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aDipartimento di Fisica Teorica, Università di Torino and I.N.F.N., sezione di Torino,

Via P. Giuria 1, I-10125 Torino, Italy
bDipartimento di Scienze e Tecnologie Avanzate, Università del Piemonte Orientale
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1 Introduction and motivations

The study of the non-perturbative regime of supersymmetric gauge theories has always

attracted great interest (for reviews see, for example, [1–3]). In the last decade remarkable

progress in this field has been achieved using string inspired methods, i.e. realizing the

gauge theories on the world-volume of space-filling D-branes embedded in supersymmet-

ric string compactifications and introducing the non-perturbative corrections by means of

localized branes, like D-instantons or totally wrapped Euclidean branes [4–9] (for a recent

review see, for instance, [10]). This stringy setup has allowed to reproduce in a nice and

unified framework many different features and results of the standard instanton calculus for

supersymmetric gauge theories, like for instance the ADHM construction [11], the classical

instanton profile and the non-perturbative corrections to prepotentials or superpotentials

in various models.

On the other hand, the observation that instantons can be described as branes within

branes has paved the way to several interesting generalizations corresponding to instanton

configurations that do not admit a standard gauge theory interpretation but still have

a natural realization in terms of D-branes. We shall refer to this type of configurations

as “exotic” or “stringy” instantons as opposed to the “ordinary” gauge instantons. The
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latter correspond to localized branes that share with the space-filling branes all features

except their dimensionality. In the simplest setups where the four-dimensional gauge theory

is engineered with D3 branes, the ordinary instantons are described by D(–1) branes of

the same kind, while in more general string compactifications where the gauge sector is

realized on D(3 + p) branes wrapped on a p-cycle C, the ordinary instantons correspond

to Euclidean D(p − 1) branes totally wrapped on C. Different types of D(–1) branes (for

example with different Chan-Paton structures), or Euclidean branes wrapped on cycles

C′ 6= C correspond, instead, to stringy instantons that do not have a clear field-theory

interpretation, at least from a four-dimensional point of view.1 Despite this fact, or maybe

precisely for this fact, the stringy instantons have recently attracted much interest since

they can generate novel types of interactions which are perturbatively forbidden and whose

strength is not linked to the gauge theory scale. This feature is very welcome in the search

for semi-realistic string scenarios for the physics beyond the Standard Model where a

hierarchy between various Majorana masses and Yukawa couplings is expected. Indeed,

in some specific contexts the stringy instantons have been indicated as possible sources

of neutrino masses [13–15], of certain Yukawa couplings in GUT models [16], or of non-

perturbative contributions that may be relevant for moduli stabilization [17, 18]. Other

interesting applications of stringy instantons can be found in [19–37].

From a conformal field theory point of view, in the ordinary gauge instanton config-

urations the mixed open strings suspended between the instantonic and the space-filling

branes have four directions with mixed Neumann-Dirichlet (ND) boundary conditions, and

possess massless excitations in the Neveu-Schwarz sector which describe the size and gauge

orientation of field theoretical instanton solutions. On the other hand, in the exotic cases

the mixed open strings either have extra twisted directions besides the four ND space-time

directions, or are characterized by different types of Chan-Paton factors at their end-points.

As a consequence, the bosonic moduli corresponding to the instanton size are missing and

certain fermionic zero-modes become difficult to saturate. These unwanted fermionic zero-

modes must be either removed by appropriate orientifold projections [19, 20], or lifted with

fluxes [21, 29, 30] or with other mechanisms [24, 32].

Parallel to these developments, the application of localization techniques to the compu-

tation of the instanton partition functions, originally pioneered by N. Nekrasov [38–40], has

remarkably boosted the multi-instanton calculus in gauge theories far beyond the results

obtained in the past with standard methods, and many non-perturbative phenomena can

now be put in a framework amenable of a proper mathematical treatment. Recently, these

localization techniques have been successfully applied also to multi-instantons of exotic type

yielding results that are in perfect agreement with those expected from the heterotic/Type

I′ duality [41–43] or from F-theory considerations [44]. It is therefore fair to say that also

the stringy multi-instanton calculus is now on a rather solid ground.

In all examples of exotic multi-instantons considered up to now, the gauge theory

is realized either on the world-volume of D7 branes [41, 42] or on systems of D7 and

1Some stringy instantons configurations have a nice field-theory interpretation in eight dimensions as

shown in [12].
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D3 branes [43, 44]; therefore, part of the results that have been obtained so far have

necessarily an eight-dimensional interpretation due to the presence of the D7 branes. In

this paper, instead, we consider a gauge sector made entirely of D3 branes so that the

results we get have only a four-dimensional character. In particular, we investigate the

gauge theory engineered with stacks of fractional D3 branes in a C
3/Z3 orientifold of type

IIB preserving N = 2 supersymmetry in four dimensions, and study the corresponding

stringy multi-instanton configurations along the lines already discussed in [19] for the 1-

instanton case. More specifically, we analyze a configuration of fractional D3 branes that

realizes an N = 2 SU(N) theory in four dimensions with a hypermultiplet in the symmetric

representation, and then introduce exotic instantons by adding stacks of D(–1) branes on

the nodes of the C
3/Z3 quiver diagram that are not occupied by the D3 branes. In this

way the mixed open strings stretched between the D3 and the D(–1) branes have only

fermionic charged zero-modes, a typical feature of the exotic instantons. Furthermore,

the orientifold projection removes the dangerous neutral fermionic zero-modes we alluded

to above, so that the stringy instantons have the right content of zero-modes to provide

non-vanishing contributions to the D3 brane effective action. We have computed such

non-perturbative effects with the same localization methods [38–40] used to find the gauge

instanton terms in the N = 2 super Yang-Mills theory predicted by the Seiberg-Witten

curve [45, 46]. However, due to the different structure of the moduli space of the stringy

instantons and of the corresponding moduli integrals, the non-perturbative terms we obtain

are of a novel type.

This paper is organized as follows. In section 2 we review the main features of the

fractional D3 branes in the C
3/Z3 orientifold and of the N = 2 gauge theory living on their

world-volume. In section 3 we introduce unoriented fractional D-instantons, focusing then

in section 4 on the exotic configurations, on their moduli spectrum and on the cohomological

properties of their moduli action. In section 5 we explicitly evaluate the moduli integrals for

the SU(2) theory, and derive the non-perturbative corrections to the effective prepotential

induced by the stringy instantons up to instanton number k = 5. Finally, in section 6 we

summarize our results and present our conclusions. Several technical details that are useful

to reproduce some of the computations of the main text are collected in the appendix.

2 D3 branes in the C3/Z3 orientifold

We consider fractional D3 branes in a C
3/Z3 orientifold and study the non-perturbative

effects produced by fractional D-instantons along the lines discussed in [19]. Even though

this is quite standard, we briefly recall the main features of this orientifold model in order

to be self-contained.

We place both the D3’s and the D(–1)’s at the orbifold singularity, and parametrize

the world-volume directions of the D3’s by the first four string coordinates, as shown in

table 1. In the six-dimensional “internal” space orthogonal to the D3 branes we introduce

three complex coordinates

z1 = x4 + ix5 , z2 = x6 + ix7 , z3 = x8 + ix9 , (2.1)
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0 1 2 3 4 5 6 7 8 9

D3 − − − − × × × × × ×

D(–1) × × × × × × × × × ×

Table 1. D brane arrangement. The symbols − and × denote respectively Neumann and Dirichlet

boundary conditions for the open strings attached to the branes.

on which the Z3 orbifold action can be naturally defined. Denoting by g the generator of

Z3 such that g3 = 1, we take

g :







z1

z2

z3






→







ξ z1

ξ−1 z2

z3






(2.2)

where ξ = e
2πi

3 . Since one of the complex coordinates does not transform, this Z3 ac-

tion breaks half of the supersymmetries of the original ten-dimensional background and

therefore leads to N = 2 theories on the world-volume of the fractional D3 branes.

Notice that the action (2.2) can be interpreted as a rotation of +2πi
3 in the z1-plane

combined with a rotation of −2πi
3 in the z2-plane. Thus, g can be represented by

R(g) = e+ 2πi

3
J1 e−

2πi

3
J2 (2.3)

where Ji is the generator of the rotations in the zi-plane in the vector representation.

