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1 Introduction

A major progress in the area of supersymmetric gauge theories has been made in recent

years based on exact computation of path integral on some deformed or compact mani-

folds. In four dimensions, it was shown in the pioneering work [1] that the exact N = 2

prepotential can be extracted from the path integral on Omega-deformed spacetime. In a

similar manner, based on the localization principle, the partition function and Wilson loop

observables of Seiberg-Witten theories on S4 have been computed in [2]. These results led

to a discovery of a remarkable relation between 4D gauge theories and 2D Liouville or Toda

CFTs [3, 4], called AGT relation.

For 3D N = 2 superconformal gauge theories on S3, exact partition functions and

Wilson loop observables have been obtained in [5]. The techniques developed there have

been applied to further studies of various topics, such as Wilson loops [6, 7], 3D dualities [8]

and large-N duality of topological string [9]. It has also been applied to the study of the

ABJM theory at strong coupling, in particular its conjectured O(N3/2) growth of the

degrees of freedom [10–12]. Another application has recently been made to the study of

domain walls in 4D N = 2 gauge theories [13, 14] in connection with the AGT relation.

The path integration of fields was performed in [5] for gauge theories with manifestly

superconformally invariant Lagrangian. In particular, all the matter scalars and fermions

are assigned canonical dimensions 1/2 and 1, respectively. Using the same technique, the

partition functions of various N = 4 superconformal gauge theories was computed in [8]

as functions of the relevant (FI and mass) deformation parameters. One subtle issue there

was that an N = 4 vectormultiplet contains an N = 2 chiral multiplet with non-canonical

dimension. In [8], the contribution from such chiral multiplet to the partition function was

argued to be trivial, by pointing out the existence of a SUSY-exact F-term deformation

which lifts all of its component fields. One should be able to check this by more direct
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means. Also, it remained unclear whether this property continues to hold when a mass to

this chiral matter is turned on to break supersymmetry to N = 2.

In this paper we extend the result of [5, 8] so that the matter chiral multiplets with

arbitrary R-charge assignment can be incorporated. After summarizing in section 2 our

notations for various geometric quantities in S3, we give a supersymmetry transformation

law of N = 2 vector and chiral multiplets in section 3. There we also construct various

supersymmetric Lagrangians; among them are the super Yang-Mills Lagrangian for vector-

multiplets and kinetic Lagrangian for chiral multiplets. Similar Lagrangians were studied

in the context of 4D N = 1 gauge theories on S3 × R in [15–18]. They are both shown to

be total superderivatives, so it follows that the partition function does not depend on the

Yang-Mills coupling. Then, in section 4 we compute the one-loop determinant of general

chiral matters on the saddle points parametrized by the vev of vectormultiplet scalars.

The prescription to compute partition function for general N = 2 gauge theories on S3 is

summarized in section 5. Finally, in section 6 we apply our result to check the self-mirror

property of a certain N = 2 SQED which has recently been studied in [14].

2 Three-sphere

The three-sphere is parametrized by an element g of the Lie group SU(2), and two copies

of SU(2) symmetry act on g from the left and the right. We introduce the left-invariant

(LI) and right-invariant (RI) one-forms µa = µaνdξ
ν and µ̃a = µ̃aνdξ

ν ,

g−1dg = iµaγa, dgg−1 = iµ̃aγa, (2.1)

where γa are Pauli matrices. These one-forms satisfy

dµa = ǫabcµbµc, dµ̃a = −ǫabcµ̃bµ̃c. (2.2)

The left-right invariant round metric with radius ℓ is

ds2 =
1

2
ℓ2tr(dgdg−1) = ℓ2µaµa = ℓ2µ̃aµ̃a. (2.3)

We define the vielbein in the “LI frame” as ea = eaµdξ
µ = ℓµa. The spin connection in this

frame is ωab = εabcµc and satisfies dea + ωabeb = 0. If we define the vielbein from µ̃a (“RI

frame”), the spin connection is ω̃ab = −εabcµ̃c.

