξ ·S (c1 + ξ)

Table 1. Chirality induced by the fluxes γ
(a)
0 and γ

(b)
0 .

δ(a) δ(b) ρ̃

27(a) −c1 ·S (η − 3c1 − ξ) −ξ ·S (η − 3c1 − ξ) −ρ ·S (η − 3c1 − ξ)

27(b) −ξ ·S (η − 3c1 − ξ) −2c1 ·S ξ 2ρ ·S ξ

Table 2. Chirality induced by the fluxes δ(a), δ(b), and ρ̃.

Also for any ρ ∈ H2(S,R), one can define a non-trivial flux ρ̃ as

ρ̃ = (2p∗b − p∗a)ρ, (2.17)

then the chirality induced by these additional fluxes on each matter curve is summarized

in table 2.

The total flux Γ is then a linear combination of the fluxes above:

Γ = kaγ
(a)
0 + kbγ

(b)
0 +maδ

(a) +mbδ
(b) + ρ̃ ≡ Γ(a) + Γ(b), (2.18)

where

Γ(a) ≡ [C(a)] · [C̃(a)] = [C(a)] · [(2ka +ma)σ − π∗(ka(η − 3c1 − ξ) +mbξ + ρ)], (2.19)

Γ(b) ≡ [C(b)] · [C̃(b)] = [C(b)] · [(kb + 2mb)σ − π∗(kbξ +ma(η − 3c1 − ξ) − 2ρ)]. (2.20)

The parameters ka, kb, ma, mb will be determined later by the physical and consistency

conditions. In addition, by

pa∗Γ
(a) = ma(η − 3c1 − ξ) − 2mbξ − 2ρ, (2.21)

pb∗Γ
(b) = −ma(η − 3c1 − ξ) + 2mbξ + 2ρ, (2.22)

we find that Γ(a) and Γ(a) indeed satisfy the traceless condition pa∗Γ
(a) + pb∗Γ

(b) = 0. In

the (2, 1) factorization, the quantization conditions are then given by

(2ka +ma)σ − π∗
(
ka(η − 3c1 − ξ) +mbξ + ρ− 1

2
(η − 2c1 − ξ)

)
∈ H4(X,Z), (2.23)

(
kb + 2mb −

1

2

)
σ − π∗

(
kbξ +ma(η − 3c1 − ξ) − 2ρ− 1

2
ξ

)
∈ H4(X,Z). (2.24)

In addition, the supersymmetry condition is

[ma(η − 3c1 − ξ) − 2mbξ − 2ρ] ·S [ω] = 0, (2.25)

where [ω] is an ample divisor dual to a Kähler form of S.

– 7 –
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γ
(l1)
0 γ

(l2)
0 γ

(l3)
0

27(l1) −(η − 2c1 − ξ1 − ξ2) ·S (η − 3c1 − ξ1 − ξ2) 0 0

27(l2) 0 −ξ1 ·S (c1 + ξ1) 0

27(l3) 0 0 −ξ2 ·S (c1 + ξ2)

Table 3. Chirality induced by the fluxes γ
(l1)
0 , γ

(l2)
0 , and γ

(l3)
0 .

2.3 (1,1,1) factorization

Let us consider the factorization C(3) → C(l1) × C(l2) × C(l3):

b0U
3 + b2UV

2 + b3V
3 = (f0U + f1V )(g0U + g1V )(h0U + h1V ), (2.26)

with the projection maps pl1 : C(l1) → S, pl2 : C(l2) → S, and pl3 : C(l3) → S. Let [g1] ≡ ξ1
and [h1] ≡ ξ2, the homological classes of the remaining sections are

[fm] = η − (m+ 2)c1 − ξ1 − ξ2, m = 0, 1. [g0] = c1 + ξ1, [h0] = c1 + ξ2. (2.27)

It follows from eqs. (2.26) and (2.27) that the homological classes of the covers C(l1), C(l2),

and C(l3) are given by

[C(l1)] = σ+π∗(η−2c1−ξ1−ξ2), [C(l2)] = σ+π∗(ξ1+c1), [C(l3)] = σ+π∗(ξ2+c1). (2.28)

The homological classes of the matter curves can be obtained from the intersection [C(li)] ·
σ|σ :

[Σ
(l1)
27

] = η − 3c1 − ξ1 − ξ2, [Σ
(l2)
27

] = ξ1, [Σ
(l3)
27

] = ξ2. (2.29)

In the (1, 1, 1) factorization, the ramification divisors are given by

rl1 = [C(l1)] · [−σ+π∗(η−3c1−ξ1−ξ2)], rl2 = [C(l2)] ·(−σ+π∗ξ1), rl3 = [C(l3)] ·(−σ+π∗ξ2).

(2.30)

For general fluxes γ(i) = [C(i)] · σ, we define the traceless fluxes γ
(i)
0 as

γ
(l1)
0 = (1 − p∗l1pl1∗)γ

(l1) = [C(l1)] · [σ − π∗(η − 3c1 − ξ1 − ξ2)], (2.31)

γ
(l2)
0 = (1 − p∗l2pl2∗)γ

(l2) = [C(l2)] · (σ − π∗ξ1), (2.32)

γ
(l3)
0 = (1 − p∗l3pl3∗)γ

(l3) = [C(l3)] · (σ − π∗ξ2). (2.33)

It is easy to see that γ
(i)
0 satisfies the condition pi∗γ

(i)
0 = 0 for all i. The chirality induced

by the fluxes γ
(l1)
0 , γ

(l2)
0 , and γ

(l3)
0 is summarized in table 3.
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δ(l1) δ(l2) δ(l3) ρ̂

27(l1) −2c1 ·S [f1] −ξ1 ·S [f1] −ξ2 ·S [f1] (ρ3 − ρ1) ·S [f1]

27(l2) −ξ1 ·S [f1] −2c1 ·S ξ1 −ξ1 ·S ξ2 (ρ1 − ρ2) ·S ξ1
27(l3) −ξ2 ·S [f1] −ξ1 ·S ξ2 −2c1 ·S ξ2 (ρ2 − ρ3) ·S ξ2

Table 4. Chirality induced by the fluxes δ(l1), δ(l2), δ(l3) and ρ̂.

There are many choices of the additional fluxes, for simplicity, we consider

δ(l1) = [(1 − p∗l2pl1∗) + (1 − p∗l3pl1∗)]γ
(l1)

= [C(l1)] · 2σ − ([C(l2)] + [C(l3)]) · π∗(η − 3c1 − ξ1 − ξ2), (2.34)

δ(l2) = [(1 − p∗l1pl2∗) + (1 − p∗l3pl2∗)]γ
(l2)

= [C(l2)] · 2σ − [C(l1)] · π∗ξ1 − [C(l3)] · π∗ξ1, (2.35)

δ(l3) = [(1 − p∗l1pl3∗) + (1 − p∗l2pl3∗)]γ
(l3)

= [C(l3)] · 2σ − [C(l1)] · π∗ξ2 − [C(l2)] · π∗ξ2. (2.36)

ρ̂ = (p∗l2 − p∗l1)ρ1 + (p∗l3 − p∗l2)ρ2 + (p∗l1 − p∗l3)ρ3, (2.37)

where ρi ∈ H2(S,R), ∀i. The chirality induced by these additional fluxes on each matter

curve is summarized in table 4.

The total flux Γ with the parameters kl1 , kl2 kl3 , ml1 , ml2, and ml3 is [20]

Γ = kl1γ
(l1)
0 +kl2γ

(l2)
0 +kl3γ

(l3)
0 +ml1δ

(l1)+ml2δ
(l2)+ml3δ

(l3)+ρ̂ ≡ Γ(l1)+Γ(l2)+Γ(l3), (2.38)

where

Γ(l1) ≡ [C(l1)]·[C̃(l1)]=[C(l1)]·[(kl1 + 2ml1)σ − π∗(kl1 [f1] +ml2ξ1 +ml3ξ2 +ρ1−ρ3)], (2.39)

Γ(l2) ≡ [C(l2)]·[C̃(l2)]=[C(l2)]·[(kl2 + 2ml2)σ − π∗(ml1 [f1] + kl2ξ1 +ml3ξ2 +ρ2−ρ1)], (2.40)

Γ(l3) ≡ [C(l3)]·[C̃(l3)]=[C(l3)]·[(kl3 + 2ml3)σ − π∗(ml1 [f1] +ml2ξ1 + kl3ξ2 +ρ3−ρ2)]. (2.41)