This expression is particularly useful to define the orbifold action on spin-fields and, more

generally, on fields carrying spinor indices. To this aim, in fact, it is enough to take (2.3)

with the generators Ji in the spinor representation. As a consequence of the 4+6 splitting

of the ten-dimensional space-time induced by the D3 branes, the “Lorentz” group2 SO(10)

is broken to SO(4)× SO(6), and thus any ten-dimensional spinor decomposes accordingly.

For example an anti-chiral spinor Λ decomposes as
(

ΛαA , Λα̇A

)

(2.4)

where α (α̇) are chiral (anti-chiral) spinor indices of SO(4), and the lower (upper) indices

A are chiral (anti-chiral) spinor indices of SO(6). Upon using the explicit expression for

the SO(6) spinor weights, from (2.3) we can easily deduce that

g :











Λα−−−

Λα++−

Λα+−+

Λα−++











→











Λα−−−

Λα++−

ξ Λα+−+

ξ−1 Λα−++











and











Λα̇+++

Λα̇−−+

Λα̇−+−

Λα̇+−−











→











Λα̇+++

Λα̇−−+

ξ−1 Λα̇−+−

ξ Λα̇+−−











. (2.5)

This action shows that only half of the spinor components are invariant under the orbifold

action, thus leading to N = 2 supersymmetry as anticipated above.

2Since we will be interested in studying instanton corrections, we take a Euclidean signature in space-

time.
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U(N2)

N2

U(N1)

U(N3)

N3

N1

Figure 1. The C3/Z3 un-orientifolded theory corresponding to a configuration of N1, N2 and N3

fractional D3 branes. The lines starting and ending on the same node represent N = 2 vector

multiplets in the adjoint representation of the U(Ni) groups. The oriented lines between different

nodes represent bi-fundamental chiral multiplets which pair up into N = 2 hypermultiplets.

The orbifold group Z3 has three irreducible representations: R1(g) = 1, R2(g) = ξ

and R3(g) = ξ−1. Consequently [47], there are three types of fractional D branes and the

associated quiver diagram has three nodes. The number of fractional D3 branes occupying

the i-th node which corresponds to the representation Ri(g) is denoted by Ni. A generic

open string excitation in this brane system carries a Chan-Paton (CP) factor X that is a

(N1 +N2+N3)×(N1 +N2 +N3) matrix on which the orbifold generator g acts according to

g : X → γ(g)X γ(g)−1 . (2.6)

Here γ(g) is

γ(g) =







1lN1
0 0

0 ξ 1lN2
0

0 0 ξ−1 1lN3






(2.7)

with 1lNi
denoting the Ni × Ni identity matrix. This system supports an N = 2 gauge

theory with group U(N1)× U(N2)× U(N3) represented by the quiver diagram of figure 1.

We now enrich our configuration by adding an O3 plane with a world-volume lying

along the same four space-time directions as the D3 branes. The action of the orientifold

generator Ω on the various open string fields is standard and can be deduced by writing

Ω = ω (−1)FL I456789 (2.8)

where ω is the world-sheet parity, FL the (left) space-time fermion number and I456789 is

the reflection in the internal space. On the other hand, the orientifold acts on the CP

factors X by means of a matrix γ(Ω) according to

Ω : X → γ(Ω)XT γ(Ω)−1 . (2.9)

In the presence of an orbifold the matrix γ(Ω) must satisfy the following consistency con-

dition [47, 48]

γ(h) γ(Ω) γ(h)T = γ(Ω) (2.10)
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for any h belonging to the orbifold group, which amounts to requiring that the orientifold

and orbifold projections commute with each other. The matrix γ(Ω) can be either sym-

metric or antisymmetric. Here we choose to perform an antisymmetric projection on the

D3 branes and denote the corresponding matrix by γ−(Ω). Taking N1 to be even and

N2 = N3, we can write

γ−(Ω) =







ǫ 0 0

0 0 1lN2

0 −1lN2
0






(2.11)

where ǫ is a N1×N1 antisymmetric matrix obeying ǫ2 = −1. Using (2.6) it is easy to verify

that γ−(Ω) satisfies the consistency condition (2.10).

The bosonic field content on the fractional D3 branes at the singularity follows after

implementing the following orbifold and orientifold conditions3

Aµ = γ(g)Aµ γ(g)−1 , Aµ = −γ−(Ω)
(

Aµ

)T
γ−(Ω)−1 , (2.12a)

ΦI = (ξ)I γ(g)ΦI γ(g)−1 , ΦI = −γ−(Ω)
(

ΦI
)T

γ−(Ω)−1 . (2.12b)

Here Aµ is the gauge vector field along the D3 world-volume directions (µ = 0, . . . , 3),

while ΦI (I = 1, 2, 3) are three complex scalars along the three complex directions (2.1).

The orbifold part of these conditions forces Aµ and Φ3 to be 3×3 block diagonal matrices,

namely

Aµ =







Aµ(11) 0 0

0 Aµ(22) 0

0 0 Aµ(33)






, Φ3 =







Φ3
(11) 0 0

0 Φ3
(22) 0

0 0 Φ3
(33)






, (2.13)

and Φ1 and Φ2 to have the following off-diagonal structure

Φ1 =







0 Φ1
(12) 0

0 0 Φ1
(23)

Φ1
(31) 0 0






, Φ2 =







0 0 Φ2
(13)

Φ2
(21) 0 0

0 Φ2
(32) 0






. (2.14)

The orientifold conditions impose that Aµ(11) = ǫ
(

Aµ(11)

)T
ǫ and Aµ(22) = −

(

Aµ(33)

)T
, and

similarly that Φ3
(11) = ǫ

(

Φ3
(11)

)T
ǫ and Φ3

(22) = −
(

Φ3
(33)

)T
. The resulting theory is therefore

an USp(N1) × U(N2) gauge theory, with Aµ and Φ3 being the bosonic components of the

N = 2 adjoint vector multiplet. Sometimes, it is convenient to still denote diagrammati-

cally Aµ(22) and Aµ(33) (as well as Φ3
(22) and Φ3

(33)) as belonging to different quiver nodes,

with the understanding that they should be actually identified in the above way. Most

often we will use the simplified notation Aµ(22) ≡ Aµ and Φ3
(22) ≡ Φ.

The orientifold projection on the complex fields Φ1 and Φ2, which represent the bosonic

components of the matter superfields, can be done in a similar way and leads to the following

relations

Φ1
(12) = −ǫ

(

Φ1
(31)

)T
, Φ1

(23) =
(

Φ1
(23)

)T
, Φ2

(13) = ǫ
(

Φ2
(21)

)T
, Φ2

(32) =
(

Φ2
(32)

)T
. (2.15)

3This same analysis can be performed in a straightforward way also in the fermionic sectors.
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field USp(N1) U(N2)

Φ1
(12)

Φ1
(31)

Φ1
(23) ·

Φ2
(21)

Φ2
(13)

Φ2
(32) ·

Table 2. Matter content and associated gauge representations.

With respect to the gauge group USp(N1)×U(N2) they belong to the representations given

in table 2.

In the following we will consider a D3 brane system with N1 = 0 and N2 = N3 = N ,

supporting a four-dimensional gauge theory with group U(N) and matter in the symmetric

representation. Actually, we can neglect the U(1) factor since it is IR free, and thus

we will concentrate only on the low-energy dynamics of the SU(N) part. Note that the

complex fields Φ1
(23) and Φ

2
(32), plus their fermionic partners, pair up and build an N = 2

hypermultiplet in the symmetric representation of SU(N). For such a gauge theory, the

1-loop β-function coefficient is

b1 = N − 2 . (2.16)

The theory is therefore UV asymptotically free for N > 2 and conformal for N = 2. The

latter case is a non-standard realization of the N = 4 SU(2) superconformal Yang-Mills the-

ory; indeed for SU(2) the symmetric representation coincides with the adjoint, and thus the

matter hypermultiplet can be combined with the vector multiplet enhancing the supersym-

metry from N = 2 to N = 4. In the following we will see that this realization leads to non-

trivial results in the non-perturbative sectors of the theory even in the superconformal case.