Killing spinors. Killing spinor ǫ satisfies the following equation

Dǫ ≡ dǫ+
1

4
γabωabǫ = eaγaǫ̃, (2.4)

for a certain ǫ̃. Here we used the notation γab ≡ 1
2 [γa, γb] = iεabcγc. There are two types

of Killing spinors. The first one is constant in the LI frame,

ǫ = ǫ0 (constant), ǫ̃ = +
i

2ℓ
ǫ. (2.5)

The second one reads

ǫ = g−1ǫ0, ǫ̃ = − i

2ℓ
ǫ, (2.6)

and is constant in the RI frame.
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Killing vectors. Let us next introduce the vector fields La = Laµ
∂
∂ξµ and Ra = Raµ ∂

∂ξµ

which generate the left and the right actions of SU(2). They can be determined from

L
ag = iγag, R

ag = igγa. (2.7)

The vector fields i
2La and − i

2Ra satisfy the standard commutation relations of SU(2) Lie

algebra. It is also easy to find Raνµbν = Laν µ̃bν = δab, in other words Raν and Laν are

proportional to the inverse-vielbeins in LI or RI frames. The action of these Killing vector

fields on the LI and RI one-forms is given by

L
aµ̃b = 2εabcµ̃c, R

aµb = −2εabcµc, L
aµb = R

aµ̃b = 0. (2.8)

It therefore follows that µ1µ2µ3 = d3ξdet(µaν) can be used to define the invariant volume

form.

3 SUSY theories on three-sphere

Here we review the construction of Euclidean 3D N = 2 superconformal gauge theories on

manifolds with Killing spinors [5], and extend it to non-conformal theories. We begin by

summarizing our conventions for bilinear products of spinors.

ǭλ = ǭαCαβλ
β, ǭγµλ = ǭα(Cγµ)αβλ

β, etc. (3.1)

Here C is the charge conjugation matrix. Noticing that C is antisymmetric and Cγµ are

symmetric, one finds

ǭλ = λǭ, ǭγµλ = −λγµǭ (3.2)

for all spinors ǭ, λ which we assume to be Grassmann odd.

Vectormultiplets. The vectormultiplet fields obey the following transformation laws,

δAµ = − i

2
(ǭγµλ− λ̄γµǫ),

δσ =
1

2
(ǭλ− λ̄ǫ),

δλ =
1

2
γµνǫFµν −Dǫ+ iγµǫDµσ +

2i

3
σγµDµǫ,

δλ̄ =
1

2
γµν ǭFµν +Dǭ− iγµǭDµσ − 2i

3
σγµDµǭ,

δD = − i

2
ǭγµDµλ− i

2
Dµλ̄γ

µǫ+
i

2
[ǭλ, σ] +

i

2
[λ̄ǫ, σ] − i

6
(Dµǭγ

µλ+ λ̄γµDµǫ). (3.3)

Here and throughout this paper, Dµ denotes the gauge, local Lorentz and general covariant

derivative, and γµ is the Dirac matrix with curved index which satisfies

{γµ, γν} = 2gµν , γµν = iεµνργρ/
√
g. (ε123 = 1) (3.4)

Note that Dµ commutes with the vielbein eaµ and the Dirac matrices γa or γµ. The spinors

ǫ, ǭ are assumed to satisfy Killing spinor equation. Denoting δ as the sum of unbarred and
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barred parts, δ = δǫ + δǭ, one can show that two unbarred or two barred supersymmetries

commute. Also, on all the fields except D the commutator [δǫ, δǭ] becomes a sum of

translation, gauge transformation, Lorentz rotation, dilation and R-rotation.