It is then straightforward to compute

pl1∗Γ
(l1) = 2ml1(η − 3c1 − ξ1 − ξ2) −ml2ξ1 −ml3ξ2 − ρ1 + ρ3, (2.42)

pl2∗Γ
(l2) = −ml1(η − 3c1 − ξ1 − ξ2) + 2ml2ξ1 −ml3ξ2 − ρ2 + ρ1, (2.43)

pl3∗Γ
(l3) = −ml1(η − 3c1 − ξ1 − ξ2) −ml2ξ1 + 2ml3ξ2 − ρ3 + ρ2. (2.44)

The sum is zero, as it should be for the traceless condition. In this case, the quantization

conditions are given by
(
kl1 + 2ml1 −

1

2

)
σ − π∗

{(
kl1 −

1

2

)
[f1] +ml2ξ1 +ml3ξ2 + ρ1 − ρ3

}
∈H4(X,Z), (2.45)

(
kl2 + 2ml2 −

1

2

)
σ − π∗

{
ml1[f1] +

(
kl2 −

1

2

)
ξ1 +ml3ξ2 + ρ2 − ρ1

}
∈H4(X,Z), (2.46)

(
kl3 + 2ml3 −

1

2

)
σ − π∗

{
ml1[f1] +ml2ξ1 +

(
kl3 −

1

2

)
ξ2 + ρ3 − ρ2

}
∈H4(X,Z), (2.47)
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and the supersymmetry conditions are as follows:

[2ml1(η − 3c1 − ξ1 − ξ2) −ml2ξ1 −ml3ξ2 − ρ1 + ρ3] ·S [ω] = 0, (2.48)

[−ml1(η − 3c1 − ξ1 − ξ2) + 2ml2ξ1 −ml3ξ2 − ρ2 + ρ1] ·S [ω] = 0, (2.49)

[−ml1(η − 3c1 − ξ1 − ξ2) −ml2ξ1 + 2ml3ξ2 − ρ3 + ρ2] ·S [ω] = 0. (2.50)

3 Breaking E6

The MSSM fermion and electroweak Higgs fields can be included in the same 27 multiplet

of a three-family E6 GUT model. On the other hand, it is possible to assign the Higgs

fields to a different 27H multiplet where only the Higgs doublets and singlets obtain the

electroweak scale energy. The Yukawa coupling for these two cases can be written as

W ⊃ 27 · 27 · 27 (Case A) or 27 · 27 · 27H (Case B). (3.1)

The Yukawa coupling of Case A is either a triple-intersection of one 27 curve or an in-

tersection of three different curves in F-theory model building. It is difficult to obtain a

three family model from a single curve and the geometry of a triple-intersection is gener-

ally complicated. On other hand, it is not easy to achieve the mass hierarchy of the third

generation in the three-curve model. Therefor we do not consider Case A in this paper. In

case B, there are two possible constructions from spectral cover factorizations. In the (2, 1)

factorization, the fermions are assigned to 27(a) curve and the Higgs fields come from the

other 27(b) curve. The Yukawa coupling then turns out

W(2,1) ⊃ 27(a) · 27(a) · 27(b). (3.2)

In the (1, 1, 1) factorization, the matter fields are assigned to curve 27(a) and 27(b) while

the Higgs fields come from the 27(c) curve. In this case the Yukawa coupling is then

W(1,1,1) ⊃ 27(a) · 27(b) · 27(c). (3.3)

In order to realize the MSSM in the E6 GUT models, it is useful to study the subgroups

of E6. In our F-theory model building we consider the picture that the E6 gauge group is

broken by the SU(2) × U(1)2 flux on the seven-branes. This flux may tilt the chirality of

the matter on the curve after E6 is broken.

3.1 Subgroups of E6

The subgroups of E6 including the Standard Model gauge group can be denoted E6 ⊃
SU(3) × SU(2)L × Gc. Here Gc marks a rank 3 group which is a product of U(1) or

SU(2). It has been shown (for example, [47, 53, 59, 77]) that by suitable assignments of

the hypercharge of the SM and the B−L symmetry, these E6 subgroups with different Gc
are equivalent to different matter content arrangements. This property would be useful for

the analysis of the non-abelian fluxes of type Gc. In this section we will briefly review the

subgroups of E6.

– 10 –



J
H
E
P
0
3
(
2
0
1
1
)
1
2
9

Let us consider the following breaking patterns of E6:

(1a) E6 → SO(10) × U(1) → SU(5) × U(1)2, (3.4)

(1b) E6 → SO(10) × U(1) → SU(4) × SU(2) × SU(2) × U(1), (3.5)

(2a) E6 → SU(6) × SU(2) → SU(5) × U(1) × SU(2), (3.6)

(2b) E6 → SU(6) × SU(2) → SU(4) × SU(2) × U(1) × SU(2), (3.7)

(2c) E6 → SU(6) × SU(2) → SU(3) × SU(3) × U(1) × SU(2), (3.8)

(3) E6 → SU(3) × SU(3) × SU(3). (3.9)

In all of these cases, there are two possible outcomes when E6 is broken down to the

subgroups containing the Standard Model group. Case (1a) turns out to be

E6 → SU(3) × SU(2)L × U(1)Y × U(1)χ × U(1)ψ , (3.10)

and the other cases become

E6 → SU(3) × SU(2) × SU(2) × U(1)U × U(1)W . (3.11)

Note that the assignments of U(1)U and U(1)W groups of the cases (1b), (2a), (2b), (2c)

and (3) are different, but they are equivalent up to linear transformations and the details

can be found in the appendix. Take case (3) as an example, the breaking is through a

trinification model, therefore we can write

E6 ⊃ SU(3) × SU(2)L × SU(2)(R) × U(1)YL
× U(1)Y(R)

. (3.12)

The parenthesis on R in SU(2)(R) indicates that it has three different assignments denoted

by SU(2)R, SU(2)R′ , and SU(2)E [77]. The third component I3(R) of SU(2)(R) along with

the quantum numbers of U(1)YL
and U(1)Y(R)

can have a linear relation to the quantum

numbers of U(1)Y , U(1)χ and U(1)ψ of case (1a) in (3.10), i.e.,

Y = a1YL + a2Y(R) + a3I3(R), χ = b1YL + b2Y(R) + b3I3(R), ψ = c1YL + c2Y(R) + c3I3(R),

(3.13)

where ai, bi and ci are coefficients of the transformation. These three different kinds of

SU(2)(R) assignments also confine the three different embedding of SM matter represen-

tations into the SU(5) multiplets belonging to 27 of E6, as well as the corresponding

assignments of the hypercharge. The three assignments of U(1)Y should be orthogonal to

the three SU(2)(R), respectively.

The U(1)B−L symmetry is conserved in SUSY E6 models, which is not difficult to see

from the gauge breaking via the Pati-Salam gauge group. U(1)B−L has a linear relation

with U(1)YL
, U(1)Y(R)

, and the third component of SU(2)(R). There are also three U(1)B−L

assignments orthogonal to the three SU(2)(R), respectively. For consistency with the SM

structure, U(1)B−L and U(1)Y are not orthogonal to the same SU(2)(R). Therefore, there

are totally six different charge assignments of the SM multiplets, in other words six different

embedding of SM multiplets in 27 of E6. For the detailed analysis, we refer readers to [77].
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The E6 subgroups listed in eqs. (3.10) and (3.11) are rank 6. In heterotic string com-

pactifications, E6 can be broken by a non-abelian flux down to a rank 5 subgroup [51–54]:

E6 → SU(3) × SU(2)L × U(1)Y × U(1)η . (3.14)

This model is usually marked as the η-model. Rank 6 models [55, 57, 58] have more

symmetries, but it is common practice to give a large VEV to one U(1) gauge group to

reduce them to the so called effective rank 5 models. For instance, from eq. (3.10) the

remaining abelian gauge group U(1)θ is a reduction

U(1)θ = cos θU(1)χ + sin θU(1)ψ. (3.15)

Particularly, the rank 5 η-model can be regarded as a special case of this setup by

U(1)η =

√
3

8
U(1)χ −

√
5

8
U(1)ψ . (3.16)

In our F-theory models, a non-abelian flux SU(2) × U(1)2 is turned on to break the E6

gauge group into SU(3)× SU(2)×U(1)2 taken to be the η-model. However, since U(1)η is

only determined by the two U(1)s while the SU(2) is integrated out, the η-model does not

possess the degrees of freedom from the mixing angle θ preserving some symmetries such

as the B − L symmetry [59]. The corresponding phenomenology of the F-theory rank 5

model will basically follow the properties of the η-model.

