
J
H
E
P
0
3
(
2
0
1
1
)
1
2
1

Published for SISSA by Springer

Received: March 2, 2011

Accepted: March 15, 2011

Published: March 24, 2011

Gauge invariant Ansatz for a special three-gluon

vertex

D. Binosia and J. Papavassilioub

aEuropean Centre for Theoretical Studies in Nuclear Physics and Related Areas (ECT)

and Fondazione Bruno Kessler,

Villa Tambosi, Strada delle Tabarelle 286, I-38123 Villazzano (TN) Italy
bDepartment of Theoretical Physics and IFIC, University of Valencia,

Dr. Moliner str. 50, E-46100 Burjassot (Valencia), Spain

E-mail: binosi@ect.it, Joannis.Papavassiliou@uv.es

Abstract: We construct a general Ansatz for the three-particle vertex describing the

interaction of one background and two quantum gluons, by simultaneously solving the

Ward and Slavnov-Taylor identities it satisfies. This vertex is known to be essential for

the gauge-invariant truncation of the Schwinger-Dyson equations of QCD, based on the

pinch technique and the background field method. A key step in this construction is the

formal derivation of a set of crucial constraints (shown to be valid to all orders), relating

the various form factors of the ghost Green’s functions appearing in the aforementioned

Slavnov-Taylor identity. When inserted into the Schwinger-Dyson equation for the gluon

propagator, this vertex gives rise to a number of highly non-trivial cancellations, which are

absolutely indispensable for the self-consistency of the entire approach.

Keywords: Nonperturbative Effects, QCD

ArXiv ePrint: 1102.5662

c© SISSA 2011 doi:10.1007/JHEP03(2011)121

mailto:binosi@ect.it
mailto:Joannis.Papavassiliou@uv.es
http://arxiv.org/abs/1102.5662
http://dx.doi.org/10.1007/JHEP03(2011)121


J
H
E
P
0
3
(
2
0
1
1
)
1
2
1

Contents

1 Introduction 1

2 The BQQ vertex and its basic properties 4

3 Identities of the ghost sector 8

4 Solving the Ward and Slavnov-Taylor identities 11

5 Consequences for the SDE of the gluon propagator 14

6 Conclusions 18

1 Introduction

In recent years, a significant part of the ongoing activity dedicated to the study the non-

perturbative sector of Yang-Mills theories, and especially of QCD, has focused on the

infrared behavior of individual Green’s functions. The information obtained by a variety

of large-volume lattice simulations has been of singular importance for advancing in this

direction, and has stimulated an in-depth re-examination of various aspects of the under-

lying QCD dynamics. In particular, these lattice results clearly indicate that the gluon

propagator and the ghost dressing function of pure Yang-Mills theories, computed in the

conventional Landau gauge, are infrared finite, both in SU(2) [1–5] and in SU(3) [6–9].

Evidently, reproducing these (and related) lattice results using continuous approaches

represents a highly non-trivial challenge. In this effort, the Schwinger-Dyson equations

(SDEs) constitute an obvious (albeit technically cumbersome) starting point. As has been

argued in a series of recent articles [10–12], the modified set of SDEs obtained within

the general formalism based on the Pinch Technique (PT) [13–17] and the Background

Field Method (BFM) [18], is particularly well-suited for attempting this difficult task (for

alternative approaches see, e.g., [19–26]).

One of the key ingredients of the PT-BFM approach, in general, is (see figure 1) the

three-gluon vertex describing the interaction between one background (B) and two quan-

tum (Q) gluons (“BQQ vertex”, for short). This vertex appears naturally in the modified

SDE governing the gluon self-energy, and is instrumental for its gauge-invariant truncation.

In particular, and contrary to what happens in the conventional formulation, the “one-loop

dressed” subset of (only gluonic!) diagrams (see figure 2), corresponding to the first step

in the aforementioned SDE truncation, furnishes an exactly transverse gluon self-energy.

In addition, the way the gluon acquires a dynamically generated (momentum-dependent)

mass [13], which, in turn, accounts for the infrared finiteness of the aforementioned Green’s

functions, is determined by a subtle interplay of all the ingredients entering into the cor-

responding SDE. In this context the non-perturbative form of the BQQ vertex is essential
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for obtaining infrared finite results out of the SDEs considered, without violating any of

the underlying field-theoretic principles [27].

A major difficulty that is typical in the SDE studies (and not only in the case of

the BQQ vertex considered here) is precisely the form that one must use for the various

fully-dressed vertices entering into the problem. To be sure, the non-perturbative behavior

of each such vertex (including the BQQ vertex) is determined by its own SDE equation,

which contains the various multiparticle kernels appearing in the “skeleton expansion” (see

figure 3). However, for practical purposes, one is forced to resort to an Ansatz for this

vertex, obtained through the so-called “gauge-technique” [28–31].

The idea behind the gauge-technique is fairly simple, even though its precise imple-

mentation may be rather complicated. Specifically, one constructs an expression for the

unknown vertex out of the ingredients appearing in the Ward identity (WI) and/or the

Slavnov-Taylor identity (STI) it satisfies. These ingredients must be put together in a way

such that the resulting expression satisfies the WI and/or the STI automatically. Evidently,

this technique becomes more difficult to implement as the Lorentz and color structure of the

vertex under construction increases, and the structure of the STIs that it satisfies gets more

involved. In addition, it is clear that this method can only determine the “longitudinal”

part of any vertex, leaving its “transverse” (i.e., automatically conserved) part completely

unspecified. Failing to provide the correct transverse part leads to the mishandling of over-

lapping divergences, which, in turn, compromises the multiplicative renormalizability of the

resulting SDE. The usual remedy employed in the literature is to account approximately

for the missing pieces by modifying appropriately (but“by hand”) the SDE in question.

In this article we will cary out in detail the gauge-technique construction for the BQQ

vertex mentioned above. This is a particularly involved task, and deviates appreciably from

the corresponding construction of the conventional three-gluon vertex (the “QQQ vertex”

in this notation) [32], mainly for the following reasons.

(i) Unlike the QQQ vertex, which displays Bose symmetry with respect to the inter-

change of any one of its three legs, the BQQ vertex is Bose symmetric only under the

interchange of the two quantum legs. As a result, the constraints imposed by Bose

symmetry on the various form-factors comprising the two vertices are different.

(ii) Whereas the QQQ vertex satisfies the same STI when contracted from any direction,

the BQQ vertex satisfies an Abelian (ghost-free) WI when contracted from the side

of the background gluon, and an STI when contracted from the side of either one of

the quantum gluons [see eq. (2.9)].