[δǫ, δǭ]Aµ = ξν∂νAµ + ∂µξ
νAν +DµΛ,

[δǫ, δǭ]σ = ξµ∂µσ + i[Λ, σ] + ρσ,

[δǫ, δǭ]λ = ξµ∂µλ+
1

4
Θµνγ

µνλ+ i[Λ, λ] +
3

2
ρλ+ αλ,

[δǫ, δǭ]λ̄ = ξµ∂µλ̄+
1

4
Θµνγ

µν λ̄+ i[Λ, λ̄] +
3

2
ρλ̄− αλ̄,

[δǫ, δǭ]D = ξµ∂µD + i[Λ,D] + 2ρD +
1

3
σ(ǭγµγνDµDνǫ− ǫγµγνDµDν ǭ), (3.5)

where

ξµ = iǭγµǫ,

Θµν = D[µξν] + ξλωµνλ ,

Λ = −iAµǭγµǫ+ σǭǫ,

ρ =
i

3
(ǭγµDµǫ+Dµǭγ

µǫ),

α =
i

3
(Dµǭγ

µǫ− ǭγµDµǫ). (3.6)

In order for the supersymmetry algebra to close, the last term in the right hand side of

[δǫ, δǭ]D needs to vanish. The Killing spinors therefore have to satisfy, in addition to (2.4),

the following condition

γµγνDµDνǫ = hǫ, (3.7)

with some scalar function h. The barred spinor ǭ also has to satisfy the same equation

with the same h. By combining this with Killing spinor equation (2.4), one obtains

Dµǫ = γµǫ̃, 3γµDµǫ̃ = hǫ. (3.8)

By inserting this into γµνDµDνǫ = −1
4Rǫ one finds h = −3R

8 , where R is the scalar

curvature of the 3D manifold. For S3 of radius ℓ one has R = 6
ℓ2

and therefore

h = − 9

4ℓ2
. (3.9)

Note that all the Killing spinors on S3 satisfy Dµǫ = ± i
2ℓγµǫ, so they automatically satisfy

the additional condition (3.7). So the additional condition does not reduce the number of

supersymmetry on S3.

The parameters ρ, α are associated to dilation and R-rotation, respectively. The above

result shows that the fields (Aµ, σ, λ,D) have dimensions (1, 1, 3/2, 2), and (λ, λ̄) are as-

signed the R-charge (1,−1).
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Matter multiplets. The fields in a chiral multiplet coupled to a gauge symmetry trans-

form as follows,

δφ = ǭψ,

δφ̄ = ǫψ̄,

δψ = iγµǫDµφ+ iǫσφ+
i

3
γµDµǫφ+ ǭF,

δψ̄ = iγµǭDµφ̄+ iφ̄σǭ+
i

3
φ̄γµDµǭ+ F̄ ǫ,

δF = ǫ(iγµDµψ − iσψ − iλφ),

δF̄ = ǭ(iγµDµψ̄ − iψ̄σ + iφ̄λ̄). (3.10)

Here we assumed the fields φ,ψ, F (φ̄, ψ̄, F̄ ) to be column vectors (resp. row vectors) on

which the vectormultiplet fields act as matrices from the left (right). The supersymmetry

algebra closes off-shell. The commutator [δǫ, δǭ] on matter fields reads

[δǫ, δǭ]φ = ξµ∂µφ+ iΛφ+
ρ

2
φ− α

2
φ,

[δǫ, δǭ]φ̄ = ξµ∂µφ̄− iφ̄Λ +
ρ

2
φ̄+

α

2
φ̄,

[δǫ, δǭ]ψ = ξµ∂µψ +
1

4
Θµνγ

µνψ + iΛψ + ρψ +
α

2
ψ,

[δǫ, δǭ]ψ̄ = ξµ∂µψ̄ +
1

4
Θµνγ

µν ψ̄ − iψ̄Λ + ρψ̄ − α

2
ψ̄,

[δǫ, δǭ]F = ξµ∂µF + iΛF +
3ρ

2
F +

3α

2
F,

[δǫ, δǭ]F̄ = ξµ∂µF̄ − iF̄Λ +
3ρ

2
F̄ − 3α

2
F̄ . (3.11)

This shows that the fields (φ,ψ, F ) are assigned the canonical dimensions (1/2, 1, 3/2).