3 D-instantons in the C3/Z3 orientifold

We now briefly discuss the D-instantons in the C
3/Z3 orientifold introduced in the previous

section. The most general instanton configuration is realized by putting k1 D(–1) branes

on node 1, k2 D(–1)’s on node 2 and k3 D(–1)’s on node 3 with k2 = k3. A generic open

string excitation stretching between two D-instantons will therefore have a CP factor Y

which is a (k1 + 2k2)× (k1 + 2k2) matrix. On it the Z3 orbifold generator g acts by means

of a matrix γ′(g) which has the same form as γ(g) in (2.6) but with Ni replaced with ki.

The orientifold action on the D(–1) CP factors is instead different with respect to the D3

case [19, 48]. Indeed, the consistency with the antisymmetric matrix (2.11) chosen for the

D3 branes requires to transform the D(–1) CP factors with a symmetric matrix γ+(Ω)

according to

Ω : Y → γ+(Ω)Y T γ+(Ω)−1 (3.1)

– 7 –
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where4

γ+(Ω) =







1lk1
0 0

0 0 1lk2

0 1lk2
0






. (3.2)

Adopting an ADHM-inspired notation, we can organize the bosonic excitations in the

Neveu-Schwarz sector of the open strings suspended between two D-instantons in a four-

dimensional vector aµ and three complex scalars χI , which are subject to the following

conditions

aµ = γ′(g)aµ γ′(g)−1 , aµ = +γ+(Ω)
(

aµ

)T
γ+(Ω)−1 , (3.3a)

χI = (ξ)I γ′(g)χI γ′(g)−1 , χI = −γ+(Ω)
(

χI
)T

γ+(Ω)−1 . (3.3b)

The plus sign in the orientifold action on aµ is due to the fact that now the first four

directions labeled by µ are of Dirichlet type. Implementing the constraints (3.3) we obtain

aµ =







aµ(11) 0 0

0 aµ(22) 0

0 0 aµ(33)






, χ3 =







χ3
(11) 0 0

0 χ3
(22) 0

0 0 χ3
(33)






, (3.4)

with

aµ(11) =
(

aµ(11)

)T
, aµ(22) =

(

aµ(33)

)T
, χ3

(11) = −
(

χ3
(11)

)T
, χ3

(22) = −
(

χ3
(33)

)T
, (3.5)

and

χ1 =







0 χ1
(12) 0

0 0 χ1
(23)

χ1
(31) 0 0






, χ2 =







0 0 χ2
(13)

χ2
(21) 0 0

0 χ2
(32) 0






, (3.6)

with

χ1
(12) = −

(

χ1
(31)

)T
, χ1

(23) = −
(

χ1
(23)

)T
, χ2

(13) = −
(

χ2
(21)

)T
, χ2

(32) = −
(

χ2
(32)

)T
. (3.7)

The conditions (3.5) imply that the symmetry group on the D-instantons is SO(k1)×U(k2),

with the orthogonal factor referring to the first node of the quiver and the unitary factor to

the remaining two nodes that are identified with each other under the orientifold projection.

This analysis can be easily extended also to the fermionic excitations of the Ramond

sector. We will provide some details on this in the following sections. Here, instead, we

dwell on the fact that depending on whether or not the D-instanton occupies a quiver

node populated also by a stack of D3 branes, it represents an ordinary gauge instanton or

a stringy instanton. Referring to the SU(N) theory of the previous section, which corre-

sponds to a D3 brane configuration of type (N1, N2) = (0, N), a D-instanton configuration

of type (k1, k2) = (0, k) describes a gauge instanton with instanton number k and instan-

ton group U(k). On the other hand, a D-instanton configuration of type (k1, k2) = (k, 0)

describes a stringy instanton with charge k and instanton group SO(k).5 All this is sum-

marized in table 3.
4Notice that, differently from N1, k1 does not need to be even.
5The occurrence of an orthogonal symmetry in the instanton sector of a theory with a unitary gauge

group is a clear signal of the exotic character of the stringy instantons.
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D3’s ⊕ D(–1)’s gauge group instanton group

gauge instantons (0, N) ⊕ (0, k) SU(N) U(k)

stringy instantons (0, N) ⊕ (k, 0) SU(N) SO(k)

Table 3. D3 and D(–1) brane configurations and their associated symmetry groups corresponding

to gauge and exotic instantons.

The most general D-instanton configuration for our SU(N) gauge theory is therefore

a superposition of gauge and stringy instantons. In the following sections we will discuss

in detail the spectrum of moduli for the stringy instantons, and compute explicitly their

contributions to the gauge effective action for N = 2. The analysis for N > 2 will be

presented in a separate publication [49].

4 Stringy instantons

We now describe in more detail the stringy instanton configurations and thus consider a

system made of a stack of k D(–1) branes placed on node 1 of the quiver diagram and two

stacks of N D3 branes placed on nodes 2 and 3 and identified with each other under the

orientifold action.

4.1 Moduli spectrum

The open strings excitations with at least one end-point on the D-instantons can be dis-

tinguished into neutral and charged ones, which we are going to analyze in turn.

Neutral sector. The neutral sector contains the modes of the open strings starting and

ending on the D-instantons which are therefore uncharged under the gauge group of the

D3 branes. Since in this configuration there is only one stack of instantonic branes on

node 1, the CP factors of the neutral moduli have only one non-zero entry, i.e. the (11)

component which is a k × k matrix. Since the complex scalars χ1 and χ2 do not have a

(11) component as is clear from eq. (3.6), we can set χ1 = χ2 = 0. Furthermore, for the

moduli aµ and χ3 which do have a diagonal (11) component in their CP factors, we can

simplify the notation and put

aµ(11) ≡ aµ =
(

aµ

)T
, χ3

(11) ≡ χ = −
(

χ
)T

. (4.1)

As far as the fermionic moduli are concerned, we see from the spinor transformation

properties (2.5) that only the components with indices (α−−−), (α++−), (α̇+++) and

(α̇ − −+) are invariant under the Z3 orbifold action. Therefore, in the configuration we

are now considering, these are the only components that can have a (11) entry in their CP

factors and can then survive the orbifold projection. Adopting an ADHM inspired notation,

we denote them as Mαa and λα̇a where the upper index a takes the values (− − −) and

(++−), while the lower index a takes the values (+++) and (−−+). Also these fermionic

moduli are k × k matrices and on them the orientifold projection acts according to

Mαa = +
(

Mαa
)T

, λα̇a = −
(

λα̇a

)T
. (4.2)
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These rules are a consequence of the fact that the matrix γ+(Ω) restricted to the (11) block

of a CP factor is simply the identity and that the orientifold generator (2.8) acting on a

ten-dimensional spinor effectively measures its chirality in the first four directions, from

which the signs in (4.2) immediately follow.

Charged sector. The charged sector contains the modes of the open strings which have

one end-point on the D-instantons and one on the D3 branes, and which are charged under

the gauge group created by the latter. Since in the exotic configuration the D-instantons

sit on node 1 while the D3 branes occupy nodes 2 and 3, the CP factors for the 3/(–1)

strings and the (–1)/3 strings have, respectively, the following structure






0 0 0

⋆ 0 0

⋆ 0 0






and







0 ⋆ ⋆

0 0 0

0 0 0






. (4.3)

It is easy to realize that both such CP factors transform non-trivially under the orbifold

generator g represented by the matrices γ(g) and γ′(g). Thus, the only charged states

surviving the orbifold projection are those whose vertex operators transform under g in such

a way to compensate the phase acquired by their CP factors. In the Neveu-Schwarz sector,

due to the mixed Neumann-Dirichlet boundary conditions, the GSO projected physical

vertex operators carry an anti-chiral spinor index in the first four directions but are singlets

in the internal directions where the orbifold acts. Thus, these bosonic vertex operators do

not acquire any phase under g and cannot survive the orbifold projection for the above

argument. The absence of bosonic charged moduli is a typical signal of the exotic nature

of these instanton configurations. On the other hand, in the Ramond sector, the GSO

projected physical vertex operators are anti-chiral spinors in the six internal directions

and two of their components, namely those with indices (+ − +) and (− + +), transform

non-trivially under g as one can see from (2.5), and can survive the orbifold projection.