The particle content of the E6 model we will consider is conventional. It includes three

copies of 27-plets, each copy includes an SM ordinary family, two Higgs-type doublets,

two SM singlets, and two exotic SU(2)-singlet quarks. The 27 matter content of the

SU(3) × SU(2) × U(1)Y × U(1)η model with the corresponding charges are

27 → Q(3,2) 1
3
,2 + uc(3̄,1)− 4

3
,2 + ec(1,1)2,2

+L(1,2)−1,−1 + dc(3̄,1) 2
3
,−1 + νc(1,1)0,5

+D̄(3,1)− 2
3
,−4 + h̄(1,2)1,−4

+D(3̄,1) 2
3
,−1 + h(1,2)−1,−1 + S(1,1)0,5,

(3.17)

where the first subscription denotes the U(1)Y charge and the second indicates the U(1)η
charge. The superpotential for the 27 · 27 · 27 coupling can be expanded as

W = W0 + W1 + W2 + W3 + · · · , (3.18)

W0 = λ1h̄Qu
c + λ2hQd

c + λ3hLe
c + λ4hh̄S + λ5DD̄S, (3.19)

W1 = λ6D̄u
cec + λ7DQL+ λ8D̄ν

cdc, (3.20)

W2 = λ9D̄QQ+ λ10Du
cdc, (3.21)

W3 = λ11h̄Lν
c. (3.22)

To avoid the terms that may cause serious phenomenological problems, additional symme-

tries such as discrete symmetry should be considered. The exotic fields are only confined

by the charge, isospin, and hypercharge assignments while their baryon and lepton num-

bers remain unspecified. By assigning baryon and lepton numbers to D, it is possible to
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forbid some of the interactions in W by the conservation of baryon and lepton numbers.

For example, if the baryon number B(D̄) = 1
3 and the lepton number L(D̄) = 1, W2 = 0;

if B(D̄) = −2
3 and L(D̄) = 0, then W1 = 0. In the case B(D̄) = 1

3 and L(D̄) = 0,

D̄ is regarded as a conventional quark able to mix with the d-quarks, and then decay

via flavor changing neutral currents (FCNC) or charged currents (CC) [59]. By setting

B(h, h̄) = L(h, h̄) = 0 and B(S) = L(S) = 0, h and h̄ are the usual MSSM Higgs doublets,

and the VEV of S provides a mass for D. See [59] for a detailed review.

Another possibility is considering the MSSM Higgs fields coming from a different 27H
(or 27H). In this case the exotics of the matter 27-plet are taken as the ordinary quarks

and leptons, B(D̄) = 1
3 and L(D̄) = 0, as well as B(h, h̄, νc, S) = 0 and L(h, h̄, νc, S) = ±1.

The doublets H1(1,2)−1,−1, H2(1,2)−1,−1 and H̄2(1,2)1,−4, and the singlets H3(1,1)0,5

and H4(1,1)0,5 of 27H develop VEVs so that the superpotential takes the form

W ′ ⊃ H̄2Qu
c +H2Qd

c +H2Le
c +H1he

c + h̄hH4

+H̄2hS +H2h̄S + D̄DH4 +H1QD +H3D̄d
c + H̄2Lν

c + · · · . (3.23)

We can see the mixing terms between the ordinary fermions and their corresponding exotic

fields. These kinds of mixings allow the exotics to decay via FCNC or CC. For example, the

coupling to W of charged currents (CC) for electric charge Qe = 2
3 ,−1

3 sector can be [59]

LCC ∼ g√
2
(ū, 0)L

(
UuL 0

0 0

)(
I 0

0 0

)
UdL

†
γµ(1 − γ5)

(
d

D̄

)
W µ + h.c. , (3.24)

where UuL and I are n× n matrices and UdL is a 2n× 2n matrix for n generations. UuL and

UdL are transformations from weak eigenstates to mass eigenstates. On the other hand for

Qe = 0,−1 sector, if the two components of the doublet h are h = (N,E), the coupling

is [59]

LCC ∼ g

2
√

2
(ν̄, N̄)Lγµ(V −Aγ5)

(
e

E

)
W µ + h.c. , (3.25)

where V and A are 2n × 2n matrices composed of the left and right weak-mass transfor-

mations:

V = UνLU
e
L
† + UνR

(
0 0

0 I

)
U eR

†, A = UνLU
e
L
† − UνR

(
0 0

0 I

)
U eR

†. (3.26)

Therefore the CC couplings allow the decays D̄ → u+W and E → ν +W . Similarly, for

the fermions couple to the neutral gauge bosons Zµa , a = Y, η, the couplings can be written

as [59]

LNC ∼
∑

i,a

(f̄L,iγuC
i,a
L fL,i + L ↔ R)Zµa , (3.27)

where Ci,aL,R = U iL,RP
i,a
L,RU

i
L,R

†
, P i,aL,R are coupling matrices, and fi present fermions u, d,

D̄, e, . . . etc. This will allow the decays D̄ → d + Z and E → e + Z. In addition, the

Zη boson can mix with Z boson through the conventional Z − Z ′ mixing mechanism and
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decay into either fermion pairs, SUSY partners, W bosons, higgsinos and gauginos, or Z

boson with Higgses. More phenomenology details can be referred to [59].5

There can be one or more additional Higgs-like doublets from (27 + 27) vector-like

pairs preserving the gauge unification without introducing anomalies. In summary, with

the picture of electroweak Higgs fields from a different 27H , the minimum spectrum at low

energy is

3 × 27 + (27H) + (27 + 27). (3.28)

3.2 Non-abelian gauge fluxes

In what follows, we shall analyze the effects on the chirality after the SU(2)×U(1)2 flux is

turned on. We choose the breaking chain (1b) in eq. (3.5) via SO(10) and SU(4)×SU(2)×
SU(2). When the flux is turned on, the matter on the bulk is decomposed as

E6 −−−→
U(1)a

SO(10) × [U(1)a]

−−−→
SU(2)

SU(4) × SU(2)1 × [SU(2)2 × U(1)a]

−−−→
U(1)b

SU(3) × SU(2)1 × [SU(2)2 × U(1)a × U(1)b]

78 → 450 + 10 + 16−3 + 163

→ (15,1,1)0 + (6,2,2)0 + (1,3,1)0 + (1,1,3)0 + (1,1,1)0

[(4,2,1)−3 + (4̄,1,2)−3 + c.c.]

→ (8,1,1)0,0 + (3,1,1)0,−4 + (3̄,1,1)0,4 + (1,1,1)0,0

+(3,2,2)0,2 + (3̄,2,2)0,−2 + (1,3,1)0,0 + (1,1,3)0,0 + (1,1,1)0,0

+[(3,2,1)−3,−1 + (1,2,1)−3,3 + (3̄,1,2)−3,1 + (1,1,2)−3,−3 + c.c.].

(3.29)

The SM hypercharge is defined as

U(1)Y =
1

2

[
U(1)a +

1

3
U(1)b

]
. (3.30)

Under the breaking pattern (3.29), the gauge group E6 can be broken down to SU(3) ×
SU(2)1 × U(1)a × U(1)b by turning on a gauge bundle on S with the structure group

SU(2)2 × U(1)a × U(1)b. Let us define L1 and L2 to be the line bundles associated with

U(1)a and U(1)b, respectively. V2 is defined as a vector bundle of rank two with the

structure group SU(2). To preserve supersymmtry, the connection of the gauge bundle

W = V2 ⊕L1 ⊕L2 has to satisfy the Hermitian Yang-Mills equations (2.4).6 It was shown

in [78, 79] that the bundleW has to be poly-stable with µ[ω](V2) = µ[ω](L1) = µ[ω](L2) = 0,

where slope µ[ω](E) of a bundle E on S is defined by µ[ω](E) = 1
rank(E)c1(E) ·S [ω] and [ω] is

an ample divisor of S. The poly-stability also requires that V2 is a [ω]-stable bundle. Since

S is a del Pezzo surface, it was shown in [6] that for any non-trivial holomorphic vector