(iii) The number of Green’s functions and composite (BRST-induced) operators entering

into the STI satisfied by the BQQ is practically duplicated compared to the QQQ

case. Indeed, while the the STI maintains its basic characteristic form, any Green’s

function that appears in it and has an incoming gluon (i.e., gluon self-energy or the

“gluon-ghost” kernel) appears in two versions: in the first, the incoming gluon is

a quantum gluon, in the second, it is a background one [the latter quantities are

denoted by “tildes” on the r.h.s. of eq. (2.9)].
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As is well-known from the case of the conventional vertex [32], the gauge-technique

construction boils down finally to the solution of a system of various equations, whose

unknowns are the form factors (of the longitudinal part) of the vertex under construction.

The solution of this system allows to express these form factors in terms of the various

quantities appearing on the r.h.s. of the STI: gluon propagator(s), ghost dressing function,

and a subset of the form factors of the “gluon-ghost” kernel(s). However, solving the

resulting system is conceptually subtle, because the additional constrains imposed by Bose-

symmetry reduces the number of unknowns, and one is left with more equations than

unknowns. Thus, in order to find non-trivial solutions, a set of additional identities must be

imposed, which relates the ingredients appearing on the r.h.s. of the STI; in particular, the

ghost dressing function is related to some of the form-factors of the “gluon-ghost” kernels

[see eqs. (3.19) and (3.20)]. This reduces the number of available equations, because some

of them are identically satisfied, precisely by virtue of these additional identities. These

identities can be established by inspection, i.e., as a necessary condition for having non-

trivial solutions for the system. However, given that they constitute, at the same time,

non-trivial relations between well-defined field-theoretic quantities (those appearing on the

r.h.s. of the STI), their validity must hold regardless of the need to solve the given system

of equations. In the work of [32] the aforementioned set of crucial auxiliary identities has

been established as a necessary condition for solving the system, and their validity has been

indeed confirmed at the one-loop perturbative level, through an explicit calculation (the

complete one-loop off-shell form factors, in an arbitrary covariant gauge ξ and space-time

dimension, have been calculated in [33]).

In the case of the BQQ vertex we consider, and given the aforementioned duplication

of the quantities entering into the STI, the solution of the system requires the validity

of two types of such auxiliary identities: one of them coincides with that found in [32],

while the other is completely new, and reported here for the first time. It turns out that

the validity of both identities can be demonstrated to all-orders (and non-perturbatively);

indeed, they are a direct consequence of a STI and a WI that the two ghost sectors (the

“conventional” one and the “tilded” one, respectively) satisfy. To the best of our knowledge

this is a novel result.

The article is organized as follows. In section 2 we present some basic facts about the

BQQ vertex. We pay particular attention to the WI and STI this vertex satisfies, and

explain in detail the definition and field-theoretic origin of the various quantities entering

in them. In section 3 we resort to the Batalin-Vilkovisky formalism, in order to derive

the auxiliary STI and WI satisfied by the two types of ghost-induced Green’s functions

appearing in the central STI (satisfied by BQQ). These two auxiliary equations are valid

to all orders, and give rise to the set of constraints needed for the solution of the system

in the next section. Section 4 contains the main result of this article. Specifically, the

system of equations involving the form factors of the longitudinal part of the vertex is

presented, and its solution is reported, after using the additional constraints derived in the

previous section. In section 5 we give a detailed account of the most important theoretical

consequences that the precise form of the vertex has for the SDE of the gluon propagator

(in the Landau gauge). Finally, in section 6 we present our conclusions.
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2 The BQQ vertex and its basic properties

The BQQ vertex constitutes without any doubt one of the most fundamental ingredients

of the pinch technique, making its appearance already at the basic level of the one-loop

construction. Specifically, defining the tree-level conventional three-gluon vertex through

the expression (all momenta entering)

iΓ
(0)

Aa
αAb

µAc
ν
(q, r, p) = gfabcΓ(0)

αµν(q, r, p)

Γ(0)
αµν(q, r, p) = gµν(r − p)α + gαν(p − q)µ + gαµ(q − r)ν , (2.1)

the diagrammatic rearrangements giving rise to the PT Green’s functions (propagators and

vertices) stem exclusively from the characteristic decomposition [13, 14, 34]

Γ(0)
αµν(q, r, p) = Γ̃(0)

αµν(q, r, p) + (1/ξ)ΓP
αµν (q, r, p) ,

Γ̃(0)
αµν(q, r, p) = gµν(r − p)α + gαν(p − q + r/ξ)µ + gαµ(q − r − p/ξ)ν ,

ΓP
αµν(q, r, p) = gαµpν − gανrµ . (2.2)

In the equations above, ξ represents the gauge-fixing parameter that appears also in the

definition of the (full) gluon propagator ∆ab
µν(q) = δab∆µν(q), with

i∆µν(q) = −i

[
Pµν(q)∆(q2) + ξ

qµqν

q4

]
; ∆−1

µν (q) = i
[
Pµν(q)∆−1(q2) + ξqµqν

]
(2.3)

and Pµν(q) = gµν − qµqν/q
2 the dimensionless transverse projector; finally, the scalar

cofactor ∆(q2) is finally related to the all-order gluon self-energy Πµν(q) = Pµν(q)Π(q2)

through

∆−1(q2) = q2 + iΠ(q2) = q2J(q2) . (2.4)

Notice that the PT makes no ab initio reference to a background gluon; at the level

of the Yang-Mills Lagrangian there is only one gauge field, A, which is quantized in the

usual way, by means of a linear gauge-fixing function of the Rξ type Fa = ∂µAa
µ. However,

the decomposition (2.2) assigns right from the start a special role to the leg carrying the

momentum q, that is to be eventually identified with the background leg. Thus, unlike

Γ(0), which is Bose-symmetric with respect to all its three legs, the vertex Γ̃(0) is in fact

Bose-symmetric only with respect to the (quantum) µ and ν legs. In addition, it satisfies

the simple Ward identity

iqαΓ̃(0)
αµν(q, r, p) = ∆−1

0 µν(p) − ∆−1
0 µν(r) , (2.5)

where the sub-index “0” on the r.h.s. indicates the tree-level version of the inverse prop-

agator (2.3). In higher orders, the BQQ vertex is constructed through the systematic

triggering of internal STIs in the diagrams of the conventional (higher order) three-gluon

vertex [15, 16].

On the other hand, when quantizing the theory within the BFM, the notion of a BQQ

vertex Γ bAAA
arises naturally as a consequence of the splitting of the classical gauge field

– 4 –



J
H
E
P
0
3
(
2
0
1
1
)
1
2
1

α, a

µ, bν, c

rp

q

Figure 1. The BQQ three-gluon vertex. The background leg is indicated by the gray circle.