Being more explicit and adopting again an ADHM inspired notation, the physical charged

moduli of the 3/(–1) sector are

µ+−+ =







0 0 0

0 0 0

µ 0 0






and µ−++ =







0 0 0

µ′ 0 0

0 0 0






(4.4)

where both µ and µ′ are N × k matrices. The physical moduli in the (–1)/3 sector,

corresponding to open strings with opposite orientation, are related to those of the 3/(–1)

sector through the orientifold action. In our case we have

µ̄+−+ = γ+(Ω)
(

µ+−+
)T

γ−(Ω)−1 =







0 +µT 0

0 0 0

0 0 0






,

µ̄−++ = γ+(Ω)
(

µ−++
)T

γ−(Ω)−1 =







0 0 −µ′T

0 0 0

0 0 0






.

(4.5)
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4.2 Moduli action

As shown in [8, 9] the moduli action can be obtained from open string disk-amplitudes

involving all moduli listed above. Such action can be expressed as the sum of three parts,

S = S1 + S2 + S3 , (4.6)

with

S1 =
1

g2
0

tr
{

−
1

4

[

aµ, aν
] [

aµ, aν

]

−
[

aµ, χ
] [

aµ, χ
]

+
1

2

[

χ, χ
] [

χ, χ
]

}

, (4.7a)

S2 =
1

g2
0

tr
{

2λα̇a

[

aµ,M a
β

]

(σµ)α̇β − iλα̇a

[

χ, λα̇a
]

− 2iMαa
[

χ,Mαa

]

}

, (4.7b)

S3 =
1

g2
0

tr
{

− iµT µ′ χ
}

(4.7c)

corresponding, respectively, to quartic, cubic and mixed interactions. Here the trace is

over the SO(k) indices and g0 is the coupling constant of the zero-dimensional Yang-Mills

theory on the D(−1) branes, which is related to the string coupling constant gs through

the relation

g2
0 =

gs

4π3α′2
. (4.8)

All moduli appearing in this action have canonical scaling dimensions, namely the bosons

have dimension of (length)−1 and the fermions dimension of (length)−3/2. More standard

ADHM-dimensions can be obtained absorbing suitable powers of g0, but we refrain from

doing this.

The quartic interaction terms among the aµ’s can be disentangled by means of the

three auxiliary fields Dc (c = 1, 2, 3), so that S1 can be rewritten in the following way

S′
1 =

1

g2
0

tr
{1

2
DcD

c −
1

2
Dcη

c
µν

[

aµ, aν
]

−
[

aµ, χ
] [

aµ, χ
]

+
1

2

[

χ, χ
] [

χ, χ
]

}

(4.9)

where ηc
µν are the anti-self dual ’t Hooft symbols. Indeed, eliminating the auxiliary fields

through their algebraic equations

Dc =
1

2
ηc

µν [aµ, aν ] , (4.10)

one can see that S′
1 reduces to S1.

Another useful rewriting concerns the cubic action (4.7b). It is obtained by making

suitable combinations among the components of the fermionic moduli that correspond to

a “topological twist” in which the internal spinor index a is identified with a space-time

spinor index β̇. More explicitly, this identification leads to

λα̇a → λα̇β̇ ≡
1

2
ǫα̇β̇ η +

i

2
(τ c)α̇β̇ λc ,

Mαa → Mαβ̇ ≡
1

2
Mµ (σµ)αβ̇ .

(4.11)

In this way the original Lorentz group SU(2)L × SU(2)R gets replaced by the “twisted”

version SU(2) × SU(2)′ where SU(2) = SU(2)L and SU(2)′ = diag
(

SU(2)R,SU(2)I
)

with

SU(2)I being the internal R-symmetry group of the N = 2 theory.
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With the definitions (4.11), the cubic action S2 can be rewritten as follows

S′
2 =

1

g2
0

tr
{

η
[

aµ,Mµ
]

+ λc

[

aµ,Mν
]

ηc
µν−

i

2
η

[

χ, η
]

−
i

2
λc

[

χ, λc
]

− iMµ

[

χ,Mµ
]

}

. (4.12)

Finally, it is also convenient to replace the mixed action (4.7c) with

S′
3 =

1

g2
0

tr
{

− iµT µ′ χ + hT h′
}

(4.13)

where h and h′ are charged auxiliary fields which do not interact with any other modulus.

Even if this replacing looks trivial, it is nevertheless useful for reasons that will become

clear in a moment.

The total action

S′ = S′
1 + S′

2 + S′
3 (4.14)

is invariant under the D-instanton group SO(k) and the D3 brane gauge group SU(N). It

is also invariant under the “twisted” Lorentz group SU(2) × SU(2)′ under which aµ and

Mµ transform in the (2,2), λc and Dc in the (1,3), and all the remaining moduli χ, χ, η,

µ, µ′, h and h′ are singlets. Furthermore, the action (4.14) is invariant under the following

BRST-like transformations

Qaµ = Mµ , QMµ = i [χ, aµ] ,

Qλc = Dc , QDc = i [χ, λc] ,

Qχ = −iη , Qη = − [χ,χ] , Qχ = 0 ,

Qµ = h , Qh = iµ χ ,

Qµ′ = h′ , Qh′ = iµ′ χ .

(4.15)

The BRST charge Q is the “singlet” component of the supercharges Qα̇a that arises after

the topological twist that identifies a with β̇, namely

Q ≡ Qα̇β̇ ǫα̇β̇ . (4.16)

Note that Q is nilpotent up to an infinitesimal SO(k) transformation parametrized by χ.

Indeed, on any modulus we have

Q2 • = TSO(k)(χ) • , (4.17)

where TSO(k)(χ) denotes an infinitesimal SO(k) rotation with parameter χ in the appro-

priate representation. According to (4.15), all moduli except χ form BRST doublets of the

type (Ψ0,Ψ1) such that QΨ0 = Ψ1 and whose properties are collected in table 4.

By exploiting the above properties and using the invariance under SO(k), one can

easily show that the total action (4.14) is Q-exact; indeed

S′ = QΞ , (4.18)

with

Ξ =
1

g2
0

tr
{

iMµ
[

χ, aµ

]

−
1

2
ηc

µνλc

[

aµ, aν
]

+
1

2
λcD

c −
1

2

[

χ,χ
]

η + µT h′
}

. (4.19)
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(Ψ0,Ψ1) SO(k) SU(N) SU(2) × SU(2)′

(aµ,Mµ) 1 (2,2)

(λc,Dc) 1 (1,3)

(χ, η) 1 (1,1)

(µ, h) N (1,1)

(µ′, h′) N (1,1)

Table 4. Moduli in the stringy instanton configuration organized as BRST pairs and their trans-

formation properties under the various symmetry groups.

Since the scaling dimension of the BRST charge is (length)−1/2, the dimensions of the

components (Ψ0,Ψ1) of any BRST doublet are of the form (length)∆ and (length)∆−1/2.

Thus, recalling that a fermionic variable and its differential have opposite dimensions, the

measure on the instanton moduli space

dMk ≡ dχ
∏

(Ψ0,Ψ1)

dΨ0 dΨ1 (4.20)

has the total dimension

(length)−
1

2
k(k−1)+ 1

2
nb−

1

2
nf . (4.21)

Here, the first term in the exponent accounts for the unpaired modulus χ in the anti-

symmetric representation of SO(k), while nb (nf ) denotes the number of BRST multiplets

whose lowest components Ψ0 are bosonic (fermionic). From table 4 it is not difficult to

verify that nb = 5
2 k2 + 3

2 k and nf = 3
2 k2 − 3

2 k + 2kN , so that the measure (4.20) has

dimension

(length)k(2−N) = (length)−kb1 (4.22)

where b1 is the coefficient of the 1-loop β-function for our gauge theory, given in (2.16).

The negative sign in the exponent of (4.22) is another hallmark of the intrinsically stringy

nature of the instanton configuration we are considering.6 However, in the conformal N = 2

case which we will discuss in detail in the following section also the exotic instanton mea-

sure (4.20) is dimensionless and thus one expects that some non-perturbative contributions

may be seen also in the effective field theory. In section 5 we will explicitly see that this is

indeed what happens.

4.3 Deformed moduli action

To obtain the non-perturbative contributions induced by the stringy instantons, it is neces-

sary to generalize the moduli action (4.18) and fully exploit all symmetries of the instanton

moduli space, which are the gauge group SO(k) on the k D(–1)’s, the gauge group SU(N)

on the N D3 branes and the “twisted” Lorentz group SU(2) × SU(2)′.