5We only briefly discussed the phenomenology of the scenario that fermions and Higgs fields are from two

different 27 multiplets (curves) due to the F-theory construction. We also focused on the case of h-leptons

and D-quarks assignments. There could be additional conditions from F-theory or geometry to confine the

degrees of freedom left for the exotic fields. We leave this topic for our future study.
6More precisely, L1 and L2 are fractional line bundles [6–9].
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bundle E satisfies eq. (2.4), h0(S,E) = h2(S,E) = 0. This vanishing theorem dramatically

simplifies the calculation of the chiral spectrum. It turns out that the matter spectrum

can be calculated by the holomorphic Euler characteristic [80, 81]. By the decomposition

eq. (3.29) and the vanishing theorem, the spectrum is given by

n(3,1,1)0,−4
= −χ(S,G−1) ≡ γ1, (3.31)

n(3̄,1,1)0,4
= −χ(S,G) ≡ γ2, (3.32)

n(3,2,2)0,2
= −χ(S,U2) ≡ γ3, (3.33)

n(3̄,2,2)0,−2
= −χ(S,U∨

2 ) ≡ γ4, (3.34)

n(3,2,1)
−3,−1

= −χ(S,F ) ≡ γ5, (3.35)

n(3̄,2,1)3,1
= −χ(S,F−1) ≡ γ6, (3.36)

n(3,1,2)3,−1
= −χ(S,U∨

2 ⊗ F−1) ≡ γ7, (3.37)

n(3̄,1,2)
−3,1

= −χ(S,U2 ⊗ F ) ≡ γ8, (3.38)

n(1,1,2)
−3,−3

= −χ(S,U∨
2 ⊗ F ) ≡ δ1, (3.39)

n(1,1,2)3,3
= −χ(S,U2 ⊗ F−1) ≡ δ2, (3.40)

n(1,2,1)
−3,3

= −χ(S,G⊗ F ) ≡ δ3, (3.41)

n(1,2,1)3,−3
= −χ(S,G−1 ⊗ F−1) ≡ δ4, (3.42)

where ∨ stands for the dual bundle, χ is the holomorphic Euler characteristic defined by

χ(S,E) =
∑

i h
0,i(S,E), U2 = V2 ⊗ L2

2, F = L−3
1 ⊗ L−1

2 , G = L4
2, and γi, δi ∈ Z>0. After

some algebra, eqs. (3.31)–(3.42) can be recast as

c1(G)2 = −2 − γ1 − γ2, (3.43)

c1(F )2 = −2 − γ5 − γ6, (3.44)

c1(S) · c1(G) = γ1 − γ2, (3.45)

c1(S) · c1(F ) = γ6 − γ5, (3.46)

c2(V2) =
1

4
(6 − γ1 − γ2 + 2γ3 + 2γ4), (3.47)

c1(G) · c1(F ) =
1

2
(4 + γ3 + γ4 + 2γ5 + 2γ6 − γ7 − γ8), (3.48)

γ1 − γ2 + γ3 − γ4 = 0, (3.49)

γ1 − γ2 − 2γ5 + 2γ6 − γ7 + γ8 = 0, (3.50)

δ1 =
1

2
(8 + γ1 − γ2 + 2γ3 + 2γ4 + 6γ5 + 2γ6− γ7 −γ8), (3.51)

δ2 =
1

2
(8 − γ1 + γ2 + 2γ3 + 2γ4 + 2γ5 + 6γ6− γ7 −γ8), (3.52)

δ3 = −1

2
(2 − 2γ2 + γ3 + γ4 + 2γ6 − γ7 − γ8), (3.53)

δ4 = −1

2
(2 − 2γ1 + γ3 + γ4 + 2γ5 − γ7 − γ8). (3.54)

Note that given γk, k = 1, 2, . . . , 8 satisfying the constraints eqs. (3.49) and (3.50),

(F,G, V2) are constrained by eqs. (3.43)–(3.48) and (δ1, δ2, δ3, δ4) are then given by
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eqs. (3.51)–(3.54). In particular, we are interested in the configurations of the vector-like

pairs, namely (γ1, γ2, γ3, γ4, γ5, γ6, γ7, γ8, δ1, δ2, δ3, δ4) = (a, a, b, b, c, c, d, d, e, e, f, f), where

a, b, c, d, e are all non-negative integers. Then eqs. (3.43)–(3.54) reduce to





c1(G)2 = −2 − 2a

c1(F )2 = −2 − 2c

c1(S) · c1(G) = 0

c1(S) · c1(F ) = 0

c2(V2) = 1
2 (3 + 2b− a)

c1(G) · c1(F ) = 2 + b+ 2c− d

e = 4 + 2b+ 4c− d

f = −1 + a− b− c+ d.

(3.55)

It was proven in [82] that for an algebraic surface S with a given n > 4([h0(S,KS)/2] + 1),

there exists a [ω]-stable bundle V of rank two with c1(V ) = 0 and c2(V ) = n. When S

is a del Pezzo surface, h0(S,KS) = 0 and this theorem implies that for any given number

m > 4, there exists a [ω]-stable bundle of rank two with c1(V ) = 0 and c2(V ) = m. To

apply this theorem to our case, we require that c2(V2) > 4. In general, c1(V ) and c2(V ) of

a stable bundle V over a compact Kähler surface S with c1(S) > 0 satisfy the inequality

2rc2(V ) − (r − 1)c1(V )2 > (r2 − 1), where r is the rank of V [83]. When r = 2 and

c1(V ) = 0, one can obtain the lower bound c2(V ) > 2. It is possible to obtain a [ω]-stable

bundle V of rank two with c1(V ) = 0 and c2(V ) 6 4 for S being a del Pezzo surface. One

can start with V defined by the following extension:

0 → L→ V →M → 0. (3.56)

To obtain vanishing c1(V ), one can set M = L−1 and compute c2(V ) = −c1(L)2. The

extension is classified by Ext1(L,M) = H1(S,L ⊗M∗). When M = L−1, the obstruction

of the non-trivial extension is h1(S,L2) 6= 0. Let L be a non-trivial line bundle and S be

a del Pezzo surface. By the vanishing theorem, one can obtain

h1(S,L2) = −1 − c1(S) · c1(L) − 2c1(L)2. (3.57)

If c1(S) · c1(L) = 0 with negative c1(L)2, it is easy to see that h1(S,L2) > 1. The simple

example for such a line bundle is L = OS(ei − ej), i 6= j, where {e1, . . . , e8} is a set of

the exceptional divisors of S. With non-trivial extensions, one may construct a [ω]-stable

bundle V with (r, c1(V ), c2(V )) = (2, 0, 2) and with the structure group SU(2) [49]. In

what follows, we shall focus on the case of c2(V2) > 4. We summarize the constraints for

(a, b, c, d) as follows: 



2b+ 4c− d > −4

a− b− c+ d > 1

a− 2b 6 −5

a, b, c, d ∈ Z>0.

(3.58)
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Note that a must be odd otherwise c2(V2) cannot be integral. It follows from the condition

c2(V2) > 4 that b > 3. Let us consider the case (a, b, c) = (1, 3, 0). Then eq. (3.55) becomes





c1(G)2 = −4

c1(F )2 = −2

c1(S) · c1(G) = 0

c1(S) · c1(F ) = 0

c2(V2) = 4

c1(G) · c1(F ) = 5 − d

e = 10 − d

f = −3 + d.

(3.59)

Note that for the case (a, b, c) = (1, 3, 0), the necessary condition for d is 3 6 d 6 10. From

the conditions c1(G)2 = −4 and c1(F )2 = −2, we set G = OS(ei−ej+ek−el), i 6= j 6= k 6= l

and F = OS(em−en), m 6= n. Clearly, G and F also satisfy the conditions c1(S)·c1(G) = 0

and c1(S) · c1(F ) = 0. We shall not attempt to explore all solutions (G,F ) and only list

some solutions as follows [49]:

(G,F ) =





(OS(ei − ej + ek − el),OS(ei − ej)), (d, e, f) = (7, 3, 4)

(OS(ei − ej + ek − el),OS(em − ej)), (d, e, f) = (6, 4, 3)

(OS(ei − ej + ek − el),OS(ei − ek)), (d, e, f) = (5, 5, 2)

(OS(ei − ej + ek − el),OS(ej − en)), (d, e, f) = (4, 6, 1)

(OS(ei − ej + ek − el),OS(ej − ek)), (d, e, f) = (3, 7, 0).

(3.60)

Let us consider another example, (a, b, c) = (3, 4, 0). In this case eq. (3.55) reduces to





c1(G)2 = −8

c1(F )2 = −2

c1(S) · c1(G) = 0

c1(S) · c1(F ) = 0

c2(V2) = 4

c1(G) · c1(F ) = 6 − d

e = 12 − d

f = −2 + d.

(3.61)

When (a, b, c) = (3, 4, 0), it follows from eq. (3.61) that the necessary condition for d is 2 6

d 6 12. From the conditions c1(G)2 = −8 and c1(F )2 = −2, we set G = OS(2ei−2ej), i 6= j

and F = OS(em− en), m 6= n. It is not difficult to see that G and F satisfy the conditions

c1(S) · c1(G) = 0 and c1(S) · c1(F ) = 0. Some solutions of (G,F ) are as follows:

(G,F ) =





(OS(2ei − 2ej),OS(ei − ej)), (d, e, f) = (10, 2, 8)

(OS(2ei − 2ej),OS(em − ej)), (d, e, f) = (8, 4, 6)

(OS(2ei − 2ej),OS(em − en)), (d, e, f) = (6, 6, 4)

(OS(2ei − 2ej),OS(em − ei)), (d, e, f) = (4, 8, 2)

(OS(2ei − 2ej),OS(ej − ei)), (d, e, f) = (2, 10, 0).