(a1) (a2)

µ ν

µ νk

k + q

q k

q

Figure 2. The one-loop dressed gluon contribution to the PT-BFM gluon self-energy. Notice

that, contrary to what happens within the conventional formalism these two diagrams constitute a

transverse subset of the full SDE.

into a background and a quantum part, A → A+Â, and the choice of a special gauge fixing

function Fa = ∂µAa
µ + gfabcÂµ

b Ac
µ, which is linear in the quantum field A, and preserves

gauge invariance with respect to the background field Â. The latter induces to the tree-

level BQQ vertex an additional dependence on the gauge-fixing parameter ξQ, and one has

(see figure 1)

iΓ bAa
αAb

µAc
ν
(q, r, p) = gfabcΓ̃αµν(q, r, p) ; (2.6)

the tree-level value of the vertex in eq. (2.6), namely Γ̃(0), coincides with the PT expression

of eq. (2.2), after the replacement ξ → ξQ. This equality between the PT and BFM

construction appears to be rather general; for the usual two- and three-point functions

(such as the gluon propagator, quark-gluon vertex, and three-gluon vertex) it has been

shown to hold both perturbatively (to all orders) [15, 16], and non-perturbatively (at the

SDE level) [11, 12].

As mentioned in the Introduction, the BQQ vertex Γ̃ enters into the SDE satisfied by

the PT-BFM gluon propagator. Specifically, considering the (gauge-invariant) subset of

fully dressed diagrams of figure 2, one finds

(a1)µν =
1

2
g2CA

∫

k

Γ̃
(0)
µαβ∆αρ(k)∆βσ(k + q)Γ̃νρσ

(a2)µν = g2CA

[
gµν

∫

k

∆ρ
ρ + (1/ξ − 1)

∫

k

∆µν

]
, (2.7)
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= + + · · · ++ +

pole1
q2

︸ ︷︷ ︸

˜Γ

Figure 3. The SDE equation for the BQQ vertex Γ̃. The first diagrams correspond to the

standard skeleton expansion in terms of one-particle irreducible multi-leg kernels (grey blobs). The

last term, representing a non-perturbative bound-state pole, appears only when the Schwinger

mechanism [35, 36] is triggered [37–39].

with the n-dimensional integral measure (in dimensional regularization) defined as

∫

k

≡
µǫ

(2π)n

∫
dnk . (2.8)

Evidently, non-perturbative information on the vertex Γ̃ is essential for making further

progress with these equations. In principle, the complete structure of ĨΓ is determined from

its own SDE; however, this equation is practically intractable, given that it involves several

unknown one-particle reducible kernels, associated with its skeleton expansion shown in

figure 3. Given this serious limitation, one usually is forced to approximate the vertex

by employing a suitable Ansatz. In general, such an Ansatz is obtained by resorting to

the aforementioned gauge technique [28–31]. Even though the actual construction will be

carried out in section 4, it is worthwhile to briefly review the basic philosophy behind this

technique.

The main idea is easier captured in the Abelian context where it was first applied.

Roughly speaking, one constructs an expression for the unknown vertex out of the ingre-

dients appearing in the WI it satisfies. These ingredients must be put together in a way

such that the resulting expression satisfies the WI automatically. The most typical exam-

ple of such a construction is found in the case of the three-particle vertex of scalar QED,

describing the interaction of a photon with a pair of charged scalars. This vertex, to be

denoted by Γµ, satisfies the abelian all-order WI

qµΓµ = D−1(k + q) −D−1(k) , (2.9)

where D(k) is the fully-dressed propagator of the scalar field. Thus, in this case, the gauge-

technique Ansatz for Γµ, obtained by Ball and Chiu [40], after “solving” the above WI,

under the additional requirement of not introducing kinematic singularities, is

Γµ =
(2k + q)µ

(k + q)2 − k2

[
D−1(k + q) −D−1(k)

]
, (2.10)

which clearly satisfies eq. (2.9).
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Of course, this construction is significantly more complicated for the BQQ vertex ĨΓ,

since the identities imposed by the BRST symmetry are far more complex than the simple

Abelian WI of eq. (2.9); indeed, in order to cast these upcoming identities into a more

compact form, it is convenient to consider, instead of Γ̃, the minimally modified vertex ĨΓ,

defined as

ĨΓαµν(q, r, p) = Γ̃αµν(q, r, p) + (1/ξQ)ΓP
αµν(q, r, p) . (2.11)

Evidently, ĨΓαµν(q, r, p) and Γ̃αµν(q, r, p) differ only at tree level; specifically, using eq. (2.2),

we see immediately that

ĨΓ
(0)

αµν(q, r, p) = Γ(0)
αµν(q, r, p) . (2.12)

Incidentally, notice that ĨΓαµν(q, r, p) coincides with the vertex appearing in diagram (a1)

of the SDE (2.7), when projected to the Landau gauge [41], see also section 5.

Then, the vertex ĨΓ satisfies a (ghost-free) WI when contracted with the momentum qα

of the background gluon, whereas it satisfies a STI when contracted with the momentum

of the quantum gluons (rµ or pν). They read

qαĨΓαµν(q, r, p) = p2J(p2)Pµν(p)−r2J(r2)Pµν(r)

rµĨΓαµν(q, r, p) = F (r2)
[
q2J̃(q2)Pµ

α (q)Hµν(q, r, p)−p2J(p2)Pµ
ν (p)H̃µα(p, r, q)

]

pν ĨΓαµν(q, r, p) = F (p2)
[
r2J(r2)P ν

µ (r)H̃να(r, p, q)−q2J̃(q2)P ν
α (q)Hνµ(q, p, r)

]
, (2.13)

where F (q2) represents the ghost dressing function, related to the ghost propagator

Dab(q2) = δabD(q2) through

iD(q2) = i
F (q2)

q2
, (2.14)

and the function J̃ is related to the conventional one defined in (2.3) through the so-called

“background quantum identity” [42, 43]

J̃(q2) =
[
1 + G(q2)

]
J(q2) . (2.15)

Finally, the function G appearing above is the metric form factor in the Lorentz decompo-

sition of the auxiliary function Λ, defined as

Λµν(q) = −ig2CA

∫

k

∆σ
µ(k)D(q − k)Hνσ(−q, q − k, k)

= gµνG(q2) +
qµqν

q2
L(q2) , (2.16)

with CA the Casimir eigenvalue of the adjoint representation [CA = N for SU(N)]. This

function, together with the definitions and conventions for the auxiliary functions H and

H̃, which will be studied in great detail in the next section, is shown in figure 4. Thus,

requiring the vertex Ansatz to satisfy the STIs above implies that in its expression certain

combinations of the ghost auxiliary functions G, H and H̃ will also appear.