6For the usual gauge theory instantons the dimension of the moduli measure is (length)+kb1 , see for

instance [2] for a general discussion.
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To this aim, we begin by considering the interactions among the instanton moduli and

the gauge fields propagating on the world-volume of the D3 branes, which we combine into

an N = 2 chiral superfield Φ(x, θ). Such interactions can be easily obtained by computing

mixed disk amplitudes involving both vertex operators for moduli and vertex operators for

dynamical fields, as discussed in detail in [9, 50] for analogous D(–1)/D3 brane systems.

In the present case the result of such computations is

1

g2
0

tr
{

iµT Φ(x, θ)µ′
}

(4.23)

which has to be added to the moduli action (4.18). For our later purposes it is enough to

focus on the dependence on the vacuum expectation value

φ = 〈Φ(x, θ)〉 , (4.24)

and hence we will consider the following modified mixed action

S′
3(φ) = S′

3 +
1

g2
0

tr
{

iµT φµ′
}

. (4.25)

Another kind of deformation concerns the inclusion of a non-trivial background to fully

exploit the Euclidean Lorentz symmetry in the four space-time directions. This is usually

called the Ω-background deformation [38–40] which, in our stingy context, can be realized

by turning on a non-trivial Ramond-Ramond 3-form flux as discussed in detail in [50] and

more recently in [51] where the equivalence between the Ω-background and the Ramond-

Ramond flux has been shown in full generality. More specifically, we introduce a Ramond-

Ramond 3-form flux of the type Fµνz3 , i.e. with two indices along the 4-dimensional

world-volume of the D3 branes and one holomorphic index in the internal direction left

invariant by the Z3 orbifold. It is not difficult to realize that such a field strength survives

the orientifold projection under ω (−1)FL I456789, since Fµνz3 is even under the world-sheet

parity ω (like any other RR 3-form field strength), odd under (−1)FL (like any field of

the Ramond-Ramond sector) and odd under the inversion I456789 (like any field with only

one index in the internal directions). From now on, we denote Fµνz3 simply as Fµν and

parametrize it in terms of the ’t Hooft symbols as follows

Fµν = −
i

2
f̄c ηc

µν −
i

2
fc ηc

µν , (4.26)

with f̄c and fc belonging, respectively, to the representations (3,1) and (1,3) of SU(2) ×

SU(2)′. Furthermore, for reasons that will become apparent in the following, we also turn

on the component of the Ramond-Ramond 3-form field-strength with an anti-holomorphic

index in the internal space, i.e. Fµνz̄3 ≡ Fµν . We then compute mixed disk amplitudes

with insertions of Fµν and Fµν to obtain their couplings with the instanton moduli. The

results of these calculations, which are performed as explained in detail in [29, 41, 50], are

new terms in the moduli action that can be accounted by replacing the quartic and cubic

terms given in (4.9) and (4.12) as follows

S′
1 → S′

1(F ,F ) = S′
1 +

1

g2
0

tr
{

Fµνaν [χ, aµ] + iF
µν

aµ [χ, aν ] − iF
µν

aµFνρa
ρ
}

,

S′
2 → S′

2(F ,F ) = S′
2 +

1

g2
0

tr
{

−
1

2
ǫcde λcλdf e − fc λcη + i fc Dcχ + FµνMµMν

}

.

(4.27)
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Then, the full moduli action in the presence of Ramond-Ramond fluxes Fµν and Fµν , and

of a vacuum expectation value φ for the adjoint scalar of the gauge multiplet, is given by

S′(F ,F , φ) = S′
1(F ,F) + S′

2(F ,F) + S′
3(φ) . (4.28)

This action is still BRST exact, but with respect to a modified BRST charge Q′. Indeed,

taking
Q′aµ = Mµ , Q′Mµ = i [χ, aµ] − iFµνaν ,

Q′λc = Dc , Q′Dc = i [χ, λc] + ǫcde λdf e ,

Q′χ = −i η , Q′η = − [χ,χ] , Q′χ = 0 ,

Q′µ = h , Q′h = iµ χ − iφµ ,

Q′µ′ = h′ , Q′h′ = iµ′ χ − iφµ′ ,

(4.29)

one can check that

S′(F ,F , φ) = Q′ Ξ′ (4.30)

where

Ξ′ = Ξ +
1

g2
0

tr
{

i fc λcχ + FµνaµMν
}

(4.31)

with Ξ defined in (4.19). The deformed BRST charge Q′ is nilpotent up to (infinitesimal)

transformations of all the symmetry groups of the system; indeed we have

Q′2 • = TSO(k)(χ) • −TSU(N)(φ) • +TSU(2)×SU(2)′(F)• , (4.32)

where TSO(k)(χ), TSU(N)(φ) and TSU(2)×SU(2)′(F) are infinitesimal transformations of SO(k),

SU(N) and SU(2) × SU(2)′, parametrized respectively by χ, φ and F , in the appropriate

representation. Note that Fµν appears only in Ξ′ but not in Q′; hence the variation of

S′(F ,F , φ) with respect to Fµν is Q′-exact. This fact implies that the instanton partition

function does not depend on Fµν , which can therefore be set to the most convenient value

for the calculations. For later purposes it is useful to rewrite the moduli action in the

following more explicit way

S′(F ,F , φ) =
1

g2
0

tr
{

η [aµ,Mµ] + λc [aµ,Mν ] η̄c
µν −

i

2
η [χ, η] − iMµ [χ,Mµ]

−
1

2
Dc η̄c

µν [aµ, aν ] − [aµ, χ] [aµ, χ] +
1

2
[χ, χ] [χ, χ] + Fµνaν [χ, aµ]

−
1

2
λc Q′2λc +

1

2
Dc Dc − µTQ′2µ′ + hT h′ − fc λcη

+ i fc Dc χ + F
µν

aµ Q′2aν + F
µν

MµMν

}

. (4.33)

To this action we should add the classical part

Scl = −2πiτ k =
2πi

gs
k (4.34)

which represents the topological normalization of the pure D(–1) disk amplitude with

multiplicity k and no moduli insertions [9, 52]. If a non-zero vacuum expectation value

for the Ramond-Ramond scalar C0 is present, τ is promoted to the usual combination

τ = C0 + i
gs

.
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5 Non-perturbative effective action from stringy instantons

To obtain the non-perturbative contributions to the D3 brane effective action induced by

the stringy instantons, we need to compute the partition function7

Zk = Nk

∫

dMk e−S′(F ,F ,φ) (5.1)

where Nk is a normalization that contains also the appropriate power of the scale factor

needed to compensate for the dimensions of the moduli measure dMk. For N = 2, which

is the case we will consider in detail, the normalization Nk is simply a numerical factor

because in this case the moduli measure is dimensionless (see eq. (4.22)). We now evaluate

the integrals in (5.1) in the semiclassical approximation, which due to the BRST structure

of the instanton action actually turns out to be exact. One way to see this is to rescale the

BRST doublets in the following way [41]

(aµ,Mµ) →
1

x
(aµ,Mµ) , (χ, η) →

1

x
(χ, η) ,

(λc,Dc) → x2 (λc,Dc) , (µ, h) → x2 (µ, h) , (µ′, h′) → x2 (µ′, h′) ,
(5.2)

and the anti-holomorphic background as

Fµν → zFµν . (5.3)

The partition function Zk does not depend on x and z; indeed x only appears through a

change of integration variables which leaves the measure dMk invariant, while z is intro-

duced through Fµν which only appears inside the gauge fermion Ξ′ as shown in (4.31).

Thus, we can choose these parameters to simplify as much as possible the structure of Zk.

In particular, taking the limit

x → ∞ , z → ∞ with
z

x2
→ ∞ , (5.4)

the moduli action (4.33) reduces to

S′(F ,F , φ) = tr
{

−
s

2
λc Q′2λc +

s

2
Dc Dc − s µTQ′2µ′ + s hT h′ − t fc λcη

+ i t fc Dc χ + uF
µν

aµ Q′2aν + uF
µν

MµMν

}

+ · · · .
(5.5)

Here we have introduced the coupling constants

s =
x4

g2
0

, t =
x

g2
0

, u =
z

x2 g2
0

, (5.6)

which all tend to ∞ due to (5.4), and have denoted with dots the terms of the first two

lines of (4.33) which are subleading in this limit. The integrals over the moduli can now

be easily computed.