(3.62)
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Curve Matter Bundle Chirality

27(k)

(3,2,1)1,−1 V27 ⊗ L1 ⊗ L−1
2 |

Σ
(k)
27

M (k) +N
(k)
1

(1,2,1)1,3 V27 ⊗ L1 ⊗ L3
2|Σ(k)

27

M (k) +N
(k)
1 +N

(k)
2

(3̄,1,2)1,1 V27 ⊗ V2 ⊗ L1 ⊗ L2|Σ(k)
27

2(M (k) +N
(k)
1 ) +N

(k)
2

(1,1,2)1,−3 V27 ⊗ V2 ⊗ L1 ⊗ L−3
2 |

Σ
(k)
27

2(M (k) +N
(k)
1 ) −N

(k)
2

(3,1,1)−2,2 V27 ⊗ L−2
1 ⊗ L2

2|Σ(k)
27

M (k) + 2N
(k)
1 +N

(k)
2

(3̄,1,1)−2,−2 V27 ⊗ L−2
1 ⊗ L−2

2 |
Σ

(k)
27

M (k) + 2N
(k)
1

(1,2,2)−2,0 V27 ⊗ V2 ⊗ L−2
1 |

Σ
(k)
27

2(M (k) + 2N
(k)
1 ) +N

(k)
2

(1,1,1)4,0 V27 ⊗ L4
1|Σ(k)

27

M (k)

Table 5. Chirality of matter localized on matter curve 27(k).

Let us turn to the chiral spectrum on the matter curves. The breaking pattern of the

presentation 27 is

E6 −→ SU(3) × SU(2)1 × [SU(2)2 × U(1)a × U(1)b]

27 → (3,2,1)1,−1 + (1,2,1)1,3 + (3̄,1,2)1,1 + (1,1,2)1,−3

+(3,1,1)−2,2 + (3̄,1,1)−2,−2 + (1,2,2)−2,0 + (1,1,1)4,0.

(3.63)

Let us define V27 ⊗ L4
1|Σ(k)

27

= Γ|
Σ

(k)
27

= M (k), F |
Σ

(k)
27

= N
(k)
1 , and G|

Σ
(k)
27

= N
(k)
2 . The

chirality of matter localized on matter curves Σ
(k)
27

is determined by the restrictions of the

cover flux Γ and gauge fluxes to the curves. The spectrum induced by the cover flux and

gauge fluxes is summarized in table 5.

4 Tadpole cancellation

The cancellation of tadpoles is crucial for consistent compactifications. In general, there

are induced tadpoles from 7-brane, 5-brane, and 3-brane charges in F-theory. The 7-

brane tadpole cancellation in F-theory is automatically satisfied since X4 is a Calabi-Yau

manifold. The cancellation of the D5-brane tadpole in the spectral cover construction

follows from the topological condition that the overall first Chern class of the Higgs bundle

vanishes. Therefore, the non-trivial tadpole cancellation in F-theory needed to be satisfied

is the D3-brane tadpole which can be calculated by the Euler characteristic χ(X4). The

cancellation condition is of the form [84]

ND3 =
χ(X4)

24
− 1

2

∫

X4

G ∧G, (4.1)

where ND3 is the number of D3-branes and G is the four-form flux on X4. For a non-

singular elliptically fibered Calabi-Yau fourfold X4, it was shown in [84] that the Euler
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characteristic χ(X4) can be expressed as

χ(X4) = 12

∫

B3

c1(B3)[c2(B3) + 30c1(B3)
2], (4.2)

where ck(B3) are the Chern classes of B3. It follows from eq. (4.2) that χ(X4)/24 is at least

half-integral.7 When X4 admits non-abelian singularities, the Euler characteristic of X4 is

replaced by a refined Euler characteristic, the Euler characteristic of the smooth fourfold

obtained from a suitable resolution of X4. On the other hand, G-flux encodes the two-form

gauge fluxes on the 7-branes. It was shown in [85] that
∫

X4

G ∧G = −Γ2, (4.3)

where Γ is the universal cover flux defined in section 2 and Γ2 is defined as the self-

intersection number of Γ inside the spectral cover. It is a challenge to find compactifica-

tions with non-vanishing G-flux and non-negative ND3 to satisfy the tadpole cancellation

condition (4.1). In the next two subsections, we shall derive the formulae of the refined

Euler characteristic χ(X4) and the self-intersection of the universal cover fluxes Γ2 for the

(2, 1) and (1, 1, 1) factorizations.

4.1 Geometric contribution

In the presence of non-abelian singularities, X4 becomes singular and the Euler character-

istic χ(X4) needs to be modified by resolving the singularities. To be more concrete, let us

define H to be the gauge group corresponding to the non-abelian singularity over S and G

to be the complement of H in E8. Then the Euler characteristic is modified to

χ(X4) = χ∗(X4) + χG − χE8, (4.4)

where χ∗(X4) is the Euler characteristic for a smooth fibration over B3 given by eq. (4.2)

and the characteristic χE8 is given by [25, 85, 86]

χE8 = 120

∫

S
(3η2 − 27ηc1 + 62c21). (4.5)

For the case of G = SU(n), the characteristic χSU(n) is computed as

χSU(n) =

∫

S
(n3 − n)c21 + 3nη(η − nc1). (4.6)

When the group G splits into a product of two groups G1 and G1, χG in eq. (4.4) is then

replaced by χ
(k)
G1

+χ
(l)
G2

where η in χG is split into the classes η(m) as shown in the footnote

below. It turns out that the refined Euler characteristic of the (2, 1) factorization is given

by

χ(X4) = χ∗(X4) + χ
(a)
SU(2) + χ

(b)
SU(1) − χE8

= χ∗(X4) +

∫

S
3[c1(32c1 − 16t− 15ξ) + (2t2 + 4tξ + 3ξ2)] − χE8 . (4.7)

7For a generic Calabi-Yau manifold X4, χ(X4)/24 takes value in Z4 [84].
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In the (1, 1, 1) factorization, the refined Euler characteristic8 is

χ(X4) = χ∗(X4) + χ
(l1)
SU(1) + χ

(l2)
SU(1) + χ

(l3)
SU(1) − χE8

= χ∗(X4) +

∫

S
3{c1[12c1 − 7t− 6(ξ1 + ξ2)] + [t2 + 2t(ξ1 + ξ2) + 2(ξ21 + ξ1ξ2 + ξ22)]}

−χE8. (4.8)

4.2 Cover flux contribution

Under cover factorizations, the universal cover flux is of the form

Γ =
∑

k

Γ(k), (4.9)

where the fluxes Γ(k) satisfy the traceless condition
∑

k pk∗Γ
(k) = 0. In what follows,

we shall compute the self-intersection Γ2 of the universal fluxes for the (2,1) and (1,1,1)

factorizations.

4.2.1 (2,1) factorization

Let us recall that in the (2, 1) factorization, the universal cover flux is given by

Γ = kaγ
(a)
0 + kbγ

(b)
0 +maδ

(a) +mbδ
(b) + ρ̃ = Γ(a) + Γ(b), (4.10)

where Γ(a) and Γ(b) are

Γ(a) = [C(a)] · [(2ka +ma)σ − π∗(ka[a2] +mb[d1] + ρ)] ≡ [C(a)] · [C̃(a)], (4.11)

Γ(b) = [C(b)] · [(kb + 2mb)σ − π∗(kb[d1] +ma[a2] − 2ρ)] ≡ [C(b)] · [C̃(b)]. (4.12)

Then the self-intersection Γ2 is calculated by [20]

Γ2 = [C(a)] · [C̃(a)] · [C̃(a)] + [C(b)] · [C̃(b)] · [C̃(b)]. (4.13)

Recall that in the (2, 1) factorization, [C(a)] = 2σ+π∗(η−c1−ξ) and [C(b)] = σ+π∗(c1 +ξ).