– 7 –
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+Λµν(q) = νµ µ ν

Hνµ(q, p, r) = gµν +

µ

q
ν ˜Hνµ(q, p, r) = gµν +

µ

q
ν

r

p p

r

Figure 4. Definitions and conventions of the auxiliary functions Λ, H and H̃. The color and

coupling dependence for the combination shown, ca(q)Ab
µ(r)A∗c

ν (p), is gfacb. White blobs repre-

sent connected Green’s functions, while gray blobs denote one-particle irreducible (with respect to

vertical cuts) kernels.

3 Identities of the ghost sector

In view of the prominent role played by the ghost auxiliary functions H and H̃ in the

ensuing analysis, in this section we shall study them, as well as the identities they satisfy.

The framework that allows us to do this is the one developed long ago by Batalin and

Vilkovisky [44, 45], that we very briefly review below.

In the Batalin-Vilkovisky formulation of Yang-Mills theories, one starts by introducing

certain sources (called anti-fields and represented with a * super-index) and couples them

to the corresponding field through the term Φ∗s Φ where s is the BRST operator. Since

these anti-fields will describe the renormalization of composite operators, they might be

introduced only for those fields that transform non-linearly under the BRST operator; in

the case of the SU(N) Yang-Mills theories that we consider, this means for the gluon and

ghost field only, since

sAa
µ = (Dµc)a ; sca = −

1

2
gfabccbcc (3.1)

where D is the usual covariant derivative with (DµΦ)a = ∂µΦa + gfabcAb
µΦc.

In much the same way, the quantization of the theory in a background field type

of gauge requires, in addition to the aforementioned anti-fields, the introduction of new

sources which couple to the BRST variation of the background fields [42]. These sources

are sufficient for implementing the full set of symmetries at the quantum level, and, in the

case of SU(N) Yang-Mills theories, after choosing a linear gauge fixing function (e.g., Rξ

or BFM type of gauges), we are lead to the master equation

∫
d4x

[
δΓ

δA∗µ
a

δΓ

δAa
µ

+
δΓ

δc∗a
δΓ

δca
+ Ωµ

a

(
δΓ

δÂa
µ

−
δΓ

δAa
µ

)]
= 0 . (3.2)

In the formula above, Γ is the (reduced) effective action, A∗ and c∗ the gluon and ghost

anti-fields, Â is the gluon background field, and Ω the corresponding background source.

– 8 –
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For the study of the algebraic structure H and H̃, we will need two additional equa-

tions. The first one is the Faddeev-Popov equation, which controls the result of the con-

traction of an anti-field leg with the corresponding momentum. In position space, it reads

δΓ

δc̄a
+

(
D̂µ δΓ

δA∗
µ

)a

− (DµΩµ)a − gfamnÂm
µ Ωµ

n = 0 , (3.3)

where D̂ is the background covariant derivative (obtained from the usual one by replacing

the gluon field A with the background field Â). Notice that eqs. (3.2) and (3.3) above are

given for the BFM gauge; to get the analogous expressions for the conventional Rξ gauges,

one needs to set the background field and source Â and Ω to zero, and Γ → Γ| bA,Ω=0
.

The second equation furnishes the WI functional W, which encodes the residual back-

ground gauge invariance; it reads

Wϑ[Γ] =

∫
d4x

∑

ϕ=Φ,Φ∗

(δϑϕ)
δΓ

δϕ
= 0 , (3.4)

where ϑa (which, in this case, plays the role of the ghost field) is the local infinitesimal

parameter associated with the SU(N) generators ta; the local transformations of the fields

are given by

δϑAa
µ = gfabcAb

µϑc δϑÂa
µ = ∂µϑa + gfabcÂb

µϑc ,

δϑca = −gfabccbϑc δϑc̄a = −gfabcc̄bϑc . (3.5)

The anti-fields transformations coincide with those of the corresponding quantum fields

given above, according to their specific representations.

After this detour, we are now in a position to study the ghost auxiliary functions in

some depth. Let us start by introducing the notation

iΓcaAb
µA∗c

ν
(q, r, p) = igfacbHνµ(p, q, r) ; H(0)

νµ (p, q, r) = gµν

iΓ
ca bAb

µA∗c
ν

(q, r, p) = igfacbH̃νµ(p, q, r) ; H̃(0)
νµ (p, q, r) = gµν . (3.6)

Then, the ghost equation (3.3) allows to relate H and H̃ to the corresponding gluon-ghost

vertices ΓcAc̄ and Γ
c bAc̄

; indeed one has [12]

ipνΓcbAa
µA∗c

ν
(r, q, p) + ΓcbAa

µc̄c(r, q, p) = 0

ipνΓ
cb bAa

µA∗c
ν

(r, q, p) + Γ
cb bAa

µc̄c(r, q, p) = igf cadΓcbA∗d
ν

(r) . (3.7)

Writing

iΓcbAa
µc̄c(r, q, p) = gfacbΓµ(r, q, p) ; Γ(0)

µ (r, q, p) = −pµ

iΓ
cb bAa

µc̄c(r, q, p) = gfacbΓ̃µ(r, q, p) ; Γ̃(0)
µ (r, q, p) = (r − p)µ , (3.8)

and using eqs. (3.12) and (3.6), we find

pνHνµ(p, r, q) + Γµ(r, q, p) = 0

pνH̃νµ(p, r, q) + Γ̃µ(r, q, p) = rµF−1(r2) . (3.9)
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C(q, p, r) = 1 +
q

r

p

Figure 5. Definitions and conventions of the auxiliary function C. The color and coupling depen-

dence for the combination shown, ca(q)cb(r)c∗c(p), is gfacb. The kernel is one-particle irreducible

with respect to vertical cuts.