7Here, for simplicity we have omitted the exponential of minus the classical instanton action, e2πiτk; we

will restore these factors later on.
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To evaluate these integrals we choose the external background Fµν along the Cartan

directions of SU(2) × SU(2)′, namely in (4.26) we take

fc = f δc3 , f̄c = f̄ δc3 , (5.7)

so that

F = −
i

2
f̄ η3 −

i

2
f η3 = −

i

2











0 (f̄ + f) 0 0

−(f̄ + f) 0 0 0

0 0 0 (f̄ − f)

0 0 −(f̄ − f) 0











. (5.8)

When the choice (5.7) is inserted in (5.5), the fermion η only appears in the term propor-

tional to (f λ3 η). Thus, the integration over η and λ3 can be performed simultaneously

producing a factor of t f , and all other terms containing λ3 can be neglected. On the other

hand, the boson χ only appears in the term proportional to (f D3 χ), so that the Gaussian

integration over D3 and χ produces a factor of 1/(t f). In the end the integral over the

BRST quartet formed by λ3, D3, η and χ simply produces a numerical constant which we

absorb in the overall normalization factor Nk of the instanton partition function.

Once this is done, we are left with the integrals over the BRST pairs (aµ,Mµ), (µ, h),

(µ′, h′) and (λĉ,Dĉ) with ĉ = 1, 2, plus of course the integral over χ. The integrals over

the BRST pairs are all Gaussian in the semiclassical limit we are considering, and can be

easily performed yielding
∫

(dλĉdDĉ) etr { s
2
λĉ Q′2λĉ− s

2
Dĉ Dĉ} ×

∫

(dµdh) (dµ′dh′) etr {s µT Q′2µ′−s hT h′}

×

∫

(daµdMµ) e−tr {uF
µν

aµ Q′2aν+uF
µν

MµMν} ∼ P(χ) × R(χ) ×
1

Q(χ)
.

(5.9)

In the last step we have defined

P(χ) ≡ Pf(
,1, (1,3)′

)

(

Q′2
)

, (5.10a)

R(χ) ≡ det(
,N, (1,1)

)

(

Q′2
)

, (5.10b)

Q(χ) ≡ det
1/2
(

,1, (2,2)
)

(

Q′2
)

, (5.10c)

where the labels on the Pfaffian and determinants specify the representations on which Q′2

acts,8 and neglected all numerical factors that are absorbed in the overall normalization.

Thus, the k-instanton partition function is given in terms of the (super) determinant of Q′2

evaluated at the fixed points of Q′ in agreement with the localization formulas [38, 53, 54],

and can be expressed in the following form

Zk = Nk

∫

{ dχ

2πi

} P(χ)R(χ)

Q(χ)
. (5.11)

8In the first line of eq. (5.10), (1,3)′ means that the component of the BRST pair (λc, Dc) along the

null weight must not be considered, since it has been already integrated out with the quartet mechanism.
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Notice that, as we anticipated above, the result does not depend on the anti-holomorphic

background Fµν , nor on the coupling constants s, t and u.

Since the integrand in (5.11) is singular when the denominator Q(χ) vanishes and

tends to one when χ → ∞, the integral over χ is naively divergent and must be suitably

defined to make sense. Here we follow exactly the same prescription of ref. [55], which has

already been tested for the stringy instanton calculus in several explicit examples [41–44].

In particular, we cure the singularities along the integration path by giving the zeroes of

Q(χ) a small positive imaginary part moving them in the upper-half complex plane, and

regulate the divergence at infinity by interpreting the χ-integral as a contour integral.

5.1 Explicit results for small instanton numbers

We will now derive the explicit expression of the partition function for low instanton num-

bers in the SU(2) theory. The case of SU(N) will be considered in a separate publica-

tion [49].

5.1.1 k = 1

The 1-instanton partition function Z1 is particularly simple: in fact, for k = 1 there are no

λc’s and no χ’s, so that the factor P(χ) is not generated and no contour integral has to be

evaluated. Furthermore, for k = 1 we simply have

R(χ) ∝ detφ ,

Q(χ) ∝ det1/2F ∝ E1E2 ≡ E ,
(5.12)

where we have defined

E1 =
f + f̄

2
, E2 =

f − f̄

2
, (5.13)

and neglected all numerical factors. Absorbing the latter into the overall normalization,

we eventually find

Z1 = N1
detφ

E
. (5.14)

Notice that the factor 1/E in the above result can be interpreted as the regulated volume

of the four-dimensional N = 2 superspace [38, 50], since for k = 1 the moduli aµ and Mµ

are identified with the superspace coordinates.

5.1.2 k > 1

In this case, in order to perform the integration over the χ’s we exploit the SO(k) invariance

of the integrand in (5.11) and, at the price of introducing a Vandermonde determinant

∆(χ), bring the χ’s to the Cartan subalgebra, whose generators we denote as H i
SO(k), i.e.

χ → ~χ · ~HSO(k) =

rank SO(k)
∑

i=1

χi H
i
SO(k) . (5.15)

Then the partition function becomes

Zk = Nk

∫

∏

i

(dχi

2πi

)

∆(~χ)
P(~χ)R(~χ)

Q(~χ)
. (5.16)
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Again, we have absorbed all numerical factors produced by the “diagonalization” of χ

into a redefinition of the normalization coefficient Nk. Furthermore, without any loss of

generality we can assume that also the vacuum expectation value φ belongs to the Cartan

direction of SU(2), namely

φ =
ϕ

2
τ3 . (5.17)

Let us now consider the 2-instanton partition function. As shown in detail in ap-

pendix A, for k = 2 we have

P(~χ) ∝ −(E1 + E2) , R(~χ) ∝
(

χ2 + detφ
)2

,

Q(~χ) ∝ E
2

∏

A=1

(2χ − EA)(2χ + EA) , ∆(~χ) = 1 ,
(5.18)

so that

Z2 = −N2
E1 + E2

E

∫

dχ

2πi

(

χ2 + det φ
)2

(4χ2 − E2
1)(4χ2 − E2

2)
. (5.19)

As we mentioned in the previous subsection, the χ-integral must be understood as a contour

integral in the upper-half complex plane and the singularities at the zeroes of the denom-

inator in (5.19) are avoided by giving the deformation parameters EA a small positive

imaginary part, according to the prescriptions of refs. [55]. In particular, we choose

Im E1 > Im E2 > Im
E1

2
> Im

E2

2
> 0 . (5.20)

Evaluating the residues, we finally obtain

Z2 =
N2

4 E2
det2φ −

N2

8 E
detφ −

N2

64 E

[

(E2
1 + E2

2) + E
]

. (5.21)

The calculation for k = 3 proceeds in the same way, even if it is algebraically a bit

more involved. Some technical details are given in appendix A; here we simply quote the

final result, namely

Z3 =
N3

12 E3
det3φ −

N3

8 E2
det2φ −

N3

192 E2

[

3(E2
1 + E2

2) − 5E
]

det φ . (5.22)

The explicit expressions for Z4 and Z5 can be obtained as well and they are given in ap-

pendix A. Since they are rather cumbersome, we refrain from writing them here; however,

we report the terms with the highest power of E in the denominator, namely

Z4 =
N4

48 E4
det4φ + · · · , (5.23a)

Z5 =
N5

240 E5
det5φ + · · · , (5.23b)

which will be useful for the subsequent calculations.
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5.2 The non-perturbative prepotential

From the partition functions Zk computed above, we define the “grand-canonical” instanton

partition function

Z =

∞
∑

k=0

Zk e2πiτk =

∞
∑

k=0

Zk qk (5.24)

where we have set Z0 = 1 and q ≡ exp(2πiτ). To obtain the non-perturbative D3 brane ef-

fective action induced by the stringy instantons and remove the disconnected contributions,

we have to take the logarithm of Z. Notice that the partition functions Zk have been com-

puted by integrating over all moduli, including the instanton “center-of-mass” coordinates

and their superpartners playing the rôle of the superspace coordinates. In the absence of

the Ramond-Ramond deformations these zero-modes do not appear in the moduli action

and the integration over them would diverge. In the presence of deformations, instead, this

integration yields a factor of 1/E (as is clearly seen from the k = 1 result (5.14)), and thus

to extract the integral over the centered moduli only, it is sufficient to multiply logZ by