Two unbarred or two barred supersymmetries can be easily shown to commute, except on

the auxiliary fields. On F one finds

[δǫ, δǫ′ ]F =
1

3
φ · (ǫγµγνDµDνǫ

′ − ǫ′γµγνDµDνǫ), (3.12)

which vanishes if ǫ, ǫ′ satisfy the constraint (3.7). Similarly, the commutator of two barred

supersymmetries vanish on F̄ only if the two barred Killing spinors satisfy the same con-

straint.

For matter multiplets with non-canonical assignments of dimensions, we put the su-

persymmetry transformation rule as follows,

δφ = ǭψ,

δφ̄ = ǫψ̄,

δψ = iγµǫDµφ+ iǫσφ+
2qi

3
γµDµǫφ+ ǭF,

δψ̄ = iγµǭDµφ̄+ iφ̄σǭ+
2qi

3
φ̄γµDµǭ+ F̄ ǫ,
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δF = ǫ(iγµDµψ − iσψ − iλφ) +
i

3
(2q − 1)Dµǫγ

µψ,

δF̄ = ǭ(iγµDµψ̄ − iψ̄σ + iφ̄λ̄) +
i

3
(2q − 1)Dµǭγ

µψ̄. (3.13)

The supersymmetry algebra then becomes

[δǫ, δǭ]φ = ξµ∂µφ+ iΛφ+ qρφ− qαφ,

[δǫ, δǭ]φ̄ = ξµ∂µφ̄− iφ̄Λ + qρφ̄+ qαφ̄,

[δǫ, δǭ]ψ = ξµ∂µψ +
1

4
Θµνγ

µνψ + iΛψ +

(

q +
1

2

)

ρψ + (1 − q)αψ,

[δǫ, δǭ]ψ̄ = ξµ∂µψ̄ +
1

4
Θµνγ

µν ψ̄ − iψ̄Λ +

(

q +
1

2

)

ρψ̄ + (q − 1)αψ̄,

[δǫ, δǭ]F = ξµ∂µF + iΛF + (q + 1)ρF + (2 − q)αF,

[δǫ, δǭ]F̄ = ξµ∂µF̄ − iF̄Λ + (q + 1)ρF̄ + (q − 2)αF̄ . (3.14)

The lowest components are now assigned the dimension q and R-charge ∓q. The super-

symmetry algebra closes off-shell when the Killing spinors ǫ, ǭ satisfy (3.7), (3.9).

Supersymmetric Lagrangians. The Chern-Simons Lagrangian for N = 2 vectormul-

tiplet is invariant under supersymmetry.

LCS = Tr

[

1√
g
εµνλ

(

Aµ∂νAλ −
2i

3
AµAνAλ

)

− λ̄λ+ 2Dσ

]

. (3.15)

Given a gauge-invariant chiral multiplet of R-charge q = 2 usually called superpotential, its

F-term is invariant under supersymmetry up to total derivatives.

δF = iDµ(ǫγ
µψ), δF̄ = iDµ(ǭγ

µψ̄). (3.16)

These terms are invariant under δ for any Killing spinors ǫ, ǭ. In addition, chiral matter

multiplets with canonical dimensions have the kinetic Lagrangian,

L = Dµφ̄D
µφ−iψ̄γµDµψ+

3

4ℓ2
φ̄φ+ iψ̄σψ+iψ̄λφ− iφ̄λ̄ψ+iφ̄Dφ+ φ̄σ2φ+ F̄F, (3.17)

which is invariant under supersymmetry if the Killing spinors ǫ, ǭ satisfy (3.7), (3.9). If the

Lagrangian is made of the above three types of terms, the theory is superconformal at the

classical level.

There are Lagrangians which are not superconformal but are still invariant under

some supersymmetry. In the following we look for the quantities which are invariant if the

parameters ǫ, ǭ satisfy

Dµǫ =
i

2ℓ
γµǫ, Dµǭ =

i

2ℓ
γµǭ. (3.18)

Under this additional condition, the commutator [δǫ, δǭ] does not give rise to dilation since

ρ of (3.6) vanishes. The Killing vector ǭγaǫ is constant in the LI frame, so the commutator

of supersymmetry is a linear sum of Ra and local Lorentz, gauge, R-transformations. This
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restricted supersymmetry is therefore regarded as an analogue of Poincaré supersymmetry

in flat space.