As a second property, let us derive the WI satisfied by H̃ when contracted with the

momentum of the background gluon and the corresponding STI for H when contracted by

the momentum of the quantum gluon. Starting from the functional derivative

δ3Wϑ[Γ]

δθa(q)δcb(r)δA∗c
ν (p)

∣∣∣∣
Φ,Φ∗,Ω=0

; q + p + r = 0 , (3.10)

we get

qµΓ
cb bAa

µA∗c
ν

(r, q, p) − gf badΓcdA∗c
ν

(p) + gfdcaΓcbA∗d
ν

(r) = 0 . (3.11)

The ghost equation allows to relate the two-point function ΓcA∗ to the ghost dressing

function F introduced before, through [12]

ΓcaA∗b
ν

(q) = δabqνF
−1(q2) , (3.12)

and, using this latter equation as well as the definition (3.6), we can cast the identity (3.11)

in its final form

qµH̃νµ(p, r, q) = −pνF
−1(p2) − rνF

−1(r2) . (3.13)

Considering the functional derivative

δ3S[Γ]

δca(q)δcb(r)δA∗c
ν (p)

∣∣∣∣
Φ,Φ∗,Ω=0

; q + p + r = 0 , (3.14)

one gets instead

− ΓcaA
∗µ
d

(q)ΓcbAd
µA∗c

ν
(r, q, p) + ΓcbA

∗µ
d

(r)ΓcaAd
µA∗c

ν
(q, r, p) − Γcacbc∗c(q, r, p)ΓcdA∗c

ν
(p) = 0 .

(3.15)

Defining (see figure 5)

iΓcacbc∗c(q, r, p) = −igfacbC(q, r, p) , (3.16)

and using the results (3.6) and (3.12), we finally get

qµHνµ(p, r, q) = −F−1(q2)
[
pνF

−1(p2)C(q, r, p) + rµF−1(r2)Hνµ(p, q, r)
]
. (3.17)

To proceed further, we decompose the auxiliary functions H and H̃ in terms of their

basic tensor forms

Hνµ(p, r, q) = gµνaqrp − rµqνbqrp + qµpνcqrp + qνpµdqrp + pµpνeqrp ,

H̃νµ(p, r, q) = gµν ãqrp − rµqν b̃qrp + qµpν c̃qrp + qνpµd̃qrp + pµpν ẽqrp , (3.18)
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where, following the notation of [32] we have introduced the shorthand notation aqrp for

a(q, r, p), and similarly for all other form factors appearing in (3.18). Then, one can use

the identities (3.13) and (3.17) in order to constrain certain combinations of these form

factors. Indeed from the WI (3.13) one finds

ãqrp − (q · r)̃bqrp + (q · p)d̃qrp = F−1(r2)

q2c̃qrp + (q · p)ẽqrp + F−1(p2) = F−1(r2) , (3.19)

while the STI gives

F (r2)[aqrp−(q · r)bqrp+(q · p)dqrp] = F (q2)[arqp−(q · r)brqp+(p · r)drqp]

F−1(q2)
[
q2cqrp+(q · p)eqrp

]
+F−1(p2)Cqrp = F−1(r2)[arqp−(q · r)brqp+(p · r)drqp]

−F−1(r2)
[
r2crqp+(p · r)erqp

]
, (3.20)

where, as before, Cqrp ≡ C(q, r, p).

The first equation of (3.20), together with those obtained through cyclic permutations

of momenta and indices, represent the aforementioned constraints, first found in [32] [viz.

eq. (2.10) in that article] as necessary conditions for solving the STIs of the QQQ vertex.

It is clear from the above analysis that these constraints are a direct consequence of the

STI satisfied by the function H (in [32] their validity was explicitly verified at the one-loop

level only).

Finally, let us conclude this section by observing that H and H̃ can be related. Speci-

ficcally, the functional differentiation

δ3S[Γ]

δΩa
α(q)δcb(r)δA∗c

ν (p)

∣∣∣∣
Φ,Φ∗,Ω=0

; q + p + r = 0 , (3.21)

furnishes the corresponding BQI, namely

iΓ
cb bAa

µA∗c
ν

(r, q, p) =
[
igρ

µδad+ΓΩa
µA

∗ρ
d

(q)
]
ΓcbAd

ρA∗c
ν

(r, q, p)+ΓcbA
∗ρ
d

(r)ΓΩa
αAd

ρA∗c
ν

(q, r, p)

−ΓΩa
µcbc∗d(q, r, p)ΓcdA∗c

ν
(p) . (3.22)

4 Solving the Ward and Slavnov-Taylor identities

In this section we proceed to the actual construction of the vertex ĨΓ, by solving the WI

and STIs given in eq. (2.13).

In order to simplify the resulting equations, it is convenient to follow [32] and group the

14 possible tensor forms into two sets corresponding to the longitudinal and the (totally)

transverse parts of the vertex. One begins by decomposing the vertex according to

ĨΓ
αµν

(q, r, p) = ĨΓ
αµν

(ℓ) (q, r, p) + ĨΓ
αµν

(t) (q, r, p) . (4.1)

The longitudinal part is then characterized by 10 form factors Xi according to

ĨΓ
αµν

(ℓ) (q, r, p) =

10∑

i=1

Xi(q, r, p)ℓαµν
i (q, r, p) , (4.2)
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with the explicit form of the tensors ℓi given by

ℓαµν
1 = (q − r)νgαµ ℓαµν

2 = −pνgαµ ℓαµν
3 = (q − r)ν [qµrα − (q · r)gαµ]

ℓαµν
4 = (r − p)αgµν ℓαµν

5 = −qαgµν ℓαµν
6 = (r − p)α[rνpµ − (r · p)gµν ]

ℓαµν
7 = (p − q)µgαν ℓαµν

8 = −rµgαν ℓαµν
9 = (p − q)µ[pαqν − (p · q)gαν ]

ℓαµν
10 = qνrαpµ + qµrνpα . (4.3)

Notice that excluding ℓ10, each of the remaining ℓi+3 can be obtained by the corresponding

ℓi through cyclic permutation of momenta and indices; in addition, Bose symmetry with

respect to the quantum legs requires that ĨΓ reverses sign under the interchange of the

corresponding Lorentz indices and momenta, thus implying the relations

X1(q, p, r) = X7(q, r, p) X2(q, p, r) = −X8(q, r, p) X3(q, p, r) = X9(q, r, p)

X4(q, p, r) = X4(q, r, p) X5(q, p, r) = −X5(q, r, p) X6(q, p, r) = X6(q, r, p)

X10(q, p, r) = −X10(q, r, p) , (4.4)

which reduce the number of possible independent form factors from the original 10 to

only 7.