E . Having done so, we can promote the vacuum expectation value φ appearing in Z to

the full fledged dynamical superfield Φ(x, θ) and, after removing the Ramond-Ramond de-

formations, we finally obtain the non-perturbative contributions to the D3 brane effective

action, namely

S(n.p.) =

∫

d4x d4θ F (n.p.)
(

Φ(x, θ)
)

(5.25)

where the “prepotential” F (n.p.)(Φ) is

F (n.p.)(Φ) = E logZ
∣

∣

∣

φ→Φ,EA→0
. (5.26)

Expanding in powers of q, we have

F (n.p.)(Φ) =
∞
∑

k=1

Fk qk
∣

∣

∣

φ→Φ,EA→0
(5.27)

where the first few coefficients are

F1 = EZ1 ,

F2 = EZ2 −
F 2

1

2E
,

F3 = EZ3 −
F2F1

E
−

F 3
1

6E2
,

F4 = EZ4 −
F3F1

E
−

F 2
2

2E
−

F2F
2
1

2E2
−

F 4
1

24E3
,

F5 = EZ5 −
F4F1

E
−

F3F2

E
−

F3F
2
1

2E2
−

F 2
2 F1

2E2
−

F2F
3
1

6E3
−

F 5
1

120E4
.

(5.28)

The prepotential F (n.p.)(Φ) must be well-defined when the closed-string deformations are

turned off, and thus all coefficients Fk must be finite in the limit EA → 0. From (5.28) and

the expressions of Zk we derived in the previous subsection, we see that the Fk’s contain
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singular terms diverging as 1/Ek−1, 1/Ek−2, · · · for EA → 0. Imposing the cancellation

of the most divergent terms of Fk fixes the overall normalization Nk but, once this choice

is made, no freedom is left and all the remaining divergences must disappear. Verifying

that this happens is a very strong check on our results and the consistency of the whole

procedure.

For k = 1, from eq. (5.14) we have directly

F1 = N1 det φ . (5.29)

This is the same result obtained in [19]. For k = 2, from eqs. (5.28) and (5.21) we find

F2 =

(

N2

4
−

N 2
1

2

)

det2φ

E
−

N2

8
detφ −

N2

64

[

(E2
1 + E2

2) + E
]

. (5.30)

If we choose

N2 = 2N 2
1 , (5.31)

the most divergent term disappears, and we are left with

F2 = −
N 2

1

4
detφ −

N 2
1

32

[

(E2
1 + E2

2) + E
]

(5.32)

which is indeed finite when EA → 0. We then proceed in the same way at the next order,

k = 3. Using eq. (5.22) and inserting the above expressions for F1 and F2 in (5.28), we find

F3 =

(

N3

12
−

N 3
1

6

)

det3φ

E2
+ . . . , (5.33)

so that we have to choose

N3 = 2N 3
1 . (5.34)

Once this is done, all other divergences in F3 cancel and we are simply left with

F3 =
N 3

1

12
det φ . (5.35)

For k = 4, we use the partition function Z4 given in appendix A and again require the can-

cellation of most divergent term in the resulting expression for F4 following from eq. (5.28).

This fixes N4 = 2N 4
1 . Using this, we then find

F4 = −
N 4

1

32
det φ −

N 4
1

256

[

(E2
1 + E2

2) + E
]

, (5.36)

which has a finite limit when EA → 0. In the case k = 5, having computed Z5 along the

lines described in appendix A, the cancellation of the highest divergence in F5 leads to

N5 = 2N 5
1 , after which we get

F5 =
N 5

1

80
det φ . (5.37)

Making the replacement φ → Φ(x, θ) and taking the limit EA → 0 in the above results,

we finally obtain from the non-perturbative prepotential of the SU(2) gauge theory induced

by the stringy instantons. Up to instanton number k = 5, our findings are summarized in

F (n.p.)(Φ) = −Tr Φ2
(N1

2
q −

N 2
1

8
q2 +

N 3
1

24
q3 −

N 4
1

64
q4 +

N 5
1

160
q5 . . .

)

, (5.38)

where we made use of the relation det φ = −1
2 Tr φ2 which easily follows from eq. (5.17).
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6 Summary and conclusions

The detailed analysis presented in the previous sections shows that the stringy instantons

have the right content of zero-modes to produce non-perturbative terms in the N = 2

SU(N) theories in four dimensions realized with fractional D3 branes in a C
3/Z3 orientifold.

For the SU(2) model such terms have been explicitly computed using localization methods

up to instanton number k = 5, and have been shown to provide non-perturbative corrections

to the effective prepotential of the theory.

It is worth to remark that these results are unconventional from a purely field-theory

point of view, but are quite natural in the stringy approach to the instanton calculus. In

fact, the exotic instantons in our model are fractional D(–1) branes that occupy quiver

nodes where no D3 branes are present but, apart from this feature, they are completely

standard D-instantons, possessing their “own life” independently of the existence of an

underlying gauge theory. What is non-standard, however, is the content of their moduli

space: indeed, the charged zero modes corresponding to the mixed open strings stretching

between the stringy instantons and the gauge branes are only fermionic, and the neutral

zero-modes corresponding to open strings with both end-points on the stringy instantons

are in representations of orthogonal groups even if the gauge groups are unitary. This is

to be contrasted with what happens for the ordinary instantons in theories with unitary

gauge groups, where the charged zero-modes are both bosonic and fermionic and the neu-

tral zero-modes fall into representations of unitary groups if the gauge group is unitary.

These differences result in a different structure of the moduli integral and in a different

scaling dimension of the integration measure on moduli space. For the SU(2) model the

integration measure turns out to be dimensionless (see eq. (4.22)) and thus the prepoten-

tial of the theory can receive contributions from exotic configurations with any instanton

number.9 Notice that in this SU(2) model the supersymmetry is enhanced at tree-level

from N = 2 to N = 4, because the SU(2) symmetric representation in which the hyper-

multiplet transforms is equivalent to the adjoint representation. Therefore, this model can

be regarded as a non-conventional realization of an N = 4 SU(2) super Yang-Mills theory

in four dimensions. As is well known, the usual gauge instantons in this case do not con-

tribute to the (quadratic) effective action; on the contrary, as we have explicitly shown,

the stringy instantons do. Furthermore, since they only correct the prepotential, the above

supersymmetry enhancement is lost at the non-perturbative level. From our results up to

instanton number k = 5 (see eq. (5.38)), it is very natural to conjecture that the stringy

instanton series of the SU(2) theory can be resummed into

F (n.p.)(Φ) = −Tr Φ2 log
(

1 +
N1

2
q
)

(6.1)

where the non-vanishing constant N1 can be fixed by a careful analysis of the normalization

of the 1-instanton partition function. This seems to suggest that the stringy instantons

induce a non-perturbative redefinition of the gauge coupling constant of logarithmic type,

9This is similar to what happens with ordinary instantons in the N = 2 SU(2) gauge theory with four

fundamental flavors.
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so that the SU(2) prepotential appears classical in terms of the new coupling. We notice

that a similar logarithmic redefinition of the coupling constant has been observed in a

conformal SO(4) ≃ SU(2) × SU(2) theory realized with D7 branes on a C
2/Z2 singularity

in the presence of exotic instantons [42]. It would be interesting to understand whether

such non-perturbative redefinitions may have some deeper meaning.
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A Details on the D-instanton computations

The expressions of the functions P(χ), R(χ), Q(χ) defined in (5.10) and appearing in

the integrand of the instanton partition function (5.11), can be expressed in terms of the

weights of the relevant representations of the instantonic symmetry group SO(k), of the

twisted Lorentz group SU(2) × SU(2)′ and of the gauge group SU(2) . For convenience we

recall the form of these weight vectors.