As an example, let us first look for a kinetic Lagrangian for matter fields with non-

canonical dimensions. We take (3.17) as the trial Lagrangian for non-canonical matters.

Its variation under the supersymmetry (3.13) is given by

δL = − i

3
(2q − 1)φ̄Dµǭγ

µ(−iγνDνψ + iσψ + iλφ)

+
i

3
(2q − 1)(iDµψ̄γ

µ + iψ̄σ − iφ̄λ̄)γνDνǫφ

+
i

3
(2q − 1)(F̄Dµǫγ

µψ − ψ̄γµDµǭF ). (3.19)

Using (3.18) one can rewrite this as δL = −δLnc, where

Lnc =
i(2q − 1)

ℓ
φ̄σφ− (2q − 1)

2ℓ
ψ̄ψ − (2q − 1)(2q − 3)

4ℓ2
φ̄φ. (3.20)

Thus Lmat = L + Lnc is a supersymmetric kinetic Lagrangian.

Lmat = Dµφ̄D
µφ+ φ̄σ2φ+

i(2q − 1)

ℓ
φ̄σφ+

q(2 − q)

ℓ2
φ̄φ+ iφ̄Dφ+ F̄F

−iψ̄γµDµψ + iψ̄σψ − (2q − 1)

2ℓ
ψ̄ψ + iψ̄λφ− iφ̄λ̄ψ. (3.21)

Another example is the Yang-Mills Lagrangian for vectormultiplet. We start from the

standard N = 2 SYM Lagrangian and improve its supersymmetry variation by adding

terms of order ℓ−1 and ℓ−2. The supersymmetric Lagrangian finally becomes

LYM = Tr

(

1

4
FµνF

µν +
1

2
DµσD

µσ+
1

2

(

D +
σ

ℓ

)2

+
i

2
λ̄γµDµλ+

i

2
λ̄[σ, λ]− 1

4ℓ
λ̄λ

)

. (3.22)

Finally, there is an analogue of FI D-term for abelian vectormultiplet.

LFI ≡ D − σ

ℓ
, δLFI = − i

2
Dµ(ǭγ

µλ+ λ̄γµǫ). (3.23)

Note that Lmat and LYM can be expressed as total-superderivatives,

ǭǫ · Lmat = δǭδǫ

(

ψ̄ψ − 2iφ̄σφ+
2(q − 1)

ℓ
φ̄φ

)

,

ǭǫ · LYM = δǭδǫTr
(1

2
λ̄λ− 2Dσ

)

, (3.24)

but LFI cannot.

More extended supersymmetry. By combining a vectormultiplet with an adjoint

chiral multiplet we expect to get a gauge theory with more extended supersymmetry. In the

following we will write the Lagrangians for this extended multiplet using a new set of fields,

φ̂ =
√

2φ, ψ̂ = −i
√

2ψ, ˆ̄ψ = −i
√

2ψ̄, F̂ =
√

2F, D̂ = D + i[φ, φ̄]. (3.25)
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To get the Lagrangian with N = 4 extended supersymmetry, it turns out one has to

take a linear combination of YM, matter and CS terms. The total Lagrangian becomes

(hereafter the hats for the new set of fields are omitted),

LYM + Lmat −
1

2ℓ
LCS

= Tr

(

1

4
FµνF

µν − 1

2ℓ
√
g
εµνλ

(

Aµ∂νAλ −
2i

3
AµAνAλ

)

+
1

2
D2 +

1

2
F̄F

+
1

2
DµσD

µσ +
1

2
Dµφ̄D

µφ+
1

2ℓ2
(σ2 + φ̄φ) − 1

2
[σ, φ][σ, φ̄] +

1

8
[φ, φ̄]2 +

i

2ℓ
σ[φ, φ̄]

+
i

2
λ̄γµDµλ+

i

2
ψ̄γµDµψ +

1

4ℓ
(λ̄λ+ ψ̄ψ)

+
i

2
λ̄[σ, λ] − i

2
ψ̄[σ, ψ] +

1

2
ψ̄[φ, λ] − 1

2
λ̄[φ̄, ψ]

)

. (3.26)

This Lagrangian has an SO(4) ≃ SU(2)×SU(2) enlarged R-symmetry and therefore N = 4

supersymmetry. The two SU(2)’s act on the triplet of scalars (σ, φ, φ̄) and the auxiliary

fields (D,F, F̄ ) respectively.