The (undetermined) transverse part of the vertex is finally described by the remaining

4 form factors Yi

ĨΓ
αµν

(t) (q, r, p) =

4∑

i=1

Yi(q, r, p)tαµν
i (q, r, p) , (4.5)

with the completely transverse tensors ti given by

tαµν
1 = [(q · r)gαµ − qµrα][(r · p)qν − (q · p)rν ]

tαµν
2 = [(r · p)gµν − rνpµ][(p · q)rα − (r · q)pα]

tαµν
3 = [(p · q)gνα − pαqν ][(q · r)pµ − (r · p)qµ]

tαµν
4 = gµν [(p · q)rα − (r · q)pα] + gαµ[(r · p)qν − (q · p)rν ] + gαν [(r · q)pµ − (r · p)qµ]

+pαqµrν − rαpµqν . (4.6)

The form factors Xi are then fully determined by solving the system of linear equations

generated by the identities given in eq. (2.13). The procedure is conceptually straightfor-

ward, but operationally rather cumbersome. One first substitutes on the l.h.s. of eq. (2.13)

the general tensorial decomposition of ĨΓ
(ℓ)

given in eq. (4.2), and then equates the co-

efficients of the resulting tensorial structures to those appearing on the r.h.s. Thus, one

obtains a system of equations expressing the form factors Xi in terms of combinations of

quantities such as J , F , etc.

In what follows we will only report the set of independent equations, i.e., we will omit

equations that can be obtained from existing ones by implementing the change p ↔ r and

using the constraints of (4.4). Thus, for example, the equation X7 +X8 +(q ·r)X10 = J(p)

does not form part of the set of independent equations, because it can be obtained from

the second equation in eq. (4.7) below, by carrying out the aforementioned transformation,

and using the corresponding relations from eq. (4.4).
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Thus, from the Abelian WI one obtains the following 4 equations

(p2 − r2)X4 − q2X5 − (r · p)(p2 − r2)X6 = p2J(p) − r2J(r)

X1 − X2 − (q · p)X10 = J(r)

X1 + X2 − X7 + X8 = 0

2X1 + (p2 − r2)X6 − 2X7 + q2X10 = 0 , (4.7)

where the form of the second equation has been simplified by making use of the third.

Similarly, from the non-Abelian STI one obtains

(r2−q2)X1 − p2X2 − (q · r)(r2−q2)X3 = F (p)
[
ãqprr

2J(r) − arpqq
2J̃(q)

]

(r2−q2)X3 − 2X4 + 2X7 + p2X10 = F (p)
[
(̃bqpr+d̃qpr)r

2J(r) − (brpq+drpq)q
2J̃(q)

]

−X7 + X8 + (r · p)X10 = F (p)
{

(r · p)̃bqprJ(r) − [arpq + (q · r)drpq] J̃(q)
}

X4 + X5 + (q · p)X10 = F (p)
{[

ãqpr + (q · r)d̃qpr

]
J(r) − (q · p)brpqJ̃(q)

}

−X4 + X5 + X7 + X8 = (q · r)F (p)
[
−b̃qprJ(r) + brpqJ̃(q)

]
. (4.8)

Clearly, there are 5 additional equations, obtained from the second STI; however, they too

can be obtained from the set of equations (4.8) by imposing the transformation r ↔ p and

using the relations (4.4), and are therefore omitted.

Eqs. (4.7) and (4.8) furnish a set of 9 equations for the 7 independent longitudinal form

factors of eq. (4.4); therefore the existence of a (unique) solution to this system, requires

the appearance of 2 non-trivial constraints for the ghost sector which read

F (r2)[aprq − (r · p)bprq + (q · p)dprq] = F (p2)[arpq − (r · p)brpq + (q · r)drpq]

F (r2)[ãqrp − (q · r)̃bqrp + (q · p)d̃qrp] = 1 . (4.9)

Evidently these relations are nothing but an expression of the STI and the WI that the

ghost auxiliary functions H and H̃ are bound to satisfy, as shown in eqs. (3.19) and (3.20).

Therefore the system can be solved and one finds a solution of the type presented in [32]

with a modified ghost-sector, reading

X1(q, r, p) =
1

4
J̃(q)

{
−p2bprqF (r) + [2arpq + p2brpq + 2(q · r)drpq]F (p)

}

+
1

4
J(r)

[
2 + (r2 − q2)̃bqprF (p)

]
+

1

4
J(p) p2 b̃qrpF (r)

X2(q, r, p) =
1

4
J̃(q)

{
(q2 − r2)bprqF (r) + [2arpq + (r2 − q2)brpq + 2(q · r)drpq]F (p)

}

+
1

4
J(r)

[
−2 + p2b̃qprF (p)

]
+

1

4
J(p) (r2 − q2) b̃qrpF (r)

X3(q, r, p) =
F (p)

q2 − r2

{
J̃(q) [arpq − (q · p)drpq] − J(r)

[
ãqpr − (r · p)d̃qpr

]}

X4(q, r, p) =
1

4
J̃(q)q2 [bprqF (r) + brpqF (p)] +

1

4
J(r)

[
2 − q2b̃qprF (p)

]

+
1

4
J(p)

[
2 − q2b̃qrpF (r)

]
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X5(q, r, p) =
1

4
J̃(q)(p2 − r2) [bprqF (r) + brpqF (p)] +

1

4
J(r)

[
2 + (r2 − p2)̃bqprF (p)

]

−
1

4
J(p)

[
2 + (p2 − r2)̃bqrpF (r)

]

X6(q, r, p) =
J(r) − J(p)

r2 − p2

X7(q, r, p) = X1(q, p, r)

X8(q, r, p) = −X2(q, p, r)

X9(q, r, p) = X3(q, p, r)

X10(q, r, p) =
1

2

{
J̃(q) [bprqF (r) − brpqF (p)] + J(r)F (p)̃bqpr − J(p)F (r)̃bqrp

}
. (4.10)

Notice finally that from the above result one can obtain also the solution for the fully

Bose-symmetric PT vertex Γ̂, namely the BBB vertex originally constructed in [14], and

further studied in [46]. This vertex satisfies (with respect to any one of its three-legs) the

WI shown in the first line of (2.13), with the modification ∆−1 → ∆̂−1, where

∆̂−1(q2) = q2Ĵ(q2) ; Ĵ(q2) = [1 + G(q2)]2J(q2) , (4.11)

is the inverse of the full PT-BFM gluon propagator. Thus, from the STIs appearing in

eq. (2.13) we see that the expression for the (longitudinal part) of the BBB vertex (given

in [46]) may be recovered from eq. (4.10) by setting J, J̃ → Ĵ , F = 1 and a = ã = 1, and

all remaining form factors of H and H̃ equal to zero.

5 Consequences for the SDE of the gluon propagator

As has already been mentioned in previous sections, the Ansatz for the longitudinal part

of the BQQ vertex, obtained by “solving” the WI and STI that this vertex satisfies, is

of central importance for the self-consistent treatment of the SDE equation governing the

dynamics of the gluon self-energy. This fact may be best appreciated in the context of

the SDE governing the gluon propagator (2.7) projected onto the Landau gauge, which is

known to display a variety of field-theoretic subtleties.