Weight sets of SO(2n + 1): This group has rank n. If we denote by ~ei the versors in

the R
n weight space, then

• the set of the 2n + 1 weights ~π of the vector representation is given by

± ~ei , ~0 with multiplicity 1 ; (A.1)

• the set of n(2n + 1) weights ~ρ of the adjoint representation (corresponding to the

two-index antisymmetric tensor) is the following:

± ~ei ± ~ej (i < j) , ± ~ei , ~0 with multiplicity n ; (A.2)

• the (n + 1)(2n + 1) weights ~σ of the two-index symmetric tensor10 are

± ~ei ± ~ej (i < j) , ± ~ei , ± 2~ei , ~0 with multiplicity n + 1 . (A.3)

Weight sets of SO(2n). This group has rank n. If we denote by ~ei the versors in the

R
n weight space, then

• the set of the 2n weights ~π of the vector representation is given by

± ~ei ; (A.4)

10In fact, this is not an irreducible representation: it decomposes into the (n + 1)(2n + 1) − 1 traceless

symmetric tensor plus a singlet. One of the ~0 weights corresponds to the singlet.
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• the set of n(2n− 1) weights ~ρ of the two-index antisymmetric tensor is the following:

± ~ei ± ~ej (i < j) , ~0 with multiplicity n ; (A.5)

• the n(2n + 1) weights ~σ of the two-index symmetric tensor11 are

± ~ei ± ~ej (i < j) , ± 2~ei , ~0 with multiplicity n . (A.6)

Weight sets of SU(2)×SU(2)′. The relevant representations of the twisted Lorentz

group are the (1,3) in which the BRST pair (λc,Dc) transforms, and the (2,2) in which

the BRST pair (aµ,Mµ) transforms.

• the weights ~α of the (1,3) representation are given by the following two-component

vectors

(0,±1) , (0, 0) . (A.7)

In our conventions, the weight (0,+1) is considered to be positive.

• the weights ~β of the (2,2) representation are given by the following two-component

vectors
(

± 1/2,±1/2
)

. (A.8)

The weights
(

± 1/2,+1/2
)

are considered positive in our conventions.

Weight sets of SU(2). In this case, the only relevant SU(2) representation that occurs

in our analysis is the fundamental one, for which the two weights ~γ is simply given by

±1/2.

To evaluate the moduli integral and obtain the instanton partition function it is con-

venient to align the vacuum expectation value φ of the chiral multiplet along the Cartan

direction of SU(2), and the external Ramond-Ramond background F along the Cartan

directions of SU(2) × SU(2)′, namely

φ = ~φ · ~HSU(2) and F = ~f · ~HSU(2)×SU(2)′ . (A.9)

Comparing with eqs. (5.8) and (5.17), we see that

~φ = ϕ and ~f = (f̄ , f) . (A.10)

Furthermore, exploiting the SO(k) invariance, we arrange the χ moduli along the Cartan

directions, namely

χ → ~χ · ~HSO(k) =
n

∑

i=1

χiH
i
SO(k) , (A.11)

at the price of introducing in the integrand a Vandermonde determinant given by

∆(~χ) =
∏

~ρ6=~0

~χ · ~ρ =























∏

i<j

(

χ2
i − χ2

j

)2
for k = 2n ,

(−1)n
n

∏

i=1

χ2
i

∏

j<ℓ

(

χ2
j − χ2

ℓ

)2
for k = 2n + 1 .

(A.12)

11Again, this is not an irreducible representation, since it contains a singlet.
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With all these definitions at hand, we can now give the explicit expressions for the

functions P(χ), R(χ), Q(χ). From eq. (5.10a), we have

P(~χ) =
∏

~ρ

+
∏

~α

(

~χ · ~ρ − ~f · ~α
)

=



























(−f)n
n

∏

i<j

[

(χi + χj)
2 − f2

] [

(χi − χj)
2 − f2

]

for k = 2n ,

fn
n

∏

i

(

χ2
i − f2

)

n
∏

j<ℓ

[

(χj + χℓ)
2 − f2

] [

(χj − χℓ)
2 − f2

]

for k = 2n + 1 .

(A.13)

where the product over ~α is limited to the positive weight (0,+1). This is the meaning of

the superscript + appearing above. From eq. (5.10b), we have

R(~χ) =
∏

~π

∏

~γ

(

~χ · ~π − ~φ · ~γ
)

=























n
∏

i=1

(

χ2
i + detφ

)2
for k = 2n ,

detφ

n
∏

i=1

(

χ2
i + detφ

)2
for k = 2n + 1 .

(A.14)

and finally from eq. (5.10c), we have

Q(~χ) =
∏

~σ

+
∏

~β

(

~χ · ~σ − ~f · ~β
)

=



















































En
2

∏

A=1

n
∏

i=1

(

4χ2
i − E2

A

)

∏

j<ℓ

[

(χj + χℓ)
2 − E2

A

] [

(χj − χℓ)
2 − E2

A

]

for k = 2n ,

En+1
2

∏

A=1

{

n
∏

i=1

(

χ2
i − E2

A

)(

4χ2
i − E2

A

)

×

×
∏

j<ℓ

[

(χj + χℓ)
2 − E2

A

] [

(χj − χℓ)
2 − E2

A

]

}

for k = 2n + 1 ,

(A.15)

where again the product over ~β is limited to the positive weights.

Using these definitions and recalling from eq. (5.13) that f = (E1 + E2), it is easy to

find that at instanton number k = 2 the partition function (5.16) reads

Z2 = −N2
E1 + E2

E

∫

dχ

2πi

(

χ2 + det φ
)2

(4χ2 − E2
1)(4χ2 − E2

2)
. (A.16)

as reported in eq. (5.19) of the main text. Evaluating the χ integral as a contour integral in

the upper half complex plane with the pole prescription (5.20), and summing the residues

at χ = EA and χ = EA/2 for A = 1, 2, we eventually find the result given in eq. (5.21).

Proceeding in a similar way, at instanton number k = 3 we find

Z3 = −N3
det φ (E1 + E2)

E2

∫

dχ

2πi

(

χ2 − (E1 + E2)
2
)(

χ2 + detφ
)2

(χ2 − E2
1)(χ2 − E2

2)(4χ2 − E2
1)(4χ2 − E2

2)
, (A.17)
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from which the result given in eq. (5.22) follows.

We conclude by giving the explicit expressions of the instanton partition functions at

k = 4 and k = 5. They are

Z4 =
N4

48 E4
det4φ −

N4

16 E3
det3φ −

N4

384 E3

[

3(E2
1 + E2

2) − 19E
]

det2φ (A.18)

+
N4

256 E2

[

(E2
1 + E2

2) − 3E
]

detφ +
N4

4096 E2

[

(E2
1 + E2

2) − 7E
][

(E2
1 + E2

2) + E
]

,

and

Z5 =
N5

240 E5
det5φ −

N4

48 E4
det4φ −

N5

384 E4

[

(E2
1 + E2

2) − 13E
]

det3φ

+
N5

768 E3

[

3(E2
1 + E2

2) − 17E
]

det2φ (A.19)

+
N5

61440 E3

[

15(E4
1 + E4

2) − 170(E2
1 + E2

2) + 299E2
]

detφ .

References

[1] M.A. Shifman and A.I. Vainshtein, Instantons versus supersymmetry: Fifteen years later,

hep-th/9902018 [SPIRES].

[2] N. Dorey, T.J. Hollowood, V.V. Khoze and M.P. Mattis, The calculus of many instantons,

Phys. Rept. 371 (2002) 231 [hep-th/0206063] [SPIRES].

[3] M. Bianchi, S. Kovacs and G. Rossi, Instantons and supersymmetry, Lect. Notes Phys. 737

(2008) 303 [hep-th/0703142] [SPIRES].

[4] E. Witten, Small Instantons in String Theory, Nucl. Phys. B 460 (1996) 541

[hep-th/9511030] [SPIRES].

[5] M.R. Douglas, Branes within branes, hep-th/9512077 [SPIRES].

[6] M.R. Douglas, Gauge Fields and D-branes, J. Geom. Phys. 28 (1998) 255 [hep-th/9604198]

[SPIRES].

[7] M.B. Green and M. Gutperle, D-particle bound states and the D-instanton measure,

JHEP 01 (1998) 005 [hep-th/9711107] [SPIRES].

[8] M.B. Green and M. Gutperle, D-instanton induced interactions on a D3-brane,

JHEP 02 (2000) 014 [hep-th/0002011] [SPIRES].
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