By combining the complex mass term (F-term) for the adjoint chiral field

LF + LF̄ = Tr

(

Fφ+
1

2
ψψ + F̄ φ̄+

1

2
ψ̄ψ̄

)

(3.27)

with the CS action for the vectormultiplet one obtains an action

LCS + LF + LF̄ = Tr

(

1√
g
εµνλ

(

Aµ∂νAλ −
2i

3
AµAνAλ

)

− λ̄λ+
1

2
ψψ +

1

2
ψ̄ψ̄

+2Dσ + Fφ+ F̄ φ̄− i[φ, φ̄]σ

)

, (3.28)

which has an SO(3) extended R-symmetry which rotates the scalars, auxiliary fields and

three of the four Majorana fermions simultaneously, and therefore N = 3 supersymmetry.

The above observations are reminiscent of the well-known fact that, on 3D flat space-

time, gauge theories with YM and CS terms can have at most N = 3 supersymmetry.

4 Localization

Here we discuss the computation of partition function of the supersymmetric gauge theories

on S3 based on the localization principle. As has been explained in [5, 8], the path integral

localizes onto the saddle points characterized by

Aµ = φ = 0, σ = −ℓD = constant. (4.1)

So the calculation of partition function amounts to evaluating the one-loop determinant at

each saddle point and then integrating over the space of saddle points parametrized by σ.

The one-loop determinant of vectormultiplets was worked out thoroughly in [5], so

we focus on the chiral matter multiplets with arbitrary R-charge assignments. We will

– 8 –
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focus on the determinant of a single chiral multiplet which has a unit charge under a U(1)

gauge symmetry, as the generalization to arbitrary gauge groups and representations is

straightforward.

The matter kinetic Lagrangian (3.21) of the previous section was shown to be a total

superderivative, so that we can use it as the regulator Lagrangian. This choice of regula-

tor is slightly different from the one in [5], and it simplifies the computation of one-loop

determinant a lot since the SU(2) × SU(2) isometry of S3 remains unbroken.

The matter kinetic term on the saddle points is Lφ + Lψ, with

Lφ = gµν∂µφ̄∂νφ+ φ̄σ2φ+
2i(q − 1)

ℓ
φ̄σφ+

q(2 − q)

ℓ2
φ̄φ,

Lψ = −iψ̄γµ∂µψ + iψ̄σψ − q − 2

ℓ
ψ̄ψ. (4.2)

For round S3 of radius ℓ we substitute gµν = ℓ−2RaµRaν , eaµ = ℓ−1Raµ and get

Lφ = ℓ−2
{

R
aφ̄ · Raφ− φ̄(q − iℓσ)(q − 2 − iℓσ)φ

}

,

Lψ = ℓ−1ψ̄ {−iγaRa + iℓσ + 2 − q}ψ. (4.3)

One can rewrite them in terms of orbital and spin angular momentum operators Ja ≡ 1
2iR

a

and Sa ≡ 1
2γ

a satisfying standard SU(2) commutation relations. Then, all we need to do

is to work out the spectrum of the Laplace and Dirac operators ∆φ and ∆ψ,

∆φ =
1

ℓ2
{4JaJa − (q − iℓσ)(q − 2 − iℓσ)} ,

∆ψ =
1

ℓ
{4JaSa + iℓσ + 2 − q} . (4.4)

These operators are diagonalized by spherical harmonics on S3. First, scalar spherical

harmonics sit in the spin (j, j) representations of SU(2)L × SU(2)R, with 2j ∈ Z≥0. One

therefore gets the eigenvalues

∆φ = ℓ−2
(

4j(j + 1) − (q − iℓσ)(q − 2 − iℓσ)
)