In particular, a crucial self-consistency condition for the mechanism of dynamical gluon

mass generation developed in a series of articles [10–13, 41] is the cancellation of all seagull-

type of divergences, i.e., divergences produced by integrals of the type
∫
k
∆(k), or variations

thereof [27]. In the case of the dimensional regularization that we use throughout, the

presence of such integrals would give rise to divergences of the type m2
0(1/ǫ), where m0 is

the value of the dynamically generated gluon mass at q2 = 0, i.e., m0 = m(0); if a hard

cutoff Λ were to be employed, these latter terms would diverge quadratically, as Λ2. The

disposal of such divergences would require the introduction in the original Lagrangian of a

counter-term of the form m2
0A

2
µ, which is, however, forbidden by the local gauge invariance,

which must remain intact.

This is a point of paramount importance. Indeed, in the picture put forth in the

aforementioned articles, the Lagrangian of the Yang-Mills theory (or that of QCD) is never

altered; the generation of the gluon mass takes place dynamically, without violating any
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of the underlying symmetries. Amplifying this point further, let us mention that, given

that the Lagrangian is never altered, the only other possible way of violating the gauge

(or BRST) symmetry would be by not respecting, at some intermediate step, some of the

WIs and STIs satisfied by the Green’s functions involved; for example, in the conventional

SDE formulation, a naive truncation would compromise the transversality of the resulting

gluon self-energy, i.e., the text-book condition qµΠµν(q) = 0 would be no longer valid.

Returning to the aforementioned seagull-type of divergences, as has been shown in

detail in [27], their cancellation proceeds by means of the identity

∫

k

k2 ∂∆(k2)

∂k2
+

n

2

∫

k

∆(k2) = 0 , (5.1)

whose validity hinges on the special rules of dimensional regularization (we remind the

reader that n denotes the dimensionality of space-time). In fact, as explained in [27], in

scalar QED it is exactly this identity that enforces the masslessness of the photon both

perturbatively (at the level of a one-loop calculation) as well as non-perturbatively, at

the level of the one-loop dressed SDE (assuming that the Schwinger mechanism is not in

operation). In this context, the difference between scalar QED and Yang-Mills is that

in the former case ∆ should be replaced by the propagator of the charged scalar field

D entering into the loop of the photon self-energy, whereas in the latter, ∆ is the gluon

propagator itself (entering in its own gluonic loop, see figure 2). Note that the two types

of integrals appearing on the l.h.s. of eq. (5.1) are individually non-vanishing (in fact, they

both diverge); it is only when they come in the particular combination shown above that

they sum up to zero.

The difficulty associated with eq. (5.1) is not so much recognizing its validity, but

rather, having it triggered at the end of the calculation. Specifically, the ingredients en-

tering into the SDE (most importantly, the vertex) must be such that, after taking the

limit of the SDE as q → 0, all seagull-type contributions must conspire to appear in the

combination given on the l.h.s. of eq. (5.1) only! In fact, the slightest change in a relative

numerical factor will invalidate the entire construction.

Let us now see in detail how this seagull cancellation proceeds in the case of the

Landau gauge SDE, supplied with the BQQ vertex constructed earlier. The gluon self-

energy obtained from the PT-BFM one-loop dressed SDE (see figure 2) in the Landau

gauge reads

Π̂µν(q) = g2CA

5∑

i=1

Aµν
i (q) , (5.2)

with

Aµν
1 (q) =

1

2

∫

k

Γ
(0)µ
αβ ∆αρ

t (k)∆βσ
t (k + q)ĨΓ

ν

ρσ

Aµν
2 (q) =

∫

k

∆αµ
t (k)

(k + q)βΓ
(0)ν
αβ

(k + q)2

Aµν
3 (q) =

∫

k

∆αµ
t (k)

(k + q)β ĨΓ
ν

αβ

(k + q)2
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Aµν
4 (q) = −

(n − 1)2

n
gµν

∫

k

∆(k)

Aµν
5 (q) =

∫

k

kµ(k + q)ν

k2(k + q)2
, (5.3)

and ∆µν
t (q) = Pµν(q)∆(q2) is the transverse Landau gauge propagator.

First of all, it is rather straightforward to verify explicitly that, if ĨΓ satisfies the WI

of eq. (2.13),

qµΠ̂µν(q) = 0 . (5.4)

Therefore, Π̂µν(q) = Pµν(q)Π̂(q2), and the scalar function Π̂(q2) is given by

Π̂(q2) =
g2CA

n − 1

5∑

i=1

Aµ
i µ(q) . (5.5)

Since we are interested in the behavior of Π̂(0), and in particular the annihilation of

any seagull-type of divergence, we next take the limit q → 0 of the r.h.s. of eq. (5.5),

using the explicit form of the vertex ĨΓ derived in the preceding section. In addition, we

will assume that all form factors appearing in the Lorentz decomposition of H and H̃ are

regular in the q → 0 limit; this is a reasonable assumption, given that the generation of a

dynamical mass is expected to regulate all potential infrared divergences.

Consider then the term A1; after replacing r → k and p → −k − q, and dropping

terms proportional to kρ and (k + q)σ, given that they vanish when contracted with the

corresponding transverse propagators, we find that the tensor structures ℓi are such that

ℓβρσ
1 ∼ ℓβρσ

5 ∼ ℓβρσ
7 ∼ O(q) ; ℓβρσ

3 ∼ ℓβρσ
9 ∼ O(q2) ; ℓβρσ

10 ∼ O(q3) . (5.6)

Since ℓ2 and ℓ8 yield a vanishing result when contracted with the transverse propagators,

the only tensors surviving will be ℓ4 and ℓ6; after taking the trace, one is then left with

the result

A1 = 2(n − 1)

∫

k

k2∆(k)∆(k + q) [X4 + k · (k + q)X6] + O(q) . (5.7)

On the other hand, using the explicit results given in eq. (4.10), one has

X4 + k · (k + q)X6 =
∆−1(k + q) − ∆−1(k)

(k + q)2 − k2
−

q2

2

J(k + q) − J(k)

(k + q)2 − k2
, (5.8)

and the second term is easily shown to vanish as q goes to zero. Thus, one is finally left

with the result

A1 = −2(n − 1)

∫

k

k2 ∆(k + q) − ∆(k)

(k + q)2 − k2
+ O(q) . (5.9)

Thus, in the limit q → 0 one obtains

∆(k + q) − ∆(k)

(k + q)2 − k2
=

∂∆(k2)

∂k2
+ O(q2) , (5.10)

which gives rise to the first term on the l.h.s. of eq. (5.1).
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The second contribution to eq. (5.1) arises from two terms, the obvious term A4, which

already has the required form (but not the right numerical coefficient), and the term A2,

which, after letting the momentum (k + q)β act on the tree-level vertex Γ
(0)ν
αβ , reads

A2 = −(n − 1)

∫

k

∆(k) + O(q) . (5.11)

Putting all pieces together, we finally obtain

A1 + A2 + A4 = −2

[∫

k

k2 ∆(k + q) − ∆(k)

(k + q)2 − k2
+

n

2

∫

k

∆(k)

]
+ O(q)

q→0
−→ −2

[∫

k

k2 ∂∆(k2)

∂k2
+

n

2

∫

k

∆(k)

]
= 0 , (5.12)

that is, one recovers the seagull cancellation condition of eq. (5.1).