With eqs. (4.11) and (4.12), it is straightforward to compute

Γ2 = [C(a)
2 ] · [C̃(a)

2 ]2 + [C(b)
1 ] · [C̃(b)

1 ]2

= −1

2
(2ka +ma)

2[a2] · [a0] − (kb + 2mb)
2[d1] · [d0]

+
3

2
(ma[a2] − 2mb[d1] − 2ρ)2. (4.14)

8For the (2, 1) factorization, η(a) = (η − c1 − ξ) and η(b) = (c1 + ξ). For the (1, 1, 1) factorization,

η(l1) = (η − 2c1 − ξ1 − ξ2), η(l2) = (c1 + ξ1), and η(l3) = (c1 + ξ2).
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4.2.2 (1,1,1) factorization

In the (1, 1, 1) factorization, the universal flux is given by

Γ = kl1γ
(l1)
0 +kl2γ

(l2)
0 +kl3γ

(l3)
0 +ml1δ

(l1)+ml2δ
(l2)+ml3δ

(l3)+ρ̃ ≡ Γ(l1)+Γ(l2)+Γ(l3), (4.15)

where Γ(l1), Γ(l2), and Γ(l3) are

Γ(l1) ≡ [C(l1)]·[C̃(l1)]=[C(l1)]·[(kl1 + 2ml1)σ− π∗(kl1 [f1] +ml2ξ1 +ml3ξ2 + ρ1 − ρ3)], (4.16)

Γ(l2) ≡ [C(l2)]·[C̃(l2)]=[C(l2)]·[(kl2 + 2ml2)σ− π∗(ml1 [f1] + kl2ξ1 +ml3ξ2 + ρ2 − ρ1)], (4.17)

Γ(l3) ≡ [C(l3)]·[C̃(l3)]=[C(l3)]·[(kl3 + 2ml3)σ− π∗(ml1 [f1] +ml2ξ1 + kl3ξ2 + ρ3 − ρ2)]. (4.18)

In this case the self-intersection Γ2 is computed as

Γ2 = [C(l1)] · [C̃(l1)] · [C̃(l1)] + [C(l2)] · [C̃(l2)] · [C̃(l2)] + [C(l2)] · [C̃(l3)] · [C̃(l3)]. (4.19)

Recall that [C(l1)] = σ + π∗(η − 2c1 − ξ1 − ξ2), [C(l2)] = σ + π∗(c1 + ξ1), and [C(l3)] =

σ + π∗(c1 + ξ2). It follows from eqs. (4.16)–(4.18) that

Γ2 = [C(l1)] · [C̃(l2)]2 + [C(l2)] · [C̃(l2)]2 + [C(l3)] · [C̃(l3)]2

= −(kl1 + 2ml1)
2[f1] · [f0] − (kl2 + 2ml2)

2[g1] · [g0] − (kl3 + 2ml3)
2[h1] · [h0]

+(ρ1 − ρ3 − 2ml1 [f1] +ml2[g1] +ml3[h1])
2

+(ρ2 − ρ1 +ml1 [f1] − 2ml2 [g1] +ml3[h1])
2

+(ρ3 − ρ2 +ml1 [f1] +ml2 [g1] − 2ml3 [h1])
2. (4.20)

5 Models

In this section we give some numerical examples in the geometric backgrounds dP2 studied

in [18] and dP7 in [25]. The basic geometric data of dP2 in X4 is

c1 = 3h− e1 − e2, t = h, η = 17h − 6e1 − 6e2. (5.1)

It follows from eqs. (4.7) and (4.8) that the refined Euler characteristic χ(X4) for the (2, 1)

and (1, 1, 1) factorizations are

χ(X4)(2,1) = 10662 +

∫

S
3[−15ξc1 + 4tξ + 3ξ2], (5.2)

χ(X4)(1,1,1) = 10320 +

∫

S
6
[
(t− 3c1)(ξ1 + ξ2) + (ξ21 + ξ1ξ2 + ξ22)

]
, (5.3)

where χ∗(X4) = 13968 has been used. The ample divisor [ω]dP2 is chosen to be

[ω]dP2 = α(e1 + e2) + β(h− e1 − e2), 2α > β > α > 0. (5.4)

For the dP7 studied in [25], the basic geometric data is

c1 = 3h− e1 − e2 − e3 − e4 − e5 − e6 − e7,

t = 2h− e1 − e2 − e3 − e4 − e5 − e6, (5.5)

η = 16h− 5e1 − 5e2 − 5e3 − 5e4 − 5e5 − 5e6 − 6e7.
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ka kb ma mb ρ ξ α β

0.5 -1.5 -1 -1 −5
2h+ 3

2e1 − 3
2e2 e1 2 3

Table 6. Parameters of an example of a three-generation E6 GUT.

with χ∗(X4) = 1728. By eqs. (4.7) and (4.8), the refined Euler characteristic χ(X4) for the

(2, 1) and (1, 1, 1) factorizations are

χ(X4)(2,1) = 708 +

∫

S
3[−15ξc1 + 4tξ + 3ξ2], (5.6)

χ(X4)(1,1,1) = 594 +

∫

S
6
[
(t− 3c1)(ξ1 + ξ2) + (ξ21 + ξ1ξ2 + ξ22)

]
. (5.7)

In this case we choose the ample divisor [ω]dP7 to be

[ω]dP7 = 14βh − (5β − α)

7∑

i=1

ei, 5β > α > 0. (5.8)

We shall discuss the models of the (2,1) and (1,1,1) factorizations. In each case the trivial

and non-trivial restrictions of the U(1) fluxes to the matter curves will be discussed. Non-

trivial restriction leads to the modification of the chirality of each matter on the curve after

E6 is broken according to the calculation in section 3. In addition, there could exist vector-

like pairs on each curve since we only know the net chirality. The Higgs vector-like pair

(27+27) needed for the gauge unification is therefore assigned to one of these pairs, though

the machinery to calculate the exact number of these vector-like fields is not clear yet.

5.1 Examples of the (2,1) factorization

In the (2,1) factorization the matter fields are assigned to 27(a) curve and the Higgs fields

come from the other 27(b) curve. The Yukawa coupling then turns out to be

W ⊃ 27(a) · 27(a) · 27(b). (5.9)

Since the fermion and Higgs fields are not on the same 27 curve, the exotic fields in 27(a)

can be taken as exotic quarks and leptons which are able to mix with the ordinary ones

by suitable discrete symmetries and to decay via mechanisms such as FCNC after E6 is

broken mentioned in section 3.

5.1.1 A three-family E6 model in dP2

The parameters of the model are listed in table 6.

These parameters give the spectrum N
27(a) = 3 and N

27(b) = 3 with ND3 = 415 as

shown in table 7. The dP2 surface is probably too limited for the fluxes to break the E6

gauge group. Therefore, we stop at a three-generation E6 GUT model in this example.
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Curve Class Gen.

27(a) 8h− 4e1 − 3e2 3

27(b) e1 3

Table 7. The 27 curves of the three-generation E6 example in dP2.

ka kb ma mb ρ ξ α β

-0.5 1.5 0 -0.5 1
2 (3e1 + e2 + e3 + e4) h− e5 − e6 + e7 3 1

Table 8. Parameters of an example of the (2,1) factorization in dP7.

Curve Class Gen.

27(a) 6h− 2e1 − 2e2 − 2e3 − 2e4 − e5 − e6 − 4e7 3

27(b) h− e5 − e6 + e7 2

Table 9. The 27 curves of the example of the (2,1) factorization without flux restrictions in dP7.

ka kb ma mb ρ ξ α β

0.5 -0.5 -1 -0.5 −h+ 1
2 (e1 − 2e2 + e3 + e4 + e6) h− e2 + e5 − e7 13 11

Table 10. Parameters of an example with non-trivial flux restrictions in dP7.

5.1.2 An example of three-generation without flux restriction in dP7

The parameters of the model with ND3 = 12 are listed in the table 8.

The matter contents on the curves are listed in table 9. If the line bundles G and

F associated to SU(2) × U(1)a × U(1)b flux are chosen to have trivial restrictions9 to

both matter 27 curves, for example, F = OS(e5 − e6) and G = OS(e1 − e2 + e3 − e4),
10

then the chirality on each matter curve remains the same after E6 is broken down to

SU(3) × SU(2) × U(1)a × U(1)b. After suitably transforming the U(1) gauge groups, the

corresponding matter content and phenomenology at low energy is a conventional rank 5

model discussed in section 3.

5.1.3 An example with non-trivial flux restrictions in dP7

In this example we consider a model with non-trivial flux restrictions to the matter curves

in dP7. From the chirality formulae discussed in section 3 and listed in table 5, we find

that it is unavoidable to have exotic fields under this construction. To maintain at least

three copies for the MSSM matter after the gauge group E6 is broken, we may have to

start from a model with more chirality on the 27 curves. The parameters of an example

of this scenario are listed in table 10.