= ℓ−2(2j + 2 + iℓσ − q)(2j − iℓσ + q) (4.5)

with multiplicity (2j + 1)2. Second, spinor spherical harmonics sit in the spin (j, j, 1
2)

representation of SU(2)L×SU(2)R×SU(2)S , which can be reorganized into the direct sum

(j, j+ 1
2)⊕ (j, j− 1

2) of the subgroup SU(2)L×SU(2)R+S . The Dirac operator can be easily

shown to take values

∆ψ = ℓ−1

(

2

(

j ± 1

2

)(

j ± 1

2
+ 1

)

− 2j(j + 1) − 3

2
+ iℓσ + 2 − q

)

= ℓ−1(2j + 2 + iℓσ − q), ℓ−1(−2j + iℓσ − q) (4.6)

on these representations, and the multiplicities are (2j + 2)(2j + 1) and 2j(2j + 1) re-

spectively. Denoting n = 2j + 1, one can express the one-loop determinant as an infinite

product,
det∆ψ

det∆φ
=

∏

n>0

(n+ 1 − q + iℓσ

n− 1 + q − iℓσ

)n
= sb=1(i− iq − ℓσ). (4.7)
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This is our main result. Here sb(x) is the double sine function which has poles at x =

i(m + 1
2)b + i(n + 1

2)b−1 (m,n ∈ Z≥0) and satisfies sb(x) = s1/b(x) = sb(−x)−1. It also

satisfies the equality

sb

(

ib

2
− σ

)

sb

(

ib

2
+ σ

)

=
1

2 cosh πbσ
. (4.8)

For more detailed explanation on this function, we refer to [19, 20].

5 Integral formula for partition function

Combining the result of the previous section with those for vectormultiplet given in [5],

one can write down an integral formula for partition functions of general 3D N = 2 gauge

theories.

Since the path integral generally localizes onto saddle points characterized by (4.1),

the formula involves an integral over the Lie algebra of gauge group G corresponding to

the constant mode of σ. Using gauge symmetry, one can reduce the integration domain

further to its Cartan part at the cost of having an extra Vandermonde determinant factor

in the integrand. We introduce a dimensionless quantity σ̂ ≡ ℓσ, and write it as a linear

combination of Cartan generators Hi,

σ̂ =

r
∑

i=1

σ̂iHi, (5.1)

where r is the rank of the gauge group.

For non-abelian gauge groups, there is a nontrivial integrand arising from the Vander-

monde and one-loop determinants. The contribution of vectormultiplets is given by [5]

Zvec =
1

|W|

∫

drσ̂
∏

α∈∆+

(2 sinh(παiσ̂i))
2 . (5.2)

Here α labels the positive roots, the corresponding generator Eα satisfies [Hi, Eα] = αiEα
and |W| denotes the order of the Weyl group.

Matter chiral multiplets contribute a one-loop determinant which is a generalization

of (4.7). Assume they have R-charge q and belong to the representation R of the gauge

group. Then for each weight vector ρ of R, there is a matter chiral multiplet labelled by ρ

carrying the Hi-charge ρi, and its conjugate anti-chiral multiplet with the Hi-charge −ρi.
Collecting their one-loop determinants we obtain

∏

ρ∈R

sb=1(i− iq − ρiσ̂i) (5.3)

from a chiral multiplet belonging to R. As a special case, when q = 1
2 and R = r ⊕ r̄ the

matter one-loop determinant becomes [5]

∏

ρ∈r

sb=1

(

i

2
− ρiσ̂i

)

· sb=1

(

i

2
+ ρiσ̂i

)

=
∏

ρ∈r

1

2 cosh πρiσ̂i
. (5.4)
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The Chern-Simons and FI terms have nonzero classical values at the saddle points.