Let us finally look at what happens to the remaining terms A3 and A5 as q → 0. To

begin with, it is elementary to check that A5(0) = 0. The treatment of A3 is more subtle,

and makes manifest the need to satisfy the STI of eq. (2.13). Specifically, after taking the

trace and using eq. (2.13), one finds

A3 = −

∫

k

∆µρ
t (k)

F (k + q)

(k + q)2

[
∆−1(k)P σ

ρ (k)H̃σµ(k,−k − q, q)

−∆̃−1(q)P σ
ρ (q)Hσµ(q,−k − q, k)

]
. (5.13)

Substituting the expansion for H̃ given in eq. (3.18), the first term on the r.h.s. of eq. (5.13)

yields

−

∫

k

F (k + q)

(k + q)2
Pµσ(k)

[
gµσ ã + (k + q)µqσ b̃

]
, (5.14)

where the argument of the form factors ã and b̃ is now (q,−k − q, k). In the q → 0 limit

this term vanishes in dimensional regularization, by virtue of the well-known property∫
k
k−2 = 0. Indeed, ∫

k

F (k)

k2
ã(0,−k, k) =

∫

k

1

k2
= 0 , (5.15)

where we have used the fact that, in this limit, the first equation of (3.19) reduces to the

simple relation

ã(0,−k, k) = F−1(k) . (5.16)

Next, consider the second term in eq. (5.13); using now the expansion (3.18) for H,

we obtain

∆̃−1(q)

∫

k

∆(k)
F (k + q)

(k + q)2
P ρ

µ (k)Pµσ(q) [gρσa − (k + q)ρkσb + kσqρd] , (5.17)

where now the form factors a, b and d carry the argument (k,−k− q, q). In the q → 0 limit

this integral gives a finite term, proportional to the expression
∫

k

∆(k)
F (k)

k2
a(k,−k, 0) . (5.18)
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It should be noticed that the contribution of the term A3 is rendered finite precisely by

virtue of the special properties of the ghost sector. In fact, if one were to use in the SDE

the fully Bose-symmetric PT vertex BBB (instead of the correct BQQ vertex that we use

here), the term A3 would give rise to an ultraviolet divergence, since (as explained at the

end of the previous section) one should set in (5.18) F, a → 1.

These observations demonstrate that, as happens in the case of chiral symmetry break-

ing [47], the complete treatment of the ghost dynamics is instrumental also for the self-

consistency of the mass generation in the purely gluonic sector of QCD.

6 Conclusions

In this article we have constructed a gauge technique inspired Ansatz for the BQQ three-

gluon vertex ĨΓ that naturally arises in the context of the PT-BFM derivation of the SDE

equations for Yang-Mills theories. An indispensable step for realizing this construction has

been the formal derivation within the Batalin-Vilkovisky formalism of the all-order WI

(respectively STI) satisfied by the ghost Green’s functions H̃ (respectively H), which, as

shown in section 4, furnish crucial constraints that allow ĨΓ to conform with both the WI

as well as the STIs of eq. (2.13).

It is important to emphasize that the analysis presented here is completely general,

and in particular that the solution shown in eq. (4.10) is valid irrespectively of the value of

the gauge-fixing parameter used to quantize the theory. To be sure, the various ingredients

appearing in eq. (4.10), such as J , F , etc., depend explicitly on ξ (or on ξQ); nevertheless,

the precise functional dependence of the form factors Xi on these functions, is always

valid, given that it originates from the solution of the WI and STIs (2.13), whose form

is in turn gauge fixing parameter independent. This is particularly relevant, given the

existing perspectives [48, 49] of carrying out large-volume lattice simulations of the gluon

and ghost propagators in covariant gauges other than the Landau gauge, i.e., at ξ 6= 0. In

particular, the possibility of simulating propagators in background-type gauges (especially

the background Feynman gauge, ξQ = 1) opens up the interesting prospect of studying

central quantities of the PT-BFM approach directly on the lattice [49].

As already mentioned in the Introduction, the construction based on solving the WI

and STI leaves the transverse part of the vertex undetermined. In terms of the notation

introduced in section 4, this means that the four form factors Yi appearing in eq. (4.5)

are completely unconstrained. In the case of QED, it is known that, in the presence

of a mass gap, the transverse part of the photon-electron vertex is sub-leading in the

infrared. Even though we are not aware of a similar study in a non-Abelian context, it

is reasonable to assume that this will continue to be so, provided that a mass gap (i.e.,

dynamical gluon mass) has indeed been generated. In such a case, one would expect that

the identically conserved part of the vertex should vanish more rapidly by at least one power

of q compared to the longitudinal part, leaving the infrared dynamics largely unaffected.

On the other hand, this ambiguity affects the ultraviolet properties of the SDEs [28–

31]. Essentially, failing to provide the correct transverse part leads to the mishandling of

overlapping divergences, which, in turn, compromises the multiplicative renormalizability
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of the resulting SD equations. The construction of the appropriate transverse part is

technically complicated, even for QED [50–53], and its systematic generalization to QCD

is still pending (for an early attempt in this direction, see [54]).

An additional important point, not addressed here, is related to the way the BQQ

vertex triggers the Schwinger mechanism [35, 36], which, in turn, is responsible for the

dynamical generation of a gluon mass. As is well-known [37–39], the relevant three-gluon

vertex (ĨΓ in this case) must contain longitudinally coupled massless poles (last diagram

in figure 3), in order for gauge invariance to be preserved. The Ansatz presented here

does not incorporate such poles, which must be supplied at a subsequent step; after this

has been accomplished, one can solve numerically the resulting SDE, and compare with

the available lattice results. Work in this direction is currently underway, and we hope to

report on the results in the near future.
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