It follows from eq. (4.1) and the parameters in table 10 that ND3 = 14. We choose

chirality-three curve for the matter fields and a chirality-four curve for the Higgs fields to

make sure that there are enough MSSM matter after the gauge group E6 is broken. From

9To avoid receiving a Green-Schwarz mass, it is required that [H ] ·S c1=0 and [H ] ·S η = 0, for H =

F, G [6–9, 19].
10G can be chosen also as G = OS(2(e3 − e4)) from eq. (3.62).
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Curve Class M N1 N2

27(a) 6h− 2e1 − e2 − 2e3 − 2e4 − 3e5 − 2e6 − 2e7 3 1 -2

27(b) h− e2 + e5 − e7 4 -1 2

Table 11. The 27 curves with non-trivial flux restrictions in dP7.

Rep. Gen. on 27(a) Gen. on 27(b)

(3,2)1,−1 3 ×Q+ 1 × (3,2)1,−1 3

(3̄,1)−2,−2 3 × uc + 2 × (3̄,1)−2,−2 2

(3̄,1)1,1 3 × dc + 3 ×D 4+4

(1,2)−2,0 3 × L+ 5 × h 3 × (H1 +H2)

(1,1)4,0 3 × ec 4

(1,1)1,−3 3 × νc + 7 × S 2 × (H3 +H4)

(3,1)−2,2 3 × D̄ 4

(1,2)1,3 2 × h̄ 5 × H̄2

Table 12. The MSSM spectrum of the (2, 1) factorization in dP7.

eq. (3.60), we can turn on the fluxes F = OS(e1 − e2) and G = OS(e2 − e3 + e4 − e5) in

dP7.
11 The detailed information of the curves and the restrictions of fluxes to each curve

are listed in table 11.

The low energy spectrum is listed in table 12. One can see that there are exotic

fields including extra generations of quarks. One possible solution to these exotic fields

is including them in the FCNC and CC mechanisms discussed in section 3 so that they

could gain large masses and decay after mixing with ordinary generations. The detailed

low energy physics is dedicated to future study.

5.2 Examples of the (1,1,1) factorization

The Yukawa coupling of the 27 curves in the (1, 1, 1) factorization is 27(l1)27(l2)27(l3). The

fermions are assigned on the two 27 curves while the Higgs fields are located on the third

27 curve. For instance,

W ⊃ 27
(l1)
M · 27(l2)

M · 27(l3)
H . (5.10)

In this scenario the fermions are separated on different matter curves and the sum of the

generations should accomplish a three-family model, for example, two families on 27(l1)

and one family on 27(l2), or vice versa. However, this construction generally results in some

problems in the mass matrices. With the assistance from the flux restrictions, the method

studied in [87] can be applied to obtain a more reasonable Yukawa structure. However,

again from the chirality given in table 5 we expect exotic fields to remain in the spectrum

after this mechanism. In what follows, we demonstrate one example for each case in the

(1, 1, 1) factorization.

11G can be chosen also as G = OS(2(e4 − e5)) from eq. (3.62).
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kl1 kl2 kl3 ml1 ml2 ml3 ρ1 ξ1 ξ2 α β

-1.5 -0.5 1.5 0 0 0 −h+ e1 + 2e2 e1 2h− 2e1 − e2 + e3 − e7 1 3

Table 13. Parameters of a three family model in dP7 with ρ2 = 2ρ1 and ρ3 = 0.

Curve Class Gen. Matter

27(l1) 5h− e1 − e2 − 3e3 − 2e4 − 2e5 − 2e6 − 2e7 2 Fermion

27(l2) e1 1 Fermion

27(l3) 2h− 2e1 − e2 + e3 − e7 4 Higgs

Table 14. The spectrum of the three-generation model in dP7.

kl1 kl2 kl3 ml1 ml2 ml3 ρ1 ξ1 ξ2 α β

-0.5 -0.5 -0.5 0 0 -1 e2 2h− 2e1 − e3 − e7 h− e1 − e2 1 3

Table 15. Parameters of a three family model in dP7 with ρ2 = 2ρ1 and ρ3 = 0.

Curve Class M N1 N2 Matter

27(l1) 4h+ e1 − e2 − e3 − 2e4 − 2e5 − 2e6 − 2e7 3 -1 -2 Fermion

27(l2) 2h− 2e1 − e3 − e7 0 1 2 Fermion

27(l3) h− e1 − e2 4 0 0 Higgs

Table 16. The spectrum of the three-generation model in dP7.

5.2.1 An example of three-generation without flux restriction in dP7

The parameters of the model are listed in table 13.

These parameters give the spectrum shown in table 14 with ND3 = 10. Let us choose

the line bundles to be F = OS(e5 − e6) and G = OS(e2 − e4 + e3 − e6),
12 having trivial

restrictions to each 27 curve. Then the chirality remains the same after E6 is broken

down to SU(3)×SU(2)×U(1)a ×U(1)b. After suitably transforming the U(1) charges, the

corresponding matter content and phenomenology at low energy is again a conventional

rank 5 model.

5.2.2 An example of non-trivial flux restrictions in dP7

The parameters of the model are listed in table 15.

These parameters confine the spectrum of E6 shown in table 16 with ND3 = 10. If the

line bundles associated to SU(2) × U(1)a × U(1)b flux are chosen as F = OS(e3 − e5) and

G = OS(e1 − e2 + e4 − e6),
13 then the chirality of MSSM matter after E6 is broken will be

modified by numbers N1 and N2 shown in table 16.

Originally, there is no chirality on curve 27(l2) so it does not look realistic before the E6

gauge group is broken. However after the fluxes are turned on, the chirality is “reshuffled”

12G can be chosen also as G = OS(2(e4 − e5)) from eq. (3.62).
13G can be chosen also as G = OS(2(e3 − e4)) from eq. (3.62).
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Rep. Gen. on 27(l1) Gen. on 27(l2) Gen. on 27(l3)

(3,2)1,−1 2 ×Q 1 ×Q 4

(3̄,1)−2,−2 1 × uc 2 × uc 4

(3̄,1)1,1 1 × dc + 1 ×D 2 × dc + 2 ×D 8

(1,2)−2,0 0 3 × L+ 3 × h 4 × (H1 +H2)

(1,1)4,0 3 × ec 0 4

(1,1)1,−3 3 × νc + 3 × S 0 4 × (H3 +H4)

(3,1)−2,2 1 × (3̄,1)2,−2 3 × D̄ + 1 × (3,1)−2,2 4

(1,2)1,3 0 3 × h̄ 4 × H̄2

Table 17. The MSSM matter shared by two curves in dP7.

and shared between curves 27(l1) and 27(l2). Therefore, we can interpret the model in the

way studied in [87] that is able to give a rich structure to the mass matrices via the Yukawa

couplings. We demonstrate the corresponding MSSM spectrum in table 17.

6 Conclusions

In this paper we discuss the E6 GUT models where the gauge group is broken by the

non-abelian flux SU(2) × U(1)2 in F-theory. The non-abelian part SU(2) of the flux is

not commutative with E6 so the gauge group after breaking is SU(3) × SU(2)L × U(1)a ×
U(1)b which is equivalent to a rank-5 model with SU(3) × SU(2)L × U(1)Y × U(1)η . We

start building models from the SU(3) spectral cover and then factorize it into (2, 1) and

(1, 1, 1) structures to obtain enough curves and degrees of freedom to construct models with

minimum MSSM matter contents. The restrictions of the line bundles associated with two

U(1) gauge groups to the matter curves can modify the chirality of matter localized on

the curves. This modification generally results in plenty of exotic fields that may cause

troubles in the phenomenological interpretation of the models.

One way to arrange the matter content in the conventional E6 GUT model building

is that all the MSSM matter and Higgs fields are included in the same 27-plet with three

copies and the Yukawa coupling is 27·27·27. Such kind of interaction implies a structure of

either one curve intersecting itself twice or three curves intersecting, which causes difficulties

in geometry or the mass hierarchy structure in F-theory model building. Therefore, we

adopt an alternate way that the weak scale Higgs particles are assigned to another 27

curve while the representations of their original assignments in the matter 27 curve are

taken as exotic leptons. By additional symmetries such as baryon and lepton numbers, we

can rule out the undesired interactions coupled to the exotic fields. The (2, 1) factorization

providing two curves 27(a) and 27(b) with the interaction 27(a) · 27(a) · 27(b) satisfies the

basic requirements of this picture. One the other hand, the (1, 1, 1) factorization confines

three curves to the interaction 27(l1) · 27(l2) · 27(l3). In this case we have to distribute

the MSSM matter to both 27(l1) and 27(l2) curves while the electroweak Higgs fields are
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assigned on the third curve. The fermion mass matrices are generally not able to admit the

hierarchical structures except they are tuned by appropriate flux restrictions. As mentioned

before, the additional one or more (27 + 27) pairs can be included to make sure that the

gauge unification occurs. These vector-like pairs generically exist on the curves in F-theory

and can be assigned to the same curve containing the electroweak Higgs fields. However,

the exact number of the vector-like pairs on a matter curve is still unclear in the present

construction, so we assume that there exits at least one pair.