In the standard convention, the Chern-Simons Lagrangian (3.15) appears in the Euclidean

action multiplied by ik
4π , where k is the Chern-Simons coupling. Also, the trace in (3.15)

is that of adjoint representation divided by twice the dual Coxeter number. Its nonzero

classical value shifts the integrand by a factor

exp

(

ik

4π

∫

d3ξ
√
gLCS

)

= exp(−ikπσ̂iσ̂i). (5.5)

The FI term (3.23) in our convention appears in the action multiplied by a factor iζ
πℓ ,

where ζ is the FI coupling. For U(1) gauge theory, the shift of the integrand due to the FI

coupling is therefore

exp

(

− iζ

πℓ

∫

d3ξ
√
gLFI

)

= exp(4πiζσ̂). (5.6)

It is now straightforward to write down the partition function for any N = 2 gauge

theories using the building blocks given above. For example, the partition function for

U(N) N = 2 Chern-Simons theory at level k coupled to Nf fundamental and N̄f anti-

fundamental chiral matters of R-charge q is,

Z =
1

N !

∫

dNσ

N
∏

j=1

e−iπkσ
2
j

N
∏

i<j

(2 sinhπ(σi − σj))
2

·
( N

∏

j=1

sb=1(i− iq − σj)

)Nf
( N

∏

j=1

sb=1(i− iq + σj)

)N̄f

. (5.7)

6 An application

As a simple application of our result, we consider here an N = 4 SQED with two electron

hypermultiplets, called T [SU(2)], which is long known to be self-mirror [21, 22]. In terms

of N = 2 supermultiplets, the theory consists of one abelian vectormultiplet V , one neutral

chiral multiplet φ and four chiral multiplets (q1, q2, q̃
1, q̃2) with charges (+1,+1,−1,−1).

The fields qi, q̃
i have the R-charge 1/2 whereas φ has R-charge 1. In addition to the

kinetic Lagrangians, a superpotential W =
√

2q̃iφqi needs to be introduced to get N = 4

supersymmetry.

The theory has an SU(2) flavor symmetry which rotates qi and q̃i as doublets, and

the matter fields (q1, q2, q̃
1, q̃2) have charges (+1,−1,−1,+1) under its U(1) subgroup.

One can turn on the mass for the charged chiral matters via gauging this U(1) flavor

symmetry, so that the mass parameter µ appears as the expectation value of a background

vectormultiplet scalar. Under the mirror symmetry, the mass parameter µ is mapped to

the FI parameter ζ and vice versa. In a recent work [14], further mass deformation of this

model has been considered by gauging the U(1) symmetry under which qi, q̃
i all have charge

−1 and φ has charge 2. Since this symmetry is identified with the difference of two U(1)’s

in the SU(2) × SU(2) R-symmetry, the corresponding mass parameter m is sign-flipped

under the mirror symmetry [23].
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The partition function of mass-deformed theory on S3 is thus given by an integral over

the scalar σ in the vectormultiplet V (here we set ℓ = 1 for simplicity),

Z(m, ζ, µ) =

∫

dσe4πiζσsb=1(−m) · sb=1

(

i

2
− σ − µ+

m

2

)

sb=1

(

i

2
− σ + µ+

m

2

)

·sb=1

(

i

2
+ σ + µ+

m

2

)

sb=1

(

i

2
+ σ − µ+

m

2

)

. (6.1)

By using the following formula given in the appendix of [20],

∫

dxe−2πipxsb

(

x+
m

2
+
iQ

4

)

sb

(

− x+
m

2
+
iQ

4

)

= sb(m)sb

(

p− m

2
+
iQ

4

)

sb

(

− p− m

2
+
iQ

4

)

, (6.2)

one can easily show that the partition function satisfies Z(m, ζ, µ) = Z(−m,µ, ζ), namely

it transforms as expected under mirror symmetry.

The mass-deformed T [SU(2)] theory is known to describe the S-duality domain wall

of 4D N = 2∗ SYM theory [13]. As has been observed in [14], the partition function

Z(m, ζ, µ) coincides with the S-duality transformation coefficient of Virasoro torus one-

point conformal blocks.

Note added. When our paper was ready for submission to the arXiv, there appeared a

paper by D.L. Jafferis [24] which has significant overlap with ours.
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