We demonstrate several models both in the (2, 1) and (1, 1, 1) factorizations with ge-

ometric backgrounds dP2 and dP7 studied in [18] and [25], respectively. We also discuss

the cases that the restrictions of the line bundles associated with U(1)s to the curves are

trivial or non-trivial. Due to the chirality constraints to the fields on the bulk, it is hard

to construct consistent U(1) fluxes in dP2. Therefore, we only demonstrate a three-family

E6 GUT model without gauge breaking in the dP2 geometry. On the other hand, the

dP7 geometry has more degrees of freedom for the parameters to build realistic models.

We therefore show in the (2, 1) case an example of a three-generation model without U(1)

flux restrictions, and an example with non-trivial U(1) flux restrictions which gives rise to

exotic particles. In the (1, 1, 1) factorization, we also present an example of three-family

model without flux restriction. In that case there are two flavors on one matter curve and

the third flavor on the other. In the model with non-trivial flux restrictions, we adjust the

parameters so that the total chirality of each representation on the two matter curves re-

main three while the hierarchies of the mass matrices can be maintained. Regardless of the

exotic fields, the matter contents of our examples are conventional and the corresponding

phenomenology has been discussed in the literature. Giving an appropriate interpretation

for the exotic fields remains a challenge in the semi-local/global F-theory model building.

There are several interesting subgroups of the E6 gauge group and we only discuss

the rank 5 scenario in this paper. It would be interesting to construct rank 6 models with

U(1)3 fluxes, as well as the Pati-Salam-like and trinification-like models with appropriate

non-abelian gauge fluxes in F-theory. We leave these possibilities for future work.

Acknowledgments

The work of CMC is supported in part by the Austrian Research Funds FWF under grant

I192. The work of YCC is supported in part by the NSF under grant PHY-0555575 and

by Texas A&M University.

A Breaking via E6 → SU(6) × SU(2)

We list other possibilities of the subgroups after breaking E6 by the SU(2) × U(1)2 flux.

The full matter content of 27 and the corresponding U(1) charges are presented.
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Case 1. SU(6) → SU(5) × U(1)

E6 −−−→
SU(2)

SU(6) × [SU(2)]

−−−→
U(1)c

SU(5) × [SU(2) × U(1)c]

−−−→
U(1)d

SU(3) × SU(2) × [SU(2) × U(1)c × U(1)d]

27 → (6̄,2) + (15,1)

→ (5̄,2)−1 + (1,2)5 + (10,1)2 + (5,1)−4

→ (3̄,1,2)−1,2 + (1, 2̄,2)−1,−3 + (1,1,2)5,0

+(3,2,1)2,1 + (3̄,1,1)2,−4 + (1,1,1)2,6 + (3,1,1)−4,−2 + (1,2,1)−4,3

(A.1)

U(1)c =
1

2
U(1)a −

3

2
U(1)b, U(1)d =

3

2
U(1)a +

1

2
U(1)b. (A.2)

Case 2. SU(6) → SU(4) × SU(2) × U(1)

E6 −−−→
SU(2)

SU(6) × [SU(2)]

−−−→
U(1)e

SU(4) × SU(2) × [SU(2) × U(1)e]

−−−→
U(1)f

SU(3) × SU(2) × [SU(2) × U(1)e × U(1)f ]

27 → (6̄,2) + (15,1)

→ (4̄,1,2)1 + (1, 2̄,2)−2 + (6,1,1)−2 + (4,2,1)1 + (1,1,1)4

→ (3̄,1,2)1,1 + (1,1,2)1,−3 + (1, 2̄,2)−2,0 + (3,1,1)−2,2 + (3̄,1,1)−2,−2

+(3,2,1)1,−1 + (1,2,1)1,3 + (1,1,1)4,0

(A.3)

U(1)e = U(1)a, U(1)f = U(1)b. (A.4)

Case 3. SU(6) → SU(3) × SU(3) × U(1)

E6 −−−→
SU(2)

SU(6) × [SU(2)]

−−−→
U(1)g

SU(3) × SU(3) × [SU(2) × U(1)g ]

−−−→
U(1)h

SU(3) × SU(2) × [SU(2) × U(1)g × U(1)h]

27 → (6̄,2) + (15,1)

→ (3̄,1,2)−1 + (1, 3̄,2)1 + (3,3,1)0 + (3̄,1,1)2 + (1, 3̄,1)−2

→ (3̄,1,2)−1,0 + (1, 2̄,2)1,−1 + (1,1,2)1,2 + (3,2,1)0,1 + (3,1,1)0,−2

+(3̄,1,1)2,0 + (1, 2̄,1)−2,−1 + (1,1,1)−2,2

(A.5)

U(1)g = −1

2
U(1)a −

1

2
U(1)b, U(1)h =

1

2
U(1)a −

1

2
U(1)b. (A.6)
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B Breaking via trinification

E6 −−−−−−−−→ SU(3) × SU(3) × SU(3)

−−−−−−−→
SU(2)×U(1)

SU(3) × SU(2) × [SU(2) × U(1)i] × U(1)j

27 → (3,2,1)−1,0 + (3,1,1)2,0

+(3̄,1,2)0,1 + (3̄,1,1)0,−2

+(1,2,2)1,−1 + (1,2,1)1,2 + (1,1,2)−2,−1 + (1,1,1)−2,2

(B.1)

U(1)i = −1

2
U(1)a +

1

2
U(1)b, U(1)j =

1

2
U(1)a +

1

2
U(1)b. (B.2)
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[13] A.P. Braun, A. Hebecker, C. Lüdeling and R. Valandro, Fixing D7 Brane Positions by

F-theory Fluxes, Nucl. Phys. B 815 (2009) 256 [arXiv:0811.2416] [SPIRES].

[14] G. Aldazabal, P.G. Camara and J.A. Rosabal, Flux algebra, Bianchi identities and

Freed-Witten anomalies in F-theory compactifications, Nucl. Phys. B 814 (2009) 21

[arXiv:0811.2900] [SPIRES].

[15] A. Collinucci, New F-theory lifts, JHEP 08 (2009) 076 [arXiv:0812.0175] [SPIRES].

[16] H. Hayashi, T. Kawano, R. Tatar and T. Watari, Codimension-3 Singularities and Yukawa

Couplings in F-theory, Nucl. Phys. B 823 (2009) 47 [arXiv:0901.4941] [SPIRES].

– 29 –

http://dx.doi.org/10.1016/0550-3213(96)00172-1
http://arxiv.org/abs/hep-th/9602022
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9602022
http://dx.doi.org/10.1016/0550-3213(96)00242-8
http://arxiv.org/abs/hep-th/9602114
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9602114
http://dx.doi.org/10.1016/0550-3213(96)00369-0
http://arxiv.org/abs/hep-th/9603161
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9603161
http://dx.doi.org/10.1016/S0550-3213(97)00280-0
http://arxiv.org/abs/hep-th/9606086
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9606086
http://dx.doi.org/10.1016/S0550-3213(96)90131-5
http://arxiv.org/abs/hep-th/9605200
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9605200
http://dx.doi.org/10.1088/1126-6708/2009/01/058
http://arxiv.org/abs/0802.3391
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0802.3391
http://dx.doi.org/10.1088/1126-6708/2009/01/059
http://arxiv.org/abs/0806.0102
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0806.0102
http://arxiv.org/abs/0802.2969
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0802.2969
http://arxiv.org/abs/0808.2223
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0808.2223
http://arxiv.org/abs/0904.1218
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0904.1218
http://dx.doi.org/10.1007/s002200050154
http://arxiv.org/abs/hep-th/9701162
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9701162
http://dx.doi.org/10.1016/j.nuclphysb.2008.07.031
http://arxiv.org/abs/0805.1057
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0805.1057
http://dx.doi.org/10.1016/j.nuclphysb.2009.02.025
http://arxiv.org/abs/0811.2416
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0811.2416
http://dx.doi.org/10.1016/j.nuclphysb.2009.01.006
http://arxiv.org/abs/0811.2900
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0811.2900
http://dx.doi.org/10.1088/1126-6708/2009/08/076
http://arxiv.org/abs/0812.0175
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0812.0175
http://dx.doi.org/10.1016/j.nuclphysb.2009.07.021
http://arxiv.org/abs/0901.4941
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0901.4941


J
H
E
P
0
3
(
2
0
1
1
)
1
2
9

[17] B. Andreas and G. Curio, From Local to Global in F-theory Model Building,

J. Geom. Phys. 60 (2010) 1089 [arXiv:0902.4143] [SPIRES].
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